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Model predictive control of non-interacting active
Brownian particles†

Titus Quah, Kevin J. Modica, James B. Rawlings * and Sho C. Takatori *

Active matter systems are strongly driven to assume non-equilibrium distributions owing to their self-

propulsion, e.g., flocking and clustering. Controlling the active matter systems’ spatiotemporal

distributions offers exciting applications such as directed assembly, programmable materials, and

microfluidic actuation. However, these applications involve environments with coupled dynamics and

complex tasks, making intuitive control strategies insufficient. This necessitates the development of an

automatic feedback control framework, where an algorithm determines appropriate actions based on

the system’s current state. In this work, we control the distribution of active Brownian particles by

applying model predictive control (MPC), a model-based control algorithm that predicts future states

and optimizes the control inputs to drive the system along a user-defined objective. The MPC model is

based on the Smoluchowski equation with a self-propulsive convective term and an actuated

spatiotemporal-varying external field that aligns particles with the applied direction, similar to a magnetic

field. We apply the MPC framework to control a Brownian dynamics simulation of non-interacting

active particles and illustrate the controller capabilities with two objectives: splitting and juggling

sub-populations, and polar order flocking control.

1 Introduction

Active matter is made up of units that convert energy from
their surroundings into self-directed motion.1–4 Interactions
between these units can lead to complex collective behaviors
such as flocking or swarming.5–8 Active matter systems include
dense swarms of micro- or nanoscale robots that can be used
for directed assembly,9,10 programmable materials,11,12 and
drug delivery.13–15 To these ends, researchers have developed
various controllable active matter systems that can be actuated
via magnetic,16–18 optical,19–24 electric,25,26 or acoustic fields.27

While these actuated systems offer solutions for manipulating
active matter, they also raise a new question: how do we
determine the best control actions? In other words, how can
we design a control policy that directs the system to achieve a
user-specified task?

In experiments and simulations, heuristic feedback policies
have been successful in controlling single agents to trace paths,
populations to accumulate into desired shapes, active nematic
defects to follow trajectories and active nematic flows to main-
tain user-specified speeds.25,28–34 However, these policies are
limited to simple tasks and require both intuition and trial and

error, which would not generalize well to complicated tasks, or
systems with interactions between agents. Other approaches
include model-free reinforcement learning, which designs a
policy by interacting with the system and learning from the
results.35–40 However, this approach is data-intensive and may
not be feasible for systems with many degrees of freedom or
where data collection is expensive.

The optimal control problem (OCP) provides a framework to
design control policies that leverage a system model to predict
future states and optimize control inputs to achieve a specific
objective. Solving the OCP involves determining the optimal
control inputs that minimize a predefined objective function
for a given system over a specified time horizon. One approach
to solve the OCP is to derive the necessary conditions for
optimality. This yields a two-point boundary problem with
Euler–Lagrange equations which can be solved to obtain the
optimal control inputs for a given initial condition.41 In active
matter systems, these Euler–Lagrange equations have been
solved numerically to design optimal open-loop policies to
control active nematics, active droplets and motility-induced
phase separation.42–46 However, handling inequality con-
straints and solving the two-point boundary value problem is
computationally expensive and ill-suited for real-time control.47

To handle constraints and achieve real-time control, a useful
approximate solution to the OCP is model predictive control
(MPC), which discretizes the system dynamics and solves a
nonlinear optimization problem at every sample time.48 MPC
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allows for the incorporation of control constraints and can be
solved in real-time to perform feedback control which is helpful
to handle disturbances and has been applied to a variety
of systems such as chemical processes, robotics, and flow
control.47,49,50

In this work, we apply MPC to control the number density
and orientational moments of non-interacting active Brownian
particles (ABPs) that are controlled by alignment with a
spatiotemporal-varying external field. As outlined by Fig. 1,
we demonstrate that MPC on the probability distributions of
position and orientation can be used to control a particle-level
Brownian dynamics (BD) simulation of ABPs to accomplish
various tasks such as population splitting and velocity control.

2 Physical model and model predictive
control framework
2.1 Modeling active Brownian particles (ABPs)

Consider N non-interacting ABPs in two dimensions confined
between two parallel plates spaced W units apart as shown in
Fig. 1a. Each particle has position xj = [x y]T and orientation yj
where the subscript j A [1,N] denotes the particle’s index. The
collection of the particles’ position and orientations is denoted
the system’s state X(t) = [xj

T yj]
T. The particles self-propel with

velocity U0qj, where U0 is the self-propulsive speed and qj is the
unit vector pointing in the direction of the particle’s orienta-
tion, i.e., qj = [cos(yj) sin(yj)]

T. Additionally, we consider an
actuated spatiotemporal-varying external field that aligns the
particles with the field direction Ĥ(x,t) = [Ox(x,t) Oy(x,t)]

T which
results in an induced angular velocity of Oj = O(xj,yj,t) =
Ox(xj,t)sin(yj) + Oy(xj,t)cos(yj). These types of aligning external
fields have been used to control the orientation of the

particles.17,51,52 Note that a positive Ox(xj,t) aligns the particles
in the positive x-direction, while a negative value induces
alignment in the opposite direction. Thus, we refer to Ox(�) as
the x-field. Similarly, Oy(xj,t) governs alignment along the y-axis
in an analogous manner and we refer to Oy(�) as the y-field. The
particles are subject to fluctuations that yield translational and
rotational diffusion DT and DR, respectively. The dynamics of
the particles are governed by overdamped Langevin dynamics,
i.e., Browian dynamics:

dxj

dt
¼ U0qj �

DT

kBT
rjV xj

� �
þWT; jðtÞ (1)

dyj
dt

¼ Oj þWR; jðtÞ; (2)

where kBT is the thermal energy scale; V(xj) is the potential
energy that keeps the particle confined between the plates;
WT, j(t) and WR, j(t) are Wiener processes with white noise

statistic WT; j ¼ 0, WT; jð0Þ;WT; jðtÞ ¼ 2DTdðtÞI, WR; j ¼ 0, and

WR; jð0Þ;WR; jðtÞ ¼ 2DRdðtÞ; I is the identity matrix; d(�) is the
Dirac delta function. For the wall potentials V(xj), we use the
Weeks–Chandler–Andersen potential. (1) and (2) are integrated
using HOOMD-blue.53

There are two time scales: the reorientation time tR = 1/DR

and the time for the actuator to rotate the particles 1/Oj. There
are also three length scales: the plate gap W, the particle’s run
length c = U0tR, and the microscopic diffusion length
d ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
DTtR

p
. Scaling time and length by the reorientation time

tR and run length c, respectively, yields three nondimensional
quantities: the ratio of the plate gap to the run length
w = W/c, the ratio of the diffusivities (c/d)2 = U0

2tR/DT, and
the ratio of the actuator rotation time to the thermal

Fig. 1 Feedback control framework for controlling a population of active Brownian particles (ABPs) to split into two equal populations via model
predictive control (MPC). (a) A Brownian dynamics (BD) simulation of confined ABPs with self-propulsion speed U0, and translational and rotational
diffusion characterized by DT and DR, respectively. In addition, the ABPs are actuated by a spatiotemporally varying magnetic-like field O(x,y,T) that aligns
particles in the direction of the field, i.e. the input to the system. (b) From measurements of the ABPs in the BD simulation, we estimate the initial state,
i.e., the one particle probability distribution function P0(x,y,t) of ABP positions and orientations using kernel density estimation. (c) Using model predictive
control (MPC), we determine the optimal control input sequence Xo by simultaneously forecasting the time-evolution of the system’s probability
distribution P(x,y,t), starting from the initial distribution P0(x,y), and optimizing the sequence of actuator inputs. The goal is to minimize the distance
between the predicted evolution of the system and a desired set point Psp. Finally, we apply the first value of the optimized input sequence Xo(0) to the
BD simulation.
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reorientation time oj = tROj, i.e., the nondimensionalized
angular velocity.

Our goal is to control the distribution trajectory of ABPs to
dynamically track a user-specified trajectory. Suppose that we
consider the example shown in Fig. 1, where we have an initial
population of ABPs accumulated at the center, and we would
like to design a controller that selects input fields to split the
population into two equal groups. Instead of optimizing control
inputs to each individual particle, our goal is to apply feedback
control on a population-level distribution function.

To these ends, we apply MPC to the Smoluchowski equation
and model the probability of the particles’ positions and
orientation. Following Shaik et al.54 and Saintillan and
Shelley,55 we model the probability distribution P(x,y,t) of
finding a particle at position x with orientation y at time t
using the Smoluchowski equation with zero flux boundary
conditions at the walls and periodic boundary conditions in y.

@Pðx; y; tÞ
@t

þr � jþ @

@y
jy ¼ 0 (3)

j = U0qP(x,y,t) � DTrP(x,y,t) (4)

jy ¼ Oðx; y; tÞPðx; y; tÞ �DR
@

@y
Pðx; y; tÞ (5)

n�j|walls = 0 (6)

P(x,y,0) = P0(x,y) (7)

n is the unit vector normal to the wall; P0(x,y) is the initial
distribution of the particles. We define the number density

nðx; tÞ ¼
Ð
Pðx; y; tÞdy and the polar order mðx; tÞ ¼ mx my½ �T¼Ð

qPðx; y; tÞdy.

2.2 Model predictive control

As mentioned before, the OCP considers finding optimal inputs
to minimize a user-defined objective function over a finite time
horizon. Applied to the Smoluchowski equation, the OCP to
find the optimal control inputs starting with initial distribution
P0(x,y) is given by

min
Oð�Þ

ðT
0

LðPðx; y; tÞ;Oðx; y; tÞÞdtþ Lf ðPðx; y;TÞÞ

s:t: 3ð Þ to 7ð Þ

Oðx; y; tÞ � W 8t 2 0; T½ �

(8)

where T is the time horizon; L(�) is a stage cost that penalizes
both the deviation of the distribution from the desired values
and the control effort; Lf(�) is the terminal cost that only
penalizes the final distribution; W is the set of allowable
control inputs. These constraints may arise from the physical
limitations of the actuator, e.g., a maximum magnetic field
strength.

In MPC, (8) is discretized to obtain a nonlinear optimization
problem. Thus, in (3) to (7), we discretize the distribution P and

O in both space and orientation using a finite number of
orthogonal basis functions, yielding a set of ordinary differen-
tial equations (ODEs) (see ESI†). The control input O(x,y,T) is
discretized by representing it as a piecewise constant function
over the prediction horizon KD, with control values determined
at each sample time D as illustrated by the green input in
Fig. 1c such that X = [O(x,y,0) X(x,y,D) � � � O(x,y,(K � 1)D)].
Finally, we discretize the system dynamics by applying a
numerical ODE solver, such as a Runge–Kutta method, to
approximate the evolution of the state variables over discrete
time intervals, determined by the sample time D. For simplicity,
we continue to refer to the discretized system as (3) to (7).

With the discretized system, we can now formulate the MPC
problem as illustrated in Fig. 1c. Our goal is to obtain an
optimal control sequence Xo that contains a sequence of input
fields that steers the ABPs to track the user-specified distribu-
tion trajectory. Given some initial distribution P0(x,y), we solve
the following nonlinear optimization problem to find the
optimal control sequence Xo:

min
X

XK�1

k¼0

LðPðx; y; kDÞ;XðkÞÞ þ Lf ðPðx; y;KDÞÞ

s:t: 3ð Þ to 7ð Þ

XðkÞ � W 8k 2 0; K � 1½ �

(9)

X(k) is the (k + 1) th element of X. This nonlinear optimiza-
tion problem is solved using IPOPT,56 an interior point opti-
mizer, at each sample time D to obtain the optimal control
sequence Xo.

Recall we are controlling a BD simulation using MPC with
the Smoluchowski equation as the model and require estimates
of the distribution at every sample time for the initial condition
P0(x,y) in (9). In the BD simulation, instead of having direct
measurements of the distribution P(x,y,t), we have access to the
positions and orientations of the particles X(t), i.e., samples of
the distribution. Thus, we estimate the initial distribution
P0(x,y) from the BD simulations by applying Kernel density
estimation (KDE) to the particle positions and orientations, and
project to the basis functions (see ESI†). The feedback con-
troller can be summarized into the following steps:

0. Given an initial particle positions and orientations in
the BD simulations, X(0), fix the horizon length K and initialize
k = 0.

1. Perform KDE and projection on X(kD) to estimate the
distribution P(x,y,kD).

2. Initialize the state P0(x,y) = P(x,y,kD) and solve (9) for Xo.
3. Apply first value of control sequence Xo(0)
4. Evaluate X((k + 1)D), set k := k + 1 and return to step 1.

3 Examples

Before we present the examples, let us consider some limiting
cases of the system. In the limit of no activity, because the
particles are passive, spherical, and noninteracting, they can-
not be directed. The actuator only aligns the particles with the
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field so without activity, the number density would adopt the
typical equilibrium distribution, i.e., a uniform distribution
across the domain. In the limit of no actuation, i.e. O = 0, but
some activity, the ABPs would accumulate at the walls due to
the self-propulsion and create a boundary layer that scales with
the run length c.57 Therefore, to achieve distributions other
than uniform or concentration at the walls, we need the
combined effects of both activity and actuation. The actuator
biases the particles’ orientations which then the activity drives
the population to the desired state, e.g., accumulation in the
center.

To illustrate the capabilities of our framework, we present
two examples of ABP control using MPC on BD simulations.
First, we demonstrate the control of the ABP density by splitting
the population of ABPs into two groups and juggling the
particles back-and forth as shown in Movie S1 (ESI†). Next,
we simultaneously maintain two groups of ABPs and specify the
density-normalized y-polar order my/n to be sinusoidal in x as
shown in Movie S2 (ESI†). We provide an additional example in
the ESI† demonstrating the advantages of MPC over a heuristic
solution. This example involves controlling the density of ABPs
to dynamically track a sinusoidal x-position set point. We
compare the performance of a heuristically designed controller
(shown in Movie S3, ESI†) with that of the MPC solution (shown
in Movie S4, ESI†).

For the examples, we assume the input field and distribu-
tions are constant across y and thus, focus on the one dimen-
sional problem in x. We set the ratio of the diffusivities (c/d)2 =
10 and rigid plates placed at x = �W/2 = �5c, i.e., plate gap of W
= 10c. We set the number of ABPs N = 106. KDE was done using
KDEpy58 with a bin width of 10�3. The distribution is discre-
tized in orientation with four Fourier modes, and in position,
with 40 Legendre collocation points. The controls (both Ox and
Oy) are discretized in position with 20 Legendre collocation
points. MPC was done using MPCTools59 which relies on
CasADI.60 The sample time D = 0.5tR. The horizon was set to
K = 14, i.e., 7tR. Code is available at https://github.com/titussws
quah/mpc_abp_2024.61

3.1 Density control

In this example, our objective is to control the density of the
ABPs in a user-specified trajectory. In particular, we shall split a
population of ABPs into two groups along the x-direction and
then juggle the density of particles between the two groups.

For this example, we focus only on Ox(x,t) and fix Oy(x,t) =
0tR

�1. We initialize the system with a zero field, i.e, the system
starts at steady state with Ox(x) = 0tR

�1. Our user-specified set
points are as follows:

1. Accumulate particles into center.
2. Split particles into two equal groups centered at x+= 2.5c

and x� = �2.5c.
3. Achieve a distribution where the probability of finding a

particle with position x o 0c is 25% while maintaining the
populations centered at x�.

4. Repeat step 3, but with the probability of finding a particle
with position x o 0c is 75%.

5. Return to step 2.
To simulate having limited actuation capabilities, we constrain

the input x-field to have a maximum magnitude of 3tR
�1, i.e.,

|Ox(x,y,t)|N r 3tR
�1. |�|N is the maximum norm over the

domain.
Let us introduce some notation for the stage cost. |�| denotes

the 2-norm over the domain. h�i is the expectation of the
argument over the entire domain, given distribution P,
i.e., h�i ¼

Ð Ð
ð�ÞPðx; y; tÞdxdy. Since we only have one distribu-

tion, the distribution is implied to be of the particle’s positions
and orientations. We are sometimes interested in parts of the
domain, mainly in position x. Thus, we define h�iD as the
expectation of the argument over the domain D. For example,
the expected value of the argument for the left half of the region

h�ixo 0 ¼
Ð Ð Ð 0

�W=2ð�ÞPðx; y; tÞdxdydy. Lastly, we denote the prob-
ability of finding a particle in the left half, i.e., h1ixo0, as n(x o
0). Similarly, we denote the probability of finding a particle in
the right half as n(x 4 0).

With these definition, we are ready to define the stage
cost L1(�). We omit position and orientation arguments for
clarity.

L1 = LP,1 + LO,1

LP;1ðPðtÞ; xsp;1ðtÞÞ : ¼ c1 ðx� x�ðtÞÞ2
� �

xo 0
þ ðx� xþðtÞÞ2
� �

x4 0

� �

þ c2 nðxo 0Þ � rspðtÞnðx4 0Þ
� �2

LO;1ðOxðtÞ;Oxðt� DÞÞ : ¼ c3
@2Ox

@x2

				
				
2

þc4 OxðtÞ � Oxðt� DÞj j2

xsp,1(t) := [x�(t) x+(t) rsp(t)]
T

The stage cost L1(�) is the sum of the distribution cost LP,1
and the control cost LO,1. The distribution cost LP,1 consists of
three contributions. h(x � x�(t))

2ixo0 penalizes the expected
square distance of particles to the left of the origin (x o 0c) to
the left set point x+(t). Likewise, h(x � x+(t))

2ix40 penalizes the
expected square distance of particles to the right of the origin
(x 4 0c) to the right set point x+(t). The last term in the
distribution cost (n(x o 0) � rsp(t)n(x 4 0))2 penalizes devia-
tions from the left-to-right ratio set point rsp(t) between prob-
ability of finding a particle to the left n(xo 0) and right n(x4 0) of
the origin. This ratio penalty is used to achieve set points like equal-
sized groups or 25% of particles to the left.

In a real experiment, rapid control adjustments may strain
or damage the actuator. Thus, we include a control cost LO,1,
aimed at reducing large changes over space and time.

The control cost consists of two terms: the first term
@2Ox

@x2

				
				
2

penalizes the curvature of the input field in x, and the second
term |Ox(t) � Ox(t � D)|2 penalizes the change in the input field
in time. c1, c2, c3, and c4 are weights that determine the
importance of each term. We prioritize the distribution cost

Paper Soft Matter

Pu
bl

is
he

d 
on

 0
9 

O
ct

ob
er

 2
02

4.
 D

ow
nl

oa
de

d 
by

 S
ta

nf
or

d 
U

ni
ve

rs
ity

 L
ib

ra
rie

s o
n 

10
/1

/2
02

5 
7:

45
:3

6 
PM

. 
View Article Online

https://github.com/titusswsquah/mpc_abp_2024
https://github.com/titusswsquah/mpc_abp_2024
https://doi.org/10.1039/d4sm00902a


This journal is © The Royal Society of Chemistry 2024 Soft Matter, 2024, 20, 8581–8588 |  8585

so c1 = 6.4 � 103, c2 = 6.4 � 104, c3 = 5 � 10�5, and c4 = 10�3. The
terminal cost Lf is chosen to be the same as LP,1.

A movie of the process is shown in Movie S1 (ESI†). As seen
in Fig. 2a, we start with an initial condition of Ox(x,0) = 0tR

�1.
First, the particles accumulate at x = 0c. At t = 15tR, we change
the position set points to split into two groups and see the
group at x = 0c split into two even groups centered at the two set
points x� = � 2.5c and x+ = 2.5c. At around t = 25tR, we see
particles transferred from the x� group to the x+ group until
n(xo 0) = 0.25. In Fig. 2a, this corresponds the brighter band at
x = 2.5c and a darker band at x =� 2.5c. At t = 65tR, the opposite
happens and particles are transferred from the x+ to the x�
group until n(x o 0) = 0.75. Finally, particles are transferred
until we return to both groups having roughly equal amounts of
particles. The ratios are shown to dynamically track the chosen
set point in Fig. 2c.

Fig. 2b shows the feedback control input field. We choose
the input field to be a Legendre polynomial in x, similar to how
we discretize the distribution. Recall these are only the first
values of the optimal control sequence Xo obtained by solving

the K-stage optimization problem stated in (9). Note that areas
where the input field change from positive to negative are
regions where the particles accumulate as the particles are
oriented towards those regions. For example, at t = 0tR, the
controller gathers the particles at the x = 0c by changing the
input from positive (red) to negative (blue) at x = 0c. Conversely,
changing the input from negative to positive would orient
the particles away from that location. At t = 15tR, the controller
splits the population by orienting the particles away from
the center and towards the two set points. One can imagine
the input field creating an effective double well potential with
two attractive wells at x� and the hill located at x = 0c. The wells
are where the input field changes from positive to negative,
and the hill is where the input field changes from negative to
positive.

To transfer particles from one group to the other while main-
taining the populations centered at x�, the controller keeps the well
locations at x� and only moves the hill location. Thus, at t = 25tR,
when particles need to be transferred from x� to x+, the hill is
moved to xo 0cwhich expands the region orienting particles to x+.
Once the ratio is achieved, the controller moves the hill to a slightly
negative x as to maintain the unequal ratio. At t = 65tR, the particle
transfer is reversed, and the set transfer rate is faster, as shown by
the slope of the set point in Fig. 2c. Thus, the hill is moved to give a
larger region orienting particles to x�, then returns to a slightly
positive x.

3.2 Density and polar order control

So far we have demonstrated control on number density only.
In this example, we control both the number density and the
polar order in the y-direction, my. Note the polar order, normal-
ized by the number density m/n, is the dimensionless average
velocity of the particles, with both time and length scaled by the
reorientation time tR and the run length c, respectively. We
refer to the y-component of the nondimensional average velo-
city as the y*-velocity. We wish to have two groups of particles
centered at x� and the y*-velocity to fit a sine wave as shown
with the dotted red line in Fig. 2c. For this example, we require
both the x and y components of the input field to manipulate
the number density and the y-polar order my. Additionally,
we constrain the input field to have a maximum magnitude

of 3tR
�1, i.e., jOj1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ox

2 þ Oy
2

p		 		
1� 3tR�1.

To control the y*-velocity to fit to a sine wave and split
the particles into two groups, we use the same stage cost
for splitting particles, with the addition of a distribution cost
for deviation of the y*-velocity from the set point and a control
cost for the y-component of the input field.

L2 = LP,2 + LO,2

LP;2 PðtÞ; xsp;2ðtÞ
� �

: ¼ LP;1 PðtÞ; x�ðtÞ xþðtÞ 1½ �T
� �

þ c5
myðxÞ
nðxÞ � vspðtÞ sinðpx=WÞ
				

				
2

Fig. 2 MPC is used to split the distribution of ABPs into two groups and
juggle particles back-and-forth in a user-specified manner. (a) Number
density and (b) MPC input (external field) to split and juggle the particles.
Positive (red) x-field Ox aligns particles in the positive x-direction, and
negative (blue) x-field aligns particles in the negative x-direction. The
maximum x-field magnitude is constrained to be less than 3tR

�1. (c) The
fraction of particles in the left half of the simulation box n(x o 0) as the
particles are juggled back-and-forth, for the target (dashed red) and MPC
results (solid blue). Insets are snapshots of a subset of particles in a
Brownian dynamic simulation at times t = 20tR and t = 100tR. The
t = 20tR inset shows the particles split into two even groups and the t = 100tR
inset shows the particles in two groups with more particles in the x+ group.
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LO;2 OxðtÞ;Oxðt� DÞ;Oyðt� DÞ
� �

: ¼ c6
@2Ox

@x2

				
				
2

þ @2Oy

@x2

				
				
2

 !

þ c7 OxðtÞ � Oxðt� DÞj j2
�

þ OyðtÞ � Oyðt� DÞ
		 		2�

xsp,2(t) := [x�(t) x+(t) vsp(t)]
T

The left-to-right ratio rsp is set to unity to have equal sized
groups. We again prioritize the distribution cost so we set c1 =
6.4 � 103, c2 = 6.4 � 104, c5 = 6.4 � 106, c6 = c7 = 10�4.

Fig. 3 summarizes the results of the regulation problem
where we fix the set point xsp,2(t) = [�2.5c 2.5c 0.4]T. A movie
of the process is shown in Movie S2 (ESI†). Fig. 3a shows the
trajectory of two particles over the simulation with arrows
pointing the direction yi and colors to denote sin(yi). The color
is orange for sin(yi) = 1, blue when sin(yi) = �1 and white for
sin(yi) = 0. The walls are in the horizontal axis. As illustrated by
the two particle trajectories in Fig. 3a, the particles in the x�
have a negative y*-velocity and the particles in the x+ group have
a positive y*-velocity.

Fig. 3(b)–(e) show the averaged quantities over the simula-
tion with shaded regions marking the third standard deviation.
Fig. 3b contains the number density and shows the particles are
split into two groups with a profile that is similar to the particle

splitting example. The variation of the number density as
shown by the standard deviation is minimal. Fig. 3c shows
the expected y*-velocity whose set point is a sine wave. The
expected y*-velocity meets the set point sine wave as shown by
the blue and red lines. The variation of the velocity is large
where the number density is low since less number density
corresponds to fewer samples which results in a larger variation
in the expected velocity.

Fig. 3d shows the x component of the input field Ox. The
input field is similar to the particle splitting example, but is
different near x�. Because the maximum speeds are also
located at x�, the controller needs to use Oy to match the set
point. Consequently, because of the maximum magnitude
constraint on the input, the controller uses a smaller magni-
tude of Ox near x�.

Fig. 3e shows the y component of the input field Oy(x,t) that
orients particles along the y axis. Oy(x,t) has an interesting
shape. One would guess to obtain a sine velocity as depicted in
Fig. 3c, a sine input should be applied to Oy. While the
controller’s Oy(x,t) input somewhat looks like a sine curve,
there are more wiggles than expected. This is due to the
effective diffusion of particles. This is most clear at the walls
where one might expect zero input. Instead, the input field is
positive at x = � 5c and negative at x = 5c. This is to counteract
the particles on the interior that are oriented in the desired
direction, but drift into the boundary regions where the desired
y*-velocity is zero. Similarly, a larger field near the walls is
required to turn particles that drift from the zero y*-velocity
region. Effective diffusion can also reduce the control needed,
e.g., near x = x�. Since the particles nearby are traveling with the
desired y*-velocity, effective diffusion reduces the magnitude of
control required at x = x�.

4 Discussion

In this work, we show that MPC can be used with the Smolu-
chowski model for feedback control of ABP particle simulations
with constraints on the input field. By modeling the probability
distribution of the particles and estimating the distribution
with KDE, we can control the number density and orientational
moments of the particles to accomplish tasks such as popula-
tion splitting and fitting the velocity to a sine wave.

This work demonstrates that with MPC, precise feedback
control over particle distributions and dynamics is achievable.
However, to deploy MPC on real-world systems like light-
activated particles or nematics16,20–22,62 in complex
environments,3,63–66 further advancements are necessary. One
key area for future research is deploying MPC with models that
account for realistic effects like multibody and hydrodynamic
interactions between particles and obstacles or other actuation
mechanisms, e.g., speed control.1,2,67,68 In this work, the MPC
model (the Smoluchowski equation) accurately describes the
dynamics of the true system (the distribution dynamics of non-
interacting ABPs). However, in future work, we will consider
interacting active agents where exact models do not exist.

Fig. 3 MPC is used to control both the ABP density and the y*-velocity,
i.e., the y component of the dimensionless average velocity, with time and
length scaled by reorientation time tR and run length c, respectively. We
specify a sinusoidal y*-velocity while simultaneously splitting the particles
into two equal groups. (a) Trajectory of two selected particles (blue
markers moving down, orange markers moving up), (b) number density
for the target (dashed red) and averaged MPC results (solid blue) through-
out the simulation, (c) y*-velocity for the target (dashed red) and the
averaged MPC results (solid blue), (d) x and (e) y components of the field
needed to achieve both population splitting and y*-velocity control.
Positive x-field Ox aligns particles in the positive x-direction, and negative
x-field aligns particles in the negative x-direction. y-Field Oy governs
alignment in the y-direction in a similar manner. The maximum magnitude
of the field

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ox

2 þ Oy
2

p		 		
1 is constrained to be less than 3tR

�1. Blue shades
in (b)–(e) mark the third standard deviation throughout the simulation.
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Thankfully, an exact MPC model is not necessary for acceptable
control in practice. In fact, process industries often use linear
models with MPC to maintain nonlinear processes at set
points.49 This does not mean accurate models are useless;
depending on the system’s complexity or the task at hand, a
more accurate forecast may be necessary. In situations
demanding higher model accuracy, we can utilize machine
learning techniques to enhance precision.

Additionally, our current model assumes access to higher-
order orientation moments, i.e., the full state, which is difficult
to measure in practice. Therefore, it is crucial to develop
estimators69 or models that require only density measurements
like active model B.70 Lastly, while MPC is capable of control-
ling systems in real-time, our current implementation is still
too slow for experimental usage since for each sample time D,
we require five minutes of compute time. However, this can be
greatly accelerated using C++ code generation and approxima-
tions to the MPC solution, all available in the acados
package.71,72
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