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Abstract—This work addresses the challenge of adapting
dynamic deadline requirements for the LiDAR object detection
deep neural networks (DNNs). The computing latency of object
detection is critically important to ensure safe and efficient
navigation. However, the state-of-the-art LiDAR object detection
DNNs often exhibit significant latency, hindering their real-
time performance on the resource-constrained edge platforms.
Therefore, a tradeoff between the detection accuracy and latency
should be dynamically managed at runtime to achieve the
optimum results. In this article, we introduce versatile anytime
algorithm for the LiDAR Object detection (VALO), a novel
data-centric approach that enables anytime computing of 3-D
LiDAR object detection DNNs. VALO employs a deadline-
aware scheduler to selectively process the input regions, making
execution time and accuracy tradeoffs without architectural
modifications. Additionally, it leverages efficient forecasting of
the past detection results to mitigate possible loss of accuracy
due to partial processing of input. Finally, it utilizes a novel input
reduction technique within its detection heads to significantly
accelerate the execution without sacrificing accuracy. We imple-
ment VALO on the state-of-the-art 3-D LiDAR object detection
networks, namely CenterPoint and VoxelNext, and demonstrate
its dynamic adaptability to a wide range of time constraints while
achieving higher accuracy than the prior state-of-the-art. Code is
available at https://github.com/CSL-KU/VALOgithub.com/CSL-
KU/VALO.

Index Terms—3-D object detection, anytime computing,
LiDAR.

I. INTRODUCTION

P
ERCEPTION plays a vital role in autonomous vehicles.

Its primary objective is to identify and categorize objects

of interest (e.g., cars and pedestrians) within the operational

environment. While humans excel at this task effortlessly, it

presents a significant challenge for the computers. For the

object detection in 3-D space, LiDAR-based object detection

deep neural networks (DNNs) [1], [2], [3] have emerged as
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an effective approach as they can provide highly accurate

position, orientation, size, and velocity estimates.

In autonomous vehicles, however, the object detection

results must not only be accurate but also timely as the

outdated results are of little use in the path planning of a

fast-moving autonomous vehicle. Unfortunately, the LiDAR

object detection DNNs are often computationally expensive

and thus exhibit significant latency, especially when run-

ning on resource-constrained embedded computing platforms.

Moreover, they lack the ability to dynamically trade execution

time and accuracy, which makes it difficult to adapt to

dynamically changing real-time requirements in autonomous

vehicles [4], [5]. For example, when a vehicle moves at a

high speed, fast detection may be more important than high

accuracy (e.g., correct object classification) in order to avoid

collision in a timely manner. On the other hand, when the

vehicle moves slowly in a complex urban environment, accu-

rate detection may be more important than the fast detection

for safe navigation.

To enable schedulable tradeoffs between the accuracy and

latency in perception, the prior research efforts have focused

on the vision-based DNNs [6], [7], [8], [9], [10]. Model-level

innovations, such as early exit architectures [9] have been

widely adopted, where these models incorporate additional

output layers at the intermediate stages, allowing the network

to make predictions before the full depth of the model

is utilized. Nonetheless, these enhancements come with a

tradeoff. The repeated activation of the intermediate output

layers at several phases leads to a significant increase in the

computational overhead. This issue is particularly pronounced

in applications requiring complex detection heads capable of

producing granular object-level predictions, such as LiDAR-

based object detection and segmentation tasks. Recently,

AnytimeLidar [11] introduced a capability to bypass certain

components and detection heads in an LiDAR object detection

DNN to enable the latency and accuracy tradeoffs at runtime.

However, such model-level improvements may not work on

different model architectures, which are constantly evolving.

In this work, we present versatile anytime algorithm

for the LiDAR Object detection (VALO), a novel data-

centric approach to enable anytime computing in processing

the LiDAR-based object detection DNNs. VALO selectively

processes subsets of periodically given input data with the

aim of maximizing detection accuracy while respecting the

deadline constraint. It implements a deadline-aware scheduler
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Fig. 1. General LiDAR object detection DNN architecture.

that splits the detection area into regions and schedules them to

reduce the computational costs while considering the accuracy

impacts. To minimize the potential accuracy loss, VALO

employs a lightweight forecasting algorithm to predict the cur-

rent poses of the previously detected objects based on a simple

physics model. The forecasted objects are merged with the

DNN detected ones through the nonmaximum suppression to

improve the overall accuracy. In addition, VALO implements

a novel input reduction technique within its detection heads.

This technique reduces the input volume to be processed by a

factor of ten for the convolutions responsible for delivering the

object attributes. Importantly, it accomplishes this without any

loss in accuracy by eliminating the unnecessary computation

in the areas where no object prediction exists.

We have implemented VALO on the top of the two

state-of-the-art LiDAR object detection DNNs [1], [3] and

evaluated them using a large-scale autonomous driving dataset,

nuScenes [12]. We utilized the Jetson AGX Xavier [13] as

the testing platform, a commercially available off-the-shelf

embedded computing platform. The results demonstrate that

VALO enables the anytime capability across a wide spec-

trum of timing constraints, while achieving higher accuracy

across all the deadline constraints compared to the baseline

LiDar object detection DNNs [1], [3] and a prior anytime

approach [11].

In summary, we make the following contributions.

1) We propose a novel data scheduling framework for the

LiDAR object detection DNNs that enables latency and

accuracy tradeoffs at runtime.

2) We apply our approach to the two state-of-the-art LiDAR

object detection DNNs and show its effectiveness and

generality on a real platform using a representative

autonomous driving dataset.

The remainder of this article is organized as follows.

We provide the necessary background in Section II and the

present motivation in Section III. We describe our approach

in Section IV and present the evaluation results in Section V.

After discussing the related work in Section VI, we conclude

in Section VII.

II. BACKGROUND

In this section, we provide the necessary background on the

LiDAR object detection DNNs and anytime computing.

A. LiDAR Object Detection DNNs

The primary objective of the LiDAR-based object detection

is to identify objects of interest within the detection area

by processing the input point clouds. Many LiDAR-based

object detection DNNs have been proposed [1], [2], [3], some

are optimized for latency, while the others are optimized for

accuracy.

Fig. 1 illustrates the general workflow of the LiDAR object

detection DNNs. Their encoders are designed to extract

features from the transformed input (e.g., voxels) with their

backbone(s), typically by employing convolutional neural

networks. An encoder can have a 3-D backbone that applies

sparse convolutions on the 3-D data, a 2-D backbone similar to

those used in vision object detection DNNs or both. When both

are used, the sparse output of the 3-D backbone is projected

to a bird-eye view (BEV) pseudo image to turn it into a

dense tensor so the 2-D backbone can process it with dense

convolutions.

After the encoder operation, the produced features are

further processed by the decoder, which consists of one or

more detection heads to output the 3-D bounding boxes of

the identified objects. When multiple detection heads are used,

the targeted object classes are separated into groups depending

on their size, and each detection head becomes responsible

for one group [14]. Within each detection head, a series

of convolutions is applied to infer various object attributes,

such as location, size, and velocity. Ultimately, nonmaximum

suppression or max pooling is used to extract the final results

from the predicted candidates.

B. Sparse Convolution

A point cloud P is represented as an array of 3-D point

coordinates (x, y, z), each accompanied by attributes, such as

LiDAR return intensity i

P = {(x1, y1, z1, i1), . . . , (xn, yn, zn, in)}. (1)

Unlike 2-D images, the indexes in the array of points do

not inherently establish neighborhood relationships, creating

a challenge for processing them with commonly used dense

convolutional neural networks operating on the dense tensors.

To address this issue, the point clouds are transformed into

alternative representations, such as a 3-D grid of fixed-size

voxels created by grouping spatially nearby points [1], [3].

These voxels can be represented as a 3-D dense tensor

and processed by 3-D convolutions. However, this approach

is avoided due to the significant computational overhead it

incurs. Instead, voxels are represented as a sparse tensor and

processed by sparse convolutions [15]. A sparse tensor V

can be defined in coordinate list (COO) format, where each

coordinate has a corresponding array of values. These values

represent the features of each coordinate.
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Fig. 2. Two sparse convolution examples applying 3×3 filters. Blue squares
indicate voxels. Red markings indicate the coordinates where the filter is
applied.

Sparse convolutions can yield the same result as dense

convolutions while operating on the sparse tensors. If the

input tensor is significantly sparse, as in the LiDAR point

clouds, this saves a bulk of computational time compared

to the dense convolutions. For this reason, the state-of-the-

art LiDAR object detection DNNs commonly employ sparse

convolutions. Sparse convolutions apply given filters on all the

coordinates where an input coordinate overlaps with any part

of the filter.

It is important to note that a sparse convolution operation

can generate a differently shaped output tensor, depending

on the shape of the input tensor as shown in Fig. 2. As we

will discuss in Section IV-C, this introduces input-dependent

timing variability in processing the sparse convolutions.

C. Anytime Computing

Anytime algorithms refer to a class of algorithms that can

trade deliberation time for the quality of the results [16].

An anytime algorithm is capable of delivering a result

whenever it is requested, and the quality of the result

improves as the algorithm dedicates more time to finding

the solution. For example, a path planning algorithm that

progressively enhances its solution by continuously refining

the path it has discovered can be considered as an anytime

algorithm [16]. In real-time systems, anytime algorithms are

highly valuable for meeting dynamically changing deadlines

as they can effectively tradeoff between the latency and

quality.

Contract algorithms are a special type of anytime algorithms

that require a predetermined time budget to be set prior to their

activation [17]. They are noninterruptible and deliver results

within the time budget, unlike the arbitrarily interruptible

anytime algorithms. In deadline-driven real-time systems, such

as self-driving cars, the contract algorithms can be used to

effectively trade the execution time for accuracy. Providing a

framework to transform an LiDAR object detection DNN into

a contract algorithm to make it deadline aware is the primary

focus of our work.

III. MOTIVATION

To understand the requirements of an effective latency

and accuracy trading approach, we profile two representative

LiDAR object detection DNNs in detail on the Jetson AGX

Xavier.

TABLE I
EXECUTION TIME (MS) STATISTICS OF POINTPILLARS

TABLE II
EXECUTION TIME (MS) STATISTICS OF CENTERPOINT

Table I presents the execution time statistics for the

PointPillars [2], a well-known LiDAR object detection DNN

recognized for its low latency. We observe that approximately

79% of the total processing time is consumed by its 2-D

backbone and detection heads. Therefore, a latency-accuracy

tradeoff approach targeting these two stages can yield satis-

factory results as explored in a recent prior work [11].

However, when the state-of-the-art LiDAR object detection

DNNs are considered, an approach that only focuses on the

2-D backbone and detection heads might not be efficient.

Table II shows the execution time breakdown of

CenterPoint [1], a recent 3-D LiDAR object detection

DNN that achieves higher detection accuracy than the

PointPillars [2]. Note that, it spends significantly more time

on the 3-D backbone stage, accounting for 41% of the total

execution time.

Although adopting sparse convolutions partially alleviates

the computational burden of the 3-D backbone [15], [18],

it still demands significant computational resources. Thus,

the 3-D backbone becomes another computational bottleneck,

which must be addressed when trading the accuracy for lower

latency.

One simple approach for achieving the latency-accuracy

tradeoff is training multiple models with varying input gran-

ularity (i.e., resolutions) and dynamically switching between

them. However, this approach can be cumbersome during

runtime due to the overhead involved in the model switching

(in terms of the memory overhead and switching latency). It

also necessitates training and fine tuning a large number of

models to achieve finely tuned tradeoffs.

Instead, we focus on developing a single model that can

deliver the highest possible accuracy when there is flexibility

with the deadline, while intelligently adjusting input data when

the deadline becomes more stringent, as will be discussed in

the next section.

IV. VALO

In this section, we introduce VALO, a scheduling framework

that transforms aN LiDAR object detection DNN into a
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Fig. 3. Overview of VALO.

noninterruptable anytime (contract) algorithm. VALO allows

detection results to be produced in time for a gamut of deadline

requirements, with a controlled tradeoff in accuracy.

A. Overview

The fundamental concept underpinning VALO’s design is

the scheduling of data to facilitate the tradeoffs between the

time and accuracy rather than scheduling the architectural

components of the targeted DNN. This design choice makes

VALO versatile, as it is not constrained by the architec-

tural specifics of the LiDAR object detection DNNs. Fig. 3

illustrates VALO’s three main components: 1) scheduling;

2) forecasting; and 3) detection head optimization, highlighted

in green, and their positions within the DNN pipeline. The

region drop component is considered a part of scheduling.

First, VALO’s scheduler comes into play after the DNN has

completed the feature transformation stage. This allows it to

make scheduling decisions at the voxel level instead of the

raw point clouds, enabling more accurate predictions of the

timing for the 3-D backbone stage.

During the scheduling phase, VALO decides which regions

of the input data will be processed to maximize detection

accuracy within the deadline constraint. Once a decision is

made, the data outside the selected regions is filtered out,

and the remaining data is forwarded to the subsequent stage

(Section IV-B).

For effective region scheduling, VALO predicts execution

times of subsequent network stages of each possible region

selection (Section IV-C). VALO also employs a mechanism to

recover from the execution time mispredictions (Section IV-D).

Next, while filtering part of the input can reduce latency,

it can also negatively impact accuracy. To mitigate potential

accuracy loss, VALO employs a forecasting mechanism that

updates the positions of the previously detected objects to

the current time of execution. This operation is performed

mostly in parallel while the DNN executes. After the, detection

heads generate object proposals, these proposals are combined

with the list of forecasted objects. The combined list is then

subjected to nonmaximum suppression, which yields the final

detection results (Section IV-E).

Finally, to further improve the efficiency, we introduce a

novel optimization technique for the efficient detection head

processing. This optimization technique eliminates the sig-

nificant amount of redundant computation in detection heads

without compromising the detection accuracy (Section IV-F).

B. Region Scheduling

The scheduler decides which subset of input data (vox-

els) should be processed to meet a given deadline while

Fig. 4. Two examples of how the region scheduler partitions the detection
area into regions. (a) Partitioning example 1. (b) Partitioning example 2.

maximizing the accuracy. Intuitively, the less data it selects,

the less time it takes for the DNN to process it, albeit at the

expense of reduced accuracy. To make the scheduling problem

tractable, we partition the fixed-size detection area into equally

sized chunks along the X (width) axis, which we refer to as

regions.

Fig. 4 illustrates two examples of partitioning a 108 ×

108 m2 detection area into 18 vertical regions. In Fig. 4(a),

the input point cloud is spread to all 18 regions. In contrast,

Fig. 4(b) shows that only a portion of the regions, 8 out of

18, contain points due to the structure of the environment

scanned by LiDAR. In scenarios with empty regions, the

scheduler skips all the empty regions located before the first

nonempty region and after the final nonempty region. As a

result, partitioning the input in the X axis for some inputs

allows for latency reduction without sacrificing accuracy in

later stages.

To determine which regions to process, we employ a

greedy policy that sequentially selects the maximum number

of input regions while adhering to the deadline constraint.

Consequently, all regions are treated with equal priority.

Fig. 5 provides an illustrative example of the proposed region

scheduling algorithm, which selects regions for processing

over three consecutive inputs. For each input, the scheduler

decides the regions to be scheduled for processing, starting

from the next to the final of the previously scheduled regions,

which can meet the given deadline.

Algorithm 1 outlines our proposed scheduling algorithm.

Initially, the scheduler counts the number of voxels in each

region and returns the list of schedulable regions (RS), and

their voxel counts (CS) (line 8).

The scheduler then reorders the obtained list so the selec-

tions start from the first nonempty region coming after rlast

(lines 9). Subsequently, candidate region selections are iterated

from largest to smallest until one that meets the deadline is

identified (lines 10–18).
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Fig. 5. Example of region scheduling on three consecutive samples over time. The regions outlined in orange represent the selections made by the scheduler
for processing. The green and purple bounding boxes indicate the objects detected as a result of processing the selected regions and the forecasted objects,
respectively. Best viewed in color.

Once scheduling is completed, input voxels falling outside

the selected regions (Rsel) are filtered, and the remaining

voxels are forwarded to the 3-D backbone as input. If the

subsequent stage employs dense convolutions, the sparse

output of the 3-D backbone is then converted to a dense tensor

where the regions are placed following the order in Rsel.

Our scheduling method brings three advantages. First,

selecting the adjacent regions maintains spatial continuity

and processes the input with minimal fragmentation, thereby

avoiding accuracy degradation that can happen through slicing

and batching nonadjacent regions. Second, it ensures a consis-

tent level of “freshness” of object detection results over all the

regions, which is needed for effective forecasting operations

(Section IV-E). Third, it incurs minimal scheduling overhead.

C. Execution Time Prediction

For effective region scheduling, the key challenge is to

determine whether a candidate list of regions can be processed

within a given deadline constraint (line 13 in Algorithm 1).

The predicted execution time E of a candidate list of regions

can be calculated as

E = ES + ED + ER (2)

where ES is the time to process sparse data (i.e., 3-D

backbone), ED is the time to process dense data (i.e., 2-D

backbone and convolutions in detection heads), and ER is the

time to process the final stage of object detection task, such

as nonmaximum suppression.

For ED, since the number of candidate regions (|Rsel|)

determines the size of the dense input tensor that will be

passed to the 2-D backbone, it can be defined as an one-to-one

function, where each possible |Rsel| is mapped to an execution

time determined through the offline profiling. This mapping

is feasible because the execution time of dense convolutions

remains largely fixed as a function of input size, and there is

a small finite number of possible regions.

On the other hand, ES, the execution time of the sparse 3-D

backbone, is difficult to predict as it depends on the number of

input voxels in a highly nonlinear manner as shown in Fig. 6.

Algorithm 1: Scheduling Algorithm

1 Input:

2 Input voxels (V),

3 Number of input regions (NR),

4 Last scheduled region (rlast),

5 Relative deadline (D),

6 Output: Selected regions to be processed

7 function schedule(V, NR, rlast, D)

8 RS, CS ← count_voxels(V, NR)

9 RS, CS ← reorder(RS, CS, rlast)

10 i ← length_of (RS)

11 while i ≥ 1 do

12 Rsel, Csel ← RS[:i], CS[:i]

13 E ← calc_wcet(Rsel, Csel)

14 rem_time ← D − get_elapsed_time()

15 if E < rem_time then

16 i ← 0

17 else

18 i ← i − 1

19 return Rsel

Fig. 6. Profiled execution time CenterPoint’s 3-D Backbone.

This nonlinearity mainly stems from the fact that a sparse

convolution layer can generate a different number of output

voxels for the same number of input voxels depending on

their relative positions as illustrated in Fig. 2. Consequently,
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Fig. 7. CenterPoint’s 3-D backbone broken into blocks. SM: submanifold
sparse convolution. SP: sparse convolution.

Fig. 8. Profiled execution time of the blocks of CenterPoint’s 3-D backbone
and the quadratic models regressed from their execution times data.

the computational demand of processing a subsequent layer,

which takes the output of the previous layer as input will vary

accordingly. To make the time prediction tractable, we break

the 3-D backbone into blocks at points where the count of

forwarded voxels changes as illustrated in Fig. 7.

We then focus on separately predicting the execution time

of each block. Note that, unlike a sparse convolution layer,

batch normalization, activation functions, and submanifold

sparse convolution [19], all of which heavily used in 3-D

backbones, do maintain the same input and output shapes (thus

the voxel counts), and thus can be safely grouped within a

block. Denoting Vi as the input voxels of a layer Li, we define

a block B as

B = {Lk, . . . , Ll | ∀i, k ≤ i ≤ l, |Vk| = |Vi|} (3)

where Vk is the input voxels of the first layer Lk. The input

of a block B denoted as VB is the same as Vk.

Fig. 8 shows the execution time profiles of all the four

blocks of the CenterPoint’s 3-D backbone. As can be seen in

the figure, each block’s execution time, as a function of the

number of input voxels of the block, is more predictable using

a simple quadratic prediction model

EBi(|VBi |) = α|VBi |
2 + β|VBi | + γ (4)

where the coefficients α, β, and γ are determined by regression

against the profiling data collected offline. Then, the execution

time of the 3-D backbone can be predicted as follows:

ES =

n
∑

i=1

EBi(|VBi |). (5)

However, a major challenge is that, except for the first block,

the number of input voxels of the remainder of the blocks,

Crest, are not known until the execution of the preceding blocks

is completed

Crest =
{

|VB2
|, . . . , |VBn |

}

. (6)

To predict Crest for any given list of candidate input regions,

we use a history-based approach, leveraging the fact that there

is a strong similarity between the consecutive LiDAR scans,

as the movements of objects between the scans are limited.

Specifically, for the block B2 to Bn, we keep track of each

block’s most recent input voxel counts of all the input regions,

which are updated whenever they are selected by the region

scheduler and processed. Assuming voxel counts would be

similar over time, we then aggregate the latest voxel counts

of the current candidate regions to obtain Crest.

Finally, for ER, the execution time to perform nonmaximum

suppression and other operations can vary depending on the

number of object proposals in the detection pipeline. However,

because it is relatively small compared to the remainder of the

pipeline, namely ED and ES, we simply use the 99th percentile

of the measured execution time through offline profiling, which

provides a safe upper bound without significantly affecting the

time prediction accuracy.

D. Region Drop

The aforementioned execution time prediction method for

the 3-D backbone can inevitably introduce some inaccuracy.

For LiDAR object detection models with 2-D backbones, such

as CenterPoint [1], after the execution of the 3-D backbone,

we additionally check if it will be possible to meet the deadline

(see Fig. 3), considering the predicted execution time of the

remainder of the pipeline. If deemed not possible, we further

reduce the number of input regions so that the deadline can

be met. Note, however, that some recently proposed LiDAR

object detection models, such as VoxelNext [3] do not employ

a 2-D backbone as they are fully sparse. For such networks,

the region dropping does not apply.

E. Forecasting

Forecasting estimates the present pose of the objects identi-

fied in the past invocations of the object detector. Because our

region scheduling method (Section IV-B) can skip part of the

input LiDAR scan due to the deadline constraints, forecasting

plays a critical role in mitigating the potential accuracy loss.

We define a pose P of an object at time t as

Pt = {T, S, α, v, c, l} (7)

where T is the 3-D coordinate of the object expressed in the

LiDAR coordinate frame, S is the bounding box, α is the

heading angle, v is the velocity vector, c is the confidence

score, and l is the label (e.g., car or pedestrian). In this work,
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Fig. 9. General detection head architecture.

we focus on estimating T and α and assume the others to stay

consistent over time.

The first part of forecasting involves maintaining a queue of

previously detected object poses. For all the processed input

regions of an input frame, VALO removes the old objects

corresponding to the processed regions from the queue and

appends the freshly detected objects in these regions to the

queue. Thus, the queue maintains the latest detected objects

of all the regions.

The second part of forecasting involves performing the

mathematical calculations to estimate Ptcur for all the objects in

the pose queue. For each pose of an object in the pose queue,

we first rotate and translate the object pose to be expressed

in the global coordinate frame using the ego-vehicle pose. We

then add the distance traveled by the object (v×(tcur − tdet)) to

the translation component (T) of the pose. Finally, we translate

and rotate the pose to be expressed in the current LiDAR

coordinate frame.

At the runtime, we update the queue on the CPU and

perform the actual pose updates on the GPU. We have

developed a custom GPU kernel to update the poses of all the

objects in parallel. The forecasting GPU kernel is executed in

a separate CUDA stream to maximize the parallelism.

F. Detection Head Optimization

LiDAR object detection DNNs include detection heads that

are designed to extract specific attributes of objects, such as

position, size, and orientation. Surprisingly, we discovered

that a significant amount of redundant computations occur in

processing the detection heads of the state-of-the-art LiDAR

object detection DNNs [20].

Fig. 9 illustrates the general architecture of a detection head,

which performs a series of convolutions to infer attributes of

the objects. The width and height dimensions of the output

tensors from these convolutions correspond to the width and

height of the detection area in the BEV. Among the inferred

attributes, the heatmap plays the most important role, as it

Fig. 10. Optimized detection head architecture.

holds the confidence scores of the objects used for classifying

and locating them. In a heatmap tensor, any score value above

a predefined score threshold indicates an object proposal. The

list of object proposals, R, extracted from the heatmap can be

expressed as

R = {(c1, x1, y1), . . . , (cn, xn, yn)} (8)

where c is the confidence score and x and y are a position

in the detection area. Once R is generated, remaining object

attributes (e.g., orientation, velocity, size, etc.) are obtained

from their corresponding output tensors at the x and y positions

in R, and combined into object poses (7).

The problem with this approach is that it performs con-

volutions on all the parts of the input while only the output

locations that correspond to the object proposals (R) are

utilized. As a result, the convolutions inferring object attributes

except the heatmap involve a significant amount of redundant

computation.

To improve efficiency, we propose to optimize the detection

head processing as follows.

1) The heatmap is computed in the same manner as in the

baseline approach.

2) The detected object list R from the heatmap is utilized

to selectively gather and batch small patches from the

input tensor.

3) Convolutions are applied to this batch of patches to

derive the object attributes.

Fig. 10 provides a visual representation of the proposed

approach. Note that, the proposed optimization ensures that

convolutions are applied only to the data that is needed for

producing the desired output corresponding to the locations

in R. This approach significantly reduces the number of

multiply accumulate operations (MACs) without any loss of

detection accuracy.

However, due to the reduction in the input size, there is

a potential issue of GPU underutilization if we execute the

attribute-inferring convolutions one by one as in the baseline.

To maximize GPU utilization, we concatenate them into a
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single convolution operation followed by a group convolution.

This improves GPU utilization and reduces the GPU kernel

invocation overhead.

Note that, some recent LiDAR object detection networks,

such as VoxelNext [3] employ sparse convolutions in detection

heads instead of dense convolutions. For such a model, we

replace the slice and batch part of detection head optimization

with filtering all the sparse tensor coordinates that do not

contribute to the output, and do not group the convolutions

as they are sparse. In this way, we significantly reduce

computational overhead without losing detection accuracy and

allow utilizing of the model trained for the baseline.

V. EVALUATION

For evaluation, we implemented VALO as an extension to

OpenPCDet [20], an open-source framework for LiDAR 3-D

object detection DNNs, which supports the state-of-the-art

methods. For this study, we mainly target CenterPoint [1] as a

baseline and apply VALO to demonstrate its effectiveness. In

addition, we also apply VALO on a more recently proposed

VoxelNext [3], a fully sparse DNN, to demonstrate the versa-

tility of our approach.

As for the dataset, we utilize nuScenes [12], a large-scale

autonomous driving dataset, and use the nuScenes detection

score (NDS) [12] as the detection accuracy metric since

it was reported to correlate with the driving performance

better than the classic average precision (AP) metric [21].

In the remainder of the evaluation, unless noted otherwise,

we normalize the NDS score with respect to the maximum

NDS score we observed among the all compared methods. We

utilize 30 distinct scenes from the nuScenes evaluation dataset,

with each scene containing annotated LiDAR scans spanning

20 s, sampled at intervals of 350 ms. The sample period is

chosen to match the worst-case execution time of the slowest

baseline method on our evaluation platform.

To capture the timeliness aspect of the detection

performance, we evaluated the methods under a range of

deadline constraints from 350 to 90 ms. The deadline range

is chosen to be between the best-case execution time of the

fastest baseline method and the worst-case execution time of

the slowest baseline model. During each test, we kept a buffer

holding the latest detection results and updated this buffer

every time the method being tested met the deadline. In case of

a deadline miss, we considered the buffered detection results

as the output and ignored the produced ones by assuming the

job was aborted.

As for the hardware platform, we used an NVIDIA Jetson

AGX Xavier [13], equipped with 16 GiBs of RAM for

the runtime performance evaluation. We maximized all the

hardware clocks and allocated the GPU resources only for the

method being tested. For software, we used Jetson JetPack

5.1 and Ubuntu 20.04. Training of the models was done on a

separate desktop machine with an NVIDIA RTX 4090 GPU.

We present the evaluation results in the following three

subsections. First, we compare VALO with a set of baselines

to evaluate its performance. Second, we perform an ablation

study to demonstrate the benefits of VALO’s components.

Finally, we shift our focus to the intrinsic details of VALO

and analyze the execution time behavior of its components.

A. Comparison With the Baselines

Below is the list of methods we compared in this section.

1) CenterPoint [1]: This is a representative state-of-the-

art LiDAR object detection network architecture that

employs a voxel encoder as its 3-D backbone, fol-

lowed by a region-proposal-based 2-D backbone and

six detection heads, each of which focuses on a subset

of the object classes [14]. Before being forwarded to

the 3-D backbone, the input point cloud is transformed

into fixed-sized voxels. The size of a voxel is a design

parameter of the network, which should stay consistent

during training and testing. In this work, we consider

three voxel configurations 75 × 75 × 200 mm3, 100 ×

100 × 200 mm3, and 200 × 200 × 200 mm3, which

are called CenterPoint75, 100, and 200, respectively.

Employing bigger voxels reduces the computing cost at

the expense of accuracy.

2) VoxelNext [3]: A recently proposed LiDAR object detec-

tion network, featuring a voxel encoder as its 3-D

backbone deeper than the CenterPoint’s followed by six

detection heads. Unlike CenterPoint, all the convolutions

in its detection heads operate on the sparse tensors. Like

CenterPoint, VoxelNext also can be configured to have

a different voxel size. We focus only on the setting

that employs voxels of size 75 × 75 × 200 mm3 (i.e.,

VoxelNext75).

3) AnytimeLidar [11]: To the best of our knowledge, this

is the only work that can provide runtime latency

and accuracy tradeoff (i.e., anytime computing) for

the LiDAR object detection DNNs in the literature.

It achieves the anytime capability by utilizing early

exits in processing the 2-D backbone and skipping

a subset of the detection heads dynamically. While

AnytimeLidar is originally based on the PointPillars [2],

we ported it to the CenterPoint75 baseline to make a fair

comparison, which we call AnytimeLidar-CP75. Note

that, AnytimeLidar cannot be applied to the VoxelNext

since it lacks a 2-D backbone.

4) VALO: The proposed method in this work. VALO can

be applied to the CenterPoint and VoxelNext baselines.

We call VALO-CP75 and VALO-VN75 when it is

applied to the CenterPoint75 and VoxelNext75 baselines,

respectively.

1) VALO Versus AnytimeLidar: In this experiment, we

compare the performance of VALO and AnytimeLidar with

the CenterPoint75 baseline from which they are applied.

Fig. 11 shows the results. Fig. 11(a) compare how detec-

tion accuracy changes in relation to the varying deadline

constraints. Fig. 11(b), on the other hand, compare the corre-

sponding deadline miss rates of the tested methods under the

deadline constraints.

Note first that, under the 350 ms deadline constraint, all

the methods can meet the deadline without a need for the

tradeoffs and demonstrate their maximum accuracy. When the
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Fig. 11. VALO versus AnytimeLidar on CenterPoint. (a) Detection accura-
cies. (b) Deadline miss rates.

deadline tightens, however, the CenterPoint baseline imme-

diately begins to miss deadlines as it cannot adjust its

computing demand according to the given deadline, resulting

in a significant drop in accuracy. AnytimeLidar and VALO,

on the other hand, can trade accuracy for lower latency (i.e.,

anytime capable), and thus achieve improved performance

as they can meet the deadlines better. However, when the

deadline is 155 ms, AnytimeLidar starts to miss deadlines

due to its limited anytime computing capability. But VALO

respects the deadline constraints down to 90 ms and achieves

higher accuracy.

AnytimeLidar falls short of matching the effectiveness of

VALO primarily due to dismissing the contribution of the 3-

D backbone on the total latency. Moreover, AnytimeLidar’s

effectiveness will be further reduced if a single detection head

architecture, instead of the multihead detection architecture in

this work, is used because its ability to make a tradeoff is in

large part enabled by skipping a subset of the detection heads,

which is possible only in the multihead architecture.

In contrast, VALO can make fine-grained execution time

and accuracy tradeoffs, primarily due to its ability to schedule

a portion of the data to process, independent of the neural

network architectural specifics, such as 3-D/2-D backbone or

the number of detection heads. This distinct focus on the data

makes VALO a more versatile framework that can be applied

in any LiDAR object detection DNN.

2) VALO Versus Other Nonanytime Baselines: Fig. 12

shows the detection performance of VALO-CP75 and three

other CenterPoint baselines. All the baselines have distinct

execution time demands and accuracy they can deliver. For

example, when the deadline is 350 ms, CenterPoint75 achieves

the best accuracy among the three baselines. But when the

Fig. 12. VALO versus CenterPoint variants.

deadline is 220 ms, CenterPoint75’s accuracy falls down to

zero because it no longer is able to meet the deadline. On

the other hand, CenterPoint200’s accuracy does not change

all the way down to the deadline of 155 ms as it can still

meet the deadline albeit at a somewhat lower accuracy. Note,

however, that these baseline models are fixed and cannot make

accuracy versus latency tradeoffs on the fly at runtime. VALO,

on the other hand, can adapt itself to a wide range of deadline

constraints from 90 to 350 ms on the fly while providing the

best possible accuracy for a given deadline constraint.

As an alternative way to adapt to the varying deadline

constraints on the fly, one can consider using multiple

DNN models of differing latency-accuracy tradeoffs (like

CenterPoint75, 100, and 200 in this experiment) and switch

between them depending on a given deadline constraint at

runtime as done in [4]. However, the problems of such an

approach are that it needs to train, fine-tune, and manage all

these models separately. Furthermore, these models need to be

loaded into the precious (GPU) memory all the time for the

real-time operations, even when only one of them is actually

used at a time. In contrast, VALO can make such tradeoffs at

runtime from a single model without requiring any additional

memory overhead.

3) VALO on VoxelNext: To demonstrate VALO’s versatility,

we applied it to the VoxelNext [3], which has a signif-

icantly different architecture than the CenterPoint. Unlike

CenterPoint, VoxelNext does not use a 2-D backbone and

instead relies solely on the 3-D sparse convolution layers.

Fig. 13 shows the result. As in the CenterPoint case, VALO-

VN75 performs better than the baselines in all the deadline

constraints. The region scheduling (Section IV-B) allows

VALO-VN75 to dynamically adjust the time spent on the

3-D backbone and the detection heads effectively, effectively

making it anytime capable.

4) Effectiveness of Time Prediction: The effectiveness of

VALO’s region scheduling critically depends on the accu-

racy of its time prediction (Section IV-C). To evaluate the

effectiveness of the proposed history-based time prediction

method, we compare its accuracy with a simple quadratic

prediction model that directly predicts the execution time of

the entire 3-D backbone from the number of input voxels

(as opposed to predicting per block-based prediction in our

proposed history-based time prediction approach). We denote

this baseline method as quadratic whereas our history-based

approach as history.
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Fig. 13. VALO on VoxelNext.

Fig. 14. Cumulative distribution function of time prediction error for history-
based and baseline methods.

Fig. 14 compares the accuracy of both time prediction

methods in predicting 3-D backbone execution time against the

evaluation dataset. As can be seen in the figure, our history-

based prediction method significantly outperforms the baseline

quadratic method, which helps reduce deadline violations and

improve detection accuracy.

B. Ablation Study

In this experiment, we investigate the contribution of region

scheduling and forecasting by comparing VALO with its two

variants explained below. We also include the CenterPoint75

baseline for comparison.

1) VALO-NSNF-CP75: This variant of VALO operates

without scheduling (Section IV-B) and forecasting

(Section IV-E), hence denoted as “no scheduling no fore-

casting” (NSNF). However, it does perform detection

head optimization (Section IV-F).

2) VALO-NF-CP75: This variant of VALO performs

region scheduling (Section IV-B) and detection head

optimization (Section IV-F), but not forecasting

(Section IV-E).

Fig. 15 presents the experimental results where we observe

improved performance as additional VALO components are

introduced to the baseline CenterPoint75. First, VALO-

NSNF-CP75 achieves a higher accuracy over the baseline

CenterPoint75 when the deadline is tighter than 350 ms. For

instance, at the 285 ms deadline, VALO-NSNF-CP75 matches

the accuracy of CenterPoint75 at 350 ms. This underscores the

effectiveness of the detection head optimization in reducing the

execution time without compromising accuracy. Next, VALO-

NF further improves accuracy across a wider range of deadline

constraints by enabling region scheduling because it can make

Fig. 15. Detection accuracy achieved by the variants of VALO.

execution time and accuracy tradeoffs, preventing deadline

misses and boosting accuracy over VALO-NSNF. Finally,

VALO achieves the highest accuracy across all the deadline

constraints by additionally utilizing forecasting, which is

particularly effective on the tight deadlines. This is because

forecasting plays a more crucial role when the number of

scheduled regions reduces as the deadline tightens.

C. Component-Level Timing Analysis

In this experiment, we delve into the execution timing

characteristics of the components of VALO when it is applied

to the CenterPoint75.

Fig. 16 shows the execution timing of the 3-D backbone,

2-D backbone, and detection heads. For each component,

we consider five different cases. The first two involve using

CenterPoint75 and VALO-CP75, where there is no deadline.

The remainder are the results of VALO-CP75 executed with

220, 115, and 90-ms deadline constraints, respectively.

1) 3-D Backbone: Fig. 16(a) shows the execution time pro-

file of the 3-D backbone portion of the network. Note first that

the CenterPoint75 baseline shows a high degree of variations,

influenced by the varying count and positioning of the input

voxels. When there is no deadline, the time spent on the 3-D

backbone of VALO-CP75 is about the same as CenterPoint75

as expected. As the deadline gets tighter, however, VALO’s

execution time of the 3-D backbone is progressively reduced

because its region scheduler dynamically selects a subset of

input regions that can be executed within the given time

budget.

2) 2-D Backbone: Fig. 16(b) shows the execution time

profile of processing the 2-D backbone, where the convolutions

on the dense tensors take place. Unlike the 3-D backbone

processing, even when there is no deadline, we can observe

a notable decrease in the execution time in VALO compared

to the CenterPoint75 baseline. This is because our data

partitioning scheme (Section IV-B), which exploits the sparsity

of the LiDAR data, can skip empty input regions in the 2-D

backbone, thus reducing latency. As the deadline get tighter,

we also observe a further reduction in the execution time of

the 2-D backbone as a result of reduced input data selected

by the scheduler.

3) Detection Heads: Fig. 16(c) shows the execution time

profile of processing the detection head. Note first that, we

observe more than 50% reduction in detection head process-

ing latency on VALO-CP75 compared to the CenterPoint75
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Fig. 16. Component-level execution time profile of the baseline and VALO on Centerpoint75 under different deadline constraints. (a) 3-D backbone (Voxel
encoder). (b) 2-D backbone (RPN). (c) Detection head (CenterHead).

baseline even when there is no deadline constraint. This is

due to the proposed detection head optimization described in

Section IV-F, which significantly reduce the amount of data to

be processed by eliminating the redundant data. In addition,

as the deadline get tighter, we again observe progressive

reduction in the execution time in VALO due to further

reduction in the input data to the detection head thanks to its

scheduler.

4) Overhead: We measured 3 ms of scheduling overhead

in the worst case, including the input filtering time. There is

also 3 ms overhead due to the voxel counting operations as

a part of history-based time prediction. We did not observe

any overhead incurred by the forecasting operation when the

end-to-end latency is considered, as it is efficiently executed

in parallel with the backbones. Note that, the total overhead of

VALO on the CenterPoint75 is only about 6 ms, which is less

than 2% of the average execution time of the CenterPoint75.

VI. RELATED WORK

Timely execution of autonomous driving software is essen-

tial to ensure safe and efficient navigation. Traditionally, the

timing requirements (i.e., deadlines) of the autonomous driving

tasks are often fixed at the design time [22], [23], which is not

adaptable to the highly varying execution time demands [24].

Recently, Gog et al. [4] have highlighted the potential benefits

of adopting a flexible approach, which can dynamically change

deadlines in the autonomous driving software based on the

specific driving situation, such as the speed of the vehicle or

sudden pedestrian appearance to improve the performance and

safety of the vehicle.

LiDAR object detection is a critical component in many

autonomous driving systems [25]. With the release of large-

scale autonomous driving datasets [12], [26], researchers have

developed deep learning-based object detection models that

achieve the state-of-the-art performance. Besides aiming to

achieve high accuracy, the recent work has also considered

reducing latency as an objective [1], [2], [3], [27], [28],

[29], [30] for the real-time operation. These works can

achieve remarkable accuracy in real time when executed on

high-end GPUs and accelerators. However, their deployment

on the edge computing platforms, such as Jetson AGX

Xavier [13] still poses a challenge due to their significant

computational overhead and latency. More importantly, they

lack the capability to dynamically adapt their execution time

in a deadline-aware manner, which is needed for the real-time

cyber–physical systems.

Recent studies have explored the concept of “anytime

perception” for the neural networks, which enables them

to execute within defined deadlines while making trade-

offs between execution time and accuracy. For example,

Kim et al. [6] achieved this by iteratively adding layers to an

image classification network and retraining it to incorporate

“early exits.” Lee and Nirjon [31] focused on the neuron

level, prioritizing critical neurons for accuracy while deac-

tivating the others to save time. Bateni and Liu [7] used

perlayer approximation instead of early exits and presented

a scheduling solution for the multiple DNN tasks. Yao et al.

[8] also dealt with the scheduling of multiple DNN tasks,

utilizing imprecise computation alongside early exits. While

these works primarily targeted image classification tasks,

object detection tasks present unique challenges.

Heo et al. [32] introduced a multipath DNN architecture

designed for anytime perception in vision-based object detec-

tion. Another work by the same Heo et al. [33] designed

an adaptive image scaling method that respects the deadline

constraints for the multicamera object detection task. Gog et al.

[34] proposed to switch between the DNNs to make latency

and accuracy tradeoffs dynamically at runtime. Hu et al. [35]

suggested reducing the resolution of less critical parts of the

scene to lower computational costs. Lie et al. [9], [36] divided

individual image frames into smaller subregions with varying

levels of criticality, using the LiDAR data to batch-process

essential subregions to meet deadlines. However, these prior

efforts mainly focus on 2-D vision and do not account for the

unique characteristics of the 3-D point cloud processing.

Recently, Soyyigit et al. [11] proposed a set of techniques

that enable anytime capability for the LiDAR object detection

DNNs. They focused on the object detection models where

the bulk of the computation is performed on the 2-D backbone

and detection heads, such as PointPillar [2] and Pillarnet [27].

However, the effectiveness of their approach diminishes on the

recent state-of-the-art object detection models where the bulk

of time is spent on the 3-D backbone [1], [3]. Fundamentally,

such effort that focuses on the model-level improvements may

fail to work when the architecture of the model changes.
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In contrast, our work focuses on the data-level scheduling,

independent of the architectural details of the backbones and

detection heads, and thus can be seamlessly applied to any

state-of-the-art LiDAR object detection DNNs.

VII. CONCLUSION

In this work, we presented VALO, a versatile anytime

computing framework for the LiDAR object detection DNNs.

VALO’s superior performance compared to the prior state-of-

the-art comes from three major contributions: 1) partitioning

the input data into regions and efficiently scheduling them

with the goal of maximizing accuracy while respecting the

deadlines; 2) lightweight forecasting of the previously detected

objects to mitigate the potential accuracy loss due to par-

tially processing the input; and 3) and intelligently reducing

redundant computations in processing the detection heads of

the object detection neural network with no loss of accuracy.

Evaluation results have shown that our approach can adapt

to a wide-range of deadline constraints in processing the

LiDAR object detection DNNs, and enables a fine grained and

effective execution time and accuracy tradeoff.
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