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Abstract

Topological periodic cyclic homology (i.e., T-Tate fixed points of THH) has
the structure of a strong symmetric monoidal functor of smooth and proper dg
categories over a perfect field of finite characteristic.
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6 ABSTRACT

Introduction

Trace methods have produced powerful tools for computing algebraic K-theory.
In these methods, one obtains information about the K-theory spectrum by map-
ping it to more computable theories like topological Hochschild homology (THH)
and topological cyclic homology (TC). As the name suggests, THH is a “topologi-
cal” analogue of Hochschild homology, where tensor product is replaced with smash
product and we work over the sphere spectrum instead of the integers, resulting in
a theory which is the same rationally but richer at finite primes. Despite the name,
TC is not the topological analogue of cyclic homology, but is more closely related to
negative cyclic homology. In contrast to the algebraic setting, this construction does
not provide evident topological analogues of positive or periodic cyclic homology.
Since TC has been so successful for calculations in algebraic K-theory, topologists
have focused comparatively little attention on such analogues until recently.

In [14], Hesselholt studied a topological analogue for periodic cyclic homology,
motivated by the Deninger program [9] and the recent progress on it by Connes-
Consani [8]. Deninger proposed an approach to the classical Riemann hypothesis in
analogy with Deligne’s proof of Weil’s Riemann hypothesis. A basic ingredient in
this approach is a suitable infinite-dimensional cohomology theory and some kind
of endomorphism playing the role of the Frobenius automorphism; there is then a
conjectural expression for the zeta function in terms of regularized determinants.
Using periodic cyclic homology, Connes-Consani [8, 1.1] produced a cohomology
theory and expression for the product of Serre’s archimedean local factors of the
Hasse-Weil zeta function of a smooth projective variety over a number field in
terms of a regularized determinant for an endomorphism coming from the action of
λ-operations on this cohomology theory. Hesselholt [14] defined a theory TP as the
Tate T-fixed points of THH. We refer to this theory as topological periodic cyclic
homology as it is the topological analogue of periodic cyclic homology, though we
note that it is not always itself periodic. Using TP in place of the Connes-Consani
theory, Hesselholt establishes a non-archimedean version of their results, producing
a regularized determinant expression for the Hasse-Weil zeta function of a smooth
projective variety over a finite field.

The purpose of this paper is to prove an important structural property of TP .
It is well-known to experts that TP has the natural structure of a lax symmetric
monoidal functor from dg categories (or spectral categories) over a commutative
ring R (or commutative S-algebra R) to the derived category of TP (R)-modules.
In other words, TP satisfies a lax Künneth formula. We establish a strong Künneth
formula for TP when restricted to smooth and proper dg categories over a perfect
field of characteristic p > 0.

Theorem A (Strong Künneth Formula). Let k be a perfect field of character-
istic p > 0 and let X and Y be k-linear dg categories. The natural lax symmetric
monoidal transformation

TP (X ) ∧LTP (k) TP (Y ) −→ TP (X ⊗k Y )

is a weak equivalence when X and Y are smooth and proper over k.

Here ∧L denotes the derived smash product: This theorem is a derived category
statement rather than a homotopy groups statement. We get a homotopy groups
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statement from the Künneth spectral sequence [10, IV.4.7], which has E2-term

E2
∗,∗ = TorTP∗(k)

∗,∗ (TP∗(X ), TP∗(Y ))

and converges strongly to π∗(TP (X ) ∧LTP (k) TP (Y )). When k is a perfect field

of characteristic p, π∗TP (k) ∼= Wk[v, v−1], where Wk denotes the p-typical Witt

vectors, and v is an element in degree 2. In particular, TorTP∗(k)
s,∗ vanishes for s > 1

and the spectral sequence degenerates to a short exact sequence. We state this as
the following corollary.

Corollary A-1. Let k be a perfect field of characteristic p > 0 and let X and
Y be smooth and proper k-linear dg categories. Then there is a natural short exact
sequence

0→ TP∗(X ) ⊗
TP∗(k)

TP∗(Y )→ TP∗(X ⊗kY )→ Tor
TP∗(k)
∗−1,∗ (TP∗(X ), TP∗(Y ))→ 0.

This exact sequence splits, but not naturally.

We also get a strong Künneth theorem on homotopy groups after inverting p; in-
deed, for the Hesselholt work on TP , the statements of the main results only involve
TP∗[1/p]. Since inverting p commutes with the smash product and TP∗(k)[1/p] is
a “graded field” in the sense that all graded modules over it are free (in particular,
Tors,∗ = 0 for s > 0), we have the following immediate corollary.

Corollary A-2. Let k be a perfect field of characteristic p > 0 and let X and
Y be k-linear dg categories. The natural map on homotopy groups with p inverted

TP∗(X )[1/p]⊗TP∗(k)[1/p] TP∗(Y )[1/p] −→ TP∗(X ⊗k Y )[1/p]

is an isomorphism when X and Y are smooth and proper over k.

Along the way to proving Theorem A, we prove the following finiteness result
for TP . This result is surprising in light of the relationship between TP and the
étale cohomology of the de Rham-Witt sheaves [14, 6.8] and the extreme non-
finiteness of this cohomology for supersingular K3 surfaces [17, §II.7.2]. (We thank
Lars Hesselholt for calling our attention to this example.)

Theorem B. Let k be a perfect field of characteristic p > 0 and let X be a
smooth and proper k-linear dg category. Then TP (X ) is a small TP (k)-module;
in particular TP∗(X ) is finitely generated over TP∗(k).

We also prove analogues of Theorems A and B for Cp-Tate THH. For THH,
as we review in Section 15, the analogue of Theorem A is well-known to hold in
much wider generality (without the smooth and proper hypotheses, or the field
hypothesis), but Theorem B appears to be new even in this case. Since the other
cases take this case as input, we include the statement here in the generality we
prove it in Section 16. We emphasize that the statement is non-equivariant.

Theorem C. Let R be a commutative ring orthogonal spectrum and X a
smooth and proper R-spectral category. Then THH(X ) is a small THH(R)-
module.

Theorem C is easy to deduce from the strong Künneth theorem for THH and
the interpretation of smooth and proper in terms of duality [33, 5.4.2], [2, 3.7], but
we provide a simplicial argument in Section 16.
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An interesting application for Theorem A comes from the theory of noncommu-
tative motives. Periodic cyclic homology plays an important role in Kontsevich’s
ideas on noncommutative motives over a field of characteristic 0, as developed by
Tabuada [32], serving as a noncommutative replacement for de Rham cohomology.
The fact that TP∗[1/p] satisfies a Künneth formula allows TP to take the place of
periodic cyclic homology in the setting of noncommutative motives over a perfect
field of characteristic p. Notably, Tabuada [30] (see also [31]) has recently used
our Theorem A to show that the numerical Grothendieck group of a smooth and
proper variety (the generalization of the group of algebraic cycles up to numerical
equivalence) is finitely generated. Tabuada also applies Theorem A to establish
a conjecture of Kontsevich [19] that the category of numerical noncommutative
motives is abelian semi-simple, generalizing work of Janssen [18] for numerical
motives.

Finally, this paper also achieves some technical results that may be of interest
to homotopy theorists. Some highlights include:

• Construction of an explicit A∞ coalgebra structure, parametrized by the
little 1-cubes operad, for cellular approximations of the diagonal for the
cell structure on the geometric realization of a simplicial set and the
analogue for a simplicial space. (See Section 10.)

• Construction of models for the co-family universal space ẼG with action
by arbitrary A∞ or E∞ operads (see Section 2) and a filtration equivalent
to the standard filtration (as the cofiber of EG→ S0) that respects the
operad structure (see Section 9).

• Construction of a point-set lax symmetric monoidal model of the Tate
construction (see Section 2) and a point-set lax monoidal filtered version
of the Tate construction (see Section 11).

• Construction of the balanced smash product for right and left modules
over A∞ ring orthogonal spectra, and homotopical comparison for some
common A∞ operads as the operad varies. (See Section 18.)

• Study of the T-analogue of the Hesselholt-Madsen construction of the
Tate spectral sequence, which (unlike the case of a finite group) differs at
E2 from the Greenlees Tate spectral sequence, before becoming isomor-
phic at E3. (See Sections 3 and 12–13.)

The reader interested in homotopy theory might wonder about generalizing
Theorems A and B for commutative ring spectra more general thanHk and to other
closed subgroups of T beyond {1}, Cp, and T. Besides connectivity of Hk, the proof
of Theorem A depends on Theorem B and the observation in Proposition 8.1 that
the canonical map THH(Hk)→ Hk makes Hk a small THH(Hk)-module in the
Borel category of equivariant THH(Hk)-modules. Theorem B depends on the fact
that the commutative ring THH∗(Hk) is Noetherian and the commutative rings
TP∗(k) and π∗(THH(k))tCp are a graded PID and a graded field, respectively;
for the theorem, it is enough that they have finite global dimension. For other
subgroups Cpn < T with n > 1, π∗(THH(k))tCp has infinite global dimension.

Acknowledgments. This project was suggested by Lars Hesselholt based on
conversations with Gonçalo Tabuada; we thank both for their interest and contri-
butions. The authors learned the terminology of “Borel equivalences” and “Borel
category” in conversations with Mark Behrens. The second author thanks Ayelet



1. ORTHOGONAL G-SPECTRA AND THE TATE FIXED POINTS 9

Lindenstrauss and Teena Gerhardt for conversations in November 2008 related to
Section 16 and specifically Remark 16.11.

1. Orthogonal G-spectra and the Tate fixed points

This section sets out some conventions for the rest of the paper and reviews
certain aspects of the homotopy theory of equivariant orthogonal spectra and the
construction of the Tate fixed point spectra. Throughout the paper, G denotes a
compact Lie group, but starting in Section 3, we specialize to the case when G is a
finite group or G = T, the circle group of unit complex numbers.

Let S denote the category of non-equivariant orthogonal spectra and S G

the category of orthogonal G-spectra, which we understand to be indexed on all
finite-dimensional orthogonal G-representations (at least up to isomorphism). We
understand weak equivalence (when used as an unmodified specific term) to refer to
the weak equivalences in the stable model structure of [23, III.4.2], or equivalently,
the positive stable model structure [23, III.5.3]; the weak equivalences are the maps
that induce isomorphisms on homotopy groups πH

∗ for all H < G, defined by

πH
q X = colim

V <U
colim

n≥max{0,−q}
πq+n((Ω

V (X(Rn ⊕ V )))H).

In this notation, H < G means H is a closed subgroup of G (not necessarily
proper), U denotes a fixed infinite dimensional G-inner product space containing a
representative of each finite dimensional G-representation, and V < U means that
V is a finite dimensional G-stable vector subspace of U . The homotopy category
obtained by inverting these weak equivalences is called the stable category (or G-
stable category or G-equivariant stable category) and denoted here as Ho(S G).
We call the objects of Ho(S G) spectra (or G-spectra or G-equivariant spectra).

The Tate construction is most naturally viewed as a functor not from the stable
category but from a localization called the “Borel stable category”, which is formed
by inverting the “Borel equivalences”.

Definition 1.1. A map of orthogonal G-spectra is a Borel equivalence if it

induces an isomorphism on π∗ = π
{e}
∗ (where {e} denotes the trivial subgroup of G).

The Borel colocal model structure on orthogonal G-spectra is the F -model structure
of [23, IV.6.5ff] for F = {{e}}, the Borel local model structure is the Bousfield F -

module structure of [23, IV.6.3ff] for F = {{e}}, and the Borel category HoB(S G)
is the homotopy category obtained by inverting the Borel equivalences.

For orthogonal G-spectra X and Y , the relationship between maps in the stable
category and maps in the Borel category is given by the formula [23, IV.6.11]

HoB(S G)(X,Y ) ∼= Ho(S G)(X ∧ EG+, Y ∧ EG+)

∼= Ho(S G)(X ∧ EG+, Y ) ∼= Ho(S G)(X,Y EG).

As always, EG denotes the universal space, i.e., a free G-CW space whose under-
lying non-equivariant space is contractible. The notation Y EG denotes the derived
G-spectrum of unbased non-equivariant maps from EG to Y . The last two iso-
morphisms indicate that the (co)localization Ho(S G)→ HoB(S G) has both a left
and a right adjoint: The left is modeled by the functor (−) ∧ EG+ and the right
is modeled by applying fibrant replacement in the stable or positive stable model
structure followed by the point-set mapping G-spectrum functor (−)EG.
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The previous formula indicates that the Borel category may be viewed as the
full subcategory of the G-stable category consisting of the free G-spectra. The
Borel category can also be constructed as the homotopy category of G-objects in
orthogonal spectra, giving rise to the Lewis-May slogan “free G-spectra live in the
trivial universe”. To be precise, let S [G] denote the category where an object is
an orthogonal spectrum X together with an associative and unital structure map
G+∧X → X and a morphism is a map of orthogonal spectra preserving the action
maps. The category S [G] then has a model structure with weak equivalences and
fibrations the underlying weak equivalences and fibrations of orthogonal spectra;
the cofibrations are retracts of cell complexes built using free G-cells on spheres.
Let κ : S [G] → S G be the functor that fills in the non-trivial representations by
the formula

κX(V ) := I (RdimV , V ) ∧O(dimV ) X(RdimV )

where I (RdimV , V ) denotes the G-space of non-equivariant linear isometries from
RdimV to V . As observed in [23, V.1.5], κ is an equivalence of categories with
inverse the functor that forgets the non-trivial representation indexes. Since the
formula for the homotopy groups of an orthogonal G-spectrum in the case H = {e}
simplifies to

πqX = colim
n≥max{0,−q}

πq+nX(Rn)

(as the map colimn πq+nX(Rn)→ colimn πq+nΩ
V X(Rn⊕V ) is an isomorphism for

all V < U), κ sends weak equivalences to Borel equivalences and κ−1 sends Borel
equivalences to weak equivalences. Thus, κ and κ−1 also induce equivalences on
homotopy categories Ho(S [G]) ' HoB(S G) (with κ a Quillen left adjoint in both
model structures in Definition 1.1).

If A is an associative ring orthogonal G-spectrum, we also have Borel local and
colocal model structures on the category M odA of equivariant A-modules. We call
the homotopy category the Borel derived category, denoted HoB(M odA). Just as
in the base case of A = S, we have

HoB(M odA)(X,Y ) ∼= Ho(M odA)(X ∧ EG+, Y ∧ EG+)

∼= Ho(M odA)(X ∧ EG+, Y ) ∼= Ho(M odA)(X,Y EG).

As usual, we can interpret HoB(M odA)(X,Y ) as the π0 of a derived mapping
spectrum RBFG

A (X,Y ). We can construct RBFA(X,Y ) as the derived G-fixed
points of the derived mapping G-spectrum

RFA(X ∧ EG+, Y ∧ EG+) ' RFA(X ∧ EG+, Y ) ' RFA(X,Y EG),

or equivalently, as the homotopy G-fixed points of the derived mapping G-spectrum
RFA(X,Y ).

We now define the Tate fixed point functor, following [13]. In the definition, ẼG
denotes a based G-space of the homotopy type of the cofiber of the map EG+ → S0;
we will become more picky about models in later sections.

Definition 1.2. Define the Tate fixed points to be the functor

(−)tG : HoB(S G) −→ Ho(S )

from the Borel category to the stable category constructed as the composite of
derived functors

XtG = (XEG ∧ ẼG)G
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where (−)EG is the right derived inclusion functor HoB(S G) → Ho(S G). We
write πtG

∗ X for π∗(X
tG).

We can construct a point-set model for the Tate fixed point functor using a fi-
brant replacement functor RG in the (positive) stable model structure in orthogonal
G-spectra; we will be more specific about RG in later sections.

Construction 1.3. For a chosen fibrant replacement functor RG in the stable
or positive stable model structure on orthogonal G-spectra and a chosen model for

S0 → ẼG, let TG : S G → S be the composite point-set functor

TG(X) = (RG((RGX)EG ∧ ẼG))G.

As constructed, TG sends Borel equivalences of orthogonal G-spectra to weak
equivalences of orthogonal spectra and its derived functor is canonically naturally
isomorphic to (−)tG.

Remark 1.4. Construction 1.3 gives us a lot of latitude in the choices, which we
take advantage of in later sections. We pause to note that any choices give naturally
weakly equivalent functors by an essentially unique natural transformation (where
“essentially unique” means a contractible space of choices): The choice of fibrant
replacement functor is unique up to essentially unique natural weak equivalence, the
space of equivariant self-maps of the G-space EG is contractible, and the space of

equivariant based self-maps of the based G-space ẼG is based homotopy equivalent
to S0.

2. A lax Künneth theorem for Tate fixed points

In this section, we prove a lax version of the Künneth theorem for the Tate
fixed points (for an arbitrary compact Lie group G). These results are regarded
as well-known, but the exposition of this section sets up some of the constructions
and notation we need in later sections. We deduce our stable category results from
stronger point-set results that we expect to be useful in future work.

Construction 1.3, our point-set model TG for the Tate fixed point functor, left

the choice of the fibrant replacement functor RG and the model for ẼG unspecified.
Our strategy in this section is to make choices so that TG becomes a lax symmetric
monoidal functor. The first step is to choose RG to be lax symmetric monoidal.

Lemma 2.1. Let G be a compact Lie group. The positive stable model structure
on orthogonal G-spectra admits a topologically enriched lax symmetric monoidal
fibrant replacement functor.

As the details of the construction are unimportant, we give the proof in Sec-
tion 20.

We next choose a model for ẼG. McClure [26, §2] showed that any model

of ẼG has the structure of an equivariant algebra over some non-equivariant E∞

operad (an N∞ operad in the terminology of [4]). Turning this around, given a non-

equivariant E∞ or A∞ operad O, we would like a tractable model of ẼG which is
an O-algebra in based G-spaces (using ∧ as the symmetric monoidal product). We
need the flexibility to consider varying O: in this section, using Boardman’s linear
isometries operad L lets us take advantage of the symmetric monoidal structures
considered in [5], and in future sections we need to use the Boardman-Vogt little
1-cubes operad C1 (and certain variants).
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In the following, we take O to be an E∞ or A∞ operad (in unbased non-
equivariant spaces), and for convenience of exposition, we require O to satisfy
O(0) = ∗. (If not, the discussion below changes in that I and S0 get replaced with
O(0)× I and O(0)+, respectively.) For a based space X, we denote by OX the free
O-algebra on X in based spaces, OX =

∨
O(n)+ ∧Σn X(n), where (n) denotes the

nth smash power.

Construction 2.2. Let ẼOG be the O-algebra formed as the pushout in
O-algebras

S0 ←− O(G× ∂I)+ −→ O(G× I)+

where the rightward map is induced by the inclusion and the leftward map is induced
by the map G × ∂I → S0 sending G × {1} to the basepoint and G × {0} to the
non-basepoint.

It is clear that ẼOG is non-equivariantly contractible because the basepoint lies
in the unit component. Neglecting the O-algebra structure, the underlying G-space
has a filtration by G-equivariant cofibrations induced by homogeneous degree in the
elements of I,

(2.3) S0 = E0 ⊂ E1 ⊂ · · · ⊂ ẼOG,

with quotients
En/En−1

∼= O(n)+ ∧Σn
(Gn

+ ∧ In/∂In).

Indeed, En is the pushout in unbased spaces of the evident map

O(n)×Σn
(Gn × ∂(In)) −→ En−1

and the inclusion

O(n)×Σn
(Gn × ∂In) −→ O(n)×Σn

(Gn × In).

Because O(n) is Σn-free, it follows that for any nontrivial H < G, the fixed point

subspace EH is exactly the subspace S0. This shows that ẼOG is a model of ẼG.
The result of this construction is that when we use a lax symmetric monoidal

fibrant replacement functor to define TG, we now have a natural map

(2.4) O(n)+ ∧ TGX1 ∧ · · · ∧ TGXn −→ TG(X1 ∧ · · · ∧Xn),

compatible with the operadic multiplication. This map is also natural in the operad
O.

Using ẼLG for Boardman’s linear isometries operad L allows us to construct a

point-set lax symmetric monoidal model of (−)∧ ẼG as follows. We use the model
of spectra given by the symmetric monoidal category of S-modules inside the weak
symmetric monoidal category of L(1)-spectra in orthogonal spectra constructed by
Blumberg-Hill in [5] following the ideas of EKMM. Specifically, let S G[L(1)] denote
the category with objects orthogonal G-spectra X equipped with an associative and
unital action map L(1)+ ∧X → X, and morphisms the maps X → Y compatible
with the action. Recall that this is a weak symmetric monoidal category, that is,
a category equipped with a product which satisfies all the axioms of a symmetric
monoidal category except that the unit map need not be an isomorphism. As in
EKMM, there is a full symmetric monoidal subcategory of the unital objects in
S G[L(1)], which we write as S G

BH (denoted in [5] as GSR∞), the analogue of
EKMM S-modules. Furthermore, [5, 4.8] constructs a strong symmetric monoidal
functor J : S G[L(1)]→ S G

BH and a natural weak equivalence J → Id.
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Both S G[L(1)] and S G
BH admit model structures with weak equivalences de-

termined by the underlying equivalences in S G; although [5] works with the stable
equivalences, the arguments clearly hold for the Borel equivalences as well. In
S G[L(1)], the fibrations are also determined by the forgetful functor to S G. Note
that the lax symmetric monoidal fibrant replacement functor RG on S G induces
a lax symmetric monoidal fibrant replacement functor on S G[L(1)]: as the fibra-
tions in S G[L] are the maps whose underlying maps in S G are fibrations, RGX is
clearly fibrant, and RG inherits a lax symmetric monoidal structure on S G[L(1)].

The point of introducing this setup is that for the model ẼLG, Σ∞ẼLG is a
commutative monoid in the weak symmetric monoidal structure on L(1)-spectra
and therefore

J((−) ∧ ẼLG) ∼= J((−) ∧ Σ∞ẼLG)

is a strong symmetric monoidal functor from orthogonalG-spectra to the category of

J(Σ∞ẼLG)-modules in S G
BH. The following theorem is an immediate consequence

of the construction.

Theorem 2.5. Taking RG to be a lax symmetric monoidal fibrant replacement

functor and the model ẼLG for ẼG, the functor TG of Construction 1.3 lifts to
a lax symmetric monoidal functor S G → S G[L] and J ◦ TG has the compatible
structure of a lax symmetric monoidal functor S G → S G

BH.

Notation 2.6. For any A∞ or E∞ operad O in unbased spaces with O(0) = ∗,
write TO

G for the functor TG of Construction 1.3 using a lax symmetric monoidal

fibrant replacement functor and the model ẼOG for ẼG. Write JTL
G : S G → S G

BH

for the composite functor J ◦ TL
G in the previous theorem.

Note that the functor J preserves all weak equivalences and so the functor
JTL

G induces a lax symmetric monoidal functor from the Borel stable category to
the stable category; in these terms, the previous theorem specializes to the following
homotopy category statement.

Corollary 2.7. The Tate fixed point functor (−)tG : HoB(S G) → Ho(S )
has a lax symmetric monoidal structure.

More generally, if A is a commutative ring orthogonal G-spectrum (or even an
L-algebra in orthogonal G-spectra), the previous theorem specializes to show that
Tate fixed point functor restricts to a lax symmetric monoidal functor from the
Borel derived category of A-modules to the derived category of JTL

GA-modules.

3. The Tate spectral sequences

In this section, we review the construction and properties of certain “Tate”
spectral sequences computing πtG

∗ . We discuss two different spectral sequences,
one based on the Greenlees Tate filtration of [11, §1] and another introduced by
Hesselholt-Madsen in [15, §4.3]. In the case of finite group G, these spectral se-
quences agree from E2 on and in the case when G = T, they agree from E3 on.
The former spectral sequence is aesthetically superior, but we can prove sharper
multiplicativity properties for the latter, and we need these sharper properties for
the work in Section 5. We begin with the case where G is a finite group as that is
conceptually simpler.



14 STRONG KÜNNETH THEOREM FOR TP∗

For G a finite group and P∗ a projective Z[G]-resolution of Z in which each Pn

is finitely generated, Tate cohomology is constructed by putting together P∗ and
the dual (contragradient) Z[G]-complex Q∗ = Hom(P∗,Z). If X is a Z[G]-module,

the Tate cohomology Ĥ−∗
G (X) is the homology of the G-fixed point chain complex

of the chain complex

(3.1) · · · ←− Qn ⊗X ←− · · · ←− Q0 ⊗X ←− P0 ⊗X ←− · · · ←− Pn ⊗X ←− · · ·

using the augmentation P0 → Z and its dual Z→ Q0. (Here Q0 ⊗X sits in degree

0.) Alternatively, let P̃∗ denote the augmented resolution: P̃0 = Z, P̃n = Pn+1 for
n > 0. The Tate cohomology can also be calculated as the homology of the G-fixed
point chain complex of

(3.2) Tot⊕(Hom(P∗, X)⊗ P̃∗) ∼= Q∗ ⊗ P̃∗ ⊗X

(total complex formed with ⊕). The construction (3.1) has a simpler form, particu-
larly when G is a cyclic group and we take P∗ to be the minimal resolution; for the
construction (3.2), it is easy to construct the cup product in Tate cohomology, using

the (unique up to chain homotopy) chain maps P∗ → P∗ ⊗ P∗ and P̃∗ ⊗ P̃∗ → P̃∗

consistent with the maps Z→ Z⊗ Z and Z⊗ Z→ Z, respectively.
The Greenlees Tate filtration and Hesselholt-Madsen Tate filtration do the

analogous constructions in topology. For any G-CW model of EG, the cellular
chain complex of EG is a Z[G]-resolution P∗ of Z. For an orthogonal G-spectrum
X, we consider the tower of orthogonal G-spectra

· · · −→ F (EG/EGn, X) −→ F (EG/EGn−1, X) −→ · · ·

· · · −→ F (EG/EG0, X) −→ F (EG/EG−1, X) = XEG,

where F (−, X) denotes the orthogonal G-spectrum of (non-equivariant) maps and
where we understand EG−1 as the empty set. When X is fibrant, this is a tower

of fibrations whose inverse limit F (EG/EG,X) is trivial. Taking the model of ẼG
given as the homotopy cofiber of the map EG+ → S0,

ẼG = (EG× I) ∪(EG×∂I) S
0

we get a filtration with ẼGn (n ≥ 0) the homotopy cofiber of (EGn−1)+ → S0 and

ẼG0 = S0; the cellular chain complex of this filtration is P̃∗ in the notation above.
We get the Greenlees Tate filtration [11, §1] (cf. [15, 4.3.6]) by continuing the

tower above using the filtration on ẼG:

XEG = XEG ∧ ẼG0 −→ XEG ∧ ẼG1 −→ · · · −→ XEG ∧ ẼGn −→ · · · .

In the spectral sequence associated to this Z-indexed sequence, the E1-term is
canonically naturally isomorphic to

· · · ←− Qn⊗π∗X ←− · · · ←− Q0⊗π∗X←− P0⊗π∗X ←− · · · ←− Pn⊗π∗X ←− · · · ,

precisely the complex of (3.1). Because each homotopy cofiber is G-free and has
G-free homotopy groups, the homotopy groups of the G-fixed point spectra are the
G-fixed points of the homotopy groups. The spectral sequence associated to the
induced Z-indexed sequence on G-fixed points therefore has E1-term the complex

· · · ←− (Q0 ⊗ π∗X)G ←− (P0 ⊗ π∗X)G ←− · · ·
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of G-fixed points, and so has E2-term given by E2
i,j = Ĥ−i

G (πjX). Because

holimn F (EG/EGn−1, X)G ' ∗, this spectral sequence is conditionally convergent
(in the sense of [7, 5.10]) to the colimit πtG

∗ X.

Definition 3.3. Let G be a finite group and let X be an orthogonal G-
spectrum. The Greenlees Tate filtration on XtG is the Z-indexed sequence

· · · −→ XtG
−1 −→ XtG

0 −→ XtG
1 −→ · · · ,

where XtG
n is the composite of derived functors

XtG
n =

{
F (EG/EG−n−1, X)G if n < 0

(XEG ∧ ẼGn)
G if n ≥ 0

and the maps are induced by the maps EG/EGn−1 → EG/EGn and ẼGn →

ẼGn+1. The Greenlees Tate spectral sequence is the associated conditionally con-
vergent spectral sequence

E2
i,j = Ĥ−i

G (πjX) =⇒ πtG
i+j(X).

The Hesselholt-Madsen Tate filtration [15, §4.3] follows the pattern of (3.2).
Because we use a version of this filtration for the arguments in the remainder of
the paper, it is convenient to set up a point-set model for it rather than just a
construction in the stable category. For an orthogonal G-spectrum X, using the
chosen lax symmetric monoidal fibrant replacement functor RG, let

(3.4) TGXi,j = (RG(F (EG/EGj−1, RGX) ∧ ẼGi))
G

for any i, j ≥ 0. If the filtration on EG and ẼG comes from a G-CW structure as
above, then TGX0,j is a point-set model for XtG

−j and TGXi,0 is a point-set model for

XtG
i in the Greenlees Tate filtration. We have canonical maps TGXi,j → TGXi′,j′

for any i ≤ i′, j ≥ j′, making TGX−,− a functor from (N,≤)× (N,≥) to orthogonal
G-spectra. Using the functor minus, − : (N,≤) × (N,≥) → (Z,≤), for any n ∈ Z,
define the point-set functor

(3.5) T̄nX = hocolim
i−j≤n

TGXi,j

from (Z,≤) to orthogonal spectra using the categorical bar construction as the
point-set model for hocolim. Then for n < n′, we have an induced map T̄nX →
T̄n′X. The consistent system of maps TGXi,j → TGX induce a consistent system
of maps T̄nX → TGX and a weak equivalence hocolim T̄nX → TGX. Hesselholt-
Madsen [15, 4.3.4] proves that the E1-term of the spectral sequence associated to
this Z-indexed sequence is canonically naturally isomorphic as a chain complex to

(Tot⊕(Hom(P∗, π∗X)⊗ P̃∗)
G

(specifically, E1
i,j is the degree i part of the total complex for πjX), and

E2
i,j
∼= Ĥ−i

G (πjX).

Moreover, Hesselholt-Madsen [15, 4.3.6] constructs a zigzag of maps consistent with
the abutment to πtG

∗ X and inducing an isomorphism on E2 between this spectral
sequence and the Greenlees Tate spectral sequence, so this spectral sequence also
conditionally converges to the colimit πtG

∗ X.
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Definition 3.6. Let G be a finite group and let X be an orthogonal G-
spectrum. The Hesselholt-Madsen Tate filtration on XtG is the Z-indexed sequence

· · · −→ T̄−1X −→ T̄0X −→ T̄1X −→ · · · ,

constructed in the previous paragraph. The Hesselholt-Madsen Tate spectral se-
quence is the associated conditionally convergent spectral sequence whose E1-term
is

E1
i,j = (Tot⊕(Hom(P∗, πjX)⊗ P̃∗)

G
i

(for P∗ the cellular chain complex of EG, a locally finite free Z[G]-resolution of Z);
it is isomorphic to the Greenlees Tate spectral sequence from E2 onward.

As constructed, the Hesselholt-Madsen Tate filtration is a filtration in the tra-

ditional sense of colimn T̄nX
'
−→ XtG. Recall that a map f : A → B in any topo-

logically enriched category is called an h-cofibration when it satisfies the homotopy
extension property : Given a map g : B → C, a homotopy of g ◦ f : A→ C may be
extended to a homotopy of g : B → C. For orthogonal spectra, this is equivalent to
the map

B ∪A∧{0}+
A ∧ I+ −→ B ∧ I+

admitting a retraction, and so h-cofibrations are preserved by many point-set con-
structions including smash product and gluing. They also have important homotopy
colimit properties including:

• If A→ B is an h-cofibration of orthogonal spectra and A→ B is any map
of orthogonal spectra, then the pushout B∪AC represents the homotopy
pushout (left derived functor of pushout). In particular, the quotient
B/A represents the left derived quotient, the homotopy cofiber in the
stable category.

• If A0 → A1 → · · · is a system of h-cofibrations of orthogonal spectra,
then the colimit represents the homotopy colimit.

It is well-known and straightforward to prove that the categorical bar construction
model of the homotopy colimit has the property that the inclusion of a subcate-
gory induces an h-cofibration on homotopy colimits. In the particular case of the
Hesselholt-Madsen Tate filtration, this is the following observation.

Proposition 3.7. The maps T̄nX → T̄n+1X in the point-set model of the
Hesselholt-Madsen Tate filtration above are h-cofibrations.

Technically, both the filtrations and the E1-terms of the spectral sequences in
Definitions 3.3 and 3.6 depend on the choice of G-CW structure on EG. While
it is tempting to use one that gives the minimal resolution, we will use the G-
CW structure on EG coming from the standard two-sided bar construction model:
We use the model of EG constructed as the geometric realization of the simplicial
G-space

Bn(G,G, ∗) = G× (Gn)× ∗

with the usual face and degeneracy maps (induced by multiplication/projection
and by inclusion of the unit, respectively) and the G-action on the lefthand factor.
The geometric realization filtration is evidently the cellular filtration of a G-CW
structure. The following two lemmas are well-known but in particular follow from
the more delicate study of the structure we perform in Sections 9 and 10.
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Lemma 3.8. For the standard bar construction model of EG, the diagonal map
EG → EG × EG admits an equivariant cellular approximation that is homotopy
coassociative and homotopy counital through equivariant cellular maps.

Lemma 3.9. For the standard bar construction model of EG, the space ẼG

admits a pairing ẼG ∧ ẼG→ ẼG that is equivariant and filtered and is homotopy
unital and associative though equivariant filtered maps.

Since the space of equivariant maps ẼG∧ẼG→ ẼG is homotopy discrete with
components corresponding to the trivial map and a weak equivalence, the multi-

plication on ẼG in Lemma 3.9 is compatible with the multiplication constructed
on the models in Section 2. In particular, the maps in the previous two lemmas
induce the same pairing in the stable category TG(X)∧L TG(Y )→ TG(X ∧

L Y ) as
Corollary 2.7.

We can use the preceding two lemmas to give the Hesselholt-Madsen Tate
spectral sequence a natural lax monoidal structure starting at the E1-term. The
equivariant cellular model of the diagonal map EG→ EG×EG induces equivariant
maps

EGn−1 −→ (EGi−1 × EG) ∪ (EG× EGj−1) ⊂ EG× EG

for i+ j = n, which in turn induce equivariant maps

EG/EGi+j−1 −→ (EG× EG)/((EGi−1 × EG) ∪ (EG× EGj−1))

∼= (EG/EGi−1) ∧ (EG/EGj−1)

and equivariant maps

F (EG/EGi−1, RGX) ∧ F (EG/EGj−1, RGY )

−→ F (EG/EGi−1 ∧ EG/EGj−1, RGX ∧RGY )

−→ F (EG/EGi+j−1, RG(X ∧ Y )).

Likewise the equivariant cellular model for the multiplication ẼG ∧ ẼG → ẼG
induces

(X ∧ ẼGi) ∧ (Y ∧ ẼGj) −→ (X ∧ Y ) ∧ ẼGi+j .

Returning to TG, we then obtain natural maps

TGXi,j ∧ TGYi′,j′ −→ TG(X ∧ Y )i+i′,j+j′ .

These are functorial in i, i′, j, j′ and define maps on the Hesselholt-Madsen Tate
filtration

T̄Xm ∧ T̄ Yn −→ T̄ (X ∧ Y )m+n,

respecting the (N,≤) × (N,≤)-structure on both sides. This in turn induces a
pairing

(3.10) E1
∗,∗(X)⊗ E1

∗,∗(Y ) −→ E1
∗,∗(X ∧

L Y )

converging to the standard pairing on πtG
∗ . The homotopy coassociativity of EG

and homotopy associativity of ẼG then give us filtered homotopies between the
two maps

T̄W` ∧ T̄Xm ∧ T̄ Yn −→ T̄ (W ∧X ∧ Y )`+m+n

and so both associations induce the same map

E1
∗,∗(W )⊗ E1

∗,∗(X)⊗ E1
∗,∗(Y ) −→ E1

∗,∗(W ∧
L X ∧L Y ).
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Similar observations apply to the unit using the canonical map S → TGS0,0.
Hesselholt-Madsen [15, 4.3.5] shows that such a pairing induces the usual pair-
ing on Tate cohomology on the E2-term.

We can describe this pairing algebraically as follows. Lemma 3.8 endows the
resolution P∗ with an equivariant coassociative and counital comultiplication P∗ →
P∗ ⊗ P∗ and Lemma 3.9 endows P̃ with an equivariant differential graded algebra
structure. In fact, for our construction in Section 10, the coalgebra structure on
P∗ is induced by the Alexander-Whitney map. The resulting differential graded
algebra plays a central role in our formulas, and we use the following notation.

Notation 3.11. Let HM∗ be the differential graded algebra

(Tot⊕(P∗,Z)⊗ P̃ )G,

where P∗ denotes the cellular chain complex of the standard bar construction model
of EG and where the multiplication is induced by Lemmas 3.8 and 3.9 and the
unit by the augmentation P0 → Z and isomorphism Z → P̃0. Let HM∗,∗ be the
bigraded ring which is HM∗ concentrated in degree 0 in the second grading (the
internal grading).

The pairing on E1-terms (3.10) makes the E1-term for S into a differential
graded algebra, which acts on both sides on the E1-term for any orthogonal G-
spectrum. By the formula for the E1-term in Definition 3.6, we see that as a
bigraded ring, the E1-term for S is HM∗ ⊗ π∗S. In particular, the E1-term for
every orthogonal G-spectrum is naturally a bimodule over HM∗,∗.

Using the fact that P0 = Z[G] and P̃0 = Z, we get a natural map

π∗X −→ (Hom(P0, π∗X)⊗ P̃0)
G −→ E1

0,∗(X)

where x ∈ πjX goes to the unique equivariant homomorphism P0 → πjX sending 1
to x. It is easy to see that this is a monoidal natural transformation. The following
proposition is then clear from inspection of the multiplication.

Proposition 3.12. For any orthogonal G-spectrum X, the E1-term of the
Hesselholt-Madsen Tate spectral sequence is a bimodule over HM∗,∗. The map of
left modules from HM∗,∗⊗π∗X to the E1-term for X is a map of HM∗,∗-bimodules
and an isomorphism.

Regarding HM∗,∗ ⊗ π∗(−) as a functor from G-spectra to HM∗,∗-bimodules,
the unit of HM∗,∗ ⊗ π∗S and the pairing

(HM∗,∗ ⊗ π∗(X))⊗ (HM∗,∗ ⊗ π∗(Y )) −→ HM∗,∗ ⊗ π∗(X ∧ Y )

induced by the multiplication of HM∗,∗ and the usual pairing on π∗ makes HM∗,∗⊗
π∗(−) into a lax monoidal functor. The isomorphism of the previous proposition
is then a monoidal natural transformation from this functor to the E1-term of the
Hesselholt-Madsen spectral sequence.

We now turn to the case of the circle group T. We write C(1) for C with
the standard action of T as the group of unit complex numbers, S(C(1)n) for
the unit sphere in C(1)n, and SC(1)n for the one-point compactification of C(1)n.
When working in the T-equivariant stable category, we write SnC(1) for the suspen-
sion spectrum of SC(1)n for n ∈ N, and we extend this notation to representation
spheres SnC(1) for all n ∈ Z. We have the standard bar construction model for ET,
which comes with a filtration from geometric realization, but to better match the



3. THE TATE SPECTRAL SEQUENCES 19

numbering in the finite group case, we define ET2n+1 = ET2n and let ET2n be
the geometric realization n-skeleton; we use the corresponding numbering for the

filtration on ẼT. In this numbering, there are well-known T-equivariant homotopy
equivalences

ET2n ' S(C(1)n), ẼT2n ' SC(1)n

as well as T-equivariant homotopy equivalences

ET/ET2n−1 = ET/ET2n−2 ' ET+ ∧ SC(1)n .

These T-equivariant homotopy equivalences give us natural isomorphisms in the
T-equivariant stable category

XET/ET2n−1 ' XET ∧L S−nC(1) and XET ∧ ẼT2n ' XET ∧L SnC(1).

The Greenlees Tate filtration is then

(3.13) · · · −→ (XET ∧L S−nC(1))T −→ · · · −→ (XET ∧L S−C(1))T −→ (XET)T

−→ (XET ∧L SC(1))T −→ · · · −→ (XET ∧L SnC(1))T −→ · · ·

(even indices only displayed, odd indices equal to previous even index, with (XET )T

in index 0). Using the identification of the quotient SC(1)/S0 as T+ ∧ S1, the
associated graded spectra are

(T+ ∧XET ∧L S(n−1)C(1) ∧ S1)T ' (T+ ∧ Σ2n−1X)T ' Σ2nX,

where the last weak equivalence is the Adams isomorphism. The Greenlees Tate
spectral sequence is the spectral sequence associated to the Z-indexed Greenlees
Tate filtration (3.13). It has

(3.14) E1
i,j = E2

i,j = πjX =⇒ πtT
i+jX,

conditionally converging to the colimit πtT
i+jX. (In general E2r−1 = E2r for all r

since the filtration is concentrated in even indices.) Moreover, because the associa-
tive and commutative pairing (in the equivariant stable homotopy category)

SmC(1) ∧L SnC(1) '
−→ S(m+n)C(1)

is compatible with the maps in the Greenlees Tate filtration, the Greenlees Tate
spectral sequence has a natural associative and unital pairing on E1 compatible
with the pairing on πtT

∗ . In terms of the description of the E1-term in (3.14), the
pairing on E1 is induced by π∗X ⊗ π∗Y → π∗(X ∧

L Y ).
Although the Greenlees Tate filtration and Greenlees Tate spectral sequence

are ideal for many purposes, we have not succeeded in making the pairing coher-
ent enough for the argument in Section 5. For that argument we work with the
Hesselholt-Madsen filtration, which does not have as a clean a spectral sequence
for G = T; in particular it does not agree at E2 with the Greenlees Tate spectral
sequence (see 3.19–3.20 below). We construct a point-set model for the Hesselholt-
Madsen filtration exactly as in Definition 3.6, except using the doubled indexing

for the filtration on ET and ẼT as in the preceding paragraph.

Definition 3.15. For G = T, the Hesselholt-Madsen Tate filtration is the
filtration by h-cofibrations

· · · −→ T̄−1X −→ T̄0X −→ T̄1X −→ · · ·
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where T̄nX = hocolimi−j≤n TTXi,j for

TTXi,j = (RT(F (ET/ETj−1, RTX) ∧ ẼTi))
T.

The Hesselholt-Madsen Tate spectral sequence is the spectral sequence associated
to this filtration.

In the finite group case, conditional convergence of the Hesselholt-Madsen spec-
tral sequence followed from conditional convergence of the Greenlees Tate spectral
sequence, where it was clear from construction. For the case G = T, we prove it
separately. As the details are not needed in the main argument, we defer the proof
of the following lemma to Section 12.

Lemma 3.16. For G = T, the Hesselholt-Madsen Tate spectral sequence con-
verges conditionally to the colimit πtT

∗ X.

Lemmas 3.8 and 3.9 hold for G = T using these filtrations. We therefore again
obtain a monoidal structure on the spectral sequence as in (3.10). The E1-term
for S is a bigraded ring that acts on both sides on the E1-term for an arbitrary X.
We make the following computation in Section 12, where we specify the generators
precisely.

Theorem 3.17. For G = T, the E1-term for the Hesselholt-Madsen T-Tate
spectral sequence for X = S is as a bigraded ring the free graded commutative π∗S-
algebra on a generator x in bidegree (2, 0), a generator y in bidegree (2,−1), and a
generator z in bidegree (−2, 0) subject to the relation y2 = 0.

In the previous statement, for the π∗S action, we regard elements of π∗S as
concentrated in degree 0 for the first grading, i.e., elements of πnS are in bidegree
(0, n). In analogy with Notation 3.11, we use the following notation in the case
G = T, so that the E1-term of the Hesselholt-Madsen Tate spectral sequence for S
is isomorphic as a bigraded ring to HM∗,∗ ⊗ π∗S.

Notation 3.18. Let HM∗,∗ = Z[x, y, z]/y2 where x is in bidegree (2, 0) and y
is in bidegree (2,−1), and z is in bidegree (−2, 0).

For an arbitrary orthogonal T-spectrum X, using the canonical isomorphism

HM∗,∗ ⊗ π∗X ∼= (HM∗,∗ ⊗ π∗S)⊗π∗S π∗X,

the E1-term of the Hesselholt-Madsen T-Tate spectral sequence for X naturally
becomes a bimodule over HM∗,∗. We have a canonical map π∗X → E1

0,∗ induced
by the identification of

i∗X ' (RTF (ET0, RTX))T

as the homotopy cofiber of TTX0,1 → TTX0,0, where i
∗ denotes the underlying non-

equivariant spectrum. We then get an induced a map of left HM∗,∗-modules from
HM∗,∗⊗π∗X to the E1-term for X. We prove in Section 12 the following theorem.

Theorem 3.19. The map from HM∗,∗⊗π∗X to the E1-term of the Hesselholt-
Madsen T-Tate spectral sequence for X is an isomorphism of HM∗,∗-bimodules and
a monoidal transformation.

Non-multiplicatively, the previous theorem identifies the E1-term of the Hessel-
holt-Madsen Tate spectral sequence for an orthogonal T-spectrumX as having E1

2i,j

a countable direct sum of copies of πjX ⊕ πj+1X and E1
2i−1,j zero.
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Although the work above is all we need for the main results of the paper,
we can say more about the Hesselholt-Madsen T-Tate spectral sequence and its
relationship to the Greenlees T-Tate spectral sequence. We prove the following
theorems in Section 13.

Theorem 3.20. In the notation of Definition 3.15, the inclusion of TTX0,j in
T̄−jX and TTXi,0 in T̄iX induce a (non-monoidal) filtered map from the Green-
lees filtration to the Hesselholt-Madsen filtration for G = T. The induced map
on spectral sequences is split injective on E1 = E2 and an isomorphism from E3

onward.

Theorem 3.21. In the Hesselholt-Madsen Tate spectral sequence for G = T,
the d1 differential is 0. The d2 differential satisfies the Leibniz rule, is given on
generators of HM∗,∗ ⊗ π∗(S) by

d2(x⊗ 1) = 1⊗ η

d2(y ⊗ 1) = xz ⊗ 1 + yz ⊗ η − 1⊗ 1

d2(z ⊗ 1) = z2 ⊗ η

and is given on elements v of π∗X by d2(1 ⊗ v) = −z ⊗ ζv, where ζ denotes the
action of the fundamental class of π1T on π∗X.

The E1 = E2 term of the Greenlees T-Tate spectral sequence for X is (multi-
plicatively) isomorphic to Z[t, t−1]⊗π∗X, where t is an element of E1

−2,0 for X = S.

The element t has d2(t ⊗ 1) = t2 ⊗ η and is usually chosen so that for v ∈ π∗X,
d2(1⊗ v) = t⊗ ζv. With this choice of t (which is now uniquely specified), the map
in Theorem 3.20 then takes tn ⊗ v to{

(−z)n n ≥ 0

(−x)|n| ⊗ v − (−x)|n|−1y ⊗ ζv n < 0.

From Theorem 3.21, we see that the ring map HM∗,∗ → Z[t, t−1] sending x to
−t−1, y to 0, and z to −t induces a multiplicative map of spectral sequences from
the Hesselholt-Madsen T-Tate spectral sequence to the Greenlees T-Tate spectral
sequence that splits the (non-multiplicative) map in Theorem 3.20.

4. Topological periodic cyclic homology

Having reviewed the definition and basic properties of the Tate fixed point func-
tor in the previous three sections, we now review the definition and basic properties
of topological periodic cyclic homology (TP ). We begin with a very rapid review of
relevant aspects of the theory of THH of spectral categories and M odR-categories
for R a commutative ring orthogonal spectrum. We define TP of spectral categories
and, as discussed below, we rely on the equivalence of k-linear dg categories and
M odHk-categories to define TP of dg categories.

Let CatS denote the category of small spectral categories and spectral func-
tors: An object of CatS is a small category enriched in orthogonal spectra and a
morphism in CatS is an enriched functor. As explained in [6, §3], the topological
Hochschild-Mitchell complex N cy yields a functor from orthogonal spectra to or-
thogonal T-spectra. Since we are working with Borel equivalences, the left derived
functor provides an adequate model for THH. (In other contexts, the construction
is more subtle; see [1, §5].)
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To make sense of the left derived functor THH, we say that a small spectral
category is pointwise cofibrant if each mapping spectrum C (x, y) is a cofibrant
orthogonal spectrum (in the standard model structure). A spectral functor F : C →
D is a pointwise equivalence if the induced function on object sets is the identity and
each map of spectra C (x, y)→ D(x, y) is a weak equivalence. The argument of [6,

2.7] shows that there is an endofunctor Q of CatS that lands in pointwise cofibrant
small spectral categories and a natural transformation Q → Id through pointwise
equivalences. The topological Hochschild-Mitchell complex N cy composed with Q
then takes pointwise equivalences of spectral categories to Borel equivalences of
orthogonal T-spectra.

Although pointwise cofibrant replacement is technically convenient, we are typ-
ically interested in less rigid notions of equivalence on CatS . We say that a func-
tor F : C → D is a Dwyer-Kan equivalence (or DK-equivalence) if the induced
functor π0(C ) → π0(D) is essentially surjective and each map of orthogonal spec-
tra C (x, y) → D(Fx, Fy) is a weak equivalence [6, 5.1]. We say that a functor
F : C → D is a Morita equivalence if the induced functor on “triangulated closures”
is a DK-equivalence (see [6, §5]). Here the triangulated closure of a small spectral
category C is a spectral category C ′ such that Ho(C ′) is the pre-triangulated closure
of Ho(C ) [6, 5.5].

The composite N cy◦Q sends Morita equivalences of spectral categories to Borel
equivalences of orthogonal T-spectra [6, 5.12]. We define topological Hochschild
homology (THH) to be the resulting left derived functor

THH : HoM (CatS ) −→ HoB(S T),

where HoM (CatS ) denotes the homotopy category of spectral categories obtained
by formally inverting the Morita equivalences. The work of Shipley [29, 4.2.8–9]
and Patchkoria-Sagave [27, 3.8] (cf. [6, 3.5]) shows that THH(C ) coincides with
the classical Bökstedt construction of topological Hochschild homology as functors
to HoB(S T).

Definition 4.1. Topological periodic cyclic homology

TP : HoM (CatS ) −→ Ho(S )

is the composite derived functor TP (C ) = THH(C )tT.

The smash product of spectral categories endows CatS with a symmetric
monoidal structure. This smash product can be left derived using the pointwise
cofibrant replacement functor Q [3, 4.1]. The standard Milnor product argument
makes N cy a strong symmetric monoidal functor, which passes to the homotopy cat-
egory (inverting Morita equivalences) to make THH a strong symmetric monoidal
functor [3, 6.8,6.10]. As an immediate consequence of this discussion and Corol-
lary 2.7, we have:

Proposition 4.2. TP has the canonical structure of a lax symmetric monoidal
functor HoM (CatS )→ Ho(S ).

For R a commutative ring orthogonal spectrum, the definition of M odR-cat-
egory is completely analogous to the definition of spectral category, using the cat-
egory of R-modules in place of the category of orthogonal spectra. We denote
the category of M odR-categories as CatSR and the homotopy category obtained by

formally inverting the Morita equivalences as HoM (CatSR ). When R is cofibrant
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as a commutative ring orthogonal spectrum (which we can assume without loss of
generality), N cy preserves Morita equivalences between pointwise cofibrant M odR-
categories (where we understand cofibrant in the sense of the standard model struc-
ture on the category of R-modules). We then have the following proposition for
TP of M odR-categories, using the model JTL

T
N cy(R) (in Notation 2.6; see also

Theorem 2.5).

Proposition 4.3. Let R be a cofibrant commutative orthogonal ring spec-
trum. Then TP has the canonical structure of a lax symmetric monoidal functor
HoM (CatSR )→ Ho(M odTP (R)).

Next, let Catdgk denote the category of small k-linear dg categories for a com-
mutative ring k: An object consists of a small category enriched in chain com-
plexes of k-modules and a morphism is an enriched functor. Choosing a cofibrant
commutative ring orthogonal spectrum Hk representing the Eilenberg-Mac Lane
ring spectrum, we have a symmetric monoidal equivalence of homotopy categories

Ho(Catdgk ) ' Ho(CatSHk) and HoM (Catdgk ) ' HoM (CatSHk), q.v. [6, §2]. Using this
equivalence, we obtain TP as a lax symmetric monoidal functor

HoM (Catdgk ) −→ Ho(M odTP (k))

where we write TP (k) for JTL
T
(N cy(Hk)).

5. A filtration argument (Proof of Theorem A)

The purpose of this section is to give an outline of the proof of the main
theorem, assuming the existence of a point-set model of TP with a filtration that
satisfies certain properties. Since construction of a model satisfying these properties
is technically involved, it is useful to abstract out the key principles of the argument
here, leaving the construction and verification of properties to Sections 9–11. The
same basic outline also proves an analogous theorem for Cp-Tate of THH in the
same context (k-linear dg categories for k a perfect field of characteristic p > 0).
Given the properties of the point-set model described below, we prove the main
theorem using a comparison of spectral sequences argument.

For the purposes of this section, let G be a finite group or the circle group T

of unit complex numbers, and we consider a point-set functor

TM : S
G\S −→ S \S

where S G\S denotes the category of orthogonal G-spectra with a structure map
from S and likewise S \S denotes the category of orthogonal spectra with a structure
map from S. We intend to apply this functor to the THH of Hk-categories, where
any choice of object of X induces a map of orthogonal T-spectra S → N cy(X ).
We ask for TM to come with the following additional structure:

(i) TM is a lax monoidal functor.
(ii) TM comes with a natural filtration by h-cofibrations

· · · −→ TM
−1 −→ TM

0 −→ TM
1 −→ · · ·

with holimTM
−n ' ∗ and colimTM

n = TM .
(iii) The filtration is compatible with the monoidal structure in the sense that

the structure map S→ TM has a natural lift to TM
0 and we have natural

maps
TM
m (X) ∧ TM

n (Y ) −→ TM
m+n(X ∧ Y )
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for all m,n ∈ Z, which induce in the colimit the lax monoidal transfor-
mation TM (X) ∧ TM (Y )→ TM (X ∧ Y ).

Moreover, we require that as a functor to the stable category TM is naturally
isomorphic to (−)tG by an isomorphism taking the filtration to the Hesselholt-
Madsen Tate filtration, Definition 3.15 (case G = T) or 3.6 (case G finite), and we
fix such an isomorphism.

The Hesselholt-Madsen Tate filtration comes with a map π∗X into E1
0,∗; it de-

rives from a natural transformation from the underlying non-equivariant orthogonal
spectrum i∗X to the 0th filtration quotient. We will need the following additional
technical hypothesis about the filtration TM

∗ X and this map.

Hypothesis 5.1. The given natural transformation in the stable category
i∗X → TM

0 (X)/TM
−1(X) comes from a zigzag of point-set monoidal natural trans-

formations.

Specifically, we construct in Section 11 a zigzag of point-set monoidal functors
of the form

i∗X
'
−→ RR(X)

'
←− TT (X) −→ TM

0 X/TM
−1X

where RR and TT are specific point-set monoidal functors constructed there.
Assuming the existence of the functor TM with properties above, the remainder

of the section discusses and outlines a proof of the following theorem.

Theorem 5.2. Let G = T or Cp for a prime p. Let k be a perfect field of char-
acteristic p, and let X and Y be G-equivariant N cy(Hk)-modules under N cy(Hk)
with the property that π∗(X) and π∗(Y ) are finitely generated as graded modules
over THH∗(k) ∼= π∗(N

cy(Hk)). Then the induced map

TM (X) ∧LTM (NcyHk) T
M (Y ) −→ TM (X ∧LNcy(Hk) Y )

is a weak equivalence.

This implies Theorem A and its analogue for G = Cp as follows. Let X ′ and Y ′

be pointwise cofibrant Hk-spectral categories modeling smooth and proper k-linear
dg categories X and Y , and take X and Y in the statement of Theorem 5.2 to be
N cy(X ′) and N cy(Y ′), using any object of X and Y to obtain the structure maps
N cy(Hk)→ N cy(X ′) and N cy(Hk)→ N cy(Y ′). Although the map in Theorem A
implicitly uses the lax symmetric monoidal structure on TG constructed in Section 2,
we show in Section 18 that the monoidal structure on the model TM induces the
same map in the stable category. Since THH∗(k) ∼= k[t] (with t in degree 2) is
a Noetherian ring, it follows from Theorem C, which is proved independently in
Section 16, that the THH∗ of a smooth and proper k-linear dg category is finitely
generated over THH∗(k). The Künneth theorem for THH,

N cy(X ′) ∧Ncy(Hk) N
cy(Y ′) ' N cy(X ′ ∧Hk Y

′),

q.v. Theorem 15.1, gives us a weak equivalence

TM (X ∧LNcy(Hk) Y ) ' TM (N cy(X ′ ∧Hk Y
′)) ' TP (X ⊗ Y ).

Putting this all together reduces Theorem A to the statement of Theorem 5.2.
We now outline the proof of Theorem 5.2. For convenience, write A = N cy(Hk).

Without loss of generality, we can take X and Y in the statement to be cofibrant
in the category of G-equivariant A-modules under A; then X ∧A Y represents the
derived smash product X ∧LNcy(Hk) Y . The filtration on TM (X ∧A Y ) induces a



6. FILTERED MODULES OVER FILTERED RING ORTHOGONAL SPECTRA 25

spectral sequence, the Hesselholt-Madsen Tate spectral sequence for X ∧A Y . In
our work below, we call this the righthand spectral sequence as it is the codomain
in a map of spectral sequences.

We construct the lefthand spectral sequence as follows. As we review in Sec-
tion 6, the compatibility of the filtration with the lax monoidal structure on TM

allow us to construct TMX ∧TMA TMY as a filtered object. Actually, we are more
interested in the derived smash product TMX ∧LTMA TMY , and we argue in Sec-
tion 6 that we can model the derived smash product by a filtered object where the
comparison map to TMX∧TMATMY is filtered; we choose such a model and denote
it as TMX ∧LTMA TMY . The filtration on TMX ∧LTMA TMY then gives the left-
hand spectral sequence. The compatibility of the filtration with the lax monoidal
structure of TM implies that the map

(5.3) TMX ∧LTMA TMY −→ TM (X ∧A Y )

is filtered, and that gives us a map of spectral sequences from the lefthand spec-
tral sequence to the righthand spectral sequence. The main step in the proof of
Theorem 5.2 is the following result, which we prove in Section 7.

Theorem 5.4. The map of spectral sequences from the lefthand spectral se-
quence to the righthand spectral sequence is an isomorphism on E1-terms.

To apply standard spectral sequence comparison techniques, we need the fol-
lowing two results on the convergence of the spectral sequences.

Proposition 5.5. The righthand spectral sequence is a half-plane spectral se-
quence with entering differentials, conditionally converging to π∗(T

M (X ∧A Y )).

Proof. We have π∗A ∼= THH∗(k) ∼= k[t] (with t in degree 2) is connective,
and by hypothesis in Theorem 5.2, π∗X and π∗Y are finitely generated over π∗A;
they are therefore bounded below. It follows that X ∧A Y is bounded below and
so the explicit formula for the E1-term in Theorem 3.19 (in the case G = T) or
Proposition 3.12 (in the case G = Cp) shows that E1

i,∗ is bounded below with
bound independent of i. Conditional convergence is Lemma 3.16 in the case G = T

and [15, 4.3.6] in the case G = Cp. �

In Section 8, we prove the following lemma.

Lemma 5.6. The lefthand spectral sequence is conditionally convergent, con-
verging to π∗(T

MX ∧LTMA TMY ).

Theorem 5.4, Proposition 5.5, and Lemma 5.6 together imply that the map (5.3)
is a weak equivalence (by [7, 7.2]), which proves Theorem 5.2.

6. Filtered modules over filtered ring orthogonal spectra

This section begins the argument for Theorem 5.4 and Lemma 5.6. Theorem 5.4
compares a spectral sequence constructed from a smash product of Tate filtrations
to the spectral sequence of the Tate filtration of the smash product. To develop
the tools to do this, we study the homotopy theory of filtered modules over filtered
ring orthogonal spectra and the derived smash product. We use the following
terminology in this section and the next two.
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Definition 6.1. A filtered spectrum X∗ consists of a sequence of maps of
orthogonal spectra

· · · −→ X−1 −→ X0 −→ X1 −→ · · · ,

or equivalently a functor from the poset (Z,≤) to the category of orthogonal spectra.
The category of filtered spectra has objects the filtered spectra and maps the natural
transformations. We make filtered spectra a symmetric monoidal category using
the Day convolution [24, §21] for the symmetric monoidal product + on (Z,≤).
Let S∗ denote the filtered spectrum satisfying Sn = ∗ for n < 0 and Sn = S and
maps the identity maps for n ≥ 0.

The Day convolution formulation of the smash product is a shortcut to produce
the strong symmetric monoidal structure on the category, but in this case the
construction is easy to describe. Given filtered spectra X∗ and Y∗, the smash
product Z∗ = X∗ ∧ Y∗ is given by the formula

Zn =
⋃

i+j=n

Xi ∧ Yj

or more formally,

Zn = colim
s→−∞,t→∞

Xs ∧ Yn−s ∪Xs∧Yn−s−1
Xs+1 ∧ Yn−s−1 ∪Xs+1∧Yn−s−2

· · ·

· · · ∪Xt−2∧Yn−t+1 Xt−1 ∧ Yn−t+1 ∪Xt−1∧Yn−t Xt ∧ Yn−t.

The smash product Z∗ comes with canonical maps Xi ∧ Yj → Zi+j and is char-
acterized by the property that maps of filtered spectra Z∗ → W∗ are in natural
bijective correspondence with systems of maps Xi ∧ Yj → Wi+j that make the
evident diagrams in i and j commute. The spectrum S∗ is the unit for the smash
product.

Definition 6.2. A filtered associative ring spectrum consists of a filtered spec-
trum A∗, a map η : S∗ → A∗, and a map µ : A∗ ∧ A∗ → A∗ satisfying the usual
monoid relations (unit and associativity diagrams). A filtered left A∗-module (resp.,
filtered right A∗-module) consists of a filtered spectrumM∗ and a map ξ : A∗∧M∗ →
M∗ (resp., ξ : M∗ ∧ A∗ →M∗) satisfying the usual action relations (unit and asso-
ciativity diagrams).

Using the characterization of the smash product, we obtain an external for-
mulation of filtered associative ring spectra: a filtered associative ring spectrum
consists of a filtered spectrum A∗ together with a map η0 : S→ A0 and maps

µi,j : Ai ∧Aj −→ Ai+j

such that the following unit diagrams

S ∧An
η0∧id

//

∼=
''

A0 ∧An

µ0,n

��

An ∧A0

µn,0

��

An ∧ S
id∧η0

oo

∼=
ww

An An



6. FILTERED MODULES OVER FILTERED RING ORTHOGONAL SPECTRA 27

and associativity and structure map diagrams

Ai ∧Aj ∧Ak

µi,j∧id
//

id∧µj,k

��

Ai+j ∧Ak

µi+j,k

��

Ai ∧Aj

µi,j

��

ai,m∧aj,n
// Am ∧An

µm,n

��

Ai ∧Aj+k µi,j+k

// Ai+j+k Ai+j ai+j,m+n

// Am+n

commute, where we have written ak,l : Ak → Al for the structure maps of A∗.
Filtered left and right A∗-modules admit a similar external formulation.

Example 6.3. Let TM
∗ be a functor satisfying the properties laid out in Sec-

tion 5. For A an associative ring orthogonal T-spectrum, TM
∗ A has the canonical

structure of a filtered associative ring spectrum. If X and Y are right and left
A-modules, then TM

∗ X and TM
∗ Y have the canonical structure of right and left

filtered TM
∗ A-modules.

The argument in Section 5 uses a filtered version of the balanced smash product,
which is constructed as follows.

Definition 6.4. Let A∗ be a filtered associative ring spectrum, let M∗ be
a filtered right A∗-module and let N∗ be a filtered left A∗-module. Define the
balanced smash product M∗ ∧A∗

N∗ to be the coequalizer

M∗ ∧A∗ ∧N∗
//
// M∗ ∧N∗

// M∗ ∧A∗
N∗

where one map is induced by the right A∗-action on M∗ and the other is induced
by the left A∗-action on N∗. The coequalizer is a filtered spectrum (typically with
no extra structure).

Since smash products and coequalizers commute with sequential colimits, we
see that

colim(M∗ ∧A∗
N∗) ∼= (colimM∗) ∧(colimA∗) (colimN∗).

In other words, the balanced smash product above gives a filtration on the balanced
smash product of the underlying unfiltered modules.

A filtered spectrum naturally gives a spectral sequence on homotopy groups. To
avoid the ambiguity of writing E1

i,j(X) for the E1-term, we introduce the following
notation.

Definition 6.5. For a filtered spectrum X∗, let πGr
i,jX∗ = πi+jC(Xi, Xi−1),

where C(Xi, Xi−1) denotes the homotopy cofiber of the structure map Xi−1 → Xi.

It is also useful to work directly with the orthogonal spectra C(Xn, Xn−1) whose
homotopy groups represent πGr

n,∗, the associated graded spectra of the filtration. We
follow the traditional route of defining a point-set functor Gr with good structural
properties, and regard C(Xn, Xn−1) as a model for the left derived functor. Before
defining Gr, we define the target category.

Definition 6.6. The category of graded spectra is the category of functors
from the discrete category Z to orthogonal spectra: A graded spectrum X∗ consists
of a sequence of orthogonal spectra Xn for each n ∈ Z; a map of graded spectra
X∗ → Y∗ consists of a sequence of maps of orthogonal spectra Xn → Yn for n ∈ Z.
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The category of graded spectra becomes a symmetric monoidal category using the
Day convolution for the symmetric monoidal product + on Z:

(X∗ ∧ Y∗)n =
∨

i+j=n

Xi ∧ Yj .

Definition 6.7. The associated graded functor Gr from filtered spectra to
graded spectra is defined by

(GrX∗)n := Grn(X∗) := Xn/Xn−1.

We emphasize that in the definition, Xn/Xn−1 denotes the point-set quotient
and not the homotopy cofiber. The functor Gr has a right adjoint Z that makes a
graded spectrum into a filtered spectrum using the trivial map for structure maps.
In particular Gr preserves colimits. It also clearly preserves smash products:

Proposition 6.8. Gr is a strong symmetric monoidal functor.

We define a graded associative ring spectrum and graded left and right modules
over a graded associative ring spectrum in terms of the smash product with unit
maps, multiplication, and action maps in the usual way for graded spectra just
as we did for filtered spectra in Definition 6.2. The previous proposition implies
that Gr takes filtered associative ring spectra to graded associative ring spectra
and filtered left and right modules over a filtered associative ring spectrum A∗ to
graded left and right modules over the graded associative ring spectrum GrA∗. The
previous proposition and the fact that Gr preserves colimits then implies that Gr
preserves the balanced smash product.

Proposition 6.9. Let A∗ be a filtered associative ring spectrum, let M∗ be a
filtered right A∗-module and let N∗ be a filtered left A∗-module. Then there is a
canonical natural isomorphism

Gr(M∗ ∧A∗ N∗) ∼= (GrM∗) ∧(GrA∗) (GrN∗).

We now turn to the homotopy theory of filtered and graded spectra. To avoid
confusion we do not use the unmodified phrase “weak equivalence” in the context of
filtered and graded spectra. We always write objectwise weak equivalence for a map
X∗ → Y∗ that is a weak equivalence Xn → Yn for all n. We call a map of filtered
spectra X∗ → Y∗ a total weak equivalence when it induces a weak equivalence

hocolim
n→∞

Xn −→ hocolim
n→∞

Yn.

Objectwise weak equivalences are total weak equivalences, but not vice versa. How-
ever, the following result provides a useful converse under an additional hypothesis.

Proposition 6.10. Let f : X∗ → Y∗ be a map of filtered spectra that induces
an isomorphism on πGr

∗,∗. Then f is a total weak equivalence if and only if it is an
objectwise weak equivalence.

Proof. We only need to show the direction that assumes f is a total weak
equivalence; the converse is clear. Write X∞ for hocolimXn and Y∞ for hocolimYn.
The hypothesis is then that the map C(Xn+1, Xn)→ C(Yn+1, Yn) is a weak equiv-
alence for all n; by induction, we see that C(Xn+i, Xn) → C(Yn+i, Yn) is a weak
equivalence for all n, i, and passing to the homotopy colimit (in i), we see that
C(X∞, Xn) → C(Y∞, Yn) is a weak equivalence for all n. When f is a total weak
equivalence, then X∞ → Y∞ is a weak equivalence, and it follows that Xn → Yn is
a weak equivalence for all n. �
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Standard results [16, 11.6.1],[28, 4.1] provide a closed model structure on fil-
tered spectra for the objectwise weak equivalences.

Proposition 6.11. The category of filtered spectra has a compactly generated
topological model structure in the sense of [24, 5.9,5.12] with weak equivalences and
fibrations defined objectwise.

Proposition 6.12. The categories of filtered associative ring spectra and fil-
tered left and right modules over a filtered associative ring spectrum have compactly
generated topological closed model category structures with weak equivalences and
fibrations defined objectwise.

We call the homotopy categories of the preceding model structures the filtered
derived category of left and right A∗-modules. We have a derived smash product of
an A∗-module and a filtered spectrum, denoted ∧L, which may be constructed by
cofibrant approximation of either object. Using this, we have an evident notion of
homotopical module in the derived category. For us, the case that is most useful
is that of homotopical left B∗-modules in the filtered derived category of right A∗-
modules, so we make this definition explicitly; other types of homotopical modules
are defined analogously.

Definition 6.13. Let A∗ and B∗ be a filtered associative ring spectra. A
homotopical left B∗-module in the filtered derived category of right A∗-modules
consists of a right A∗-module N∗ and a map

ξ : B∗ ∧
L N∗ −→ N∗

in the filtered derived category of right A∗-modules satisfying the usual unit and
associativity conditions.

The next proposition, a special case of [21, 8.2], studies the homotopy theory
of the balanced smash product. It implies in particular that the filtered derived
smash product may be computed by deriving either variable.

Proposition 6.14. Let A∗ be a filtered associative ring spectrum. The left
derived bifunctor TorA∗(−,−) of the balanced product (−) ∧A∗

(−) exists and can
be constructed by cofibrant replacement of either variable. In particular, for each
right module M∗ and left module N∗, TorA∗(−, N∗) is the left derived functor of

(−) ∧A∗
N∗ and TorA∗(M∗,−) is the left derived functor of M∗ ∧ (−).

Given this proposition, there is no source of confusion for which derived functor
∧L denotes; we now switch to writing M∗ ∧

L

A∗
N∗ in place of TorA∗(M∗, N∗).

As a consequence of the proposition, if M∗ has the structure of a homotopical
left A∗-module in the category of filtered right A∗-modules, then M∗ ∧

L

A∗
(−) has

the natural structure of a homotopical left A∗-module in filtered spectra.
For Propositions 6.11–6.14, analogous statements hold in context of graded

spectra with easier proofs. As discussed above, the functor Gr from filtered spectra
to graded spectra has a right adjoint, and from the description above, it is clear that
the right adjoint preserves objectwise fibrations and objectwise weak equivalences.
Thus, Gr is a Quillen left adjoint; its left derived functor LGr exists and may be
constructed by applying Gr to a cofibrant replacement. Alternatively, as per the
motivation for introducing Gr, we can use a homotopy cofiber construction. For
work below it is useful to have a wide class of objects where the point-set functor
Gr models the derived functor. We introduce the following terminology.
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Definition 6.15. A filtered spectrum X∗ is reasonably filtered when the struc-
ture maps Xn → Xn+1 are all h-cofibrations.

In what follows, “reasonably filtered” will always refer to the underlying filtered
spectrum. We elide “reasonably filtered filtered. . . ” to “reasonably filtered. . . ” for
filtered spectra, filtered associative ring spectra, and filtered left and right modules.

Proposition 6.16. Gr preserves objectwise weak equivalences between reason-
ably filtered spectra.

Cofibrant objects in the model category of filtered spectra are reasonably fil-
tered, and so Gr computes the derived functor LGr on all reasonably filtered spectra.
When A∗ is a reasonably filtered associative ring spectrum, cofibrant left and right
filtered A∗-modules are reasonably filtered, and so the functors Gr from filtered
left and right A∗-modules to graded left and right GrA∗-modules have left derived
functors, calculated by applying Gr to reasonably filtered replacements. We also
have the following observation about the balanced smash product.

Proposition 6.17. Let A∗ be a reasonably filtered associative ring spectrum,
let M∗ be a cofibrant right A∗-module and let N∗ be a cofibrant left A∗-module.
Then the balanced smash product M∗ ∧A∗

N∗ is a reasonably filtered spectrum.

Boardman [7, 5.10] defines conditional convergence of spectral sequences in
terms of lim and lim1. In the current context of filtered spectra, the spectral
sequence associated to the filtration on X∗ is conditionally convergent if and only
if holimn X−n ' ∗. With this in mind, we make the following definition.

Definition 6.18. A filtered spectrum X∗ is conditionally convergent when
holimn X−n ' ∗

A first easy observation about conditional convergence of filtered spectra is that
it is invariant under objectwise weak equivalences, and so conditional convergence
may be studied in the homotopy category of filtered spectra.

Because homotopy limits commute with cofiber sequences and with other ho-
motopy limits, the following propositions are clear.

Proposition 6.19. If X∗ and Y∗ are conditionally convergent, then for any
map X∗ → Y∗, the homotopy cofiber is conditionally convergent.

Proposition 6.20. If d 7→ X∗(d) is a small diagram and each X∗(d) is condi-
tionally convergent, then holimd X∗(d) is conditionally convergent.

For a filtered spectrum X∗, the suspension ΣmX∗ is defined objectwise,
(ΣmX∗)n = ΣmXn, where we understand ΣmX = X ∧ F−mS0 when m < 0.
(Here F−mS0 is a particular cofibrant model of Sm; see [24, 1.3]). The shift X∗[t]
is defined by (X∗[t])n = Xn−t. The following proposition is also clear.

Proposition 6.21. If X∗ is conditionally convergent, then so is any suspension
and shift.

For a filtered associative ring spectrum A∗, a finite cell filtered right A∗-module
is a filtered right A∗-module that can be built in finitely many stages using cofiber
sequences involving suspensions and shifts.

Proposition 6.22. If N∗ is a conditionally convergent left A∗-module and M∗

is a finite cell filtered right A∗-module, then M∗∧
L

A∗
N∗ is conditionally convergent.
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Proof. M∗ ∧
L

A∗
N∗ is built in finitely many stages using cofiber sequences

involving suspensions and shifts of N∗. �

7. Comparison of the lefthand and righthand spectral sequences
(Proof of Theorem 5.4)

This section is devoted to the proof of Theorem 5.4. We prove a slightly
more general result: We assume that that A is a commutative ring orthogonal
T-spectrum, and X and Y are cofibrant A-modules under A. (We can also take G
to be any closed subgroup of T.)

Let TY ′
∗ be a filtered TM

∗ A-module cofibrant replacement for TM
∗ Y . In particu-

lar GrTY ′
∗ → GrTM

∗ Y is a weak equivalence. Theorem 5.4 asserts that the filtered
map

(7.1) TM
∗ X ∧TM

∗ A TY ′
∗ −→ TM

∗ (X ∧A Y )

induces a weak equivalence on πGr
∗,∗. Note that this is a map of homotopical left

TM
∗ A-modules and hence the induced map on πGr

∗,∗ is a map of left πGr
∗,∗T

M
∗ A-modules.

Theorem 3.19 (in the case G = T) or Proposition 3.12 (in the case G is finite) gives
an isomorphism of bigraded rings

πGr
∗,∗T

M
∗ A ∼= HM∗,∗ ⊗ π∗A.

In particular (7.1) is a map of left HM∗,∗-modules.
By Hypothesis 5.1, we have a zigzag of monoidal functors, which as indicated

takes the form

i∗
'
−→ RR

'
←− TT −→ Gr0 T

M
∗ ,

where i∗ denotes the forgetful functor to non-equivariant orthogonal spectra. Choos-
ing cofibrant replacements TTY ′ → TT (Y ) and RRY ′ → RR(Y ) in the categories
of left TT (A)-modules and left RR(A)-modules, respectively, we can then choose
lifts TTY ′ → Gr0 TY

′ and TTY ′ → RRY ′ (in left TT (A)-modules) and i∗Y →
RRY ′ (in left i∗A-modules). Since the natural transformations are monoidal, we
get a commutative diagram of graded spectra

i∗X ∧i∗A i∗Y
= //

'
��

i∗X ∧i∗A i∗Y

'
��

RR(X) ∧RR(A) RRY ′ // RR(X ∧A Y )

TT (X) ∧TT (A) TTY
′ //

'
OO

��

TT (X ∧A Y )

'
OO

��

GrTM
∗ X ∧GrTM

∗ A GrTY ′ // Gr(TM
∗ (X ∧A Y ))

where we view the ungraded spectra as concentrated in degree 0. On the righthand
side, since

πGr
∗,∗(T

M
∗ (X ∧A Y )) ∼= π∗,∗ Gr(TM

∗ (X ∧A Y ))

is a left HM∗,∗-module, we get an induced map of HM∗,∗-modules

HM∗,∗ ⊗ π∗(i
∗X ∧i∗A i∗Y ) −→ πGr

∗,∗(T
M (X ∧A Y ))

which by construction (and Hypothesis 5.1) is the usual isomorphism. We are now
reduced to proving the following lemma.
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Lemma 7.2. The induced map of bigraded abelian groups

HM∗,∗ ⊗ π∗(i
∗X ∧i∗A i∗Y ) −→ πGr

∗,∗(T
M
∗ X ∧TM

∗ A TY ′)

is an isomorphism.

Proof. We have trigraded Eilenberg-Moore spectral sequences to compute
both sides. On the left we take the tensor of the torsion free bigraded abelian
group HM∗,∗ with the Eilenberg-Moore spectral sequence for the smash product
i∗X ∧i∗A i∗Y ; this has E2-term

E2
i,j,∗ = HMj,∗ ⊗ Torπ∗A

i,∗ (π∗X,π∗Y ).

On the right the usual Eilenberg–More spectral sequence for the balanced smash
product of associated graded modules is naturally trigraded with E2-term

E2
i,∗,∗ = Tor

πGr
∗,∗A

i (πGr
∗,∗X,πGr

∗,∗Y ) ∼= Tor
HM∗,∗⊗π∗A
i,∗,∗ (HM∗,∗ ⊗ π∗X,HM∗,∗ ⊗ π∗Y ).

Since the map is induced by maps of rings and modules, we get a homomorphism of
spectral sequences. Since the isomorphismHM∗,∗⊗π∗Z ∼= πGr

∗,∗Z of Theorem 3.19 or

Proposition 3.12 is induced by the same map π∗Z → πGr
∗,∗T

MZ as in Hypothesis 5.1,

the induced map on E2-terms

HM∗,∗ ⊗ Torπ∗A
∗,∗ (π∗X,π∗Y ) −→ TorHM∗,∗⊗π∗A

∗,∗,∗ (HM∗,∗ ⊗ π∗X,HM∗,∗ ⊗ π∗Y )

is the evident isomorphism. �

8. Conditional convergence of the lefthand spectral sequence
(Proof of Lemma 5.6)

We employ the terminology of Section 6. In this terminology, Lemma 5.6 is
precisely the assertion that the filtered spectrum TM

∗ X ∧TM
∗ A TY ′ is conditionally

convergent. The proof relies properties specific to perfect fields of finite character-
istic.

As indicated in Section 6, our homotopical work is in the Borel equivariant
stable category, where we can specify an object as an orthogonal spectrum indexed
on {Rn} with a (point-set) T-action. We denote by i∗Hk the Eilenberg-Mac Lane
spectrum Hk (indexed on {Rn}) with the trivial action. For any fixed model of Hk
as a commutative ring orthogonal spectrum, the augmentation map N cy(Hk) →
i∗Hk is a point-set map of commutative ring orthogonal spectra with T-action,
in particular making i∗Hk an N cy(Hk)-module. On the point-set level the map
is induced by the multiplication map Hk ∧ · · · ∧ Hk → Hk, or viewing N cy(Hk)
as the tensor i∗Hk ⊗ T in the point-set category of commutative ring orthogonal
spectra with T-action, it is induced by the map of T-spaces T→ T/T. The following
proposition is specific to the case of perfect fields of finite characteristic.

Proposition 8.1. Let k be a perfect field of finite characteristic. In the Borel
derived category of left N cy(Hk)-modules, i∗Hk is finite.

Proof. We have THH∗(k) ∼= k[t] (with t in degree 2), so it suffices to show
that there exists a map in the Borel stable category Σ2S → THH(k) sending
the fundamental class to t, or equivalently, that t is in the image of the map
πhT
∗ THH(k)→ π∗THH(k). The homotopy fixed point spectral sequence is condi-

tionally convergent in this case and concentrated in even degrees, and so strongly
convergent with E2 = E∞. In particular, the map πhT

∗ THH(k) → π∗THH(k) is
surjective. �
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Throughout this section, when we refer to i∗Hk as an equivariant N cy(Hk)-
module, we always mean the structure in Proposition 8.1. In the argument for
Lemma 5.6, we will use Postnikov towers built from i∗Hk.

Proposition 8.2. Let A = N cy(Hk) and let X be an equivariant A-module.
If πnX = 0 for n < N then there exists a tower of equivariant A-modules

· · · −→ Xm+1 −→ Xm −→ · · · −→ XN −→ XN−1 = ∗

and a map of equivariant A-modules from X to the system such that:

(i) The map X → holimXm is a Borel equivalence.
(ii) Each homotopy fiber Fib(Xm+1 → Xm) is Borel equivalent as an equi-

variant A-module to a wedge of copies of Σm+1i∗Hk.

Proof. By way of notation, recall from Section 1 that RFA(−,−) denotes the
equivariant derived mapping spectrum for the derived category of left A-modules,
an object of the T-equivariant stable category. In contrast, RBFT

A(−,−) denotes
the derived mapping spectrum in the Borel derived category of left A-modules,
an object of the (non-equivariant) stable category, and the relationship is that
RBFT

A(−,−) is the homotopy fixed point spectrum of RFA(−,−). We then have
isomorphisms

HoB(M odA)(X,Σni∗Hk) ∼= π−nR
BFT

A(X, i∗Hk) ∼= πhT
−nRFA(X, i∗Hk)

∼= πhT
−nRFi∗Hk(i∗Hk ∧LA X, i∗Hk),

the last isomorphism induced by change of scalars. By the Hurewicz theorem for
(non-equivariant) A-modules and the hypothesis that πnX = 0 for n < N , we have
that the map πNX → πN (i∗Hk ∧LA X) is an isomorphism and πn(i∗Hk ∧LA X) = 0
for n < N . We see that πnRFi∗Hk(i∗Hk∧LAX, i∗Hk) = 0 for n > −N , and so from
the homotopy fixed point spectral sequence, we deduce that the map

πhT
−NRFi∗Hk(i∗Hk ∧LA X, i∗Hk) −→ π−NRFi∗Hk(i∗Hk ∧LA X, i∗Hk)

∼= π−NRFHk(Hk ∧Li∗A i∗X,Hk)

is an isomorphism. This constructs enough maps X → ΣN i∗Hk to produce a
map X →

∨
ΣN i∗Hk that induces an isomorphism on πN . The remainder of the

construction is parallel to the usual construction of the Postnikov tower, using the
techniques above to construct the maps. �

We are ready to prove Lemma 5.6.

Proof of Lemma 5.6. We use the Postnikov tower construction of Propo-
sition 8.2 applied to Y . By construction, each Ym is built in finitely many fiber
sequences from a wedge of copies of Σni∗Hk. These are finite wedges since πnX
is finitely generated over k. We also know from Proposition 8.1 that i∗Hk is finite
in the Borel derived category of A-modules. It follows that TM

∗ Ym is a finite fil-
tered TM

∗ A-module, and by Proposition 6.22, TM
∗ X ∧LTM

∗ A TM
∗ Ym is conditionally

convergent.
Proposition 6.14 allows us to choose a cofibrant filtered TM

∗ A-module replace-
ment TX ′

∗ → TM
∗ X so that TX ′

∗∧TM
∗ A(−) models TMX∧LTM

∗ A(−). Proposition 6.20

now implies that

holimm(TX ′
∗ ∧TM

∗ A TM
∗ Ym)
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is conditionally convergent. We have a map of filtered spectra

TX ′
∗ ∧TM

∗ A TMY∗ −→ holimm(TX ′ ∧TM
∗ A TM

∗ Ym)

that induces an isomorphism on πGr
∗,∗ since π∗X is bounded below (for example, see

Lemma 7.2). The proof is completed by showing that this map is an objectwise
weak equivalence. We do this by applying Proposition 6.10 and showing that the
map is a total weak equivalence. To see that the map is a total weak equivalence,
it suffices to observe that TX ′ is small as a TMA-module. This is the content of
Theorem B in the case of main interest when X = N cy(X ′) and G = T, and
follows in the current generality by its generalization, Theorem 17.4 (together with
Proposition 17.3), proved in Section 17. �

9. Constructing the filtered model: The positive filtration

In this section, we start the construction of the filtered functor TM outlined
in Section 5. As in the construction of the Hesselholt-Madsen Tate filtration in
Section 3, we construct the integrally graded filtration from a positive filtration,

arising from a filtration on ẼG, and a negative filtration, arising from a filtration on
EG. In both cases, the technical work is to construct the multiplicative structure
we require. This section handles the work for the positive filtration and the next
one the work for the negative filtration.

The positive filtration on the Tate fixed points arises from the G-cellular fil-

tration on ẼG. It should have S0 in filtration level zero and free G-cells in every
positive degree in the pattern specified by the cell structure of the standard model
discussed in Section 3. Recall that when G = T, we double the natural filtration
degrees as explained there. However, for the purposes of this section, we will work
with the natural filtration degrees in order to give a uniform treatment, introducing
a different notation to avoid confusion.

To construct a multiplicative version of this filtration, we use a model ẼOT for
an A∞ operad O (with O(0) = ∗) and construct a new filtration, the “pseudocel-
lular filtration”, which is coarser than the homogeneous filtration (2.3). Here we
understand an A∞ operad to have spaces the homotopy type of CW complexes, the
identity element to be a non-degenerate basepoint, and to come with a weak equiv-
alence of operads O → Ass, where Ass denotes the associative operad Ass(n) = Σn.
We have a corresponding non-Σ operad O where O(n) is the component of O(n)
lying over the identity permutation in Σn; then O is canonically isomorphic to

the induced operad (O(n) ∼= O(n) × Ass(n)). In this notation, ẼOG is formed by
starting with S0 and iteratively gluing on the cells O(n)×Gn × In.

Definition 9.1. Let O be an A∞ operad with O(0) = ∗. We define the

pseudocellular filtration, an increasing filtration on ẼOG, as follows. We put S0 in
filtration level 0. For an element (g1, . . . , gn) ∈ Gn, let

q(g1, . . . , gn) = n− (δ(g1, g2) + · · ·+ δ(gn−1, gn)),

where δ(g, h) = 1 if g = h and 0 otherwise. An element of ẼOG in the image of

a, (g1, . . . , gn), (t1, . . . , tn) ∈ O(n)×Gn × In

is placed in filtration level q(g1, . . . , gn). For the purposes of this section, we write

ẼOG
pc
n for the subspace in pseudocellular filtration level n. For G, finite, we define

ẼOGn = ẼOG
pc
n , and for G = T, we define ẼOG2n+1 = ẼOG2n = ẼOG

pc
n .
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Although different representatives of the same point may have different q-
values, the filtration is well-defined: The point lies in all filtration levels of all
representatives and all higher levels. The function q subtracts from the homo-
geneous degree the number of consecutive repeats; an element in homogeneous
filtration level n is also in pseudocellular filtration level n (and possibly lower).
Since G acts diagonally on Gn, the filtration is G-equivariant. The filtration is
multiplicative in the following sense.

Proposition 9.2. The operad action maps O(m)+∧ẼOG
(m) → ẼOG preserve

filtration using the pseudocellular filtration on ẼOG and the smash power of the

pseudocellular filtration on ẼOG
(m).

Proof. Representing an element x of ẼOG
(m) as

ai, (gi1, . . . , g
i
ni
), (t1, . . . , tni)

for i = 1, . . . ,m, and given an element a ∈ O(m), the composition takes a, x to an

element y of ẼOG that is represented by

b, (h1, . . . , hn), (u1, . . . , un)

where b = a ◦ (a1, . . . , ai), n = n1 + · · · + nm, and the hk’s and uk’s are the lists
obtained by flattening the arrays of gij ’s and tij ’s (respectively) lexicographically
with the lower index first. The element x is in filtration level

m∑

i=1

q(g1, . . . , gni) =

m∑

i=1


ni −

ni−1∑

j=1

δ(gij , g
i
j+1)




which is at least as big as

m∑

i=1


ni −

ni−1∑

j=1

δ(gij , g
i
j+1)


−

m−1∑

i=1

δ(gini
, gi+1

1 ) = n−

n−1∑

k=1

δ(hk, hk+1),

which filtration level contains y. �

To show that this filtration is equivalent to the standard one, consider the
standard (simplicial) filtration on EG coming from the bar construction EG =
B(G,G, ∗) where

Bn(G,G, ∗) = G× (Gn).

We have the same filtration when we look at the W -construction, the geometric
realization of the simplicial set

WGn = Gn+1,

where the faces are induced by projection maps

di(g0, . . . , gn) = (g0, . . . , ĝi, . . . , gn)

and the degeneracies by diagonal maps

si(g0, . . . , gn) = (g0, . . . , gi−1, gi, gi, gi+1, . . . , gn).

This has the diagonal g-action, and the map WG• → B•(G,G, ∗) defined by

g0, . . . , gn 7→ g0, (g
−1
0 g1, . . . , g

−1
n−1gn)

is a G-equivariant simplicial isomorphism. We get another model closer to the
operadic construction by regarding WG• as a ∆-set, forgetting the degeneracies.
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Let WG∆ denote the ∆-set geometric realization, where we iteratively glue WGn×
∆[n] along WGn×∂∆[n] without collapsing the degeneracies. The ∆-set geometric
realization gives a filtration but not one that corresponds to the filtration on WG:
The map WG∆ → WG is filtered and an equivariant weak equivalence, but the
filtration pieces do not map by weak equivalences. We can fix this by enlarging the
filtration making use of the forgotten degeneracies: We define the pseudocellular
filtration onWG∆ by takingWG∆

n to consist of all elements in the image ofWGm×
∆[m]∆ for m ≤ n, where ∆[m]∆ denotes the ∆-set geometric realization of ∆[m].
Using this filtration, the map WG∆ → WG is an equivariant weak equivalence on
each filtration level.

Definition 9.3. Let W̃G∆ be the cofiber of the map WG∆
+ → S0 collapsing

WG∆ to the non-basepoint. Let W̃G∆
n be the cofiber of (WG∆

n−1)+ → S0 for the

pseudocellular filtration on WG∆, where we understand WG∆
−1 to be the empty

set.

The equivariant weak equivalence WG∆ → EG induces an equivariant weak

equivalence W̃G∆ → ẼG, and the following proposition is clear by construction.

Proposition 9.4. The canonical map W̃G∆ → ẼG is filtered for the standard

filtration on ẼG and an equivariant weak equivalence on each filtration level.

Next we define a map ẼOG → W̃G∆. Concretely, W̃G∆ is built from S0 by
iteratively attaching Gn×∆[n− 1]× I along Gn×∂(∆[n− 1]× I) by the map that
identifies an element

(g1, . . . , gn), x, t

of Gn × ∂(∆[n− 1]× I) ⊂ Gn ×∆[n− 1]× I with

(g1, . . . , ĝi, . . . , gn), y, t

when x = di−1(y) for some y ∈ ∆[n− 2], with the basepoint if t = 1, and with the

non-basepoint element of S0 = W̃G∆
0 when t = 0. We can identify the image of

Gm × ∆[m]∆ in WG∆ in terms of repeated coordinates. Concisely, a point is in

W̃G∆
n exactly when it has a representative (g1, . . . , gn), x, t with q(g1, . . . , gn) ≤ n,

where q is the function defined in Definition 9.1.

We define the map ẼOG → W̃G∆ as follows. We send S0 = ẼOG0 by the

identity into S0 = W̃G∆
0 , and we send the element of ẼOG represented by

a, (g1, . . . , gn), (t1, . . . , tn),

to the basepoint if
∑

ti ≥ 1, to the non-basepoint element of S0 if ti = 0 for all i,
and otherwise to the element represented by

(g1, . . . , gn), x, t

where t =
∑

ti and x has barycentric coordinates

t1/t, t2/t, . . . , tn/t.

It is clear from the gluing relations on ẼOG that this is well-defined, continuous,
and equivariant. Moreover, it is clear from the construction of the filtration that it
is filtered for the pseudocellular filtration. The following proposition completes the
work we need on the pseudocellular filtration.



10. CONSTRUCTING THE FILTERED MODEL: THE NEGATIVE FILTRATION 37

Proposition 9.5. The map ẼOG
pc
n → W̃G∆

n is an equivariant weak equiva-
lence for all n.

Proof. For every non-trivial H < G, the induced map on H-fixed points is
the identity map S0 → S0, so it suffices to show that it is a non-equivariant weak

equivalence. For both ẼOG and W̃G∆, the nth piece of the filtration is built
from the (n− 1)st piece of the filtration by attaching cells of a certain form along

boundaries. For ẼOG, these cells are of the form

O(n)×Gn × In+m

with boundary

(O(n)× sGn × In+m) ∪ (O(n)×Gn × ∂In+m) ⊂ O(n)×Gn × In+m

form ≥ 0, where sGn denotes the subspace where at least one coordinate is the same

as the following coordinate. The cells for W̃G∆ are in one-to-one correspondence
but of the form

Gn ×∆[n− 1 +m]× I

with boundary

(sGn ×∆[n− 1 +m]× I) ∪ (Gn × ∂(∆[n− 1 +m]× I)) ⊂ Gn ×∆[n− 1 +m]× I.

The map ẼOG
pc
n → W̃G∆

n sends each cell of ẼOG
pc
n to the corresponding cell of

W̃G∆
n by a homotopy equivalence, which is a homotopy equivalence on the bound-

ary. �

10. Constructing the filtered model: The negative filtration

This section continues the work on constructing the filtered functor TM by
constructing the negative part of the Hesselholt-Madsen multiplicative filtration.
The negative filtration arises from the T-cellular filtration of ET and the diagonal
map ET→ ET×ET (partly) induces the multiplication. Of course, the diagonal is
not compatible with the filtration; we must modify the diagonal to make it cellular.
Our approach is to parametrize different diagonal maps using a variant of the little
1-cubes operad, the “overlapping little 1-cubes” operad.

Definition 10.1. The overlapping little 1-cubes OΞ
1 has nth space the subspace

of elements ((x1, y1), . . . , (xn, yn)) of (I
2)n satisfying xi < yi, with Σn acting in the

usual way on (−)n. Composition is just like in the little 1-cubes operad:

((x1, y1), . . . , (xnyn)) ◦i ((x
′
1, y

′
1), . . . , (x

′
n′ , y′n′))

= ((x1, y1), . . . , (xi−1, yi−1), (xi + (yi − xi)x
′
1, xi + (yi − xi)y

′
1),

. . . , (xi + (yi − xi)x
′
n, xi + (yi − xi)y

′
n), (xi+1, yi+1), . . . , (xn, yn))

Identifying I2 with the increasing linear endomorphisms of I by (x, y)↔ f(x,y)
where f(x,y)(t) = x + (y − x)t, the composition formula can be written more con-
ceptually as

(f(x1,y1), . . . , f(xn,yn)) ◦i (f(x′
1,y

′
1)
, . . . , f(x′

n′ ,y
′
n′ )

)

= (f(x1,y1), . . . , f(xi−1,yi−1), f(xi,yi) ◦ f(x′
1,y

′
1)
,

. . . , f(xi,yi) ◦ f(x′
n′ ,y

′
n′ )

, f(xi,yi), . . . , f(xn,yn)).
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Note that the distinguished point ((0, 1), . . . , (0, 1)) in OΞ
1 (n) (corresponding to

the identity map I → I) induces a map of operads from the commutative operad
into OΞ

1 ; this map is a spacewise equivariant homotopy equivalence. We have a
canonical map from the little 1-cubes operad C1 to OΞ

1 as the spacewise inclusion
of the subsets where the open intervals (x1, y1), . . . , (xn, yn) ⊂ I do not overlap.

The purpose of the overlapping little 1-cubes operad OΞ
1 is that it has a natural

coaction on the geometric realization of a simplicial space, generalizing the diagonal
map. We recall that for a space X, the space of continuous maps EndopX (n) =
Map(X,Xn) naturally forms an operad, and a coaction of an operad O on the
space X is a map of operads O → EndopX . For example, the set of diagonal maps
X → Xn give a coaction of Com on any space. The theorem is the following.

Theorem 10.2. The operad OΞ
1 has a natural coaction on the geometric real-

ization of a simplicial space |Z•| such that the composite coaction of Com is the set
of diagonal maps and the composite coaction of C1,

|Z•| × C1(n) −→ |Z•|
n

is filtered for the simplicial filtration on |Z•|.

We emphasize that the target uses the cartesian product filtration for the fil-
tration on |Z•|

n rather than the simplicial filtration on |Zn
• |. We apply this to the

standard model of EG formed from the bar construction. In the case when G is
finite, the simplicial filtration is just the cellular filtration. In the case when G = T,
it is a renumbering of the cellular filtration which has one free T-cell in each even
dimension. (The cartesian product filtration on ETn for n > 1 is not closely related
to a cellular filtration since T is positive dimensional.) Recall that we define EGn to
be the nth geometric filtration level when G is finite and EG2n+1 = EG2n to be the
nth geometric filtration level when G = T. Then for any partition n = n1+· · ·+nm,
the map

EG× C1(m) −→ EG× · · · × EG

takes the subspace EGn−1 × C1(m) to the subspace

(EGm)n−1 ⊂ (EGn1−1 × EG× · · · × EG) ∪ · · · ∪ (EG× · · · × EG× EGnm−1).

We therefore get a map of based G-spaces

EG/EGn−1 ∧ C1(m)+ −→ EG/EGn1−1 ∧ · · · ∧ EG/EGnm−1.

Then for any orthogonal G-spectra X1, . . . , Xm, the cotensor adjunction induces a
map of orthogonal G-spectra

C1(m)+ ∧ F (EG/EGn1−1, X1) ∧ · · · ∧ F (EG/EGnm−1, Xm)

−→ F (EG/EGn−1, X1 ∧ · · · ∧Xm).

In the next section, we convert this structure into a monoidal structure using
the usual Moore trick to convert C1 structures to strictly associative structures.

We conclude the section with the proof of Theorem 10.2.

Proof of Theorem 10.2. Recall the Milnor coordinates u1 ≤ u2 ≤ · · · ≤ un

on the standard n-simplex ∆[n] give a homeomorphism of ∆[n] with a subspace of
In and relate to the barycentric coordinates t0, . . . , tn by the formulas

uj =

j−1∑

i=0

ti tj = uj+1 − uj
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(where in the righthand formula u0 = 0 and un+1 = 1). Then any element of
the geometric realization of a simplicial space Z• is specified (non-uniquely) by an
element z ∈ Zn and Milnor coordinates u1 ≤ · · · ≤ un, and an element of OΞ

1 (m) is
specified by a sequence of subintervals of I, (x1, y1), . . . , (xm, ym). On this element,
the coaction map has the form

(z, u1 ≤ · · · ≤ un), ((x1, y1), . . . , (xm, ym)) ∈ (Zn ×∆[n])×OΞ
1 (m)

7→ (z, v11 ≤ · · · ≤ v1n), . . . , (z, v
m
1 ≤ · · · ≤ vmn ) ∈ (Zn ×∆[n])m.

To specify the vij ’s, we note that the linear function f(x,y) has a unique weakly
increasing left inverse function g(x,y) : I → I given by the formula

g(x,y)(t) =





0 t < x

(t− x)/(y − x) x ≤ t ≤ y

1 t > y.

We let vij = g(xi,yi)(uj).
This formula describes a continuous map

(Zn ×∆[n])×OΞ
1 (m) −→ (Zn ×∆[n])m −→ |Z•|

m.

This map is compatible with the simplicial gluing instructions and so constructs a
map

|Z•| ⊗ O
Ξ
1 (m) −→ |Z•|

m

or equivalently a map C(m)→ Endop|Z•|
(m). A straightforward check of the explicit

formulas shows that this is a map of operads.
For the composite coaction of Com, we are looking at the case

(x1, y1), . . . , (xm, ym) = (0, 1), . . . , (0, 1)

and g(0,1) is the identity endomorphism of I and so vij = uj . The coaction is
therefore the set of diagonal maps.

For the composite coaction of C1, we are looking at the case when the open
intervals (x1, y1), . . . , (xm, ym) are non-overlapping. In this case, for each fixed j,
at most one vij can lie in (0, 1) (i.e., be different from 0 or 1). It follows that each

vi1 ≤ · · · ≤ vin lies in a ni-face of ∆[n] for some 0 ≤ ni ≤ n that can be chosen so
that n1 + · · ·+ nm ≤ n. Thus, the image of (Zn ×∆[n])× C1(m) in (Zn ×∆[n])m

lands in the nth filtration level. �

11. Constructing the filtered model and verifying the hypotheses of
Section 5

In this section, we construct the functor TM postulated in Section 5 and estab-
lish the properties stated there. Specifically, we construct TM as a lax monoidal
functor (property (i)), filtered (property (ii)) so that the filtration on T is lax
monoidal (property (iii)). Moreover, we show that T is naturally isomorphic to
(−)tG (as functors to the stable category) via an isomorphism that takes the filtra-
tion on TM to the Hesselholt-Madsen Tate filtration and satisfies Hypothesis 5.1.

As in Section 3, we construct the integer graded filtration out of a functor from
the poset (N,≤)× (N,≥) to orthogonal spectra.
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Construction 11.1. For i, j ∈ N× N, let

T̄i,jX = (RG(F (EG/EGj−1, RG(X)) ∧ ẼC1Gi))
G

where RG is a lax symmetric monoidal fibrant approximation functor, EG is the
standard bar construction model, and C1 is the Boardman-Vogt little 1-cubes operad

with ẼC1
G as in Construction 2.2. The filtration on EG is the standard simplicial

filtration when G is finite and twice that when G = T, just as we used in Sections 3

and 10, and the filtration on ẼC1G is the renumbered pseudocellular filtration as
defined in Definition 9.1.

Using the work of the previous two sections, T̄∗,∗X comes with canonical maps

(11.2) C1(n)+ ∧ (T̄i1,j1X1 ∧ · · · ∧ T̄in,jnXn) −→ T̄i,j(X1 ∧ · · · ∧Xn)

for ik, jk ∈ N× N and i =
∑

ik, j =
∑

jk, using the maps

EG/EGj−1 ∧ C1(n)+ −→ EG/EGj1−1 ∧ · · · ∧ EG/EGjn−1, and

C1(n)+ ∧ (ẼC1
Gi1 ∧ · · · ∧ ẼC1

Gin) −→ ẼC1
Gi

of the previous two sections. Moreover, these maps are consistent with the operadic
multiplication in the obvious way. For the construction postulated in Section 5, we
need to rectify the C1 in the formulas above to Ass; the standard trick for doing
this is the Moore construction.

Construction 11.3. Let T̄ M̄
∗,∗X = (T̄∗,∗X) ∧ R>0

+ where R>0 denotes the

set of positive real numbers. Let µn : (R
>0)n → C1(n) be the map that takes

`1, . . . , `n ∈ (R>0)n to the element of C1(n) consisting of the subintervals

[0,
`1
`
], [

`1
`
,
`1 + `2

`
], . . . , [

`1 + · · ·+ `n−1

`
, 1]

where ` = `1 + · · ·+ `n. Let

µ : T̄ M̄
i,jX ∧ T M̄

i′,j′Y −→ T̄ M̄
i+i′,j+j′(X ∧ Y )

be the map

T̄i,jX ∧ R>0
+ ∧ T̄i′,j′Y ∧ R>0

+ −→ T̄i+i′,j+j′(X ∧ Y ) ∧ R>0
+

obtained using the canonical map T̄i,jX ∧ T̄i′,j′Y → T̄i+i′,j+j′(X ∧ Y ) above for

µ2 : R
>0 × R>0 → C1(2) and the map +: R>0 × R>0 → R>0.

For example, for `1, `2 ∈ R>0, the restriction of the map above to

T̄i,jX ∧ {`1}+ ∧ T̄i′,j′Y ∧ {`2}+

uses µ2(`1, `2) for the map

T̄i,jX ∧ T̄i′,j′Y −→ T̄i+i′,j+j′(X ∧ Y )

and restricts to

T̄i,jX ∧ {`1}+ ∧ T̄i′,j′Y ∧ {`2}+ −→ T̄i+i′,j+j′(X ∧ Y ) ∧ {`1 + `2}+.

Since

µ2(`1, µ2(`2, `3)) = µ3(`1, `2, `3) = µ2(µ2(`1, `2), `3)
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and +: R>0 × R>0 → R>0 is associative, the diagram

T̄ M̄
i,jX ∧ T̄ M̄

i′,j′Y ∧ T̄ M̄
i′′,j′′Z

id∧µ
//

µ∧id

��

T̄ M̄
i,jX ∧ (T̄ M̄

i′+i′′,j′+j′′(Y ∧ Z)

µ

��

T̄ M̄
i+i′,j+j′(X ∧ Y ) ∧ T̄ M̄

i′′,j′′Z µ
// T̄ M̄

i+i′+i′′,j+j′+j′′(X ∧ Y ∧ Z)

commutes for all orthogonal G-spectra X,Y, Z, and all i, i′, i′′, j, j′, j′′ ≥ 0.

Construction 11.4. Define the filtered spectrum T M̄
∗ X as

T M̄
n X = hocolim

i−j≤n
T M̄
i,jX

using the bar construction model for the homotopy colimit as in Section 3. Let
T M̄X = colimT M̄

n X.

As in Proposition 3.7, T M̄
∗ X is reasonably filtered. The maps

T̄ M̄
i,jX −→ (RG(F (EG+, RG(X)) ∧ ẼC1G))G = T C1

G X

therefore induce a weak equivalence T M̄X → TGX. (See Construction 1.3 and

Notation 2.6 for the definition of TGX and T C1

G , respectively.)

By construction T M̄
∗ inherits an associative pairing

µ : T M̄
∗ X ∧ T M̄

∗ Y −→ T M̄
∗ (X ∧ Y )

in the category of filtered spectra. To make this pairing unital as well, we need a
slight modification that takes as input a unital spectrum.

Construction 11.5. For X an orthogonal G-spectrum under S, we have a
canonical map S→ T̄0,0X, whence a map S→ T̄i,0X for i ≥ 0. Let

T̄M
i,jX = T̄ M̄

i,jX = T̄i,jX ∧ R>0
+

for j > 0 and define T̄M
i,0X as the pushout

S ∧ R>0
+

��

// T̄i,0X ∧ R>0
+

��

S ∧ R
≥0
+

// T̄M
i,0X

where R≥0 denotes the space of non-negative real number. Define TM
∗ X by TM

n X =
hocolimi−j≤n T̄

M
i,jX and let TMX = colimTM

n X.

The lax associative pairing on T̄ M̄
∗,∗ extends to T̄M

∗,∗ where it is now lax monoidal
using the canonical map

S ∼= S ∧ {0}+ −→ T̄ M̄
0,0(S)

as unit. We then get a lax symmetric monoidal structure on the functor TM
∗ . This

gives the first part of the following theorem, which shows that TM
∗ satisfies the

hypotheses required for the argument of Section 5.

Theorem 11.6. TM
∗ is a lax monoidal functor from orthogonal G-spectra under

S to reasonably filtered spectra, is naturally isomorphic to the Tate functor in the
homotopy category of filtered spectra, and satisfies Hypothesis 5.1.
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Proof. We constructed the lax symmetric monoidal structure above. For the
comparison we note that the inclusion of S in T0,0X and the collapse map R → ∗
induce a natural transformation

T̄M
i,jX −→ T̄i,jX

of functors from orthogonal G-spectra to (N,≤) × (N,≥)-diagrams in orthogonal
spectra. This map is a weak equivalence for all X; see [25, 6.2] (or Proposition 19.2
below).

To verify Hypothesis 5.1, we let

TT (X) = T̄M
0,0X ∪T̄M

0,1X
(T̄M

0,1X ∧ I),

the standard model of the homotopy cofiber (where we use 1 as the basepoint of I).
This functor has a monoidal structure coming from the unit of TM

0,0 and the pairing

on TM
∗,∗ and the pairing max on I. This is canonically isomorphic as a monoidal

functor (reversing the direction of the interval) to the quotient of the categorical
bar construction homotopy colimit for the diagram

T̄M
0,1X −→ T̄M

0,0X

by the inclusion of TM
0,1X. We then have a natural transformation of monoidal

functors TT → (TM
0 /TM

−1) induced by the inclusion in the diagram of T̄M
0,0 and T̄M

0,1.
We define

RR(X) = (RG(F ((EG0)+, RGX)))G.

We then have the monoidal natural transformation

i∗X −→ i∗RGRGX −→ (RG(F ((EG0)+, RGX)))G = RR(X).

To construct the map TT (X)→ RR(X), we use the map

T̄M
0,0X −→ T̄0,0X = (RG(F (EG+, RGX) ∧ S))G

−→ (RG(F ((EG0)+, RGX) ∧ S))G ∼= RR(X)

Since

F (EG/EG0, RGX) −→ F (EG+, RGX) −→ F (EG0+, RGX)

is a point-set fiber sequence, we see that the map TT (X) → RR(X) is a weak
equivalence. The composite map T̄M

0,1X → RR(X) factors through

(RG(F (EG/EG0, RGX) ∧ S))G,

and therefore is the point-set trivial map. As a consequence, the natural trans-
formation TT → RR factors through the monoidal natural transformation TT →
T̄M
0,0/T̄

M
0,1. Thus, it remains to show that the transformation TM

0,0 → RR is monoidal,

but this is clear because the coaction of OΞ
1 on the zeroth filtration level of EG is

the diagonal. �

12. The E1-term of the Hesselholt-Madsen T-Tate spectral sequence

In this section we prove Lemma 3.16 and Theorems 3.17 and 3.19. All three
results require a careful study of the filtration, and this is where we begin. In this
section, E1

∗,∗(X) will always refer to the E1-term of the Hesselholt-Madsen Tate
spectral sequence for an orthogonal T-spectrum X.
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Our calculation of the E1-term will use a filtration on XET∧ ẼT corresponding
to the Hesselholt-Madsen Tate filtration before taking T-fixed points. Let

ŪXi,j = F (ET/ETj−1, RTX) ∧ ẼTi

and let

ŪnX = hocolim
i−j≤n

UXi,j ,
¯̄UnX = hocolim

i−j≤n
RTUXi,j .

Because the point-set fixed point functor commutes with the categorical bar con-
struction of homotopy colimits and the derived fixed point functor commutes with
homotopy colimits, we have the following proposition. (See (3.5) for the notation
T̄nX.)

Proposition 12.1. The canonical map ( ¯̄UnX)T → T̄nX is an isomorphism

and the canonical map ( ¯̄UnX)T → (RT(ŪnX))T is a weak equivalence.

This proposition then gives a canonical identification of the E1-term of the
Hesselholt-Madsen Tate spectral sequence for X as

E1
s,t(X) = πT

s+t(ŪsX/Ūs−1X),

with pairing induced by the pairing on Ū∗(−) (itself induced by the pairing on

Ū(−)∗,∗). We can now dispense with T̄∗X, TTXi,j , and
¯̄U∗X and work exclusively

with the equivariant T-spectra Ū∗(−) and Ū(−)∗,∗.
To study the filtration quotients ŪiX/Ūi−1X, we need another homotopy col-

imit. Let

ŪX≤,≥
m,n = hocolim

i≤m,j≥n
ŪXi,j .

Since (m,n) is the final object in the category in the homotopy colimit, the inclusion
ŪXm,n → ŪX≤,≥

m,n is a homotopy equivalence of orthogonal T-spectra. It is easy to
see that for n ≥ 0

ŪnX = (ŪX≤,≥
n,0 ) ∪

(ŪX
≤,≥
n,1 )

(ŪX≤,≥
n+1,1) ∪(ŪX

≤,≥
n+1,2)

(ŪX≤,≥
n+2,2) ∪ · · ·

and for n ≤ 0

ŪnX = (ŪX≤,≥
0,−n) ∪(ŪX

≤,≥
0,−n+1)

(ŪX≤,≥
1,−n+1) ∪(ŪX

≤,≥
1,−n+2)

(̄UX≤,≥
2,−n+2) ∪ · · · .

This gives us what we need to prove Lemma 3.16, conditional convergence of the
Hesselholt-Madsen Tate spectral sequence.

Proof of Lemma 3.16. Using the weak equivalence

ŪXi,j = F (ET/ETj−1, RTX) ∧ ẼTi

' (XET ∧L S−jC(1) ∧L SiC(1)) ' (XET ∧L S(i−j)C(1)),

we see in particular that ŪnX is weakly equivalent to the cofiber of a map
∨

`≥0

XET ∧L S(n−1)C(1) −→
∨

`≥0

XET ∧L SnC(1)

where the map on the `th summand is the Greenlees Tate inclusion into the
`th summand minus the Greenlees Tate inclusion into the (` + 1)st summand.
Conditional convergence in the sense of [7, 5.10] is equivalent to showing that
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holimn(RTŪnX)T ' ∗. Because of the identification of ŪnX as a homotopy cofiber
above, it suffices to show

holimn

(∨
(XET ∧L S−nC(1))T

)
' ∗

or, equivalently,

holimn

(∨
((XET)ET/ET2n−1)T

)
' ∗

This is clear when π∗X
ET is bounded above and follows in the general by considering

the Postnikov tower for XET. �

Returning to the discussion of the quotients ŪsX/Ūs−1X, the work above allows
us to identify these in terms of the double homotopy cofibers of maps for the ŪXi,j .
Writing C(B,A) for the homotopy cofiber of an understood map A→ B, we have
that for s > 0, ŪsX/Ūs−1X is weakly equivalent to the cofiber of the inclusion

(ŪX≤,≥
s−1,0) ∪(ŪX

≤,≥
s−1,1)

(ŪX≤,≥
s,1 ) ∪

(ŪX
≤,≥
s,2 )

(ŪX≤,≥
s+1,2) ∪ · · ·

−→ ŪsX = (ŪX≤,≥
s,0 ) ∪

(ŪX
≤,≥
s,1 )

(ŪX≤,≥
s+1,1) ∪(ŪX

≤,≥
s+1,2)

(ŪX≤,≥
s+2,2) ∪ · · ·

which is easily seen to be the wedge of double homotopy cofibers
∨

n≥0

C(C(ŪXs+n,n, ŪXs+n−1,n), C(ŪXs+n,n+1, ŪXs+n−1,n+1)).

Similarly, for s ≤ 0, ŪsX/Ūs−1X is weakly equivalent to the wedge

C(ŪX0,−s, ŪX0,−s+1) ∨
∨

n>0

C(C(ŪXn,n−s, ŪXn−1,n−s), C(ŪXn,n−s+1, ŪXn−1,n−s+1)).

(The difference in formulas arises because for s > 0, ŪXs,0 admits maps from
ŪXs−1,0 and ŪXs,1, whereas for s ≤ 0, ŪX0,−s only admits a map from ŪX0,−s+1.)

For convenience of later reference, we will use the following abbreviations

(12.2)
CŪXn = C(ŪX0,n, ŪX0,n+1)

CCŪXm,n = C(C(ŪXm,n, ŪXm−1,n), C(ŪXm,n+1, ŪXm−1,n+1)).

We note that since the pairing on Ū∗(−) is induced by the pairing on Ū(−)∗,∗, the
pairings on the associated graded is the wedge of pairings on the pieces

(12.3)

CCŪXm,n ∧ CCŪYm′,n′ −→ CCŪ(X ∧ Y )m+m′,n+n′

CŪXn ∧ CCŪYm′,n′ −→ CCŪ(X ∧ Y )m′,n+n′

CCŪXm,n ∧ CŪYn′ −→ CCŪ(X ∧ Y )m,n+n′

CŪXn ∧ CŪYn′ −→ CŪ(X ∧ Y )n+n′ .

We proceed by studying these pairings; results translate back to E1-terms using
the identification

(12.4)
⊕

s,t

E1
s,t(X) =

⊕

n≥0

πT

q (CŪXn)⊕
⊕

m>0,n≥0

πT

q (CCŪXm,n)

where the n, q summand on the right lies in the s = n, t = q + n summand on the
left and the m,n, q summand on the right lies in the s = m − n, t = q − m + n
summand on the left.
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We have canonical identifications of the homotopy cofibers

C(ŪXm,n, ŪXm−1,n) ' F (ET/ETb(n−1)/2c, RTX) ∧ (SC(1)bm/2c

/SC(1)b(m−1)/2c

)

C(ŪXm,n, ŪXm,n+1) ' F (ETbn/2c/ETb(n−1)/2c, RTX) ∧ SC(1)bm/2c

;

the first cofiber is trivial if m is odd and the second is trivial if n is odd. It follows
that the double homotopy cofibers are trivial if either m or n is odd, and when
both are even, we have

CCŪX2m,2n = C(C(ŪX2m,2n, ŪX2m−1,2n), C(ŪX2m,2n+1, ŪX2m−1,2n+1))

' F (ET2n/ET2n−1, RTX) ∧ (SC(1)m/SC(1)m−1

),

Since ET2n/ET2n−1 and SC(1)m/SC(1)m−1

are all of the form T+∧Z for some based
T-spaces Z (depending on m or n), the associated graded pieces ŪsX/Ūs−1X are
all (non-canonically) of the form T+ ∧ Z for some spectra Z. The next step is to
review the relationship between the homotopy groups π∗ and πT

∗ of such spectra.
Writing πS

∗(T) for the stable homotopy groups of T+, the inclusion of the unit
S0 → T+ and the collapse map T+ → S0 induce a canonical splitting

πS

∗(T)
∼= π∗S⊕ π∗(ΣS).

We denote the canonical generator in πS
0(T) as 1 and the generator in πS

1(T) (de-
termined by the orientation on T as the unit complex numbers) as ζ; the multipli-
cation on T makes πS

∗(T) a graded ring, and 1 is the unit in this structure. It is
well-known (and essentially the definition of the Hopf invariant) that the element
ζ satisfies ζ2 = ηζ where η denotes the non-zero element of π1S ∼= Z/2. For any
orthogonal T-spectrum X, we then have a canonical action of πS

∗(T) on π∗X, or
equivalently, a degree 1 operator ζ satisfying ζ2x = ηζx.

Proposition 12.5. Let X be an orthogonal T-spectrum which is isomorphic in
the equivariant stable category to T+ ∧Z for some orthogonal T-spectrum Z. Then
the map πT

∗X → π∗X is injective and is surjective onto the kernel of multiplication
by ζ, which is equal to the image of multiplication by ζ + η.

Proof. The image of πT
∗X in π∗X is clearly contained in the kernel of multipli-

cation by ζ. The kernel of multiplication by ζ clearly contains the image of multipli-
cation by ζ+η; an easy calculation shows that they are equal under the hypotheses.
It suffices to consider the case when Z comes from a non-equivariant orthogonal
spectrum (using the isomorphism between the diagonal action and the action on
just T). In the case Z = S, the transfer gives a weak equivalence π∗ΣS→ (T+∧S)

T

and the composite

π∗ΣS −→ π∗(T+ ∧ S)T −→ π∗(T+ ∧ S) ∼= πS

∗(T)

takes the fundamental class of π1ΣS to the element ζ + η1; the theorem follows in
this case. For arbitrary Z, naturality of the transfer map implies that

π∗ΣZ −→ π∗(T+ ∧ Z)T −→ π∗(T+ ∧ Z) ∼= πS

∗(T)⊗π∗S π∗Z

takes an element x ∈ πnZ ∼= πn+1ΣZ to (ζ + η1)⊗ x = (ζ + η)(1⊗ x). �

Now we are ready to start identifying elements in π∗(CŪSn) and π∗(CCŪSm,n).
We can then apply Proposition 12.5 (and (12.4)) to compute E1

∗,∗(S) and with some
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more work, E1
∗,∗(X) for general X. Using the canonical orientation on SC(1)m , we

get canonical generators

am ∈ π2m−1Σ
∞(SC(1)m/SC(1)m−1

), bm ∈ π2mΣ∞(SC(1)m/SC(1)m−1

)

where bm is the image of the fundamental class of SC(1)m and am maps to the fun-

damental class in SC(1)m−1

; π∗Σ
∞(SC(1)m/SC(1)m−1

) is then the free π∗S-module
generated by am and bm. In terms of the action of πS

∗(T), it is easy to see geomet-
rically that ζa1 = b1. Using the cofiber sequence

T+ −→ S0 −→ SC(1) −→ SC(1)/S0 ∼= ΣT+

we see that ζb1 = ηb1; the identification

SC(1)m/SC(1)m−1 ∼= (SC(1))(m−1) ∧ (SC(1)/S0)

shows that in general

(12.6)
ζam = bm + (m− 1)ηam

ζbm = mηbm.

To produce corresponding formulas for F (ET2n/ET2n−1, RTS), we use the following
lemma proved in the next section.

Lemma 12.7. There exists a unique system of isomorphisms in the Borel stable

category ET/ET2n−1
'
−→ ET+ ∧ SC(1)n such that:

(i) The diagram

ET/ET2n−1

'
��

// ET/ET2i−1 ∧ ET/ET2j−1

'��

ET+ ∧ SC(1)n // (ET+ ∧ SC(1)i) ∧ (ET+ ∧ SC(1)j )

commutes for all i + j = n, where the top horizontal map is induced by
the filtered approximation to the diagonal on ET constructed in Section 9
and the bottom horizontal map is induced by the diagonal map on ET

and the homeomorphism

SC(1)n = SC(1)i+j ∼= SC(1)i⊕C(1)j ∼= SC(1)i ∧ SC(1)j .

(ii) The diagram

ET/ET2m−1

'
��

// ET/ET2m

'��

ET+ ∧ SC(1)m // ET+ ∧ SC(1)m+1

commutes for m = 0, where the bottom map is induced by the inclusion
of C(1)m in C(1)m+1 as the first m coordinates.

Moreover, the diagram in (ii) commutes for all m ≥ 0.

The lemma gives us a canonical weak equivalence

F (ET/ET2m−1, RTX) ' XET ∧L S−mC(1),

and we then define generators a′m, b′m for π∗F (ET2m/ET2m−1, RTS) as above.
Namely, b′m is the generator of π−2m in the image of the fundamental class of

π−2mF (ET/ET2m−1, RTS) ∼= π−2m(SET ∧L S−mC(1)) ∼= π−2mS−mC(1)
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(for the standard orientation) and a′m is the generator of π−2m−1 that maps to the
fundamental class of

π−2m−2F (ET/ET2mRTS) = π−2m−2F (ET/ET2m+1RTS) ∼= π−2m−2S
−(m+1)C(1).

As above, we have

(12.8)
ζa′m = b′m + (−m− 1)ηa′m = b′m + (m− 1)ηa′m

ζb′m = −mηb′m = mηb′m.

Using the elements introduced above, we can identify the homotopy groups of
CCŪX2m,2n as

π∗(CCŪX2m,2n) ∼= π∗S〈a
′
n, b

′
n〉 ⊗π∗S π∗S〈am, bm〉 ⊗π∗S π∗X

using the map

π∗(F (ET2n/ET2n−1, RTS))⊗π∗S π∗Σ
∞(SC(1)m/SC(1)m−1

)⊗π∗S π∗X

−→ π∗(F (ET2n/ET2n−1, RTS) ∧ (SC(1)m/SC(1)m−1

) ∧X)

−→ π∗(F (ET2n/ET2n−1, RTX) ∧ (SC(1)m/SC(1)m−1

)) = π∗(CCŪX2m,2n),

where π∗S〈−〉 denotes the free π∗S-module on the given generators (in their natural
degrees). We likewise have

π∗(CŪX2n) ∼= π∗S〈a
′
n, b

′
n〉 ⊗π∗S π∗X.

We next describe the pairing for X = S. The induced pairing on homotopy
groups of the pairing in (12.3) in this case takes the form

(π∗S〈a
′
n, b

′
n〉 ⊗π∗S π∗S〈am, bm〉)⊗π∗S (π∗S〈a

′
n′ , b′n′〉 ⊗π∗S π∗S〈am′ , bm′〉)

−→ π∗S〈a
′
n+n′ , b′n+n′〉 ⊗π∗S π∗S〈am+m′ , bm+m′〉.

the analogous formulas for the other three pairings, dropping either 〈am, bm〉,
〈am′ , bm′〉, or both tensor factors also hold.

Looking at the pairing on ŪSm,n, it is clear that the pairing on the

F (ET/ET2n−1, RTS)-part and on the SmC(1)-part are independent of each other;
Lemma 12.7 describes what happens on the former, and on the latter it is given by
the usual isomorphism

SmC(1) ∧ Sm′
C(1) ' S(m+m′)C(1).

This implies that for the pairings above we have b′n ⊗ b′n′ 7→ b′n+n′ and bm ⊗ bm′ 7→
bm+m′ . In addition, we see that a′n ⊗ a′n′ 7→ 0 and am ⊗ am′ 7→ 0 for dimension
reasons. Since the pairings on the spectrum level are T-equivariant, the algebraic
maps above commute with the action of ζ. Then

ζ(am⊗am′) = (ζam)⊗am′−am⊗(ζam′) = bm⊗am′−am⊗bm′+(m−m′)ηam⊗am′

goes to 0 since am ⊗ am′ 7→ 0, and we see that bm ⊗ am′ and am ⊗ bm′ go to the
same element of π∗S〈am+m′ , bm+m′〉. For dimension reasons, these elements go to
an integral multiple of am+m′ ; since

ζ(bm ⊗ am′) = (ζbm)⊗ am′ + bm ⊗ (ζam′)

= mηbm ⊗ am′ + bm ⊗ bm′ + (m′ − 1)ηbm ⊗ am′

= bm ⊗ bm′ + (m+m′ − 1)ηbm ⊗ am′ ,
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we see bm⊗am′ 7→ am+m′ . The same observations apply to b′n⊗a′n′ and a′n⊗ b′n′ to
show that these both map to a′n+n′ . We summarize this in the following proposition.

Proposition 12.9. The pairings of homotopy groups π∗ from (12.3) are in-
duced by the tensor products of the maps

b′n ⊗ b′n′ 7→ b′n+n′ bm ⊗ bm′ 7→ bm+m′

b′n ⊗ a′n′ 7→ a′n+n′ bm ⊗ am′ 7→ am+m′

a′n ⊗ b′n′ 7→ a′n+n′ am ⊗ bm′ 7→ am+m′

a′n ⊗ a′n′ 7→ 0 am ⊗ am′ 7→ 0.

We see from the formulas above that b0 ∈ π0(CŪS0) acts by the identity and
satisfies ζb0 = 0, and so gives the identity element of E1

0,0(S). We now identify

some other key elements of π∗(ŪSs/ŪSs−1).

Notation 12.10. Let

x̄ = b′0 ⊗ b1 + ηb′0 ⊗ a1, x̄ ∈ π2(CCŪS2,0)

ȳ = a′0 ⊗ b1 − b′0 ⊗ a1 ȳ ∈ π1(CCŪS2,0)

z̄ = b′1 + ηa′1, z̄ ∈ π−2(CŪS2).

Applying the formulas (12.6) and (12.8) for the action of ζ and using Proposi-
tion 12.5 to identify πT

∗ as a subset of π∗ for CCŪS2,0 and CŪS2, we define elements
x, y, z in E1

∗,∗(S) as follows.

Proposition 12.11. The elements x̄, ȳ, and z̄ lift to (unique) elements

x ∈ πT

2 (CCŪS2,0) ⊂ E1
2,0(S)

y ∈ πT

1 (CCŪS2,0) ⊂ E1
2,−1(S)

z ∈ πT

−2(CŪS2) ⊂ E1
−2,0(S).

We can now prove Theorems 3.17 and 3.19

Proof of Theorem 3.17. Eliding notation for the distinction between an
element of πT

∗ and its image in π∗, the multiplication formulas of Proposition 12.9
give us

xm = b′0 ⊗ bm +mηb′0 ⊗ am

y2 = 0

zn = b′n + nηa′n.

From here we see

xmzn = b′n ⊗ bm + nηa′n ⊗ bm +mηb′n ⊗ am +mnη2a′n ⊗ am

xmy = a′0 ⊗ bm+1 − b′0 ⊗ am+1 +mηa′0 ⊗ am+1

xmyzn = a′n ⊗ bm+1 − b′n ⊗ am+1 + (n+m)ηa′n ⊗ am+1

yzn = a′n ⊗ b1 − b′n ⊗ a1 + nηa′n ⊗ a1

for m > 0, n ≥ 0. Since {a′n ⊗ am, a′n ⊗ bm, b′n ⊗ am, b′n ⊗ bm} is a set of generators
for the free π∗S-module π∗(CCŪS2m,2n) and {a

′
n, b

′
n} is a set of generators for the

free π∗S-module π∗(CŪS)2n, we see from the formulas above that the map from
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the free (tri)graded commutative π∗S-algebra on x̄, ȳ, z̄ (in the appropriate degrees;
q.v. 12.10) modulo ȳ2 = 0 injects into

⊕

n≥0

π∗(CŪS2n)⊕
⊕

m>0,n≥0

π∗(CCŪS2m,2n)

and it follows that it injects into
⊕

n≥0

πT

∗ (CŪS2n)⊕
⊕

m>0,n≥0

πT

∗ (CCŪS2m,2n).

To see it is surjective, we note that by Proposition 12.9, the elements

(ζ + η)(b′n ⊗ bm) = (m+ n+ 1)ηb′n ⊗ bm (ζ + η)b′n = (n+ 1)ηb′n

(ζ + η)(b′n ⊗ am) = b′n ⊗ bm + (n+m)ηb′n ⊗ am (ζ + η)a′n = b′n + nηa′n

(ζ + η)(a′n ⊗ bm) = b′n ⊗ bm + (n+m)ηa′n ⊗ bm

(ζ + η)(a′n ⊗ am) = b′n ⊗ am − a′n ⊗ bm + (n+m+ 1)ηa′n ⊗ am

generate πT
∗ (CCŪS2m,2n) (in the left column) and πT(CŪS2n) (in the right column)

as π∗S-modules. From this we see that

• xmzn, xm−1yzn generate πT
∗ (CCŪS)2m,2n for m ≥ 1, n ≥ 0

• zn generates πT
∗ (CŪS2n) for n ≥ 0.

The theorem now follows from (12.4). �

Proof of Theorem 3.19. The cofiber CŪX0 of ŪX0,1 → ŪX0,0 has a ca-
nonical weak equivalence to RTF (ET0/ET−1, X) = RTF (T+, RTX). The map

i∗X −→ RTF (T+, RTX)T −→ i∗RTF (T+, RTX) ' RF (T+, i
∗X)

in the non-equivariant stable category is adjoint to the T-action map

T+ ∧ i∗X −→ i∗X,

so the map

πS

∗T⊗π∗S π∗X −→ πS

∗T⊗π∗S π∗(CŪX0) −→ π∗X

sends 1 ⊗ x to x and ζ ⊗ x to ζx, where the second map is induced by the counit
(evaluation)

T+ ∧RF (T+, i
∗X) −→ i∗X.

We note that the evaluation map is T-equivariant and so in the case of X = S

satisfies

1⊗ b′0 7→ 1 1⊗ a′0 7→ 0

ζ ⊗ b′0 7→ 0 ζ ⊗ a′0 7→ −1

(the first formula coming from Lemma 12.7, the remainder following for equivari-
ance and dimension reasons). In terms of our identification

π∗(CŪX0) ∼= π∗S〈a
′
0, b

′
0〉 ⊗π∗S π∗X,

we therefore have that the map π∗X → π∗(CŪX0) satisfies the formula

(12.12) v 7→ b′0 ⊗ v − a′0 ⊗ ζv.

By Proposition 12.9, we see that the map in the statement

HM∗,∗ ⊗ π∗X −→ E1
∗,∗(X)



50 STRONG KÜNNETH THEOREM FOR TP∗

satisfies the following formulas

(12.13)

zn ⊗ v 7→ (bn + nηa′n)⊗ v − a′n ⊗ ζv

xmzn ⊗ v 7→ (b′n ⊗ bm + nηa′n ⊗ bm +mηb′n ⊗ am +mnη2a′n ⊗ am)⊗ v

− (a′n ⊗ bm +mηa′n ⊗ am)⊗ ζv

xmyzn ⊗ v 7→ (a′n ⊗ bm+1 − b′n ⊗ am+1 + (n+m)ηa′n ⊗ am+1)⊗ v

+ a′n ⊗ am+1 ⊗ ζv

yzn ⊗ v 7→ (a′n ⊗ b1 − b′n ⊗ a1 + nηa′n ⊗ a1)⊗ v + a′n ⊗ a1 ⊗ ζv

for all m > 0, n ≥ 0, from which it is clear that the map is injective. Surjectivity
follows from looking at the image of multiplication by ζ + η just as in the proof of
Theorem 3.17 above.

The bimodule statement follows from the monoidality statement, which we now
check. For v ∈ π∗X, w ∈ π∗Y , and writing v ∧w for the smash product element in
π∗(X ∧ Y ), the map

(HM∗ ⊗ π∗X)⊗ (HM∗ ⊗ π∗Y ) −→ E1
∗,∗(X)⊗ E1

∗,∗(Y ) −→ E1
∗,∗(X ∧ Y )

takes (1⊗ v)⊗ (1⊗ w) to

(b′0 ⊗ v − a′0 ⊗ ζv)(b′0 ⊗ w − a′0 ⊗ ζw)

= b′0 ⊗ (v ∧ w)− a′0 ⊗ ((ζv) ∧ w)− (−1)|v|a′0 ⊗ (v ∧ (ζw))

= b′0 ⊗ (v ∧ w)− a′0 ⊗ ζ(v ∧ w).

This agrees with the image of v ⊗ w under the map

(HM∗,∗ ⊗ π∗X)⊗ (HM∗ ⊗ π∗Y ) −→ HM∗,∗ ⊗ π∗(X ∧ Y ) −→ E1
∗,∗(X ∧ Y )

induced by the multiplication on HM∗. More generally, for any α ∈ HM∗, both
maps send (1⊗ x)⊗ (α⊗ y) to the same element of E1

∗,∗(X ∧ Y ). The monoidality
statement follows. �

13. Comparison of the Hesselholt-Madsen and Greenlees T-Tate
Spectral Sequences

We continue the work of the previous section to prove Theorems 3.20 and 3.21,
which are not needed in the rest of the memoir. As we use Theorem 3.21 to prove
Theorem 3.20, we begin there.

Proof of Theorem 3.21. Since the multiplication comes from a pairing of
filtered objects, all differentials satisfy the Leibniz rule. By definition, the connect-
ing map ∂ for the cofiber sequence S0 → SC(1) → SC(1)/S0 takes a1 ∈ π1(S

C(1)/S0)
to the generator 1 ∈ π0(S

0) and takes the generator b1 ∈ π2(S
C(1)/S0) to 0. Like-

wise, in the cofiber sequences for the maps S−(m+1)C(1) → S−mC(1) that arise from
filtration on ET, the connecting maps satisfy ∂a′m = b′m+1 and ∂b′m = 0. We can
then read off the formulas for d2x, d2y, and d2z in the spectral sequence for X = S

from the definition of these classes in Notation 12.10:

d2x = ηb′0 = η

d2y = b′1 ⊗ b1 − b′0 = b′1 ⊗ b1 − 1

d2z = ηb′2 = z2.
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To finish the identification of d2y, we note that

xz + ηyz = (b′1 ⊗ b1 + ηa′1 ⊗ b1 + ηb′1 ⊗ a1 + η2a′1 ⊗ a1)

+ η(a′1 ⊗ b1 − b′1 ⊗ a1 + ηa′1 ⊗ a1) = b′1 ⊗ b1.

For v ∈ π∗X, the tensor product notation in the statement conflicts with the
tensor product notation we have been using above. For clarity, we continue to
write elements in π∗(CŪX∗) using the symbol ⊗, and switch to writing elements
of HM∗,∗ ⊗X using the symbol �. For v ∈ π∗X, by (12.12), the element 1� v in
HM∗,∗ ⊗ π∗X is the element b′0 ⊗ v − a′0 ⊗ ζv in π∗(CŪX∗), giving the formula

d2(1� v) = −b′1 ⊗ ζv ∈ π∗(CŪX0).

Since 1 � ζv ∈ HM∗,∗ ⊗ π∗X is the element b′0 ⊗ ζv − ηa′0 ⊗ ζv ∈ π∗(CŪX0), we
see that z � ζv ∈ HM∗,∗ ⊗ π∗X is the element

(b′1 + ηa′1)(b
′
0 ⊗ ζv − ηa′0 ⊗ ζv) = b′1 ⊗ ζv ∈ π∗(CŪX2).

This then gives the formula d2(1� v) = −z � ζv in HM∗,∗ ⊗ π∗X. �

Proof of Theorem 3.20. It is clear from the description in the statement
that the specified map is a map of filtered spectra and induces a map of spectral
sequences. For the purposes of this proof, we write GE2

∗,∗ for the E2 = E1 term
of the Greenlees T-Tate spectral sequence as a complex with its d2 differential,
and analogously HME2

∗,∗ for the E2 = E1 term of the Hesselholt-Madsen T-Tate

spectral sequence. The Greenlees spectral sequence arises from πT
∗ of a filtered

spectrum; write GCs for the level n cofiber so that (by definition)

GE2
s,t = πT

s+tGCs.

We have GCn ' ∗ for n odd and

GC2n ' C(SnC(1), S(n−1)C(1)) ∧X

for all n ∈ Z. The filtered map from the Greenlees filtration to the Hesselholt-
Madsen filtration then sendsGCn isomorphically (in the stable category) to CŪX|n|

for n ≤ 0 or to C(ŪXn,0, Ūn−1,0) for n > 0. Let

b′′n ∈ π2nC(SnC(1), S(n−1)C(1))

be the element that is the image of the fundamental class of SnC(1) (for the standard
orientation) and let

a′′n ∈ π2n−1C(SnC(1), S(n−1)C(1))

be the element that the connecting map in the cofiber sequence takes to the fun-
damental class of S(n−1)C(1). Then

π∗GC2n = π∗S〈a
′′
n, b

′′
n〉 ⊗π∗S π∗X

and GE2
∗,∗ is the kernel of the action of ζ ∈ πS

1T (Proposition 12.5) on the above,
which can be computed by the Leibniz rule from its action on each tensor factor.
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In this notation, the map GE2
∗,∗ → HME2

∗,∗ is induced by the map

b′′n 7→

{
b′|n| n ≤ 0

b′0 ⊗ bn n > 0

a′′n 7→

{
a′|n| n ≤ 0

b′0 ⊗ an n > 0

in the notation of the previous section.
We introduce the notation HMC∗ for the graded spectrum analogous to GC∗

that we studied (in terms of its further decomposition) in the previous section,

HMCn = ŪnX/Ūn−1X '





CŪX|n| ∨
∨

m>0
CCŪXm,m+|n| n ≤ 0

∨
m≥n

CCŪXm,m−n n > 0.

Since the filtration cofibers GC∗ and HMC∗ are trivial in odd degrees, the d2
differential makes π∗GC∗ and π∗HMC∗ into differential graded πS

∗T-modules. To
prove the theorem, it suffices to show that the map π∗GC∗ → π∗HMC∗ is a chain
homotopy equivalence of differential graded πS

∗T-modules. Since the map for general
X is (−) ⊗π∗S π∗X applied to the map in the case X = S, it suffices to treat the
case X = S.

Write i for the map π∗GC∗ → π∗HMC∗ and define the map r : π∗HMC∗ →
π∗GC∗ by

b′n ⊗ bm 7→ b′′m−n b′n 7→ b′′n

a′n ⊗ bm 7→ a′′m−n a′n 7→ a′′n

b′n ⊗ am 7→ a′′m−n

a′n ⊗ am 7→ 0.

As the differential takes an (n > 1), a′n (n ≥ 0), a′′n (n ∈ Z) to bn−1, b
′
n+1, b

′′
n−1

(respectively), takes bn (n > 0), b′n (n ≥ 0), b′′n (n ∈ Z) to 0, and in the exceptional
cases satisfies

d(a′n ⊗ a1) = b′n+1 ⊗ a1 − a′n

d(b′n ⊗ a1) = b′n,

we see that r preserves the differential. Using the formulas for the action of ζ in
the previous section (and the corresponding formulas in π∗GC∗), we see that r is a
map of πS

∗T-modules. Moreover, the composite r ◦ i is the identity on π∗GC∗.
To complete the argument, we construct a chain homotopy B from i ◦ r to the

identity on π∗HM∗ that satisfies ζB = −Bζ. Since 1− i ◦ r = 0 on the image of i,
we can regard 1 − i ◦ r as a homomorphism (π∗HM∗)/i → π∗HM∗ and construct
B as (1− i ◦ r) ◦ A for A a nullhomotopy of (π∗HM∗)/i satisfying ζA = −Aζ. As
a π∗S-module, (π∗HM∗)/i is free on elements

a′n ⊗ am (m > 0, n ≥ 0), a′n ⊗ bm (m > 0, n ≥ 0),

b′n ⊗ am (m > 0, n > 0), b′n ⊗ bm (m > 0, n > 0).

We extend the notation of these elements to all m ∈ Z, n ≥ 0 by understanding
the elements as zero when m,n is outside the indicated ranges above. Then for all
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m ∈ Z, n ≥ 0, the following formulas are valid for the differential on (π∗HM∗)/i:

d(a′n ⊗ am) = b′n+1 ⊗ am − a′n ⊗ bm−1

d(a′n ⊗ bm) = b′n+1 ⊗ bm

d(b′n ⊗ am) = b′n ⊗ bm

d(b′n ⊗ bm) = 0,

and the following formulas are valid for the action of ζ on (π∗HM∗)/i:

ζ(a′n ⊗ am) = b′n ⊗ am − a′n ⊗ bm + (m+ n)ηa′n ⊗ am

ζ(a′n ⊗ bm) = b′n ⊗ bm + (m+ n− 1)ηa′n ⊗ bm

ζ(b′n ⊗ am) = b′n ⊗ bm + (m+ n− 1)ηb′n ⊗ am

ζ(b′n ⊗ bm) = (m+ n)ηb′n ⊗ bm.

For m ≥ 1, let A(a′0 ⊗ am) = 0, A(a′0 ⊗ bm) = 0, and for m ≥ 1, n ≥ 1, let

A(a′n ⊗ am) = 0

A(a′n ⊗ bm) = a′n−1 ⊗ am + · · ·+ a′0 ⊗ am−(n−1)

A(b′n ⊗ am) = a′n−1 ⊗ am + · · ·+ a′0 ⊗ am−(n−1)

A(b′n ⊗ bm) = a′n−1 ⊗ bm + · · ·+ a′0 ⊗ bm−(n−1)

− (b′n−1 ⊗ am + · · ·+ b′0 ⊗ am−(n−1))

We note that A(a′n ⊗ bm) = A(b′n ⊗ am) and

A(b′n ⊗ bm) = −(ζ + (m− n− 1)η)A(b′n ⊗ am);

from this it follows that ζA = −Aζ. For m ≥ 1, n = 0, we have

(Ad+ dA)(a′0 ⊗ am) = A(b′1 ⊗ am − a′0 ⊗ bm−1) = a′0 ⊗ am

(Ad+ dA)(a′0 ⊗ bm) = A(b′1 ⊗ bm) = a′0 ⊗ bm − b′0 ⊗ am = a′0 ⊗ bm

and in the remaining cases m ≥ 1, n ≥ 1, we have

(Ad+ dA)(a′n ⊗ am) = A(b′n+1 ⊗ am − a′n ⊗ bm−1)

= a′n ⊗ am + · · ·+ a′0 ⊗ am−n − (a′n−1 ⊗ am−1 + · · ·+ a′0⊗m−n) = a′n ⊗ am

(Ad+ dA)(a′n ⊗ bm) = A(b′n+1 ⊗ bm) + d(a′n−1 ⊗ am + · · ·+ a′0 ⊗ am−(n−1))

= a′n ⊗ bm + · · ·+ a′0 ⊗ bm−n − (b′n ⊗ am + · · ·+ b′0 ⊗ am−n)

+ b′n ⊗ am − a′n−1 ⊗ bm−1 + · · ·+ b′1 ⊗ am−(n−1) − a′0 ⊗ bm−n

= a′n ⊗ bm − b′0 ⊗ am−n = a′n ⊗ bm

(Ad+ dA)(b′n ⊗ am) = A(b′n ⊗ bm−1) + d(a′n−1 ⊗ am + · · ·+ a′0 ⊗ am−(n−1))

= a′n−1 ⊗ bm−1 + · · ·+ a′0 ⊗ bm−n − (b′n−1 ⊗ am−1 + · · ·+ b′0 ⊗ am−n)

+ b′n ⊗ am − a′n−1 ⊗ bm−1 + · · ·+ b′1 ⊗ am−(n−1) − a′0 ⊗ bm−n

= b′n ⊗ am − b′0 ⊗ am−n = b′n ⊗ am
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(Ad+ dA)(b′n ⊗ bm) = d(a′n−1 ⊗ bm + · · ·+ a′0 ⊗ bm−(n−1)

− (b′n−1 ⊗ am + · · ·+ b′0 ⊗ am−(n−1)))

= b′n ⊗ bm + · · ·+ b′1 ⊗ bm−(n−1) − (b′n−1 ⊗ bm−1 + · · ·+ b′0 ⊗ bm−n)

= b′n ⊗ bm − b′0 ⊗ bm−n = b′n ⊗ bm.

This completes the proof. �

The end of Section 3 specifies a formula for the map from the Greenlees T-Tate
spectral sequence to the Hesselholt-Madsen T-Tate spectral sequence in terms of the
usual identification of the E2-term of the former and our notation for the E2-term
of the latter. Given that the inclusion of π∗X in homological degree zero agree for
these spectral sequences, it can be seen by naturality from the case X = Σ∞T+,
that the formula there is the unique one consistent with the differentials of the
spectral sequences. Alternatively, it can be calculated directly as in (12.12) that
for an element v ∈ π∗X, under the usual identification of the E2-term of the
Greenlees spectral sequence, up to sign, the element tn ⊗ v ∈ Z[t, t−1]⊗ π∗X goes
to the element

{
b′n ⊗ v + nηa′n ⊗ v − a′n ⊗ ζv n ≥ 0

b′0 ⊗ b|n| ⊗ v + nηb′0 ⊗ a|n| ⊗ v − b′0 ⊗ a|n| ⊗ ζv n ≤ 0.

The formulas at the end of Section 3 can then be checked directly and the sign
determined to be (−1)n.

14. Coherence of the equivalences ET/ET2n−1 ' ET+ ∧ SC(1)n

(Proof of Lemma 12.7)

In this section we prove Lemma 12.7. We first observe uniqueness. We note
that

HoB(S T)(Σ∞ET+ ∧ SC(1)n ,Σ∞ET+ ∧ SC(1)n)

∼= Ho(S T)(Σ∞ET+ ∧ SC(1)n ,Σ∞ET+ ∧ SC(1)n)

∼= Ho(S T)(Σ∞ET+,Σ
∞ET+) ∼= πhT

0 (S),

which is isomorphic to Z by [12, BT]. Thus, for the moment assume there exists
a Borel equivalence Σ∞ET/ET2n−1 ' Σ∞ET+ ∧ SC(1)n for all n ≥ 0. Then there
are exactly two choices for each n, which induce opposite sign isomorphisms on
H2n

∼= Z, and diagrams involving only spectra Borel equivalent to Σ∞ET/ET2n−1

(for fixed n) commute exactly when they commute on H2n. It follows that the
diagram in (i) determines a unique choice in the case n = 0 and in the other cases a
unique choice once the choice for n = 1 is specified. The diagram in (ii) determines
a unique choice in the case n = 1.

The proof of existence is a construction, which we do on the space level. First,
it is convenient to change models. Recall that S(C(1)n) denotes the unit sphere
in C(1)n, where C(1) denotes the complex numbers C with the standard action of
T as the unit complex numbers. Let S(C(1)∞) be the union of S(C(1)n), where
we include C(1)n in C(1)n+1 as the vectors with 0 in the last coordinate. Then
S(C(1)∞) is a model of ET and so we have a unique T-homotopy class of T-
homotopy equivalence from S(C(1)∞) to our standard model of ET. Looking at
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the induced map on T-quotients, the restriction

CPn = S(C(1)n)/T −→ ET/T ∼= BT

factors through BT2n−2 (with our doubled filtration index convention) by obstruc-
tion theory, and so the map S(C(1)n) → ET factors up to T-homotopy through
ET2n−2 by principal bundle theory. This constructs a T-homotopy commutative
diagram of T-spaces

S(C(1)) //

'
��

S(C(1)2) //

'
��

S(C(1)3) //

'
��

· · · // S(C(1)∞)

'
��

ET0
// ET2

// ET4
// · · · // ET.

Choosing homotopies, it suffices to construct and study the maps using the model
S(C(1)∞)/S(C(1)n) in place of ET/ET2n−1 = ET/ET2n−2.

Remark 14.1. A concrete construction of the maps S(C(1)n)→ ET2n−2 is as
follows. For the model WT of Section 9, we can use the map that sends an element

(z1, . . . , zn) ∈ S(C(1)n) ⊂ C(1)n

to the element represented by
(

zi0
||zi0 ||

, . . . ,
zim
||zim ||

)
, (||zi0 ||

2, . . . , ||zim ||
2) ∈ Tm+1 ×∆[m]

where zi0 , . . . , zim drops the coordinates zj that are 0, and the element of ∆[m]
is specified in barycentric coordinates. The corresponding map to the model ET

sends the element to(
zi0
||zi0 ||

,
z−1
i0

||zi0 ||

zi1
||zi1 ||

, . . . ,
z−1
im−1

||zim−1
||

zim
||zim ||

)
, (||zi0 ||

2, . . . , ||zim ||
2) ∈ Tm+1 ×∆[m].

In the case n = 1, this map is clearly the canonical isomorphism T ∼= T×∆[0]. More
generally, the map is surjective and generically one-to-one on the top dimensional
cell, and so is a homology isomorphism on the underlying non-equivariant homo-
topy spheres. Since the map is also T-equivariant and both sides are free T-cell
complexes, the map is a T-homotopy equivalence.

Construction 14.2. We construct a T-homeomorphism

hn,q : S(C(1)
n+q)/S(C(1)n) −→ SC(1)n ∧ S(C(1)q)+

by constructing a T-equivariant map

h̄n,q : S(C(1)
n+q) −→ SC(1)n ∧ S(C(1)q)+

that sends all of S(C(1)n) to the basepoint. For ~x = (w1, . . . , wn, z1, . . . , zq) ∈
C(1)n+q with ||~x|| = 1, write ~w = (w1, . . . , wn) ∈ C(1)n and ~z = (z1, . . . , zq) ∈
C(1)q. We have ~w ∈ S(C(1)n) ⊂ S(C(1)n+q) exactly when ~z = 0, in which case we
define h̄n,q(~x) to be the basepoint as required; otherwise we define

h̄n,q(~x) =
~w

||~z||
∧

~z

||~z||
∈ SC(1)n ∧ S(C(1)q)+.

This is continuous since ~w/||~z|| goes to the basepoint as ~z goes to 0. The factor-
ization hn,q is a T-equivariant continuous bijection of compact spaces and hence a
T-homeomorphism.
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The maps hn,q are consistent for varying q to define a T-homeomorphism

hn,∞ : S(C(1)∞)/S(C(1)n)
∼=
−→ SC(1)n ∧ S(C(1)∞)+.

Collapsing S(C(1)∞) to a point, we then get a composite map

hn : S(C(1)
∞)/S(C(1)n) −→ SC(1)n

that is a Borel equivalence.

Proposition 14.3. The diagram

S(C(1)∞)/S(C(1)m)

hm

��

// S(C(1)∞)/S(C(1)m+1)

hm+1

��

SC(1)m // SC(1)m+1

commutes up to T-homotopy where the top horizontal map is the quotient map and
the bottom horizontal map is induced by the inclusion of C(1)m into C(1)m+1.

Proof. Let īm be the self-map of S(C(1)∞) induced by the map C(1)∞ →
C(1)∞ that is the identity on C(1)m but sends the standard basis vector en to
en+1 for n > m; let im be the induced self-map of S(C(1)∞)/S(C(1)m). Then īm
is a T-equivariantly homotopic to the identity through a homotopy that preserves
S(C(1)m) pointwise, and therefore im is also T-equivariantly homotopic to the
identity. Since the diagram

S(C(1)∞)/S(C(1)m)

hm
**

im // S(C(1)∞)/S(C(1)m) // S(C(1)∞)/S(C(1)m+1)

hm+1

��

SC(1)m // SC(1)m+1

commutes, the diagram in the statement commutes up to T-homotopy. �

If we choose i, j ≥ 0, letting n = i+ j, we define a T-equivariant map

δi,j : S(C(1)
∞)/S(C(1)n) −→ S(C(1)∞)/S(C(1)i) ∧ S(C(1)∞)/S(C(1)j)

as follows. Writing an element of S(C(1)∞) as

~x = (v1, . . . , vi, w1, . . . , wj , z1, z2, . . .),

taking ~v = (v1, . . . , vi, 0, 0, . . .) ∈ C(1)∞, ~w = (w1, . . . , wj , 0, 0, . . .) ∈ C(1)∞, and

~z = (0, . . . , 0︸ ︷︷ ︸
n

, z1, z2, . . .) ∈ C(1)∞,

we define

δi,j(~x) =
~v + ~z

||~v + ~z||
∧

~w + ~z

||~w + ~z||
∈ S(C(1)∞)/S(C(1)i) ∧ S(C(1)∞)/S(C(1)j)

where we understand the point as the basepoint when ~z = 0. We use this map in
the following proposition.
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Proposition 14.4. For any i, j ≥ 0 and n = i+ j, The diagram

S(C(1)∞)/S(C(1)n)

hn

��

δi,j
// S(C(1)∞)/S(C(1)i) ∧ S(C(1)∞)/S(C(1)j)

hi∧hj

��

SC(1)n

∼=
// SC(1)i ∧ SC(1)j

commutes up to T-homotopy where the bottom horizontal map is the canonical iso-
morphism

SC(1)n = SC(1)i+j ∼= SC(1)i⊕C(1)j ∼= SC(1)i ∧ SC(1)j .

Proof. In the ~x;~v, ~w, ~z notation above the down-then-right map sends ~x to

~v

||~z||
∧

~w

||~z||

while the right-then-down map sends ~x to

~v

||~v + ~z|| ||~z||
∧

~w

||~w + ~z|| ||~z||
.

The homotopy
~v

||~v + ~z||t ||~z||
∧

~w

||~w + ~z||t ||~z||
.

is T-equivariant. �

We are now ready to prove Lemma 12.7.

Proof. As discussed above, uniqueness follows immediately from existence.
We use the map in the Borel stable category given by the zigzag

ET/ET2n−1
'
←− S(C(1)∞)/S(C(1)n)

hn,∞
−−−−→ S(C(1)∞)+∧S

C(1)n '
−→ ET+∧S

C(1)n .

Proposition 14.4 shows that the diagram in (ii) commutes for all m. To deduce
that the diagram in (i) commutes, it suffices to show that the diagram

S(C(1)∞)/S(C(1)n)
δi,j

//

��

S(C(1)∞)/S(C(1)i) ∧ S(C(1)∞)/S(C(1)j)

��

ET/ET2n−1
// ET/ET2i−1 ∧ ET/ET2j−1

commutes after applying H2n. This is a straightforward homology calculation,
keeping track of signs. �

15. The strong Künneth theorem for THH

The following well-known result does not appear to have a good reference in
the literature.

Theorem 15.1. Let R be a commutative ring orthogonal spectrum. Let X and
Y be R-algebras. The symmetric monoidal structure map

THH(X) ∧LTHH(R) THH(Y ) −→ THH(X ∧LR Y )

is an isomorphism in the Borel derived category of THH(R)-modules.
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We can assume without loss of generality that R is cofibrant as a commutative
ring orthogonal spectrum and X and Y are cofibrant as R-algebras. Then the cyclic
bar constructions N cy(X), N cy(Y ), and N cy(R) model THH(X), THH(Y ), and
THH(R), respectively. The map in question is induced by the map

N cyX ∧N cyY −→ N cy(X ∧ Y ) −→ N cy(X ∧R Y )

which coequalizes the maps

N cyX ∧N cyR ∧N cyY //
// N cyX ∧N cyY

where the top arrow is the N cyR-action on N cyX and the bottom arrow is the
N cyR-action on N cyY . It suffices to prove the following stronger point-set theorem.

Theorem 15.2. Let R be a commutative ring orthogonal spectrum. Let X and
Y be R-algebras. The symmetric monoidal structure map

N cy(X) ∧Ncy(R) N
cy(Y ) −→ N cy(X ∧R Y )

is an isomorphism in the point-set category of equivariant N cy(R)-modules.

Proof. Since coequalizers commute with geometric realization, looking at sim-
plicial level n, it suffices to show that the map

(X ∧ · · · ∧X) ∧R∧···∧R (Y ∧ · · · ∧ Y ) −→ (X ∧R Y ) ∧ · · · ∧ (X ∧R Y )

is an isomorphism and this is clear by inspection. �

Remark 15.3. Since the map in Theorem 15.1 is natural in the category
HoM (CatSR ) obtained from the category of R-spectral categories by formally in-
verting the Morita equivalences, the result generalizes to the case when X and Y
are R-spectral categories.

Remark 15.4. We have consistently worked in the Borel derived category
throughout rather than the equivariant derived category. It is clear from Theo-
rem 15.2 that the strong Künneth theorem holds for THH in any category where
THH is modeled by a functor of N cy on cofibrant objects of the given types. In
particular, it applies to the norm model of THH constructed as NT

e = IU
R∞N cy as

in [1].

16. THH of smooth and proper algebras (Proof of Theorem C)

The purpose of this section is to prove Theorem C of the introduction. Toën-
Vaquié [34, 2.6] show that any smooth and proper k-linear dg category X is Morita
equivalent to a smooth and proper dg k-algebra, and so by Morita invariance of
THH [6, 5.12], it suffices to prove the following theorem.

Theorem 16.1. Let R be a commutative ring orthogonal spectrum and A a
R-algebra which is smooth and proper when viewed as an R-spectral category. Then
THH(A) is a small THH(R)-module.

We emphasize that the statement here and the work in this section is non-
equivariant.

We recall that an R-moduleM is small means that maps in the derived category
out of it DR(M,−) commutes with arbitrary coproducts; this is equivalent to M
being weakly equivalent to the homotopy retract of a finite cell R-module. For the
hypothesis of the theorem, A is a proper as an R-spectral category precisely when
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A is small as an R-module and A is a smooth as an R-spectral category precisely
when A is small as an A ∧LR Aop-module (q.v. [2, §3.2]), or more precisely, when
for some (hence any) cofibrant replacement A′ → A in R-algebras, A is small as an
A′ ∧R A′ op-module.

Without loss of generality, we model R as a cofibrant commutative ring orthog-
onal spectrum and we model A as a cofibrant R-algebra. These hypotheses will be
enough to ensure that all smash products we use below in the proof of Theorem 16.1
represent derived smash products.

The proof of Theorem 16.1 involves a comparison of different models repre-
senting THH(A) as a THH(R)-module, some of which involve elaborate simplicial
constructions that play off the smash product of orthogonal spectra against the
smash products ∧R for R-modules. To avoid confusion, we will always write ∧S
in this section for the smash product of orthogonal spectra to contrast with ∧R.
Likewise, we will refer to orthogonal spectra with no extra structure as S-modules
to contrast with the extra structure of R-modules or A-modules.

The basic building blocks of the constructions of this section are the two-sided
and cyclic bar constructions relative to S and R. We begin by establishing conven-
tions and notation for these constructions in this section. In this section only, we

use NS
• and N cy;S

• to denote the two-sided bar and cyclic bar constructions using
∧S, and BS and Bcy;S for the geometric realizations. We also use corresponding
notation replacing S with R. To be specific about the face maps: in

NS

q (X,A, Y ) = X ∧S A ∧S · · · ∧S A︸ ︷︷ ︸
q

∧SY,

d0 uses the left action of A on Y and dq uses the right action of A on X. We call
X the leftside module and Y the rightside module; the leftside module is a right
module and the rightside module is a left module. If the leftside module is an A-
bimodule, then the left action of A on X induces a left action of A on NS(X,A, Y );
if Y is also an A-bimodule, then NS(X,A, Y ) inherits an A-bimodule structure. We
have similar observations using R in place of A or in place of S.

Recall that an A-bimodule (in the category of S-modules) consists of an S-
moduleM together with commuting left and right A-module action maps A∧SM →
M and M ∧SA→M ; this is equivalent data to the structure of either a left or right
A ∧S A

op-module on M . Likewise, an A-bimodule (in the category of R-modules)
consists of an R-module M and commuting left and right A-module action maps
A ∧R M →M and M ∧R A→M , with equivalent data a (left or right) A ∧R Aop-
module structure on M .

Given an A-bimodule M (in the category of S-modules), when forming the
cyclic bar construction

N cy;S
q (A;M) = M ∧S A ∧S · · · ∧S A︸ ︷︷ ︸

q

,

our convention is to have d0 use the left action of A on M and dq the right action
of A on M . We then have a canonical isomorphism

N cy;S
• (A;M) ∼= M ∧A∧SAop NS

• (A,A,A)

where we use the (previously unused) left A-module structure on the leftside A
and right A-module structure on the rightside A. Writing things this way, it is
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natural to regard M as a right A ∧S A
op-module and NS

• (A,A,A) as a simplicial
left A ∧S A

op-module.
In the context of commutative ring orthogonal spectra, the two-sided bar con-

struction BS(R,R,R) and cyclic bar construction Bcy;S(R) are special cases of ten-
sors. In the following, we write ⊗ for the tensor of a commutative ring orthogonal
spectrum with an unbased space (in the category of commutative ring orthogonal
spectra). Then BS(R,R,R) is canonically isomorphic to the tensor R ⊗ ∆[1] and
Bcy;S(R) is canonically isomorphic to the tensor R⊗ (∆[1]/∂∆[1]).

We are now ready to begin the constructions of the various models of THH(A).
We use the following shorthand notation for some of the constructions described
above:

Notation 16.2. Let RI denote R⊗∆[1]. Let R0 = R⊗{0} and R1 = R⊗{1};
then R0 and R1 are canonically isomorphic to R as commutative ring orthogonal
spectra, but the subscripts keep track of the maps of commutative ring orthogonal
spectra R → RI. (In fact, we have analogous maps Rt for t ∈ (0, 1), although we
do not use these.)

Notation 16.3. Let ARI = A ∧R0
RI, the extension of scalars RI-algebra.

We regard ARI as an R algebra via R1 → RI.

Recalling that d0 on the tautological element of ∆[1]1 corresponds to the vertex
1 and d1 to the vertex 0, we see that ARI is the geometric realization of the
simplicial associative ring orthogonal spectrum

ARI• = NS

• (A,R,R),

and its R-algebra structure comes from the rightside R.
The inclusion of A in ARI• is map of simplicial associative ring orthogonal

spectra with A constant but not a map of simplicial R-algebras. The collapse
map ARI• → A is a map of R-algebras and a simplicial homotopy equivalence of
simplicial associative ring orthogonal spectra.

Notation 16.4. Let O• be the simplicial model of the circle obtained by gluing
2 copies of ∆[1]• along 0 and along 1. To be definite later, we label one copy (a) and
the other (b). Let RO• be the simplicial commutative ring orthogonal spectrum
R⊗O• (a ∧S-power of R in each simplicial degree). We write RO for the geometric
realization, which is canonically isomorphic to the commutative ring orthogonal
spectrum RI ∧R0∧SR1

RI. We have canonical maps of commutative ring orthogonal
spectra R0, R1 → RO.

Notation 16.5. We let ARO be the extension of scalars RO-algebra RO∧R0A.
When we regard this as an R-algebra it will be via R1 → RO.

We can also describe ARO as the geometric realization of a simplicial asso-
ciative ring orthogonal spectrum (or simplicial R-algebra). We have 2 maps of
R-algebras ARI → ARO corresponding to the 2 maps of R-algebras RI → RO
(corresponding to the 2 maps of ∆[1]• into O•). We use the “(a)” map to de-
fine a left ARI-module structure on ARO and the “(b)” map to define a right
ARI-module structure on ARO; together these give a ARI-bimodule structure in
R-modules, a ARI∧RARIop-module structure. This bimodule structure commutes
with the RO-module structure.

Notation 16.6. Let R∂∆[2] = R⊗ ∂∆[2] and R∂∆[2]• = R⊗ ∂∆[2]•.
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We have a map of simplicial sets α : ∂∆[2]• → O• sending the 1-simplex {0, 1} to
the point {0} (i.e., collapsing d2∆[1]•), sending {0, 2} to (a) and {1, 2} to (b). This
induces a weak equivalence of commutative ring orthogonal spectra R∂∆[2]→ RO.
Indeed, this map is homotopic in the category of commutative ring orthogonal
spectra to an isomorphism, just as the geometric realization of ∂∆[2]• → O• is
homotopic in the category of spaces to a homeomorphism. For consistency with
this map, when we refer to R∂∆[2] as an R-module it will be via R ⊗ {2}. (The
vertex 2 goes to the vertex 1 in the simplicial map ∂∆[2]• → O•.)

The inclusion d2 : ∆[1]• → ∂∆[2]• induces a map of commutative ring orthog-
onal spectra RI → R∂∆[2].

Notation 16.7. Let D be the R∂∆[2]-module R∂∆[2] ∧d2,RI B
S(A,A,A).

The maps d0, d1 : ∆[1]• → ∆[2]• induce a pair of maps RI → R∂∆[2], giving D
a pair of commuting RI-module structures – indeed an RI∧R1

RI-module structure;
using the left and right action of A on BS(A,A,A), these extend to a ARI-bimodule
structure on D (with the left action of ARI corresponding to the 1-simplex {0, 2} of
∆[2]• and the right action of ARI corresponding to the 1-simplex {1, 2}). In fact,
the ARI-bimodule structure is a ARI ∧R ARIop-module structure that commutes
with the R∂∆[2]-module structure.

The A-bimodule (in S-modules) weak equivalence BS(A,A,A) → A induces a
weak equivalence D → ARO, which is a map of ARI-bimodules in R-modules and
of R∂∆[2]-modules (using the map R∂∆[2]→ RO for the R∂∆[2]-module structure
on ARO). Applying Bcy;R(ARI;−), we get a weak equivalence of R∂∆[2]-modules

(16.8) Bcy;R(ARI;D) −→ Bcy;R(ARI;ARO).

We will see below that these are models of THH(A); the weak equivalence (16.8)
is the first key ingredient to the proof of Theorem 16.1 below.

The last model arises by applying the Dennis-Waldhausen Morita trick [6, §6]
to Bcy;R(ARI;D). To do so, we need to identify Bcy;R(ARI;D) as the geometric
realization of the simplicial S-module

(*) N cy;R
• (ARI;N cy;S

• (A;ARI ∧R ARIop)).

In (*), we use the above map of associative ring orthogonal spectra A → ARI to
get a map of associative ring orthogonal spectra

A ∧S A
op −→ ARI ∧S ARIop −→ ARI ∧R ARIop,

and this gives commuting right A ∧S A
op-module and left ARI ∧R ARIop-module

structures on ARI ∧R ARIop; the canonical isomorphism (symmetry isomorphism
on smash factors)

(ARI ∧R ARIop)op ∼= ARI ∧R ARIop

makes this commuting right A ∧S A
op and ARI ∧R ARIop-module structures, al-

lowing us to do construction (*). To show that Bcy;R(ARI;D) is the geometric
realization of the simplicial S-module (*), we just need to produce an isomorphism
of left ARI ∧R ARIop-modules between D and Bcy;S(A;ARI ∧R ARI).

By construction D is isomorphic to the geometric realization of

R⊗ ∂∆[2]• ∧d2 NS

• (A,A,A).

We can construct ∂∆[2]• as the diagonal of a bisimplicial set obtained by gluing
a copy of Λ2

2 (the faces d0 and d1 of ∂∆[2]•) in a first simplicial direction along
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vertices 0 and 1 to a copy of ∆[1] (the face d2) in a second simplicial direction.
Taking the geometric realization of the first simplicial direction, we see that D is
isomorphic to the geometric realization of

R⊗ Λ2
2 ∧R0∧SR1

NS

• (A,A,A) ∼= (R⊗ Λ2
2 ∧R0∧SR1

(A ∧S A
op)) ∧A∧SAop NS

• (A,A,A)

(to be clear, using the R-action corresponding to the vertex 0 of ∆[2]• to attach A
and corresponding to the vertex 1 to attach Aop). Breaking Λ2

2 as ∆[1] ∪{1} ∆[1],
this is easily recognized as

(ARI ∧R ARIop) ∧A∧SAop NS

• (A,A,A) ∼= N cy;S(A;ARI ∧R ARIop).

The isomorphism constructed preserves the ARI-bimodule (inR-module) structure,
using the standard left action of ARI on ARI and right action on ARIop.

The previous paragraph constructs an isomorphism from Bcy;R(ARI;D) to the
geometric realization of the simplicial S-module

NR
• (ARI,ARI,ARI) ∧ARI∧RARIop (ARI ∧R ARIop) ∧A∧SAop NS

• (A,A,A),

Using the symmetry isomorphism of ∧S to switch the sides we put NS
• (A,A,A) and

NR
• (ARI,ARI,ARI) on, we get an isomorphism with

N cy;S
• (A;NR

• (ARI,ARI,ARI))

and so an isomorphism of S-modules

(16.9) Bcy;R(ARI;D) ∼= Bcy;S(A;BR(ARI,ARI,ARI)).

(This is the Dennis-Waldhausen Morita trick.) We transport the R∂∆[2]-module
structure on Bcy;R(ARI;D) constructed above to Bcy;S(A;BR(ARI,ARI,ARI))
along this isomorphism. We emphasize that this constructs a well-defined R∂∆[2]-
module structure on Bcy;S(A;BR(ARI,ARI,ARI)), but we can describe it more
concretely as follows. We write Bcy;S(A;BR(ARI,ARI,ARI)) as the geometric
realization of the multisimplicial S-module

N cy;S
i (A;NR

n (ARIj , ARIm, ARIk)).

For fixed m,n, grouping together the i,j,k-terms, we are looking at

(**) A∧S(i) ∧S (ARIj ∧R ARIk ∧R ARI∧R(n)
m )

= A∧S(i) ∧S

(
(A ∧S R

∧S(j) ∧S R) ∧R (A ∧S R
∧S(k) ∧S R) ∧R ARI∧R(n)

m

)

where the R-module structure on ARI• for ∧R is the last factor of R in the expan-
sion. Viewing ∂∆[2]• as the diagonal of a trisimplicial set, R∂∆[2] is the geometric
realization of the trisimplicial set

R0 ∧S R
∧S(i) ∧S R1 ∧S R

∧S(j) ∧S R2 ∧S R
∧S(k),

where R0, R1, and R2 are all copies of R that we have marked by numbers to keep
track of them in the formulas that follow. (The numbers correspond to the vertices
of ∂∆[2].) We can rewrite the above in terms of ∧R2

as

R0 ∧S R
∧S(i) ∧S

(
(R1 ∧S R

∧S(j) ∧S R2) ∧R2 (R
∧S(k) ∧S R2)

)
,

and we can move R0 inside the last factor

R∧S(i) ∧S

(
(R1 ∧S R

∧S(j) ∧S R2) ∧R2
(R0 ∧S R

∧S(k) ∧S R2)
)
.
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In terms of the formula (**), we have R∧S(i) acting on A∧S(i), we have R∧S(j) and
R∧S(k) acting on the respective factors in (**), we have R2 acting on the righthand
R-factors (used in ∧R), and finally R0 acts on the A in the k-factor while R1 acts
on the A in the j-factor.

The collapse maps

BR(ARI,ARI,ARI) −→ ARI −→ A

induce a weak equivalence of S-modules

(16.10) Bcy;R(ARI;D) −→ Bcy;S(A;BR(ARI,ARI,ARI)) −→ Bcy;S(A).

This is a map of R∂∆[2]-modules when we give Bcy;S(A) the module structure
induced by the map

β : ∂∆[2]• −→ ∂∆[2]•/Λ
2
2
∼= ∆[1]•/∂∆[1]

and the usual Bcy;S(R) ∼= R⊗∆[1]/∂∆[1] module structure on Bcy(A).
In the end, we have constructed in (16.8), (16.9), and (16.10) a zigzag of weak

equivalences of R∂∆[2]-modules relating Bcy;R(ARI;ARO) and Bcy(A). We are
now ready to prove Theorem 16.1

Proof of Theorem 16.1. The hypothesis that A is proper over R means
that A is weakly equivalent to a homotopy retract of a finite cell R-module. Since
the derived functor RO ∧R0

(−) from R-modules to RO-modules preserves cofiber
sequences, we see that ARO is weakly equivalent to a homotopy retract of a finite
cell RO-module. Since the map R ⊗ α : R∆[2] → RO is a weak equivalence, we
see that ARO is weakly equivalent to a homotopy retract of a finite cell R∂∆[2]-
module. The hypothesis that A is smooth over R is that A is weakly equivalent
to a homotopy retract of a finite cell A ∧R A-module. Using the weak equivalence
of R-algebras ARI → A, we see that ARI and BR(ARI,ARI,ARI) are weakly
equivalent to homotopy retracts of finite cell right ARI ∧R ARI-modules. Since

Bcy;R(ARI;ARO) ∼= BR(ARI,ARI,ARI) ∧ARI∧RARIop ARO,

we see that Bcy;R(ARI;ARO) is weakly equivalent to the homotopy retract of a
finite cell R∂∆[2]-module.

Since the map R⊗β : R⊗∂∆[2]→ Bcy;S(R) is a weak equivalence, the forgetful
functor from Bcy;S(R)-modules to R⊗∂∆[2]-modules is the right adjoint of a Quillen
equivalence. We conclude that Bcy;S(A) is weakly equivalent to a homotopy retract
of a finite cell Bcy;S(R)-module. �

Remark 16.11. The zigzag of weak equivalences between Bcy;R(ARI;ARO)
and Bcy(A) can be interpreted as an isomorphism in the stable category

THH(A) ' THHR(A;THH(R;A)).

We note that although THH(R;A) is weakly equivalent as an A-module or Aop-
module to THH(R) ∧LR A, it is generally not for the A ∧R Aop structure in the
weak equivalence: if it were, we would then have a weak equivalence THH(A) '
THHR(A) ∧LR THH(R). This does not hold in the example of R = HZ and
A = HZ[i] as shown by the calculation in [22].
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17. The finiteness theorem for TP (Proof of Theorem B)

The purpose of this section is to prove Theorem B and its analogue for G = Cp.
For convenience of reference, we state the combined theorem here.

Theorem 17.1. Let k be a perfect field of characteristic p > 0 and let G = T

or G = Cp. If X is a smooth and proper k-linear dg category, then TG(THH(X ))
is a finite TG(THH(k))-module.

We have left off the second statement, because we use it to deduce the first:
the main work of the section is to prove the following theorem.

Theorem 17.2. Let k be a perfect field of characteristic p > 0, and let G be a
closed subgroup of T. If B is an Hk-algebra with THH∗(B) finitely generated over
THH∗(k), then πtG

∗ THH(B) is finitely generated over πtG
∗ THH(k).

To deduce Theorem 17.1 from Theorem 17.2, we note that by Morita invari-
ance of THH [6, 5.12], it suffices to consider dg k-algebras that are smooth and
proper as k-linear dg categories in Theorem 17.1. Theorem C then implies that the
Hk-algebras corresponding to smooth and proper dg k-algebras satisfy the hypothe-
ses of Theorem 17.2. From here Theorem 17.1 is a consequence of the following
observation.

Proposition 17.3. Let G = T or G = Cp and let X be a TG(THH(k))-module.
Then X is a finite TG(THH(k))-module if and only if π∗X is finitely generated over
π∗(TG(THH(k))).

Proof. When G = T, π∗(TT(THH(k))) ∼= Wk[v, v−1] where Wk denotes the
p-typical Witt vectors on k and v is an element of TP−2(k) = π−2(TT(THH(k))),
a particular choice of which Hesselholt constructed in [14, 4.2]. As a graded ring
π∗(TT(THH(k))) is a graded PID; specifically, all graded ideals are of the form
(pn) for some n. As a consequence every finitely generated TT(THH(k))-module
is a wedge of copies of suspensions TT(THH(k)) and suspensions of the cofiber
of multiplication by pn; a module is finite over TT(THH(k)) if and only if its
homotopy groups are finitely generated over π∗(TT(THH(k))). In the case G =
Cp, π∗(TCp(THH(k))) ∼= k[v, v−1], a graded field in the sense that every graded
module over it is free. Every TCp

(THH(k))-module is a wedge of suspensions
of TCp

(THH(k)) and a TCp
THH(k)-module is finite if and only if its homotopy

groups are finitely generated over π∗TCp
THH(k). �

For other closed subgroups Cr < T, writing r = pnm with (p,m) = 1, we
have a weak equivalence TCr

THH(A) ' TCpn
THH(A) induced by the transfer.

For n > 1, πtCpnTHH(k) ∼= Wkn[v, v
−1], where Wkn denotes the Witt vectors of

length n. This graded ring has infinite global (projective) dimension and there exist
TCpn

THH(k)-modules whose homotopy groups are finitely generated but which are
not themselves small. For example, TCpTHH(k) is a TCpn

THH(k)-module that is
not small for n > 1 but has homotopy groups (π∗TCpn

THH(k))/p.
For the proof of Theorem 17.2, we prove the following slightly more general

theorem.

Theorem 17.4. Let k be a perfect field of characteristic p > 0, let G be a closed
subgroup of T, and let X be a G-equivariant N cy(Hk)-module with π∗X finitely
generated over THH∗(k). Then πtG

∗ X is finitely generated over πtG
∗ THH(k).
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Proof. We can assume without loss of generality that G = T or G = Cpr for
some r > 0. In the case when G = T, we let r =∞ and we understand p∞ = 0 and
Wk∞ = Wk.

First we note that the conditionally convergent Greenlees Tate spectral se-
quence is strongly convergent: The hypothesis that π∗(X) is finitely generated over
THH∗(k) implies that E2

i,j = 0 for j small enough (below the minimum degree of

a generator) and each E2
i,j is a finite dimensional vector space over k.

The Greenlees Tate spectral sequence for X is a module over the Greenlees Tate
spectral sequence for THH(k). In the latter, the E2-term is isomorphic as a graded
ring to k[v̄, v̄−1, t] in the case G = T and k[v̄, v̄−1, t, b]/b2 in the case when G is
finite, where v̄ is in bidegree (−2, 0) (the image of v ∈ πtG

−2THH(k) in the spectral
sequence), t is in bidegree (0, 2) (the image of a generator of π2THH(k)), and b
is in bidegree (1, 0). The elements v̄ and t are infinite cycles while d2r+1b = v̄rtr,
q.v. [14, 6.2]. When r = 1, t becomes zero on E4, but otherwise, we can choose t
so that it represents pv−1 in the spectral sequence.

The E2-term for X is naturally isomorphic as a graded k[v̄, v̄−1, t]-module to
THH∗(X)⊗THH∗(k) k[v̄, v̄

−1, t] in the case when G = T and THH∗(X)⊗THH∗(k)

k[v̄, v̄−1, t, b]/b2 in the case when G is finite. In either case, the hypothesis that
THH∗(X) is finitely generated over THH∗(k) implies that the E2-term for X is
finitely generated over k[v̄, v̄−1, t]. Since k[v̄, v̄−1, t] is Noetherian, the E∞-term
is also finitely generated over k[v̄, v̄−1, t]. The theorem now follows from a stan-
dard spectral sequence comparison argument; we give the full proof in the current
context.

Choose elements x̄1, . . . , x̄n in E∞
∗,∗ that generate E∞ as a k[v̄, v̄−1, t]-module.

Choose representatives x1, . . . , xn; we need to show that x1, . . . , xn generate πtG
∗ X

over Wkr[v, v
−1]. Let y 6= 0 be any element of πtG

∗ X and let ȳ denote the element
in E∞

i,j representing y, where y is in filtration level i (but not i−1) and total degree
i+j. Define i`, j` ∈ Z by x̄` ∈ E∞

i`,j`
. It will also be convenient to write d = i+j for

the total degree of y and d` = i`+ j` for the total degree of x`. Since y is arbitrary,
it suffices to show that y is in the submodule of πtG

∗ X generated by x1, . . . , xn over
πtG
∗ THH(k).

Since E∞
∗,∗ is generated by x̄1, . . . , x̄n over k[v̄, v̄−1, t], we can write

ȳ = ā01v̄
1
2 (i1−i)t

1
2 (j−j1)x̄1 + · · ·+ ā0nv̄

1
2 (in−i)t

1
2 (j−jn)x̄n

for some ā01, . . . , ā
0
n ∈ k, where we must have ā0` = 0 if i` − i is odd, j − j` is odd,

or j − j` < 0. Let a0` = ω(ā0`) ∈Wk using the Teichmüller character and let

y0 = a01v
1
2 (i1−i)(pv−1)

1
2 (j−j1)x1 + · · ·+ a0nv

1
2 (in−i)(pv−1)

1
2 (j−jn)xn

= a0np
1
2 (j−j1)v

1
2 (d1−d)x1 + · · ·+ a0np

1
2 (j−jn)v

1
2 (dn−d)xn.

We again have a0` = 0 when d`−d is odd, j−j` is odd, or j−j` < 0, so this formula
makes sense. Let z1 = y− y0. Since y0 also represents ȳ in E∞

i,j , we must have that
z1 is in filtration degree i− 1 or lower, so represents an element z̄1 in E∞

i−s1,j+s1
for

some s1 > 0. Writing z̄1 in terms of the generators x̄1, . . . , x̄n, we must have

z̄1 = ā01v̄
1
2 (i1−i+s1)t

1
2 (j−j1+s1)x̄1 + · · ·+ ā0nv̄

1
2 (in−i+s1)t

1
2 (j−jn+s1)x̄n
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for some ā11, . . . , ā
1
n ∈ k. Let a1` = ω(ā1`) and let

y1 = y0 + a11p
1
2 (j−j1+s1)v

1
2 (d1−d)x1 + · · ·+ a1np

1
2 (j−jn+s1)v

1
2 (dn−d)xn

=
(
a01p

1
2 (j−j1) + a11p

1
2 (j−j1+s1)

)
v

1
2 (d1−d)x1 + · · ·

+
(
a0np

1
2 (j−jn) + a1np

1
2 (j−jn+s1)

)
v

1
2 (dn−d)xn.

Let z2 = y − y2; then z2 must be in filtration level i − 1 − s1, so represents an
element z̄2 in E∞

i−s2,j+s2
for some s2 > s1. Inductively construct as above ym, zm,

with z̄m ∈ E∞
i−sm,j+sm

for a strictly increasing sequence of positive integers sm and
with ym of the form

ym =
(
a01p

1
2 (j−j1) + · · ·+ am1 p

1
2 (j−j1+sm)

)
v

1
2 (d1−d)x1 + · · ·

+
(
a0np

1
2 (j−jn) + · · ·+ amn p

1
2 (j−jn+sm)

)
v

1
2 (dn−d)xn,

where am` = 0 if j− j`+sm is odd or negative or if d`−d is odd. Because sm →∞,
the coefficients

a0`p
1
2 (j−j`) + · · ·+ am` p

1
2 (j−j`+sm)

converge to define an element y∞ in the submodule of πtG
∗ X generated by x1, . . . , xn

over πtG
∗ THH(k). The difference y − y∞ is in filtration level sm for all m, and so

y = y∞ since the filtration on homotopy groups is complete. �

18. Comparing monoidal models

In Section 11 we defined a lax monoidal model TM for the Tate fixed point
functor for any finite group G and in Section 2 we defined a lax symmetric monoidal
model JTL

G . In this section we argue that these define the same lax monoidal
structure on the Tate fixed points viewed as a functor to the stable category. This
comparison is in itself is not enough to compare the map

TMX ∧LTMA TMY −→ TM (X ∧LA Y )

we used in Section 5 to the map

JTL
GX ∧LJTL

GA JTL
GY −→ JTL

G (X ∧LA Y )

implicitly in the statement of the main theorem; we also make that comparison
here.

Both arguments use an elaboration of the operadic structure on TO
G described

in (2.4), which for n = 2 takes the form

O(2)+ ∧ TO
G (X) ∧ TO

G (Y ) −→ TO
G (X ∧ Y ).

This structure uses the diagonal map on EG. Any operad O admits a canonical
map O → Com → OΞ

1 and we view the structure of (2.4) as corresponding to this
map. We can use any map of operads O → OΞ

1 and then the structure in (2.4)
generalizes to this context, where we use the coaction of OΞ

1 on EG in place of the
diagonal map. This structure is natural in maps of (E∞ or A∞) operads over OΞ

1 .
Now consider the maps of operads over OΞ

1

C1 ←− L× C1 −→ L×O
Ξ
1 ←− L

where the lefthand map is projection, the middle map is induced by the inclusion
of C1 in OΞ

1 and the righthand map is induced by the identity on L and the map
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L → Com → OΞ
1 . The backward maps are weak equivalence, and looking at the

structure above, we get a natural commuting diagram

C1(2)+ ∧ T C1

G X ∧ T C1

G Y // T C1

G (X ∧ Y )

(L(2)× C1(2))+ ∧ TL×C1

G X ∧ TL×C1

G Y

'
OO

//

'
��

TL×C1

G (X ∧ Y )

'
��

'
OO

(L(2)×OΞ
1 (2))+ ∧ T

L×OΞ
1

G X ∧ T
L×OΞ

1

G Y // T
L×OΞ

1

G (X ∧ Y )

L(2)+ ∧ TL
GX ∧ TL

GY //

'
OO

TL
G (X ∧ Y )

'
OO

(where we have used the identity permutation subspace C1(2) of C1(2) for the en-
tries involving C1). Precomposing with the universal map from the derived smash
product to the smash product and restricting to the case when X and Y are cofi-
brant, we get an analogous diagram with the smash product replaced by the derived
smash product. Together with the canonical map S → TO

G S, the horizontal maps
give structure maps for lax monoidal structures on the Tate fixed point functor
and the vertical maps imply that these structures coincide. We can now prove the
following theorem.

Theorem 18.1. The canonical isomorphism in the stable category between JTG

and TM preserves the lax monoidal structure.

Proof. The comparison of unit maps is clear. The canonical isomorphism in
the stable category JTL

G → TL
G is symmetric monoidal and the canonical map in

the stable category

L(2)+ ∧ TL
GX ∧L TL

GY −→ TL
GX ∧LL TL

GY

is an isomorphism, so the work above reduces to comparing the associativity map
for TM to the associativity map on T C1

G . For this it is enough to compare the

associativity map for T̄ M̄
∗,∗ and T̄∗,∗, where T̄∗,∗ is defined in Construction 11.1.

Compatibility of these maps is easily seen from the commuting diagram

T̄ M̄
i1,j1

X ∧ T̄ M̄
i2,j2

Y //

��

T̄ M̄
i,j (X ∧ Y )

��

C1(2)+ ∧ T̄i1,j1X ∧ T̄i2,j2Y
// T̄i,j(X ∧ Y )

where the vertical map on the left is induced by

T̄ M̄
i1,j1X ∧ T̄ M̄

i2,j2Y = (T̄i1,j1X ∧ R>0
+ ) ∧ (T̄i2,j2Y ∧ R>0

+ )

∼= (R>0 × R>0)+ ∧ T̄i1,j1X ∧ T̄i2,j2Y

−→ C1(2)+ ∧ T̄i1,j1X ∧ T̄i2,j2Y

(with the last map induced by the map µ2 of Construction 11.3), and the vertical
map on the right is induced by the collapse map R>0 → ∗. �

Next we move on to compare the maps

TMX ∧LTMA TMY −→ TM (X ∧LA Y )
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and

JTL
GX ∧LJTL

GA JTL
GY −→ JTL

G (X ∧LA Y ).

First we need to compare the objects, and we follow roughly same strategy as
above, transporting the constructions across the maps of operads. Following the
ideas of [25], we construct the balanced smash product of operadic modules.

The diagram preceding the previous theorem compares the n = 2 case of the
structure maps

(18.2) O(n)+ ∧ TO
G X1 ∧ · · · ∧ TO

G Xn −→ TO
G (X1 ∧ · · · ∧Xn)

for O = C1, L×C1, L×O
Ξ
1 , or L, where O(n) denotes the corresponding nth space

(for the E∞ operads) or identity permutation subspace (for the A∞ operads). We
also write O for the non-Σ A∞ operad corresponding to O: For one of the E∞

operads O = O with the permutations forgotten, and for one of the A∞ operads
O is the identity permutation component in each arity. It is clear from the general
case of the structure map and comparison diagram that for an associative ring
orthogonal G-spectrum A, TO

G A inherits the structure of a (non-Σ) O-algebra and

the maps of operads O → O′ over OΞ
1 induce maps of O-algebras TO

G A→ TO′

G A. In
addition, for Y a left A-module, TO

G Y inherits the structure of a left TO
G A-module

over O: It has structure maps of the form

O(n+ 1)+ ∧ (TO
G A)(n) ∧ TO

G Y −→ TO
G Y

(for n ≥ 0) satisfying the usual unit and associativity conditions with respect to
the operadic multiplication on A. The maps of operads O → O′ above induce maps
of left TO

G A-modules over O. Analogous observations apply to right modules.

For an O-algebra B, the category of left B-modules over O is equivalent to the

category of left modules for an associative ring symmetric spectrum UO
L B, called

the left enveloping algebra. Concretely UO
L B can be constructed as the coequalizer

∨
n,m1,...mn

(O(n+ 1)× (O(m1)× · · · × O(mn)))+ ∧B(m)
//
// ∨
n
O(n+ 1)+ ∧B(n)

for n ≥ 0, m1, . . . ,mn ≥ 0, and m = m1 + · · ·+mn, where one map is induced by
the operadic multiplication

O(n+ 1)× (O(m1)× · · · × O(mn))

∼= O(n+ 1)× (O(m1)× · · · × O(mn)× {1}) −→ O(m+ 1)

and the other by the O-action

O(mi)+ ∧B(mi) −→ B.

The unit is induced by the map

S ∼= {1}+ ∧ S = {1}+ ∧B(0) −→ O(1) ∧B(0)

and the multiplication is induced by the map

(O(n+ 1)+ ∧B(n)) ∧ (O(n′ + 1)+ ∧B(n′))

∼= (O(n+ 1)×O(n′ + 1))+ ∧B(n+n′) −→ O(n+ n′ + 1)+ ∧B(n+n′)

induced by the operadic multiplication ◦n+1. Analogously, the category of right
B-modules over O is the category of right modules for the right enveloping algebra
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UO
R B, which may be constructed as an analogous coequalizer with identical formulas

except that it uses the map

O(n+ 1)× (O(m1)× · · · × O(mn))

∼= O(n+ 1)× ({1} × O(m1)× · · · × O(mn)) −→ O(m+ 1)

in the construction and the map

(O(n+ 1)+ ∧B(n)) ∧ (O(n′ + 1)+ ∧B(n′))

∼= (O(n′ + 1)×O(n+ 1))+ ∧B(n+n′) −→ O(n+ n′ + 1)+ ∧B(n+n′)

induced by ◦1 (leaving the factors of B in the same order) in the multiplication.

Construction 18.3. We construct a right (UO
R B)op∧(UO

L B)-module BalO(B)
as follows. The underlying orthogonal spectrum is the coequalizer

∨
n,m1,...mn

(O(n+ 2)× (O(m1)× · · · × O(mn)))+ ∧B(m)
//
// ∨
n
O(n+ 2)+ ∧B(n)

where one map is induced by the operadic multiplication

O(n+ 2)× (O(m1)× · · · × O(mn))

∼= O(n+ 2)× ({1} × O(m1)× · · · × O(mn)× {1}) −→ O(m+ 2)

and the other by the O-action

O(mi)+ ∧B(mi) −→ B.

The left UO
R B-action is induced by the map

(O(n+ 1)+ ∧B(n)) ∧ (O(n′ + 2)+ ∧B(n′))

∼= (O(n′ + 2)×O(n+ 1))+ ∧B(n) ∧B(n′) −→ O(n′ + n+ 2)+ ∧B(n+n′))

induced by ◦1 (where the factors of B remain in the same order). The right UO
L B-

action is induced by the map

(O(n′ + 2)+ ∧B(n′)) ∧ (O(n+ 1)+ ∧B(n))

∼= (O(n′ + 2)×O(n+ 1))+ ∧B(n′) ∧B(n) −→ O(n′ + n+ 2)+ ∧B(n′+n))

induced by ◦n′+2.

Definition 18.4. Let O be a non-Σ A∞ operad, let B be an O-algebra, let
M be a right B-module over O, and let N be a left B-module over O. Define the
point-set balanced smash product of M and N over B and O to be the orthogonal
spectrum

M ∧OB N := BalO(B) ∧
(UO

R B)op∧(UO
L B)

(M ∧N),

an enriched bifunctor
M odr

UO
R B
∧M od`

UO
L B
−→ S .

This definition relates to the example of TO
G as follows. When A is an associa-

tive ring orthogonal G-spectrum and X and Y are right and left A-modules, the
structure maps (18.2)

O(n+ 2)+ ∧ TO
G X ∧ (TO

G A)(n) ∧ TO
G Y −→ TO

G (X ∧A(n) ∧ Y ) −→ TO
G (X ∧A Y )
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fit together to define a map

(18.5) TO
G X ∧OTO

G A TO
G Y −→ TO

G (X ∧A Y ),

naturally in A, X, Y , and O.
We have a derived version of the balanced smash product that is easiest to

define if we restrict to the non-Σ A∞ operads C1, L×C1, L×O
Ξ
1 , and L involved in

our comparison. These operads have the following special property that we prove
in the next section.

Theorem 18.6. Let O = C1, L×C1, L×O
Ξ
1 , or L, and let B be any O-algebra.

The maps

O(2)+ ∧B −→ UO
L B

O(2)+ ∧B −→ UO
R B

O(3)+ ∧B −→ BalO B

in the defining colimits are weak equivalences.

Remark 18.7. For more general non-Σ A∞ operads, we do not expect the
enveloping algebras to always have the correct homotopy type for arbitrary O-
algebras B; they will, however, have the correct homotopy types for cofibrant O-
algebras, and so cofibrant replacement of the algebra B is necessary to obtain
the correct derived categories of B-modules in this setting. This presents no real
practical difficulties except to complicate definitions and statements of theorems.
To avoid these complications, we define derived functors only for O = C1, L × C1,
L ×OΞ

1 , or L.

Definition 18.8. For O = C1, L×C1, L×O
Ξ
1 , or L, define the derived balanced

smash product TorB,O(M,N) as the left derived enriched bifunctor [21, 5.3] of the
point-set balanced product functor.

As a special case of [21, 8.2], the derived balanced smash product may be

constructed by using a cofibrant left (UO
R B)op ∧ (UO

L B)-module approximation of
M ∧N ; one good way to choose such an approximation is to smash a cofibrant right

UO
R B-module approximation ofM with a cofibrant left UO

L B-module approximation
of N .

We now need to compare the balanced smash product of Definition 18.4 with
the Blumberg-Hill EKMM smash product in L(1)-spectra in orthogonal spectra
and the balanced smash product of modules over an associative ring orthogonal
spectrum. The first of these is the following theorem, the proof of which is given
in the next section. Recall that we use J to denote the functor (−) ∧L S from
L(1)-spectra in orthogonal spectra to EKMM S-modules in orthogonal spectra.

Theorem 18.9. Let B be an associative ring EKMM S-module in orthogo-
nal spectra, M a right B-module, and N a left B-module (for the EKMM smash
product). Then the Blumberg-Hill EKMM smash product M ∧B N is canonically
isomorphic to J(M ∧LB N) for the balanced smash product constructed in Defini-
tion 18.4.

The following is now an immediate consequence of Theorems 18.6 and 18.9.
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Corollary 18.10. Let A be an associative ring orthogonal G-spectrum, let X
be a right A-module and let Y be a left A-module. Then the natural transformations
of balanced smash products

T C1

G X ∧C1

T
C1
G A

T C1

G Y ←− TL×C1

G X ∧L×C1

(T
L×C1
G A)

TL×C1

G Y −→

T
L×OΞ

1

G X ∧
L×OΞ

1

(T
L×OΞ

1
G A)

T
L×OΞ

1

G Y ←− TL
GX ∧LTL

GA TL
GY

←− J(JTL
GX ∧LJTL

GA JTL
GY ) ∼= JTL

GX ∧JTL
GA JTL

GY

induce isomorphism of derived balanced smash products.

We still need to compare the balanced smash product T C1

G X ∧C1

T
C1
G A

T C1

G Y in the

context of C1-algebras and modules with the balanced smash product T M̄X ∧TMA

T M̄Y in the context of associative orthogonal spectra and modules. As in Sec-
tion 11, for any C1-algebra B, we can form the Moore construction BM as the
pushout

BM := (S ∧ R
≥0
+ ) ∪

S∧R
>0
+

(B ∧ R>0
+ ),

which has the natural structure of an associative ring orthogonal spectrum and also
has the property that the canonical map BM → B (induced by the map collapsing
R to a point) is a homotopy equivalence of orthogonal spectra. Given X and Y right

and left B-modules over C1, the Moore construction (−)M̄ := (−) ∧ R>0
+ converts

X and Y to BM -modules. We then have a natural map

XM̄ ∧BM Y M̄ ∼= XM̄ ∧BM BM ∧BM Y M̄ −→ X ∧C1

B Y

induced by the map µ3 (from Construction 11.3) interpreted as a map

(X ∧ R>0
+ ) ∧ (B ∧ R>0

+ ) ∧ (Y ∧ R>0
+ ) −→ C1(3)+ ∧X ∧B ∧ Y

and the unital extension of µ3 viewed as a map

(X ∧ R>0
+ ) ∧ (S ∧ R>0

+ ) ∧ (Y ∧ R>0
+ ) −→ C1(2)+ ∧X ∧ Y

composed with the maps in the defining colimit

C1(3)+ ∧X ∧B ∧ Y −→ X ∧C1

B Y and C1(2)+ ∧X ∧ Y −→ X ∧C1

B Y.

Theorem 18.11. For B a C1-algebra and X and Y right and left B-modules
over C1, the canonical map

XM̄ ∧BM Y M̄ −→ X ∧C1

B Y

induces an isomorphism on the derived balanced smash products.

Proof. The proof follows the usual induction up the cellular filtration argu-
ment. We may as well take X and Y to be cofibrant. Let Y ′ → Y M be a cofibrant
approximation; we want to show that the composite point-set map

XM̄ ∧BM Y ′ −→ XM̄ ∧BM Y M̄ −→ X ∧C1

B Y

is a weak equivalence. Without loss of generality, we can assume that Y is a
cellular left B-module, Y = colimYn where each Yn is formed as the pushout of
cell attachments using the generating cofibrations [24, 12.1] in the model category

of UC1

L B-modules as cells. We can likewise arrange that Y ′ = colimY ′
n where each

Y ′
n → Y ′

n+1 is the inclusion of a subcomplex, and we have a system of compatible
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weak equivalences Y ′
n → Y M

n . Since both XM̄ ∧BM (−) and X ∧C1

B (−) preserve
h-cofibrations and all colimits, it suffices to show that the maps

XM̄ ∧BM (Y ′
n/Y

′
n−1) −→ XM̄ ∧BM (Y M̄

n /Y M̄
n−1) −→ X ∧C1

B (Yn/Yn−1)

are weak equivalences, where we understand Y ′
−1 = Y−1 = ∗. Since both functors

XM̄ ∧BM (−) and X ∧C1

B (−) preserve weak equivalences between cofibrant objects
and coproducts, it suffices to consider the case when Yn/Yn−1 = B ∧ FnS

m (for
some m,n ∈ N) and this case is clear. �

Corollary 18.12. Let A be an associative ring orthogonal G-spectrum, let X
be a right A-module and let Y be a left A-module. Then the natural transformation
of balanced smash products

T M̄X ∧TMA T M̄Y −→ T C1

G X ∧
T

C1
G A

T C1

G Y

induces an isomorphism on derived balanced smash products.

If the underlying orthogonal G-spectra of X and Y come with structure maps
S→ X and S→ Y , then the natural transformation of balanced smash products

T M̄X ∧TMA T M̄Y −→ TMX ∧TMA TMY

induces a weak equivalence of derived balanced smash products. This completes
a comparison of the derived balanced smash product for our filtered lax monoidal
model and our (point-set) lax symmetric monoidal model. For the comparison of
the maps

TMX ∧LTMA TMY −→ TM (X ∧LA Y )

and

JTL
GX ∧LJTL

GA JTL
GY −→ JTL

G (X ∧LA Y )

we combine with the natural maps on derived functors induced by the maps (18.5) to
obtain the following commuting diagram, where all vertical arrows are isomorphisms
in the stable category.

T M̄X ∧LTMA T M̄Y //

'
��

T M̄ (X ∧LA Y )

'
��

TorT
C1
G A,C1(T C1

G X,T C1

G Y ) // T C1

G (X ∧LA Y )

TorT
L×C1
G A,L×C1(TL×C1

G X,TL×C1

G Y ) //

'
��

'
OO

TL×C1

G (X ∧LA Y )

'

OO

'
��

TorT
L×OΞ

1
G A,L×OΞ

1 (T
L×OΞ

1

G X,T
L×OΞ

1

G Y ) // T
L×OΞ

1

G (X ∧LA Y )

JTL
GX ∧L

JTL
GA

JTL
GY //

'

OO

JTL
G (X ∧LA Y )

'

OO
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19. Identification of the enveloping algebras and Bal

In this section, we identify in more concrete terms the enveloping algebras

UO
L B, UO

R B, and balanced product object BalO B for an algebra B over one of the

particular non-Σ A∞ operads O = C1, L × C1, L × O
Ξ
1 , and L. As a consequence,

we deduce Theorems 18.6 and 18.9. The theorems only refer to the underlying
orthogonal spectra, but we have included a full description of the ring and module
structures for completeness. We work one operad at a time. In each of the following
subsections, we use B to denote an arbitrary O-algebra for the given non-Σ operad
O.

The operad C1. For this operad, the left enveloping algebra was identified in
[25, 2.5] and we only need to review its description.

Let D denote the subspace of C1(1) where the interval does not start at 0; then

UC1

L B is the pushout

UC1

L B = (C1(1)+ ∧ S) ∪D+∧S (D+ ∧B)

with unit induced by the map

S ∼= {1}+ ∧ S −→ C1(1)+ ∧ S −→ UC1

L B

and product induced as follows. Given elements [x1, y1] and [x2, y2] of D, we get
an element

[0, x1/(x1 + (y1 − x1)x2)], [x1/(x1 + (y1 − x1)x2), 1]

of C1(2) and an element

[x1 + (y1 − x1)x2, x1 + (y1 − x1)y2]

of D. This can also be expressed in terms of ◦2 where we view D as in [25, §2] as
the subset of C1(2) where the first interval starts at 0 and ends at the start of the
second interval, which is the given interval that does not start at 0. The picture of
{[0, x1], [x1, y1]} ◦2 {[0, x2], [x2, y2]} is

x1 (y1−x1)x2︷ ︸︸ ︷

︸ ︷︷ ︸
(y1−x1)y2

y1

.

The first two segments translated and rescaled to begin at 0 and end at 1 give the
element of C1(2) and the third segment gives the element of D. We use the element
of C1(2) to multiply the copies of B and the element of D above for the new element
of D. More formally, writing f : D×D → C1(2) and g : D×D → C1(1), the product
is induced by

(D+∧B)∧(D+∧B) ∼= (D×D)+∧B∧B
(g×f)∧id
−−−−−−→ D+∧C1(2)+∧B∧B

id∧ξ2
−−−−→ D+∧B

where ξ is the action of C1 on B.
The right enveloping algebra has a similar description except that we use the

subspace D′ of C1(1) of intervals that do not end at 1. The underlying orthogonal
spectrum is then

UC1

R B = (C1(1)+ ∧ S) ∪D′
+∧S (D

′
+ ∧B)
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with unit induced by the map

S ∼= {1}+ ∧ S −→ C1(1)+ ∧ S −→ UC1

R B

and product induced by the maps D′ ×D′ → C1(2) and D′ ×D′ → D′ that send
the pair of elements [x1, y1] and [x2, y2] of D to the element

[
0,

(y2 − x2)(1− y1)

(y2 − x2)(1− y1) + (1− y2)

]
,

[
(y2 − x2)(1− y1)

(y2 − x2)(1− y1) + (1− y2)
, 1

]

of C1(2) and the element

[x2 + (y2 − x2)x1, x2 + (y2 − x2)y1]

of D′, respectively. Here we are using the ◦1 product

{[x2, y2], [y2, 1]} ◦1 {[x1, y1], [y1, 1]},

whose picture is

x2 (y2−x2)x1︷ ︸︸ ︷

︸ ︷︷ ︸
(y2−x2)y1

︸ ︷︷ ︸
(y2−x2)(1−y1)

y2

︸ ︷︷ ︸
1−y2

.

The last two segments translated and rescaled to start at 0 and end at 1 give the
element of C1(2) and the third segment (whose length is (y2 − x2)(y1 − x1)) gives
the element of D′.

To identify BalC1 B, let C be the subset of C1(2) consisting of those pairs of
intervals [a, b], [c, d] with b < c. Let Z be the pushout

Z = (C1(2)+ ∧ S) ∪C+∧S (C+ ∧B).

We define the right UC1

L B-module structure essentially using ◦2. Specifically, we
have maps

C ×D −→ C1(2) and C ×D −→ C

sending the elements [a, b], [c, d] in C and [x, y] in D to

[0, (c− b)/(c− b+ x(d− c))], [(c− b)/(c− b+ x(d− c)), 1]

in C1(2) and
[a, b], [c+ (d− c)x, c+ (d− c)y]

in C, respectively; we use the element of C1(2) to multiply the two factors of B and
the element of C as the new element of C. Pictorially,

a b c−b︷ ︸︸ ︷c (d−c)x︷ ︸︸ ︷

︸ ︷︷ ︸
(d−c)y

d

the element in C1(2) is the third and fourth segments translated and rescaled to
start at 0 and end at 1, while the element of C is the second and fifth segments.
We also need to describe what the action of the C1(1)+ ∧ S part does; the same
formulas apply (the first formula meaning to use the isomorphism B ∧ S ∼= B),

and so it is easy to see that this describes a well-defined pairing Z ∧ UC1

L B → Z.
Examining the formula for {[0, 1]}+ ∧ S shows that the pairing is unital, and an
tedious arithmetic check shows that it is associative.
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The left action of UC1

R B is similar, using ◦1 (on C) instead of ◦2: We have maps

D′ × C −→ C1(2) and D′ × C −→ C

that take the pair of elements [x, y] in D′ and [a, b], [c, d] in C (with b < c) to the
element [

0,
(b− a)(1− y)

(b− a)(1− y) + c− b

]
,

[
(b− a)(1− y)

(b− a)(1− y) + c− b
, 1

]

in C1(2) and the element

[a+ (b− a)x, a+ (b− a)y], [c, d]

of C. Pictorially,

a (b−a)x︷ ︸︸ ︷

︸ ︷︷ ︸
(b−a)y

︸ ︷︷ ︸
(b−a)(1−y)

b

︸ ︷︷ ︸
(c−b)

c d

the element of C1(2) is the fourth and fifth segments translated and rescaled to
start at 0 and end at 1, and the element of C is the third and sixth segments.

To see that the two actions commute, we note that the two maps

UC1

R B ∧ Z ∧ UC1

L B

can each be written in terms of maps

D′ × C ×D −→ C1(3) and D′ × C ×D −→ C

using the element of C1(3) to multiply the three factors of B. Writing [x′, y′] for
the element of D′, [a, b], [c, d] for the element of C, and [x2, y2] for the element of
D, both maps give the same element

[
0, (b−a)(1−y′)

`

]
,
[
(b−a)(1−y′)

` , (b−a)(1−y′)+(b−c)
`

]
,
[
(b−a)(1−y′)+(b−c)

` , 1
]

of C1(3), where ` = (b− a)(1− y′) + c− b+ (d− c)x, and both maps give the same
element

[a+ (b− a)x′, a+ (b− a)y′], [c+ (d− c)x, c+ (d− c)y]

of C. Pictorially,

a (b−a)x′

︷ ︸︸ ︷

︸ ︷︷ ︸
(b−a)y′

︸ ︷︷ ︸
(b−a)(1−y′)

b (c−b)︷ ︸︸ ︷c (d−c)x︷ ︸︸ ︷

︸ ︷︷ ︸
(d−c)y

d

the element of C1(3) for both maps consists of the fourth, fifth, and sixth segments
translated and rescaled to start at 0 and end at 1, and the element of C consists of
the third and seventh segments.

The map C → C1(3) together with the maps C1(3)+ ∧ B → BalC1 B and

C1(2)+ ∧ S→ BalC1 B induces a map Z → BalC1 B.

Theorem 19.1. The map Z → BalC1 B is an isomorphism of right (UC1

R B)op∧

UC1

L B-modules.
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Proof. We construct a map BalC1 B → Z by constructing compatible maps
C1(n+2)+ ∧B

(n) → Z as follows. For n = 0, we use the map C1(2)+ ∧S→ Z from
the construction of Z. For n > 0, we have an isomorphism

C1(n+ 2) −→ C × C1(n)

defined by taking the element

[x0, y0], . . . , [xn+1, yn+1]

in C1(n + 2) (with yi ≤ xi+1) to the element [x0, y0], [xn+1, yn+1] of C and the
element [

x1 − y0
xn+1 − y0

,
y1 − y0

xn+1 − y0

]
, . . . ,

[
xn − y0

xn+1 − y0
,

yn − y0
xn+1 − y0

]

in C1(n). We then get a map C1(n + 2)+ ∧ B(n) → Z using the given element of
C and the element of C1(n) to multiply the factors of B. This obviously factors

through the coequalizer to define a map BalC1 B → Z. Looking at the composite
maps

C1(2)+ ∧ S −→ BalC1 B −→ Z and C+ ∧B −→ C1(3)+ ∧B −→ BalC1 B −→ Z,

we see that the composite map on Z is the identity. Likewise, looking at the
surjection ◦2 : C1(3)×C1(n)→ C1(n+2) for n > 0 (which induces the inverse of the
isomorphism above when restricted to C × C1(n)), we can see that the composite

on BalC1 B is the identity. To see that BalC1 B → Z is a map of bimodules, it

suffices to check each of the module structures separately. The left action of UC1

R B

on BalC1 B is induced by

(C1(m+ 1)+ ∧B(m)) ∧ (C1(n+ 2)+ ∧B(n))

∼= (C1(n+ 2)× C1(m+ 1))+ ∧B(m+n) ◦1∧id
−−−−→ C1(m+ n+ 2)+ ∧B(m+n).

It is now easy to check in the case m = 0, 1, n = 0, 1 that the composite map to Z
is the same as the composite

(C1(m+ 1)+ ∧B(m)) ∧ (C1(n+ 2)+ ∧B(n)) −→ UC1

R B ∧ Z

with the action map UC1

R B ∧ Z defined above, and this suffices to show the result.

The case of the right action by UC1

L B is similar. �

We can now prove the case of Theorem 18.6 for O = C1, which we state as the
following proposition.

Proposition 19.2. The maps C1(2)+ ∧B → UC1

L B, C1(2)+ ∧B → UC1

L B, and

C1(3)+ ∧B → BalC1 B are homotopy equivalences of orthogonal spectra.

Proof. The case of the enveloping algebras are essentially proved in [25, 1.1],
but it is no extra work to include those cases here. We have maps

UC1

L B −→ B, UC1

R B −→ B, BalC1 B −→ B

induced by the maps C1(1)→ ∗, C1(2)→ ∗, and C1(3)→ ∗. Choosing elements in
C1(2) and C1(3), we then get composite maps

UC1

L B −→ C1(2)+ ∧B, UC1

R B −→ C1(2)+ ∧B, BalC1 B −→ C1(3)+ ∧B
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and we see that the composites on C1(2)+ ∧ B and C1(3)+ ∧ B are homotopic to
the identity since C1(2) and C1(3) are contractible. Likewise, it is straightforward
to write explicit formulas for contractions on the pairs (C1(1), D), (C1(1), D

′), and

(C1(2), C) that produce the homotopies for the composites on UC1

L B, UC1

R B, and

BalC1 B. �

The operad L. For the L we also need to prove Theorem 18.9 in addition to
Theorem 18.6. For this operad, we adapt the techniques of EKMM [10, §I.5]. We
begin by identifying the enveloping algebras.

Proposition 19.3. The underlying orthogonal spectra of UL
LB and UL

RB are
naturally isomorphic to the pushout

(L(1)+ ∧ S) ∪L(2)+∧L(1)S
L(2) ∧L(1) B

where for UL
LB the action of L(1) on L(2) is via L(1)×{1} ⊂ L(1)×L(1) and for

UL
LB the action of L(1) on L(2) is via {1} × L(1) ⊂ L(1)× L(1).

Proof. We treat the case of UL
LB as the other case is entirely similar. For

the purpose of the proof, denote the pushout as P . The defining coequalizer for
UL
LB induces the map P → UL

LB. Using Hopkins’ Lemma [10, I.5.4], we have
isomorphisms

L(n+ 1)+ ∧B(n) ∼= L(2)+ ∧L(1) (L(n)+ ∧B(n))

from which the L-action on B induces a map to P . These maps glue over the
coequalizer to construct a map UL

LB → P . We see that the composite map is the
identity on P by looking at the composite maps L(2)+∧B → P and L(1)+∧S→ P .
Likewise the map

(L(1)+ ∧B) ∨
∨
L(2)+ ∧ (L(n)+ ∧B(n)) −→ UL

LB

is unchanged by composing with the composite UL
LB → P → UL

LB, and we con-
clude that the composite is the identity on UL

LB (since the coequalizer description of
UL
LB plus Hopkins’ Lemma implies that the displayed map is an epimorphism). �

For the pushout description of UL
LB in the previous proposition, the unit S→

UL
LB is induced by the map

S ∼= {1}+ ∧ S −→ L(1)+ ∧ S −→ UL
LB.

The product is induced by the map

(L(2)+ ∧L(1) B) ∧ (L(2)+ ∧L(1) B) −→ (L(2)+ ∧L(1) B) ∧L(1) (L(2)+ ∧L(1) B)

∼= L(3)+ ∧L(1)×L(1) B ∧B ∼= L(2)+ ∧L(1) (L(2)+ ∧L(1)×L(1) B ∧B)

−→ L(2)+ ∧L(1) B

and the straightforward modifications using L(1)+∧S in place of one or both copies
of L(2)+ ∧B with L(1)+ ∧ S. (The latter is the map

(L(1)+ ∧ S) ∧ (L(1)+ ∧ S) ∼= (L(1)× L(1))+ ∧ S −→ L(1)+ ∧ S

induced by the operadic multiplication.) The product for UL
RB is similar except

that the operad factors (but not the B factors) transpose, plugging the left L(2)
into the right L(2) with respect to the operadic multiplication.
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We have the following concrete description of BalL B. The proof uses the same
techniques as the proof of the previous proposition.

Proposition 19.4. The underlying orthogonal spectrum of BalL B is computed
by the pushout

(L(2)+ ∧ S) ∪L(3)+∧L(1)S
(L(3)+ ∧L(1) B)

where the action of L(1) on L(3) is via {1} × L(1)× {1} ⊂ L(1)× L(1)× L(1).

The right action of UL
LB is induced by the map

(L(3)+ ∧L(1) B)∧ (L(2)+ ∧L(1) B) −→ L(4)+ ∧L(1)×L(1) (B ∧B) −→ L(3)+ ∧L(1) B

again multiplying L(2)+ ∧L(1)×L(1) B ∧ B → B on the inner factors of B, using
Hopkins’ Lemma (with similar formulas for L(2)+ ∧ S and/or L(1)+ ∧ S). The left
action of UL

RB is similar but transposing the operad spaces so that the operad space

for UL
RB plugs in to the operad space for BalL B for the operadic multiplication.
Turning to Theorem 18.9, recall that J(−) = (−)∧LS denotes the functor from

L(1)-spectra in orthogonal spectra to EKMM S-modules in orthogonal spectra. One
feature it has is that J turns the maps L(n)+∧LS→ L(n−1)+∧S into isomorphisms
(another application of Hopkins’ Lemma). Because of this we then have natural
isomorphisms

(19.5)

JUL
LB ∼= J(L(2)+ ∧L(1) B)

JUL
RB ∼= J(L(2)+ ∧L(1) B)

J BalL B ∼= J(L(3)+ ∧L(1) B)

When B is already an EKMM S-module in orthogonal spectra, we can omit the J
on the right side. We now prove Theorem 18.9.

Proof of Theorem 18.9. It suffices to construct an isomorphism between
J(M ∧LB N) and M ∧B B ∧B N , where the smash products without the superscript
denote smash in the category of EKMM S-modules in orthogonal spectra. With
the simplification of (19.5), we have J(M ∧LB N) as the coequalizer of

(L(3)+ ∧L(1) B) ∧ (UL
RB)op ∧ UL

LB ∧M ∧N

����

(L(3)+ ∧L(1) B) ∧M ∧N.

Because of the maps L(1)+ ∧ S→ (UL
RB)op and L(1)+ ∧ S→ UL

LB, we can replace
the (L(3)+ ∧L(1) B) ∧M ∧N with (L(3)+ ∧L(1)3 ∧(M ∧B ∧N). Also using (19.5)

to replace the enveloping algebras with L(2)+∧L(1)B, we then identify J(M ∧LB N)
as the coequalizer of

(L(3)+ ∧L(1) B) ∧ (L(2)+ ∧L(1) B) ∧ (L(2)+ ∧L(1) B) ∧M ∧N

����

L(3)+ ∧L(1)3 (M ∧B ∧N).

We can simplify the above coequalizer diagram to

L(5)+ ∧L(1)5 (M ∧B ∧B ∧B ∧N)

����

L(3)+ ∧L(1)3 (M ∧B ∧N)
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using the categorical epimorphism

(L(3)+ ∧L(1) B) ∧ (L(2)+ ∧L(1) B) ∧ (L(2)+ ∧L(1) B) ∧M ∧N

−→ L(3)+ ∧L(1)3 ((L(2)+ ∧L(1) B) ∧B ∧ (L(2)+ ∧L(1) B)) ∧M ∧N

∼= L(5)+ ∧L(1)5 (M ∧B ∧B ∧B ∧N).

The latter coequalizer is easily seen (using Hopkins’ Lemma) to beM∧BB∧BN . �

The following proposition gives the instance of Theorem 18.6 for the non-Σ A∞

operad O = L.

Proposition 19.6. For any non-Σ L-algebra B, the maps L(2)+∧B → UL
LB,

L(2)+ ∧ B → UL
RB, and L(3)+ ∧ B → BalL B are weak equivalences of orthogonal

spectra.

Proof. It suffices to check that these maps are weak equivalences after apply-
ing J . Using (19.5), each map is an instance of the map

L(n)+ ∧L(1) S ∼= (L(n)×L(1) L(0))+ ∧ S −→ L(n− 1)+ ∧ S.

This map is a weak equivalence; see [10, XI.2.2]. �

The operad L × C1. This operad combines the features of the previous two
cases. See the case of C1 for the definition of D, D′, and C.

Proposition 19.7. The underlying orthogonal spectrum of UL×C1

L B is

((L(1)× C1)+ ∧ S) ∪((L(2)×D)+∧L(1)S) ((L(2)×D)+ ∧B).

The underlying orthogonal spectrum of UL×C1

R B is

((L(1)× C1)+ ∧ S) ∪((L(2)×D′)+∧L(1)S) ((L(2)×D′)+ ∧B).

The underlying orthogonal spectrum of BalL×C1 B is

((L(2)× C1(2))+ ∧ S) ∪((L(3)×C)+∧L(1)S) ((L(3)× C)+ ∧L(1) B).

The proof is to use Hopkins’ Lemma as in the previous subsection and the
homeomorphisms

D×C1(n)
∼=
−→ C1(n+1), D′×C1(n)

∼=
−→ C1(n+1), and C×C1(n)

∼=
−→ C1(n+2)

(for n > 0) induced by the maps D → C1(2), D
′ → C1(2), and C → C1(3) and the

operadic products ◦1,◦2, and ◦2, respectively, as in the first subsection. The unit

and product on this model of UL×C1

L B and UL×C1

R B are the evident generalization
of the structure described in the previous two subsections, as is the action on

BalL×C1 B.
The following proposition is the instance of Theorem 18.6 for the operad O =

L × C1.

Proposition 19.8. The maps (L(2)×C1(2))+∧B → UL×C1

L B, (L(2)×C1(2))+∧

B → UL×C1

R B, and (L(3)× C1(3))+ ∧B → BalL×C1 B are weak equivalences of or-
thogonal spectra.
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Proof. We treat the case of BalL×C1 B; the remaining cases are similar. The
left action of L(1) on L(n) × C1(n) (as L(1) × {1}) and the models given in the

previous proposition allow us to view BalL×C1 as L(1)-spectra; we can then apply
the functor J to convert to EKMM S-modules (in orthogonal spectra). Applying
J to the pushout

(19.9) ((L(3)× C1(2)) ∧L(1) S) ∪((L(3)×C1(3))+∧L(1)S)
((L(3)× C1(3))+ ∧L(1) B)

is isomorphic to J(BalL×C1 B), and so suffices to show that the map from L(3)+∧B
to (19.9) is a weak equivalence. Using the weak equivalence

L(3)+ ∧B −→ L(3)+ ∧L(1) B

(see [10, XI.2.2]), it suffices to check that the inclusion of (L(3)× C1(3))+ ∧L(1) B
in the pushout (19.9) is a weak equivalence. From here the proof is identical to the
proof of Proposition 19.2 using L(3)+ ∧L(1) B in place of B and L(3)+ ∧L(1) S in
place of S. �

The operad L × OΞ
1 . The operad OΞ

1 satisfies OΞ
1 (n) = O

Ξ
1 (1)

n, the operad
built from the monoid OΞ

1 (1) using the diagonal multiplication. In any reasonable
symmetric monoidal category tensored over spaces, a non-Σ OΞ

1 -algebra A is just
an associative monoid object together with a left action of the monoid OΞ

1 (1) on its
underlying object such that the multiplication is OΞ

1 (1)-equivariant and the unit is
OΞ

1 (1)-fixed. Likewise a left or right A-module M over OΞ
1 is just a left or right

A-module (in the usual sense) together with a left action of OΞ
1 (1) for which the

module structure map is OΞ
1 (1)-equivariant. In particular, we see that the left

enveloping algebra of A is OΞ
1 (1)+ ∧ A (where we have written (−)+ ∧ (−) for the

tensor with a space) with OΞ
1 (1) acting diagonally. Likewise, the right enveloping

algebra is OΞ
1 (1)

op
+ ∧ A. (Recall that our convention is for the right enveloping

algebra to act on the right; the alternative convention of having it act on the left
would yield OΞ

1 (1)+ ∧ Aop for the right enveloping algebra.) Working in the weak
symmetric monoidal category of L(1)-spectra in orthogonal spectra, we obtain the
following analogous statement.

Proposition 19.10. For any non-Σ (L×OΞ
1 )-algebra B, we have natural iso-

morphisms of associative ring orthogonal spectra

U
L×OΞ

1

L B ∼= OΞ
1 (1)+ ∧ UL

LB

U
L×OΞ

1

R B ∼= OΞ
1 (1)

op
+ ∧ UL

RB

and an isomorphism of bimodules

BalL×OΞ
1 B ∼= (OΞ

1 (1)×O
Ξ
1 (1))+ ∧ BalL B

(where the action has both factors of OΞ
1 (1) in Bal always left for the multiplication

on OΞ
1 (1)).

The instance of Theorem 18.6 for L ×OΞ
1 now follows from Proposition 19.6.
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20. A topologically enriched lax symmetric monoidal fibrant
replacement functor for equivariant orthogonal spectra

(Proof of Lemma 2.1)

In this section we construct a topologically enriched lax symmetric monoidal
fibrant replacement functor for the positive stable model category of orthogonal
G-spectra. We use an equivariant version of the construction of Kro [20, 3.3].

Before beginning the construction and the argument, it is useful to be slightly
more precise about the homotopy groups of an orthogonal G-spectrum. Recall that
a complete G-universe is an infinite dimensional G-inner product space containing
a representative of each finite dimensional G-representation. We use the notation
V < U to denote that V is a finite dimensional G-linear subspace of U . Given
a complete G-universe U , V < U , and W an arbitrary finite dimensional G-inner
product space, for H < G and X a orthogonal G-spectrum, define

πH
W,V <UX = colim

V <Z<U
[SW⊕(Z−V ), X(Z)]H ,

where [−,−]H denotes the set of homotopy classes of maps of based H-spaces and
Z − V denotes the orthogonal complement of V in Z. The following facts are
well-established.

(i) πH
W,V <U has the natural structure of an abelian group.

(ii) If U ′ is a complete G-universe and f : U → U ′ is a G-equivariant linear
isometry (not necessarily isomorphism), then the induced map

πH
W,V <UX −→ πH

W,f(V )<U ′X

is an isomorphism.
(iii) For any finite-dimensional G-inner product space W ′, the map

πH
W,V <UX −→ πH

W⊕W ′,V⊕W ′<U⊕W ′

(induced by (−) ∧ SW ′

and the structure map on X) is an isomorphism.
(iv) A map X → Y of orthogonal G-spectra is a stable equivalence if and

only if the induced maps on πH
W,V <U are isomorphisms for all H < G,

V < U , and W .

Indeed, the group πH
W,V <UX defined above is a specific model for the RO(G)-graded

homotopy group πH
[W ]−[V ]X; (ii) and (iii) are some minimal invariance properties

easily proved by comparison of colimit arguments, while (iv) follows from the fact
that a map in the stable category induces an isomorphism on integer-graded homo-
topy groups if and only if it induces an isomorphism on RO(G)-graded homotopy
groups. Another useful observation is that when U is a complete G-universe and
W is any non-trivial finite dimensional G-inner product space, U ⊗ W is also a
complete G-universe [23, IV.3.9].

For W any finite dimensional G-inner product space, define

(RGX)(W ) = hocolim
V <U

ΩV⊗WX((R⊕ V )⊗W )

where for V < V ′ the map in the hocolim system is induced by the structure map
for X

X((R⊕ V )⊗W ) ∧ S(V ′−V )⊗W

−→ X(((R⊕ V )⊗W )⊕ ((V ′ − V )⊗W )) ∼= X((R⊕ V ′)⊗W )
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and the canonical isomorphism V ⊕ (V ′ − V ) ∼= V ′. The structure map

(RGX)(W ) ∧ SW ′

−→ (RGX)(W ⊕W ′)

is induced at the V spot in the hocolim

ΩV⊗WX((R⊕ V )⊗W ) ∧ SW ′

−→ ΩV⊗(W⊕W ′)X((R⊕ V )⊗ (W ⊕W ′))

as the adjoint under the (ΣW⊕W ′

,ΩW⊕W ′

)-adjunction to the map

X((R⊕ V )⊗W ) ∧ SW ′

∧ SV⊗W ′ ∼= X((R⊕ V )⊗W ) ∧ S(R⊕V )⊗W ′

−→ X((R⊕ V )⊗W ⊕ (R⊕ V )⊗W ′) ∼= X((R⊕ V )⊗ (W ⊕W ′))

coming from the structure map for X. The check that the structure map is well-
defined works exactly as in the non-equivariant case, and this together with the
evident G and I (W,W ′)-action maps make RG into an endofunctor on orthogonal
G-spectra. The inclusion of X(W ) as Ω0⊗WX((R ⊕ 0) ⊗ W ) induces a natural
transformation Id→ RG.

Proposition 20.1. For any orthogonal G-spectrum X, RGX is a positive G-
Ω-spectrum and X → RGX is a stable equivalence.

Proof. The formula for (RGX)(W ) gives a canonical isomorphism

πH
n ((RGX)(W )) ∼= colim(V <U)[S

R
n⊕(V⊗W ), X((R⊕ V )⊗W )]H

∼= colim(R⊗W<Z<(R⊕U)⊗W )[S
R

n⊕(Z−R⊗W ), X(Z)]H

with the second isomorphism by cofinality. This gives a canonical isomorphism

πH
n (RGX(W )) ∼= πH

Rn,R⊗W<(R⊕U)⊗WX

when W is non-trivial (we have not defined the righthand side when W is trivial).
Similarly, we have a canonical isomorphism

πH
n (ΩW ′

(RGX(W ⊕W ′))) ∼= πH
Rn⊕W ′,R⊗(W⊕W ′)<(R⊕U)⊗(W⊕W ′)X

and the adjoint structure map RGX(W )→ ΩW ′

(RGX(W ⊕W ′)) is a weak equiva-
lence wheneverW is nontrivial as an instance of properties (ii) and (iii) of homotopy
groups listed above. It follows from this calculation (and property (iv) of homo-
topy groups above) that RG takes stable equivalences of orthogonal G-spectra to
positive level equivalences. In particular, to prove that the natural transforma-
tion Id → RG is a stable equivalence, it suffices to check that it is a positive
level equivalence on a positive G-Ω-spectrum X. In this case, for W nontrivial,
πH
n (X(W ))→ πH

Rn,W<UX is an isomorphism, and we can identify the induced map

on homotopy groups πH
n (X(W )) → πH

n (RGX(W )) as an isomorphism once again
using property (ii) of homotopy groups above. �

The functor RG is clearly continuous on mapping spaces. Thus, to complete the
proof of Lemma 2.1, we need to construct the lax symmetric monoidal structure
on RG and prove that Id → RG is a symmetric monoidal transformation. This
works essentially just as in the non-equivariant case, using internal sum + of finite
dimensional subspaces of U in place of max of natural numbers. (Of course, Rk +
R` < R∞ is Rmax(k,`) < R∞.) Denoting by IU the partially ordered set of V < U ,
+ defines a functor IU ×IU → IU that is strictly symmetric (V + V ′ = V ′ + V )
and strictly associative ((V +V ′)+V ′′ = V +(V ′ +V ′′)). For specified orthogonal



20. A LAX MONOIDAL FIBRANT REPLACEMENT FUNCTOR 83

G-spectra X and X ′ and finite dimensional G-inner product spaces W and W ′, we
have a natural transformation

ΩV⊗WX((R⊕ V )⊗W ) ∧ ΩV ′⊗W ′

X((R⊕ V ′)⊗W ′)

��

Ω(V+V ′)⊗WX((R⊕ (V + V ′))⊗W ) ∧ Ω(V+V ′)⊗W ′

X ′((R⊕ (V + V ′))⊗W ′)

��

Ω(V+V ′)⊗(W⊕W ′)((X ∧X ′)((R⊕ (V + V ′))⊗ (W ⊕W ′)))

subordinate to + and inducing a map of based G-spaces

RGX(W ) ∧RGX
′(W ′) −→ (RG(X ∧X ′))(W ⊕W ′).

The check that this assembles to a natural transformation

RGX ∧RGX
′ −→ RG(X ∧X ′)

is now straightforward and essentially the same as in the non-equivariant case, as
are the remaining checks of the associativity and symmetry properties and the check
of lax symmetric monoidality of the natural transformation Id→ RG.
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