IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 11, NOVEMBER 2024

4045

VALO: A Versatile Anytime Framework for

LiDAR-Based Object Detection Deep
Neural Networks

Ahmet Soyyigit”, Shuochao Yao™, and Heechul Yun

Abstract—This work addresses the challenge of adapting
dynamic deadline requirements for the LiDAR object detection
deep neural networks (DNNs). The computing latency of object
detection is critically important to ensure safe and efficient
navigation. However, the state-of-the-art LiDAR object detection
DNNs often exhibit significant latency, hindering their real-
time performance on the resource-constrained edge platforms.
Therefore, a tradeoff between the detection accuracy and latency
should be dynamically managed at runtime to achieve the
optimum results. In this article, we introduce versatile anytime
algorithm for the LiDAR Object detection (VALQO), a novel
data-centric approach that enables anytime computing of 3-D
LiDAR object detection DNNs. VALO employs a deadline-
aware scheduler to selectively process the input regions, making
execution time and accuracy tradeoffs without architectural
modifications. Additionally, it leverages efficient forecasting of
the past detection results to mitigate possible loss of accuracy
due to partial processing of input. Finally, it utilizes a novel input
reduction technique within its detection heads to significantly
accelerate the execution without sacrificing accuracy. We imple-
ment VALO on the state-of-the-art 3-D LiDAR object detection
networks, namely CenterPoint and VoxelNext, and demonstrate
its dynamic adaptability to a wide range of time constraints while
achieving higher accuracy than the prior state-of-the-art. Code is
available at https://github.com/CSL-KU/VALOgithub.com/CSL-
KU/VALO.

Index Terms—3-D object detection,
LiDAR.

anytime computing,

I. INTRODUCTION

ERCEPTION plays a vital role in autonomous vehicles.

Its primary objective is to identify and categorize objects
of interest (e.g., cars and pedestrians) within the operational
environment. While humans excel at this task effortlessly, it
presents a significant challenge for the computers. For the
object detection in 3-D space, LiDAR-based object detection
deep neural networks (DNNs) [1], [2], [3] have emerged as

Manuscript received 10 August 2024; accepted 12 August 2024. Date of
current version 6 November 2024. This work was supported in part by the
NSF under Grant CNS-1815959, Grant CPS-2038923, Grant III-2107200,
and Grant CPS-2038658. This article was presented at the International
Conference on Embedded Software (EMSOFT) 2024 and appeared as part
of the ESWEEK-TCAD special issue. This article was recommended by
Associate Editor S. Dailey. (Corresponding author: Ahmet Soyyigit.)

Ahmet Soyyigit and Heechul Yun are with the Department of Electrical
Engineering and Computer Science, University of Kansas, Lawrence, KS
66045 USA (e-mail: ahmet.soyyigit@ku.edu; heechul.yun@ku.edu).

Shuochao Yao is with the Department of Computer Science, George Mason
University, Fairfax, VA 22030 USA (e-mail: shuochao@gmu.edu).

Digital Object Identifier 10.1109/TCAD.2024.3443774

, Senior Member, IEEE

an effective approach as they can provide highly accurate
position, orientation, size, and velocity estimates.

In autonomous vehicles, however, the object detection
results must not only be accurate but also timely as the
outdated results are of little use in the path planning of a
fast-moving autonomous vehicle. Unfortunately, the LiDAR
object detection DNNs are often computationally expensive
and thus exhibit significant latency, especially when run-
ning on resource-constrained embedded computing platforms.
Moreover, they lack the ability to dynamically trade execution
time and accuracy, which makes it difficult to adapt to
dynamically changing real-time requirements in autonomous
vehicles [4], [5]. For example, when a vehicle moves at a
high speed, fast detection may be more important than high
accuracy (e.g., correct object classification) in order to avoid
collision in a timely manner. On the other hand, when the
vehicle moves slowly in a complex urban environment, accu-
rate detection may be more important than the fast detection
for safe navigation.

To enable schedulable tradeoffs between the accuracy and
latency in perception, the prior research efforts have focused
on the vision-based DNNs [6], [7], [8], [9], [10]. Model-level
innovations, such as early exit architectures [9] have been
widely adopted, where these models incorporate additional
output layers at the intermediate stages, allowing the network
to make predictions before the full depth of the model
is utilized. Nonetheless, these enhancements come with a
tradeoff. The repeated activation of the intermediate output
layers at several phases leads to a significant increase in the
computational overhead. This issue is particularly pronounced
in applications requiring complex detection heads capable of
producing granular object-level predictions, such as LiDAR-
based object detection and segmentation tasks. Recently,
AnytimeLidar [11] introduced a capability to bypass certain
components and detection heads in an LiDAR object detection
DNN to enable the latency and accuracy tradeoffs at runtime.
However, such model-level improvements may not work on
different model architectures, which are constantly evolving.

In this work, we present versatile anytime algorithm
for the LiDAR Object detection (VALO), a novel data-
centric approach to enable anytime computing in processing
the LiDAR-based object detection DNNs. VALO selectively
processes subsets of periodically given input data with the
aim of maximizing detection accuracy while respecting the
deadline constraint. It implements a deadline-aware scheduler

1937-4151 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: George Mason University. Downloaded on October 01,2025 at 18:03:11 UTC from IEEE Xplore. Restrictions apply.

4046

Encoder

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 11, NOVEMBER 2024

Decoder

Feature
Transform

3D
Backbone

B

Point cloud

Fig. 1. General LIDAR object detection DNN architecture.

that splits the detection area into regions and schedules them to
reduce the computational costs while considering the accuracy
impacts. To minimize the potential accuracy loss, VALO
employs a lightweight forecasting algorithm to predict the cur-
rent poses of the previously detected objects based on a simple
physics model. The forecasted objects are merged with the
DNN detected ones through the nonmaximum suppression to
improve the overall accuracy. In addition, VALO implements
a novel input reduction technique within its detection heads.
This technique reduces the input volume to be processed by a
factor of ten for the convolutions responsible for delivering the
object attributes. Importantly, it accomplishes this without any
loss in accuracy by eliminating the unnecessary computation
in the areas where no object prediction exists.

We have implemented VALO on the top of the two
state-of-the-art LiDAR object detection DNNs [1], [3] and
evaluated them using a large-scale autonomous driving dataset,
nuScenes [12]. We utilized the Jetson AGX Xavier [13] as
the testing platform, a commercially available off-the-shelf
embedded computing platform. The results demonstrate that
VALO enables the anytime capability across a wide spec-
trum of timing constraints, while achieving higher accuracy
across all the deadline constraints compared to the baseline
LiDar object detection DNNs [1], [3] and a prior anytime
approach [11].

In summary, we make the following contributions.

1) We propose a novel data scheduling framework for the

LiDAR object detection DNNSs that enables latency and
accuracy tradeoffs at runtime.
We apply our approach to the two state-of-the-art LIDAR
object detection DNNs and show its effectiveness and
generality on a real platform using a representative
autonomous driving dataset.

The remainder of this article is organized as follows.
We provide the necessary background in Section II and the
present motivation in Section III. We describe our approach
in Section IV and present the evaluation results in Section V.
After discussing the related work in Section VI, we conclude
in Section VIL

2)

II. BACKGROUND

In this section, we provide the necessary background on the
LiDAR object detection DNNs and anytime computing.

A. LiDAR Object Detection DNNs

The primary objective of the LiDAR-based object detection
is to identify objects of interest within the detection area

: | /—};\
e o

Detected objects

by processing the input point clouds. Many LiDAR-based
object detection DNNs have been proposed [1], [2], [3], some
are optimized for latency, while the others are optimized for
accuracy.

Fig. 1 illustrates the general workflow of the LiDAR object
detection DNNs. Their encoders are designed to extract
features from the transformed input (e.g., voxels) with their
backbone(s), typically by employing convolutional neural
networks. An encoder can have a 3-D backbone that applies
sparse convolutions on the 3-D data, a 2-D backbone similar to
those used in vision object detection DNNs or both. When both
are used, the sparse output of the 3-D backbone is projected
to a bird-eye view (BEV) pseudo image to turn it into a
dense tensor so the 2-D backbone can process it with dense
convolutions.

After the encoder operation, the produced features are
further processed by the decoder, which consists of one or
more detection heads to output the 3-D bounding boxes of
the identified objects. When multiple detection heads are used,
the targeted object classes are separated into groups depending
on their size, and each detection head becomes responsible
for one group [14]. Within each detection head, a series
of convolutions is applied to infer various object attributes,
such as location, size, and velocity. Ultimately, nonmaximum
suppression or max pooling is used to extract the final results
from the predicted candidates.

B. Sparse Convolution

A point cloud P is represented as an array of 3-D point
coordinates (x, y, z), each accompanied by attributes, such as
LiDAR return intensity i

)]

Unlike 2-D images, the indexes in the array of points do
not inherently establish neighborhood relationships, creating
a challenge for processing them with commonly used dense
convolutional neural networks operating on the dense tensors.
To address this issue, the point clouds are transformed into
alternative representations, such as a 3-D grid of fixed-size
voxels created by grouping spatially nearby points [1], [3].
These voxels can be represented as a 3-D dense tensor
and processed by 3-D convolutions. However, this approach
is avoided due to the significant computational overhead it
incurs. Instead, voxels are represented as a sparse tensor and
processed by sparse convolutions [15]. A sparse tensor V
can be defined in coordinate list (COO) format, where each
coordinate has a corresponding array of values. These values
represent the features of each coordinate.

P = {(XI,)’1, Zlv ll)s ceey (xl’h yns Zns ln)}

Authorized licensed use limited to: George Mason University. Downloaded on October 01,2025 at 18:03:11 UTC from IEEE Xplore. Restrictions apply.

SOYYIGIT et al.: VALO: A VERSATILE ANYTIME FRAMEWORK FOR LiDAR-BASED OBJECT DETECTION DNNS

3x3 filter

3x3 filter

IHI
5 voxels 29 voxels 5 voxels 41 voxels

Fig. 2. Two sparse convolution examples applying 3x3 filters. Blue squares
indicate voxels. Red markings indicate the coordinates where the filter is
applied.

Sparse convolutions can yield the same result as dense
convolutions while operating on the sparse tensors. If the
input tensor is significantly sparse, as in the LiDAR point
clouds, this saves a bulk of computational time compared
to the dense convolutions. For this reason, the state-of-the-
art LiDAR object detection DNNs commonly employ sparse
convolutions. Sparse convolutions apply given filters on all the
coordinates where an input coordinate overlaps with any part
of the filter.

It is important to note that a sparse convolution operation
can generate a differently shaped output tensor, depending
on the shape of the input tensor as shown in Fig. 2. As we
will discuss in Section IV-C, this introduces input-dependent
timing variability in processing the sparse convolutions.

C. Anytime Computing

Anytime algorithms refer to a class of algorithms that can
trade deliberation time for the quality of the results [16].
An anytime algorithm is capable of delivering a result
whenever it is requested, and the quality of the result
improves as the algorithm dedicates more time to finding
the solution. For example, a path planning algorithm that
progressively enhances its solution by continuously refining
the path it has discovered can be considered as an anytime
algorithm [16]. In real-time systems, anytime algorithms are
highly valuable for meeting dynamically changing deadlines
as they can effectively tradeoff between the latency and
quality.

Contract algorithms are a special type of anytime algorithms
that require a predetermined time budget to be set prior to their
activation [17]. They are noninterruptible and deliver results
within the time budget, unlike the arbitrarily interruptible
anytime algorithms. In deadline-driven real-time systems, such
as self-driving cars, the contract algorithms can be used to
effectively trade the execution time for accuracy. Providing a
framework to transform an LiDAR object detection DNN into
a contract algorithm to make it deadline aware is the primary
focus of our work.

III. MOTIVATION

To understand the requirements of an effective latency
and accuracy trading approach, we profile two representative
LiDAR object detection DNNs in detail on the Jetson AGX
Xavier.

4047

TABLE I
EXECUTION TIME (MS) STATISTICS OF POINTPILLARS

Stage Min Average | 99th Perc. | Percentage
Load to GPU 7.99 9.59 10.96 7%
Feature Transform 5.75 6.10 6.42 4%
3D Backbone 5.80 7.07 7.75 5%
Project to BEV 3.13 3.90 4.66 3%
2D Backbone 53.50 53.73 54.15 37%
Detection Heads 56.85 61.27 64.53 44%
End-to-end 136.77 142.07 146.06 100%
TABLE II

EXECUTION TIME (MS) STATISTICS OF CENTERPOINT

Stage Min Average | 99th Perc. | Percentage
Load to GPU 8.18 9.78 11.28 3%
Feature Transform 3.62 3.83 3.94 1%
3D Backbone 53.64 93.09 134.27 41%
Project to BEV 4.20 4.37 5.60 2%
2D Backbone 70.95 71.24 71.45 21%
Detection Heads 100.91 104.69 106.63 32%
End-to-end 245.83 287.66 329.01 100%

Table I presents the execution time statistics for the
PointPillars [2], a well-known LiDAR object detection DNN
recognized for its low latency. We observe that approximately
79% of the total processing time is consumed by its 2-D
backbone and detection heads. Therefore, a latency-accuracy
tradeoff approach targeting these two stages can yield satis-
factory results as explored in a recent prior work [11].

However, when the state-of-the-art LIDAR object detection
DNNs are considered, an approach that only focuses on the
2-D backbone and detection heads might not be efficient.

Table I shows the execution time breakdown of
CenterPoint [1], a recent 3-D LiDAR object detection
DNN that achieves higher detection accuracy than the
PointPillars [2]. Note that, it spends significantly more time
on the 3-D backbone stage, accounting for 41% of the total
execution time.

Although adopting sparse convolutions partially alleviates
the computational burden of the 3-D backbone [15], [18],
it still demands significant computational resources. Thus,
the 3-D backbone becomes another computational bottleneck,
which must be addressed when trading the accuracy for lower
latency.

One simple approach for achieving the latency-accuracy
tradeoff is training multiple models with varying input gran-
ularity (i.e., resolutions) and dynamically switching between
them. However, this approach can be cumbersome during
runtime due to the overhead involved in the model switching
(in terms of the memory overhead and switching latency). It
also necessitates training and fine tuning a large number of
models to achieve finely tuned tradeoffs.

Instead, we focus on developing a single model that can
deliver the highest possible accuracy when there is flexibility
with the deadline, while intelligently adjusting input data when
the deadline becomes more stringent, as will be discussed in
the next section.

IV. VALO

In this section, we introduce VALO, a scheduling framework
that transforms aN LiDAR object detection DNN into a

Authorized licensed use limited to: George Mason University. Downloaded on October 01,2025 at 18:03:11 UTC from IEEE Xplore. Restrictions apply.

4048

Feature
Transform

3D

Filter Backbone

Point cloud .

Fig. 3. Overview of VALO.

noninterruptable anytime (contract) algorithm. VALO allows
detection results to be produced in time for a gamut of deadline
requirements, with a controlled tradeoff in accuracy.

A. Overview

The fundamental concept underpinning VALO’s design is
the scheduling of data to facilitate the tradeoffs between the
time and accuracy rather than scheduling the architectural
components of the targeted DNN. This design choice makes
VALO versatile, as it is not constrained by the architec-
tural specifics of the LiDAR object detection DNNs. Fig. 3
illustrates VALO’s three main components: 1) scheduling;
2) forecasting; and 3) detection head optimization, highlighted
in green, and their positions within the DNN pipeline. The
region drop component is considered a part of scheduling.

First, VALO’s scheduler comes into play after the DNN has
completed the feature transformation stage. This allows it to
make scheduling decisions at the voxel level instead of the
raw point clouds, enabling more accurate predictions of the
timing for the 3-D backbone stage.

During the scheduling phase, VALO decides which regions
of the input data will be processed to maximize detection
accuracy within the deadline constraint. Once a decision is
made, the data outside the selected regions is filtered out,
and the remaining data is forwarded to the subsequent stage
(Section IV-B).

For effective region scheduling, VALO predicts execution
times of subsequent network stages of each possible region
selection (Section IV-C). VALO also employs a mechanism to
recover from the execution time mispredictions (Section I'V-D).

Next, while filtering part of the input can reduce latency,
it can also negatively impact accuracy. To mitigate potential
accuracy loss, VALO employs a forecasting mechanism that
updates the positions of the previously detected objects to
the current time of execution. This operation is performed
mostly in parallel while the DNN executes. After the, detection
heads generate object proposals, these proposals are combined
with the list of forecasted objects. The combined list is then
subjected to nonmaximum suppression, which yields the final
detection results (Section IV-E).

Finally, to further improve the efficiency, we introduce a
novel optimization technique for the efficient detection head
processing. This optimization technique eliminates the sig-
nificant amount of redundant computation in detection heads
without compromising the detection accuracy (Section I'V-F).

B. Region Scheduling

The scheduler decides which subset of input data (vox-
els) should be processed to meet a given deadline while

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 11, NOVEMBER 2024

Optimized

Region
Drop

|:> Detection »

Head(s)

2

B

Detected objects

.llllllllllllllllllllllllllllllllllll:

(@ (b)

Fig. 4. Two examples of how the region scheduler partitions the detection
area into regions. (a) Partitioning example 1. (b) Partitioning example 2.

maximizing the accuracy. Intuitively, the less data it selects,
the less time it takes for the DNN to process it, albeit at the
expense of reduced accuracy. To make the scheduling problem
tractable, we partition the fixed-size detection area into equally
sized chunks along the X (width) axis, which we refer to as
regions.

Fig. 4 illustrates two examples of partitioning a 108 x
108 m? detection area into 18 vertical regions. In Fig. 4(a),
the input point cloud is spread to all 18 regions. In contrast,
Fig. 4(b) shows that only a portion of the regions, 8 out of
18, contain points due to the structure of the environment
scanned by LiDAR. In scenarios with empty regions, the
scheduler skips all the empty regions located before the first
nonempty region and after the final nonempty region. As a
result, partitioning the input in the X axis for some inputs
allows for latency reduction without sacrificing accuracy in
later stages.

To determine which regions to process, we employ a
greedy policy that sequentially selects the maximum number
of input regions while adhering to the deadline constraint.
Consequently, all regions are treated with equal priority.
Fig. 5 provides an illustrative example of the proposed region
scheduling algorithm, which selects regions for processing
over three consecutive inputs. For each input, the scheduler
decides the regions to be scheduled for processing, starting
from the next to the final of the previously scheduled regions,
which can meet the given deadline.

Algorithm 1 outlines our proposed scheduling algorithm.
Initially, the scheduler counts the number of voxels in each
region and returns the list of schedulable regions (Rg), and
their voxel counts (Cs) (line 8).

The scheduler then reorders the obtained list so the selec-
tions start from the first nonempty region coming after ry,s
(lines 9). Subsequently, candidate region selections are iterated
from largest to smallest until one that meets the deadline is
identified (lines 10-18).

Authorized licensed use limited to: George Mason University. Downloaded on October 01,2025 at 18:03:11 UTC from IEEE Xplore. Restrictions apply.

SOYYIGIT et al.: VALO: A VERSATILE ANYTIME FRAMEWORK FOR LiDAR-BASED OBJECT DETECTION DNNS

Sample i

4049

Sample i+1

Sample i+2

Fig. 5. Example of region scheduling on three consecutive samples over time. The regions outlined in orange represent the selections made by the scheduler
for processing. The green and purple bounding boxes indicate the objects detected as a result of processing the selected regions and the forecasted objects,

respectively. Best viewed in color.

Once scheduling is completed, input voxels falling outside
the selected regions (Rg) are filtered, and the remaining
voxels are forwarded to the 3-D backbone as input. If the
subsequent stage employs dense convolutions, the sparse
output of the 3-D backbone is then converted to a dense tensor
where the regions are placed following the order in Rg.

Our scheduling method brings three advantages. First,
selecting the adjacent regions maintains spatial continuity
and processes the input with minimal fragmentation, thereby
avoiding accuracy degradation that can happen through slicing
and batching nonadjacent regions. Second, it ensures a consis-
tent level of “freshness” of object detection results over all the
regions, which is needed for effective forecasting operations
(Section IV-E). Third, it incurs minimal scheduling overhead.

C. Execution Time Prediction

For effective region scheduling, the key challenge is to
determine whether a candidate list of regions can be processed
within a given deadline constraint (line 13 in Algorithm 1).
The predicted execution time E of a candidate list of regions
can be calculated as

E=Es+Ep+Er)
where Es is the time to process sparse data (i.e., 3-D
backbone), Ep is the time to process dense data (i.e., 2-D
backbone and convolutions in detection heads), and Ef is the
time to process the final stage of object detection task, such
as nonmaximum suppression.

For Ep, since the number of candidate regions (|Rse1|)
determines the size of the dense input tensor that will be
passed to the 2-D backbone, it can be defined as an one-to-one
function, where each possible |Rg| is mapped to an execution
time determined through the offline profiling. This mapping
is feasible because the execution time of dense convolutions
remains largely fixed as a function of input size, and there is
a small finite number of possible regions.

On the other hand, Eg, the execution time of the sparse 3-D
backbone, is difficult to predict as it depends on the number of
input voxels in a highly nonlinear manner as shown in Fig. 6.

Algorithm 1: Scheduling Algorithm

Input:
Input voxels (V),
Number of input regions (Ng),
Last scheduled region (74s),
Relative deadline (D),
Output: Selected regions to be processed
function schedule (V, Ng, Fiu D)
Rs, Cs < count_voxels(V, Ng)
Rs, Cs < reorder(Rgs, Cs, rius)
i < length_of (Rs)
while i > 1 do
Rsel, Csel < Rgl:i], Csl:i]
E < calc_wcet(Rgel, Csel)
rem_time <— D — get_elapsed_time()
if E < rem_time then
L i< 0
17 else
18 | i—i—1

e 0 NN R W N -

L <
A N AW N =D

19 return R

O 1404
[]

120 A

R
100 ape ® o ®
#36 AFT

...;'34'.:-” 4

]
o
L

o
o
L

3D backbone
execution time (msec

i

o

N
o

T T T T
20000 30000 40000 50000 60000

Number of input voxels

0 T
0 10000 70000

Fig. 6. Profiled execution time CenterPoint’s 3-D Backbone.

This nonlinearity mainly stems from the fact that a sparse
convolution layer can generate a different number of output
voxels for the same number of input voxels depending on
their relative positions as illustrated in Fig. 2. Consequently,

Authorized licensed use limited to: George Mason University. Downloaded on October 01,2025 at 18:03:11 UTC from IEEE Xplore. Restrictions apply.

4050

SM SM SM SP SM SM SP SM SM SP SM SM SP

Block 1 Block 2 Block 3 Block 4

Fig. 7. CenterPoint’s 3-D backbone broken into blocks. SM: submanifold

sparse convolution. SP: sparse convolution.

Block 1 Block 2
1754 @ Data ® Data °
Model 25 Model i d
15.0 1
12.5 A 204
10.0 A 154
O 75
e 10 4 ,
€ 5.0 4
U 251 57
-E 0.0 0 T
c Block 3 Block 4
o
S 404
‘:-'.S & ® Data 50 4 'y ® Data
9] Model Model
%
U 301 40 -
V2
[9]
Rs} 304
m 204
204
104
101

T T T T T 0= T T T T
0 20000 40000 60000 80000 0 20000 40000 60000 80000
Number of input voxels

Fig. 8. Profiled execution time of the blocks of CenterPoint’s 3-D backbone
and the quadratic models regressed from their execution times data.

the computational demand of processing a subsequent layer,
which takes the output of the previous layer as input will vary
accordingly. To make the time prediction tractable, we break
the 3-D backbone into blocks at points where the count of
forwarded voxels changes as illustrated in Fig. 7.

We then focus on separately predicting the execution time
of each block. Note that, unlike a sparse convolution layer,
batch normalization, activation functions, and submanifold
sparse convolution [19], all of which heavily used in 3-D
backbones, do maintain the same input and output shapes (thus
the voxel counts), and thus can be safely grouped within a
block. Denoting V; as the input voxels of a layer L;, we define
a block B as

B={Li,...Li|Vi, k<i<l Vil=IVi}
where Vi is the input voxels of the first layer L;. The input
of a block B denoted as Vp is the same as V.

Fig. 8 shows the execution time profiles of all the four
blocks of the CenterPoint’s 3-D backbone. As can be seen in
the figure, each block’s execution time, as a function of the
number of input voxels of the block, is more predictable using
a simple quadratic prediction model

Ep,(IVs,]) = a|V,1* + BIVa,| + ¥ 4)

where the coefficients «, 8, and y are determined by regression
against the profiling data collected offline. Then, the execution

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 11, NOVEMBER 2024

time of the 3-D backbone can be predicted as follows:

n
Es =Y Ep(Vg]).)
i=1
However, a major challenge is that, except for the first block,
the number of input voxels of the remainder of the blocks,
Crest, are not known until the execution of the preceding blocks
is completed

Crest:{|VBQ|’-~a|VB,,|}‘ (6)

To predict Creg for any given list of candidate input regions,
we use a history-based approach, leveraging the fact that there
is a strong similarity between the consecutive LiDAR scans,
as the movements of objects between the scans are limited.
Specifically, for the block B> to B,, we keep track of each
block’s most recent input voxel counts of all the input regions,
which are updated whenever they are selected by the region
scheduler and processed. Assuming voxel counts would be
similar over time, we then aggregate the latest voxel counts
of the current candidate regions to obtain Cieg.

Finally, for ER, the execution time to perform nonmaximum
suppression and other operations can vary depending on the
number of object proposals in the detection pipeline. However,
because it is relatively small compared to the remainder of the
pipeline, namely Ep and Es, we simply use the 99th percentile
of the measured execution time through offline profiling, which
provides a safe upper bound without significantly affecting the
time prediction accuracy.

D. Region Drop

The aforementioned execution time prediction method for
the 3-D backbone can inevitably introduce some inaccuracy.
For LiDAR object detection models with 2-D backbones, such
as CenterPoint [1], after the execution of the 3-D backbone,
we additionally check if it will be possible to meet the deadline
(see Fig. 3), considering the predicted execution time of the
remainder of the pipeline. If deemed not possible, we further
reduce the number of input regions so that the deadline can
be met. Note, however, that some recently proposed LiDAR
object detection models, such as VoxelNext [3] do not employ
a 2-D backbone as they are fully sparse. For such networks,
the region dropping does not apply.

E. Forecasting

Forecasting estimates the present pose of the objects identi-
fied in the past invocations of the object detector. Because our
region scheduling method (Section IV-B) can skip part of the
input LiDAR scan due to the deadline constraints, forecasting
plays a critical role in mitigating the potential accuracy loss.

We define a pose P of an object at time ¢ as

Pt = {Tv S9 o, v, C, l} (7)

where T is the 3-D coordinate of the object expressed in the
LiDAR coordinate frame, S is the bounding box, « is the
heading angle, v is the velocity vector, ¢ is the confidence
score, and [is the label (e.g., car or pedestrian). In this work,

Authorized licensed use limited to: George Mason University. Downloaded on October 01,2025 at 18:03:11 UTC from IEEE Xplore. Restrictions apply.

SOYYIGIT et al.: VALO: A VERSATILE ANYTIME FRAMEWORK FOR LiDAR-BASED OBJECT DETECTION DNNS

[P —

Orientation Velocity enterZ Center Size Heatmap

At

Object locations

Candidate % \
object \
poses %\

Fig. 9. General detection head architecture.

Object
poses

we focus on estimating 7 and « and assume the others to stay
consistent over time.

The first part of forecasting involves maintaining a queue of
previously detected object poses. For all the processed input
regions of an input frame, VALO removes the old objects
corresponding to the processed regions from the queue and
appends the freshly detected objects in these regions to the
queue. Thus, the queue maintains the latest detected objects
of all the regions.

The second part of forecasting involves performing the
mathematical calculations to estimate Py for all the objects in
the pose queue. For each pose of an object in the pose queue,
we first rotate and translate the object pose to be expressed
in the global coordinate frame using the ego-vehicle pose. We
then add the distance traveled by the object (v X (four — fdet)) tO
the translation component (7) of the pose. Finally, we translate
and rotate the pose to be expressed in the current LiDAR
coordinate frame.

At the runtime, we update the queue on the CPU and
perform the actual pose updates on the GPU. We have
developed a custom GPU kernel to update the poses of all the
objects in parallel. The forecasting GPU kernel is executed in
a separate CUDA stream to maximize the parallelism.

F. Detection Head Optimization

LiDAR object detection DNNs include detection heads that
are designed to extract specific attributes of objects, such as
position, size, and orientation. Surprisingly, we discovered
that a significant amount of redundant computations occur in
processing the detection heads of the state-of-the-art LiDAR
object detection DNNs [20].

Fig. 9 illustrates the general architecture of a detection head,
which performs a series of convolutions to infer attributes of
the objects. The width and height dimensions of the output
tensors from these convolutions correspond to the width and
height of the detection area in the BEV. Among the inferred
attributes, the heatmap plays the most important role, as it

4051

A

Forecasted
object
poses

Input Tensor

Object

locations l:l

=

Heatmap

Object
poses

Caé\é!]}}:tte %&

Fig. 10. Optimized detection head architecture.

holds the confidence scores of the objects used for classifying
and locating them. In a heatmap tensor, any score value above
a predefined score threshold indicates an object proposal. The
list of object proposals, R, extracted from the heatmap can be
expressed as

R={(Clv-xlvyl)a"'v(cnaxnayn)} (8)

where c is the confidence score and x and y are a position
in the detection area. Once R is generated, remaining object
attributes (e.g., orientation, velocity, size, etc.) are obtained
from their corresponding output tensors at the x and y positions
in R, and combined into object poses (7).

The problem with this approach is that it performs con-
volutions on all the parts of the input while only the output
locations that correspond to the object proposals (R) are
utilized. As a result, the convolutions inferring object attributes
except the heatmap involve a significant amount of redundant
computation.

To improve efficiency, we propose to optimize the detection
head processing as follows.

1) The heatmap is computed in the same manner as in the

baseline approach.

2) The detected object list R from the heatmap is utilized
to selectively gather and batch small patches from the
input tensor.

3) Convolutions are applied to this batch of patches to
derive the object attributes.

Fig. 10 provides a visual representation of the proposed
approach. Note that, the proposed optimization ensures that
convolutions are applied only to the data that is needed for
producing the desired output corresponding to the locations
in R. This approach significantly reduces the number of
multiply accumulate operations (MACs) without any loss of
detection accuracy.

However, due to the reduction in the input size, there is
a potential issue of GPU underutilization if we execute the
attribute-inferring convolutions one by one as in the baseline.
To maximize GPU utilization, we concatenate them into a

Authorized licensed use limited to: George Mason University. Downloaded on October 01,2025 at 18:03:11 UTC from IEEE Xplore. Restrictions apply.

4052

single convolution operation followed by a group convolution.
This improves GPU utilization and reduces the GPU kernel
invocation overhead.

Note that, some recent LiDAR object detection networks,
such as VoxelNext [3] employ sparse convolutions in detection
heads instead of dense convolutions. For such a model, we
replace the slice and batch part of detection head optimization
with filtering all the sparse tensor coordinates that do not
contribute to the output, and do not group the convolutions
as they are sparse. In this way, we significantly reduce
computational overhead without losing detection accuracy and
allow utilizing of the model trained for the baseline.

V. EVALUATION

For evaluation, we implemented VALO as an extension to
OpenPCDet [20], an open-source framework for LiDAR 3-D
object detection DNNs, which supports the state-of-the-art
methods. For this study, we mainly target CenterPoint [1] as a
baseline and apply VALO to demonstrate its effectiveness. In
addition, we also apply VALO on a more recently proposed
VoxelNext [3], a fully sparse DNN, to demonstrate the versa-
tility of our approach.

As for the dataset, we utilize nuScenes [12], a large-scale
autonomous driving dataset, and use the nuScenes detection
score (NDS) [12] as the detection accuracy metric since
it was reported to correlate with the driving performance
better than the classic average precision (AP) metric [21].
In the remainder of the evaluation, unless noted otherwise,
we normalize the NDS score with respect to the maximum
NDS score we observed among the all compared methods. We
utilize 30 distinct scenes from the nuScenes evaluation dataset,
with each scene containing annotated LiDAR scans spanning
20 s, sampled at intervals of 350 ms. The sample period is
chosen to match the worst-case execution time of the slowest
baseline method on our evaluation platform.

To capture the timeliness aspect of the detection
performance, we evaluated the methods under a range of
deadline constraints from 350 to 90 ms. The deadline range
is chosen to be between the best-case execution time of the
fastest baseline method and the worst-case execution time of
the slowest baseline model. During each test, we kept a buffer
holding the latest detection results and updated this buffer
every time the method being tested met the deadline. In case of
a deadline miss, we considered the buffered detection results
as the output and ignored the produced ones by assuming the
job was aborted.

As for the hardware platform, we used an NVIDIA Jetson
AGX Xavier [13], equipped with 16 GiBs of RAM for
the runtime performance evaluation. We maximized all the
hardware clocks and allocated the GPU resources only for the
method being tested. For software, we used Jetson JetPack
5.1 and Ubuntu 20.04. Training of the models was done on a
separate desktop machine with an NVIDIA RTX 4090 GPU.

We present the evaluation results in the following three
subsections. First, we compare VALO with a set of baselines
to evaluate its performance. Second, we perform an ablation
study to demonstrate the benefits of VALO’s components.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 11, NOVEMBER 2024

Finally, we shift our focus to the intrinsic details of VALO
and analyze the execution time behavior of its components.

A. Comparison With the Baselines

Below is the list of methods we compared in this section.

1) CenterPoint [1]: This is a representative state-of-the-
art LiDAR object detection network architecture that
employs a voxel encoder as its 3-D backbone, fol-
lowed by a region-proposal-based 2-D backbone and
six detection heads, each of which focuses on a subset
of the object classes [14]. Before being forwarded to
the 3-D backbone, the input point cloud is transformed
into fixed-sized voxels. The size of a voxel is a design
parameter of the network, which should stay consistent
during training and testing. In this work, we consider
three voxel configurations 75 x 75 x 200 mm?3, 100 x
100 x 200 mm?, and 200 x 200 x 200 mm?, which
are called CenterPoint75, 100, and 200, respectively.
Employing bigger voxels reduces the computing cost at
the expense of accuracy.

2) VoxelNext [3]: A recently proposed LiDAR object detec-
tion network, featuring a voxel encoder as its 3-D
backbone deeper than the CenterPoint’s followed by six
detection heads. Unlike CenterPoint, all the convolutions
in its detection heads operate on the sparse tensors. Like
CenterPoint, VoxelNext also can be configured to have
a different voxel size. We focus only on the setting
that employs voxels of size 75 x 75 x 200 mm?> (i.e.,
VoxelNext75).

3) AnytimeLidar [11]: To the best of our knowledge, this
is the only work that can provide runtime latency
and accuracy tradeoff (i.e., anytime computing) for
the LiDAR object detection DNNs in the literature.
It achieves the anytime capability by utilizing early
exits in processing the 2-D backbone and skipping
a subset of the detection heads dynamically. While
AnytimeLidar is originally based on the PointPillars [2],
we ported it to the CenterPoint75 baseline to make a fair
comparison, which we call AnytimeLidar-CP75. Note
that, AnytimeLidar cannot be applied to the VoxelNext
since it lacks a 2-D backbone.

4) VALO: The proposed method in this work. VALO can
be applied to the CenterPoint and VoxelNext baselines.
We call VALO-CP75 and VALO-VN75 when it is
applied to the CenterPoint75 and VoxelNext75 baselines,
respectively.

1) VALO Versus AnytimeLidar: In this experiment, we
compare the performance of VALO and AnytimeLidar with
the CenterPoint75 baseline from which they are applied.

Fig. 11 shows the results. Fig. 11(a) compare how detec-
tion accuracy changes in relation to the varying deadline
constraints. Fig. 11(b), on the other hand, compare the corre-
sponding deadline miss rates of the tested methods under the
deadline constraints.

Note first that, under the 350 ms deadline constraint, all
the methods can meet the deadline without a need for the
tradeoffs and demonstrate their maximum accuracy. When the

Authorized licensed use limited to: George Mason University. Downloaded on October 01,2025 at 18:03:11 UTC from IEEE Xplore. Restrictions apply.

SOYYIGIT et al.: VALO: A VERSATILE ANYTIME FRAMEWORK FOR LiDAR-BASED OBJECT DETECTION DNNS

X
< 1004 grmmmmm e s
- &2 Bk S
O Ssao TT--eo
© 80 >~ >z
8 '\\ \\\\\
<

O 60 ~ ~e
© \\
8 40 A \\\
N \
'(—; 204 -e- CenterPoint75 AN
= AnytimeLidar-CP75 \\
fu —_— — - \
§ 0 o~ vALO-CPT5 e N,

350 285 220 155 90

Deadline (msec)
(@)
;\; 100 1 —®- CenterPoint75 o ———————— P A ——
; AnytimeLidar-CP75 et
S 804 —®- VALO-CP75 o
© ’
— /,/
€ ~
40 A #7

2 ’
— i
= i P
S 20 o
) e
O 0{ €—————-—— e e > ———————— -

350 285 220 155 90

Deadline (msec)
(b)
Fig. 11. VALO versus AnytimeLidar on CenterPoint. (a) Detection accura-
y

cies. (b) Deadline miss rates.

deadline tightens, however, the CenterPoint baseline imme-
diately begins to miss deadlines as it cannot adjust its
computing demand according to the given deadline, resulting
in a significant drop in accuracy. AnytimeLidar and VALO,
on the other hand, can trade accuracy for lower latency (i.e.,
anytime capable), and thus achieve improved performance
as they can meet the deadlines better. However, when the
deadline is 155 ms, AnytimeLidar starts to miss deadlines
due to its limited anytime computing capability. But VALO
respects the deadline constraints down to 90 ms and achieves
higher accuracy.

AnytimeLidar falls short of matching the effectiveness of
VALO primarily due to dismissing the contribution of the 3-
D backbone on the total latency. Moreover, AnytimeLidar’s
effectiveness will be further reduced if a single detection head
architecture, instead of the multihead detection architecture in
this work, is used because its ability to make a tradeoff is in
large part enabled by skipping a subset of the detection heads,
which is possible only in the multihead architecture.

In contrast, VALO can make fine-grained execution time
and accuracy tradeoffs, primarily due to its ability to schedule
a portion of the data to process, independent of the neural
network architectural specifics, such as 3-D/2-D backbone or
the number of detection heads. This distinct focus on the data
makes VALO a more versatile framework that can be applied
in any LiDAR object detection DNN.

2) VALO Versus Other Nonanytime Baselines: Fig. 12
shows the detection performance of VALO-CP75 and three
other CenterPoint baselines. All the baselines have distinct
execution time demands and accuracy they can deliver. For
example, when the deadline is 350 ms, CenterPoint75 achieves
the best accuracy among the three baselines. But when the

4053

100 1

80 1

60 1

401 —e- CenterPoint75 S

Normalized accuracy (%)

204 --@- CenterPoint100 N
CenterPoint200 \\\
—_— — - \
o ®- VALO-CP75 Ve i
350 285 220 155 90

Deadline (msec)

Fig. 12. VALO versus CenterPoint variants.

deadline is 220 ms, CenterPoint75’s accuracy falls down to
zero because it no longer is able to meet the deadline. On
the other hand, CenterPoint200’s accuracy does not change
all the way down to the deadline of 155 ms as it can still
meet the deadline albeit at a somewhat lower accuracy. Note,
however, that these baseline models are fixed and cannot make
accuracy versus latency tradeoffs on the fly at runtime. VALO,
on the other hand, can adapt itself to a wide range of deadline
constraints from 90 to 350 ms on the fly while providing the
best possible accuracy for a given deadline constraint.

As an alternative way to adapt to the varying deadline
constraints on the fly, one can consider using multiple
DNN models of differing latency-accuracy tradeoffs (like
CenterPoint75, 100, and 200 in this experiment) and switch
between them depending on a given deadline constraint at
runtime as done in [4]. However, the problems of such an
approach are that it needs to train, fine-tune, and manage all
these models separately. Furthermore, these models need to be
loaded into the precious (GPU) memory all the time for the
real-time operations, even when only one of them is actually
used at a time. In contrast, VALO can make such tradeoffs at
runtime from a single model without requiring any additional
memory overhead.

3) VALO on VoxelNext: To demonstrate VALO’s versatility,
we applied it to the VoxelNext [3], which has a signif-
icantly different architecture than the CenterPoint. Unlike
CenterPoint, VoxelNext does not use a 2-D backbone and
instead relies solely on the 3-D sparse convolution layers.

Fig. 13 shows the result. As in the CenterPoint case, VALO-
VN75 performs better than the baselines in all the deadline
constraints. The region scheduling (Section IV-B) allows
VALO-VN75 to dynamically adjust the time spent on the
3-D backbone and the detection heads effectively, effectively
making it anytime capable.

4) Effectiveness of Time Prediction: The effectiveness of
VALO’s region scheduling critically depends on the accu-
racy of its time prediction (Section IV-C). To evaluate the
effectiveness of the proposed history-based time prediction
method, we compare its accuracy with a simple quadratic
prediction model that directly predicts the execution time of
the entire 3-D backbone from the number of input voxels
(as opposed to predicting per block-based prediction in our
proposed history-based time prediction approach). We denote
this baseline method as quadratic whereas our history-based
approach as history.

Authorized licensed use limited to: George Mason University. Downloaded on October 01,2025 at 18:03:11 UTC from IEEE Xplore. Restrictions apply.

4054

S\O, 100 1--@r=mmmmemmee e . VoxelNext75

> Ry -e- VALO-VN75

® 801 REEE

i SN

3 SN

(9] S

O 6017 ~

© e

8 40

N

© 20

IS

—_

o

=z 01 ; ; ; "
350 285 220 155 90

Deadline (msec)

Fig. 13. VALO on VoxelNext.
1.0 1
0.8
L 0.6 4
[a)]
O
0.4 A
—— Quadratic (dl=155 ms)
0.2 Quadratic (dI=285 ms)
' —— History (dI=155 ms)
0.0 —— History (dI=285 ms)

—210 —'20 (I) 2|0 4|0
(Actual - Predicted) 3D Backbone time (msec)

Fig. 14. Cumulative distribution function of time prediction error for history-
based and baseline methods.

Fig. 14 compares the accuracy of both time prediction
methods in predicting 3-D backbone execution time against the
evaluation dataset. As can be seen in the figure, our history-
based prediction method significantly outperforms the baseline
quadratic method, which helps reduce deadline violations and
improve detection accuracy.

B. Ablation Study

In this experiment, we investigate the contribution of region
scheduling and forecasting by comparing VALO with its two
variants explained below. We also include the CenterPoint75
baseline for comparison.

1) VALO-NSNF-CP75: This variant of VALO operates
without scheduling (Section IV-B) and forecasting
(Section IV-E), hence denoted as “no scheduling no fore-
casting” (NSNF). However, it does perform detection
head optimization (Section IV-F).

2) VALO-NF-CP75: This variant of VALO performs
region scheduling (Section IV-B) and detection head
optimization (Section IV-F), but not forecasting
(Section IV-E).

Fig. 15 presents the experimental results where we observe
improved performance as additional VALO components are
introduced to the baseline CenterPoint75. First, VALO-
NSNF-CP75 achieves a higher accuracy over the baseline
CenterPoint75 when the deadline is tighter than 350 ms. For
instance, at the 285 ms deadline, VALO-NSNF-CP75 matches
the accuracy of CenterPoint75 at 350 ms. This underscores the
effectiveness of the detection head optimization in reducing the
execution time without compromising accuracy. Next, VALO-
NF further improves accuracy across a wider range of deadline
constraints by enabling region scheduling because it can make

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 11, NOVEMBER 2024

100 A

80 A

60 -

40 4

Normalized accuracy (%)

Y
—e- CenterPoint75 N N
204 VALO-NSNF-CP75 AN N
-e- VALO-NF-CP75 \ \
- - - N \
o) -~ vaLo-cprs N S
350 285 220 155 90

Deadline (msec)

Fig. 15. Detection accuracy achieved by the variants of VALO.

execution time and accuracy tradeoffs, preventing deadline
misses and boosting accuracy over VALO-NSNF. Finally,
VALO achieves the highest accuracy across all the deadline
constraints by additionally utilizing forecasting, which is
particularly effective on the tight deadlines. This is because
forecasting plays a more crucial role when the number of
scheduled regions reduces as the deadline tightens.

C. Component-Level Timing Analysis

In this experiment, we delve into the execution timing
characteristics of the components of VALO when it is applied
to the CenterPoint75.

Fig. 16 shows the execution timing of the 3-D backbone,
2-D backbone, and detection heads. For each component,
we consider five different cases. The first two involve using
CenterPoint75 and VALO-CP75, where there is no deadline.
The remainder are the results of VALO-CP75 executed with
220, 115, and 90-ms deadline constraints, respectively.

1) 3-D Backbone: Fig. 16(a) shows the execution time pro-
file of the 3-D backbone portion of the network. Note first that
the CenterPoint75 baseline shows a high degree of variations,
influenced by the varying count and positioning of the input
voxels. When there is no deadline, the time spent on the 3-D
backbone of VALO-CP75 is about the same as CenterPoint75
as expected. As the deadline gets tighter, however, VALO’s
execution time of the 3-D backbone is progressively reduced
because its region scheduler dynamically selects a subset of
input regions that can be executed within the given time
budget.

2) 2-D Backbone: Fig. 16(b) shows the execution time
profile of processing the 2-D backbone, where the convolutions
on the dense tensors take place. Unlike the 3-D backbone
processing, even when there is no deadline, we can observe
a notable decrease in the execution time in VALO compared
to the CenterPoint75 baseline. This is because our data
partitioning scheme (Section IV-B), which exploits the sparsity
of the LiDAR data, can skip empty input regions in the 2-D
backbone, thus reducing latency. As the deadline get tighter,
we also observe a further reduction in the execution time of
the 2-D backbone as a result of reduced input data selected
by the scheduler.

3) Detection Heads: Fig. 16(c) shows the execution time
profile of processing the detection head. Note first that, we
observe more than 50% reduction in detection head process-
ing latency on VALO-CP75 compared to the CenterPoint75

Authorized licensed use limited to: George Mason University. Downloaded on October 01,2025 at 18:03:11 UTC from IEEE Xplore. Restrictions apply.

SOYYIGIT et al.: VALO: A VERSATILE ANYTIME FRAMEWORK FOR LiDAR-BASED OBJECT DETECTION DNNS

4055

,_.

o © o

<) <] S]

L L L
ofh

o wo
o
o
L

BEN

N
o
L

°
° -

Execution time (msec)

—~ 1601 o ° —~70{ *

]]

& 140 0 60

S ° S

~ 120 Sy

g g 50

100 4

b= 5 40

C 4 c

o 8 S 30 8

5 5 °

o 01 O 201

g g

o 407 o ! i 10
CP75 VALO VALO VALO VALO CP75 VALO
D= D=c D=220ms D=155ms D=90ms D=c D=c

(a)
Fig. 16.

encoder). (b) 2-D backbone (RPN). (c) Detection head (CenterHead).

baseline even when there is no deadline constraint. This is
due to the proposed detection head optimization described in
Section IV-F, which significantly reduce the amount of data to
be processed by eliminating the redundant data. In addition,
as the deadline get tighter, we again observe progressive
reduction in the execution time in VALO due to further
reduction in the input data to the detection head thanks to its
scheduler.

4) Overhead: We measured 3 ms of scheduling overhead
in the worst case, including the input filtering time. There is
also 3 ms overhead due to the voxel counting operations as
a part of history-based time prediction. We did not observe
any overhead incurred by the forecasting operation when the
end-to-end latency is considered, as it is efficiently executed
in parallel with the backbones. Note that, the total overhead of
VALO on the CenterPoint75 is only about 6 ms, which is less
than 2% of the average execution time of the CenterPoint75.

VI. RELATED WORK

Timely execution of autonomous driving software is essen-
tial to ensure safe and efficient navigation. Traditionally, the
timing requirements (i.e., deadlines) of the autonomous driving
tasks are often fixed at the design time [22], [23], which is not
adaptable to the highly varying execution time demands [24].
Recently, Gog et al. [4] have highlighted the potential benefits
of adopting a flexible approach, which can dynamically change
deadlines in the autonomous driving software based on the
specific driving situation, such as the speed of the vehicle or
sudden pedestrian appearance to improve the performance and
safety of the vehicle.

LiDAR object detection is a critical component in many
autonomous driving systems [25]. With the release of large-
scale autonomous driving datasets [12], [26], researchers have
developed deep learning-based object detection models that
achieve the state-of-the-art performance. Besides aiming to
achieve high accuracy, the recent work has also considered
reducing latency as an objective [1], [2], [3], [27], [28],
[29], [30] for the real-time operation. These works can
achieve remarkable accuracy in real time when executed on
high-end GPUs and accelerators. However, their deployment
on the edge computing platforms, such as Jetson AGX
Xavier [13] still poses a challenge due to their significant

T T T T T T T T
VALO VALO VALO CP75 VALO VALO VALO VALO
D=220ms D=155ms D=90ms D=o D=w D=220ms D=155ms D=90ms

(b) (c)

Component-level execution time profile of the baseline and VALO on Centerpoint75 under different deadline constraints. (a) 3-D backbone (Voxel

computational overhead and latency. More importantly, they
lack the capability to dynamically adapt their execution time
in a deadline-aware manner, which is needed for the real-time
cyber—physical systems.

Recent studies have explored the concept of “anytime
perception” for the neural networks, which enables them
to execute within defined deadlines while making trade-
offs between execution time and accuracy. For example,
Kim et al. [6] achieved this by iteratively adding layers to an
image classification network and retraining it to incorporate
“early exits.” Lee and Nirjon [31] focused on the neuron
level, prioritizing critical neurons for accuracy while deac-
tivating the others to save time. Bateni and Liu [7] used
perlayer approximation instead of early exits and presented
a scheduling solution for the multiple DNN tasks. Yao et al.
[8] also dealt with the scheduling of multiple DNN tasks,
utilizing imprecise computation alongside early exits. While
these works primarily targeted image classification tasks,
object detection tasks present unique challenges.

Heo et al. [32] introduced a multipath DNN architecture
designed for anytime perception in vision-based object detec-
tion. Another work by the same Heo et al. [33] designed
an adaptive image scaling method that respects the deadline
constraints for the multicamera object detection task. Gog et al.
[34] proposed to switch between the DNNs to make latency
and accuracy tradeoffs dynamically at runtime. Hu et al. [35]
suggested reducing the resolution of less critical parts of the
scene to lower computational costs. Lie et al. [9], [36] divided
individual image frames into smaller subregions with varying
levels of criticality, using the LiDAR data to batch-process
essential subregions to meet deadlines. However, these prior
efforts mainly focus on 2-D vision and do not account for the
unique characteristics of the 3-D point cloud processing.

Recently, Soyyigit et al. [11] proposed a set of techniques
that enable anytime capability for the LiDAR object detection
DNNs. They focused on the object detection models where
the bulk of the computation is performed on the 2-D backbone
and detection heads, such as PointPillar [2] and Pillarnet [27].
However, the effectiveness of their approach diminishes on the
recent state-of-the-art object detection models where the bulk
of time is spent on the 3-D backbone [1], [3]. Fundamentally,
such effort that focuses on the model-level improvements may
fail to work when the architecture of the model changes.

Authorized licensed use limited to: George Mason University. Downloaded on October 01,2025 at 18:03:11 UTC from IEEE Xplore. Restrictions apply.

4056

In contrast, our work focuses on the data-level scheduling,
independent of the architectural details of the backbones and
detection heads, and thus can be seamlessly applied to any
state-of-the-art LiDAR object detection DNNGs.

VII. CONCLUSION

In this work, we presented VALO, a versatile anytime
computing framework for the LiDAR object detection DNNSs.
VALO?’s superior performance compared to the prior state-of-
the-art comes from three major contributions: 1) partitioning
the input data into regions and efficiently scheduling them
with the goal of maximizing accuracy while respecting the
deadlines; 2) lightweight forecasting of the previously detected
objects to mitigate the potential accuracy loss due to par-
tially processing the input; and 3) and intelligently reducing
redundant computations in processing the detection heads of
the object detection neural network with no loss of accuracy.
Evaluation results have shown that our approach can adapt
to a wide-range of deadline constraints in processing the
LiDAR object detection DNNs, and enables a fine grained and
effective execution time and accuracy tradeoff.

REFERENCES

[1]1 T. Yin, X. Zhou, and P. Krdhenbiihl, “Center-based 3D object detection
and tracking,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2021, pp. 1-10.

[2] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and
O. Beijbom, “PointPillars: Fast encoders for object detection from
point clouds,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2019, pp. 1-9.

[3] Y. Chen, J. Liu, X. Zhang, X. Qi, and J. Jia, “VoxelNeXt: Fully sparse
VoxelNet for 3D object detection and tracking,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2023, pp. 1-10.

[4] 1. Gog, S. Kalra, P. Schafhalter, J. E. Gonzalez, and I. Stoica, “D3:
A dynamic deadline-driven approach for building autonomous vehi-
cles,” in Proc. Eur. Conf. Comput. Syst. (EuroSys), 2022, pp. 453-471.

[5]1 Z. Li, T. Ren, X. He, and C. Liu, “RED: A systematic real-time
scheduling approach for robotic environmental dynamics,” in Proc. IEEE
Real-Time Syst. Symp. (RTSS), 2023, pp. 210-223.

[6] J.-E. Kim, R. Bradford, and Z. Shao, “AnytimeNet: Controlling time-

quality tradeoffs in deep neural network architectures,” in Proc. Design,

Autom. Test Eur. Conf. Exhibit. (DATE), 2020, pp. 945-950.

S. Bateni and C. Liu, “ApNet: Approximation-aware real-time neural

network,” in Proc. IEEE Real-Time Syst. Symp. (RTSS), 2018, pp. 67-79.

S. Yao et al., “Scheduling real-time deep learning services as imprecise

computations,” in Proc. IEEE Int. Conf. Embedded Real-Time Comput.

Syst. Appl. (RTCSA), 2020, pp. 1-10.

[9] S. Liu et al., “Real-time task scheduling for machine perception in

intelligent cyber-physical systems,” IEEE Trans. Comput., vol. 71, no. 8,

pp. 17701783, Aug. 2022.

J.-E. Kim, R. Bradford, M.-K. Yoon, and Z. Shao, “ABC: Abstract

prediction before concreteness,” in Proc. Design, Autom. Test Eur. Conf.

Exhibit. (DATE), 2020, pp. 1103-1108.

A. Soyyigit, S. Yao, and H. Yun, “Anytime-Lidar: Deadline-aware 3D

object detection,” in Proc. IEEE Int. Conf. Embed. Real-Time Comput.

Syst. Appl. (RTCSA), 2022, pp. 31-40.

H. Caesar et al., “nuScenes: A multimodal dataset for autonomous

driving,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.

(CVPR), 2020, pp. 1-11.

“Jetson AGX xavier developer kit.” NVIDIA. Accessed: Mar. 30, 2024.

[Online]. Available: https://developer.nvidia.com/embedded/jetson-agx-

xavier-developer-kit

B. Zhu, Z. Jiang, X. Zhou, Z. Li, and G. Yu, “Class-balanced

grouping and sampling for point cloud 3D object detection,” 2019,

arXiv:1908.09492.

[7

—

[8

[t}

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 11, NOVEMBER 2024

Y. Yan, Y. Mao, and B. Li, “SECOND: Sparsely embedded convolutional
detection,” Sensors, vol. 18, no. 10, p. 3337, 2018. [Online]. Available:
https://www.mdpi.com/1424-8220/18/10/3337

M. Boddy and T. L. Dean, “Solving time-dependent planning
problems,”‘in Proc. 11th Int. Joint Conf. Artif. Intell., 1989,
pp. 979-984.

S. Zilberstein, F. Charpillet, and P. Chassaing, “Real-time problem-
solving with contract algorithms,” in Proc. Int. Joint Conf. Artif. Intell.
(IJCAI), 1999, pp. 1-6.

H. Tang, Z. Liu, X. Li, Y. Lin, and S. Han, “TorchSparse: Efficient point
cloud inference engine,” in Proc. Conf. Mach. Learn. Syst. (MLSys),
2022, pp. 1-14.

B. Graham and L. van der Maaten, “Submanifold sparse convolutional
networks,” 2017, arXiv:1706.01307.

O. D. Team. “OpenPCDet: An open-source toolbox for 3D
object detection from point clouds.” 2020. [Online]. Available:
https://github.com/open-mmlab/OpenPCDet

T. Schreier, K. Renz, A. Geiger, and K. Chitta, “On Offline eval-
uation of 3D object detection for autonomous driving,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. Workshops (ICCVW), 2023,
pp. 1-6. [Online]. Available: https://doi.ieeecomputersociety.org/10.
1109/ICCVW60793.2023.00441

S. Kato et al., “Autoware on board: Enabling autonomous vehicles with
embedded systems,” in Proc. ACM/IEEE Int. Conf. Cyber Phys. Syst.
(ICCPS), 2018, pp. 287-296.

“Apollo: Open source autonomous driving.” 2017. [Online]. Available:
https://github.com/ApolloAuto/apollo

M. Alcon, H. Tabani, L. Kosmidis, E. Mezzetti, J. Abella, and
F. J. Cazorla, “Timing of autonomous driving software: Problem analysis
and prospects for future solutions,” in Proc. IEEE Real-Time Embed.
Technol. Appl. Symp. (RTAS), 2020, pp. 1-14.

Y. Li and J. Ibanez-Guzman, “Lidar for autonomous driving: The
principles, challenges, and trends for automotive lidar and perception
systems,” IEEE Signal Process. Mag., vol. 37, no. 4, pp. 50-61,
Jul. 2020.

P. Sun et al., “Scalability in perception for autonomous driving: Waymo
open dataset,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2020, pp. 1-9.

C. M. G. Shi and R. Li, “PillarNet: Real-time and high-performance
pillar-based 3D object detection,” in Proc. Eur. Conf. Comput. Vis.
(ECCV), 2022, pp. 1-18.

S. Shi, Z. Wang, J. Shi, X. Wang, and H. Li, “From points to parts: 3D
object detection from point cloud with part-aware and part-aggregation
network,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 8,
pp. 2647-2664, Aug. 2021.

T. Zhao et al., “Ada3D: Exploiting the spatial redundancy with adap-
tive inference for efficient 3D object detection,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), 2023, pp. 1-11. [Online]. Available:
https://api.semanticscholar.org/CorpusID:259937318

J. Liu, Y. Chen, X. Ye, Z. Tian, X. Tan, and X. Qi, “Spatial pruned sparse
convolution for efficient 3D object detection,” in Proc. Adv. Neural
Inf. Process. Syst. (NeurIPS), 2022, pp. 1-14. [Online]. Available:
https://openreview.net/forum?id=QqWqFLblIZh

S. Lee and S. Nirjon, “SubFlow: A dynamic induced-subgraph
strategy toward real-time DNN inference and training,” in Proc.
IEEE Real-Time Embed. Technol. Appl. Symp. (RTAS), 2020,
pp. 15-29.

S. Heo, S. Cho, Y. Kim, and H. Kim, “Real-time object detection system
with multi-path neural networks,” in Proc. IEEE Real-Time Embed.
Technol. Appl. Symp. (RTAS), 2020, pp. 174-187.

S. Heo, S. Jeong, and H. Kim, “RTScale: Sensitivity-aware adaptive
image scaling for real-time object detection,” in Proc. Euromicro Conf.
Real-Time Syst. (ECRTS), 2022, pp. 1-22.

I. Gog, S. Kalra, P. Schafhalter, M. A. Wright, J. E. Gonzalez, and
I. Stoica, “Pylot: A modular platform for exploring latency-accuracy
tradeoffs in autonomous vehicles,” in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), 2021, pp. 8806-8813.

Y. Hu, S. Liu, T. Abdelzaher, M. Wigness, and P. David, “On
exploring image resizing for optimizing criticality-based machine per-
ception,” in Proc. IEEE Int. Conf. Embed. Real-Time Comput. Syst. Appl.
(RTCSA), 2021, pp. 169-178.

S. Liu et al., “On removing algorithmic priority inversion from mission-
critical machine inference pipelines,” in Proc. IEEE Real-Time Syst.
Symp. (RTSS), 2020, pp. 319-332.

Authorized licensed use limited to: George Mason University. Downloaded on October 01,2025 at 18:03:11 UTC from IEEE Xplore. Restrictions apply.

