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Abstract: 43 
 44 
Background: Seagrasses are globally distributed marine flowering plants that play foundational 45 

roles in coastal environments as ecosystem engineers. While research efforts have explored 46 

various aspects of seagrass-associated microbial communities, including describing the 47 

diversity of bacteria, fungi and microbial eukaryotes, little is known about viral diversity in these 48 

communities.  49 

 50 

Results: To begin to address this, we leveraged metagenomic sequencing data to generate a 51 

catalog of bacterial metagenome-assembled genomes (MAGs) and phage genomes from the 52 

leaves of the seagrass, Zostera marina. We expanded the robustness of this viral catalog by 53 

incorporating publicly available metagenomic data from seagrass ecosystems. The final MAG 54 

set represents 85 high-quality draft and 62 medium-quality draft bacterial genomes. While the 55 

viral catalog represents 354 medium-quality, high-quality, and complete viral genomes. 56 

Predicted auxiliary metabolic genes in the final viral catalog had putative annotations largely 57 

related to carbon utilization, suggesting a possible role for phage in carbon cycling in seagrass 58 

ecosystems.  59 

 60 

Conclusions: These genomic resources provide initial insight into bacterial-viral interactions in 61 

seagrass meadows and are a foundation on which to further explore these critical interkingdom 62 

interactions. These catalogs highlight a possible role for viruses in carbon cycling in seagrass 63 

beds which may have important implications for blue carbon management and climate change 64 

mitigation. 65 

 66 
 67 
 68 
 69 
 70 
 71 
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Background: 72 
 73 
Seagrasses are submerged marine flowering plants that have critical roles as foundation 74 

species in coastal ecosystems worldwide. They provide essential ecosystem services such as 75 

stabilizing the seafloor, filtering pollutants, supporting fisheries, and driving biogeochemical 76 

cycles [1–3]. One of their most significant contributions is their ability to sequester carbon in 77 

both their tissues and surrounding sediments (i.e., blue carbon) [2,4]. Despite their ecological 78 

importance, seagrass ecosystems are under increasing threat from pollution, climate change, 79 

and coastal development. Preserving these ecosystems is critical not only for their carbon 80 

sequestration potential but also for maintaining the biodiversity and ecological services they 81 

provide to coastal communities. 82 

 83 

In recent years, there has been growing recognition of the importance of microorganisms in 84 

maintaining the health of plants [5–7]. Studies have begun to describe the composition and 85 

structure of the bacterial community associated with seagrasses, particularly Zostera marina, 86 

the dominant seagrass in the Northern hemisphere [8–14]. These bacterial communities are 87 

thought to have important roles in facilitating nitrogen and sulfur cycling to benefit seagrass 88 

growth and survival [8,9,11,12,15–17]. 89 

 90 

While research has largely focused on the bacterial component of these microbial communities, 91 

advances in sequencing and bioinformatics now allow us to explore the role of viruses in these 92 

systems. Phages, in particular, have been shown to influence global ocean and soil 93 

biogeochemical cycles by modulating host population dynamics through auxiliary metabolic 94 

genes (AMGs), which can directly alter bacterial metabolism to increase overall host fitness [18–95 

21]. However, the diversity and ecological roles of phage in seagrass ecosystems remains 96 

largely unexplored.  97 
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 98 

In this study, we generated a catalog of viruses from seagrass-associated metagenomic 99 

samples, and then investigated host-viral dynamics of viral operational taxonomic units (vOTUs) 100 

and bacterial metagenome-assembled genomes (MAGs) generated from Z. marina leaf 101 

samples from Bodega Bay, CA. Specifically our objectives were to: (i) create a catalog of 102 

vOTUs from Z. marina and other seagrass species using publicly available metagenomic 103 

sequencing data, (ii) assemble a catalog of bacterial MAGs from Z. marina leaf tissue, and (iii) 104 

explore bacterial-phage dynamics with a focus on exploring AMGs involved in nitrogen and 105 

sulfur metabolisms.  106 

 107 
Methods: 108 
 109 
Sequence generation 110 
 111 
We extracted DNA from epiphytic washes from Z. marina leaves as part of previous work 112 

focused on characterizing the mycobiome using high-throughput sequencing of the ITS2 region 113 

[22]. We chose three DNA extracts from that work here for deep metagenomic sequencing with 114 

the goal of obtaining high quality metagenome-assembled genomes. We provided DNA to the 115 

UC Davis Genome Center DNA Technologies Core for sequencing and library preparation. DNA 116 

libraries were sequenced on an Illumina HiSeq4000 to generate 150 bp paired-end reads. 117 

 118 
Metagenomic processing 119 
 120 
We trimmed sequence reads using bbDuk v. 37.68 [23] with the following parameters: qtrim=rl 121 

trimq=10 maq=10. We then mapped against and removed any reads from the metagenomes 122 

matching the available genome for Z. marina v. 3.1 [24] using bowtie2 v. 2.4.5 [25] and 123 

samtools v. 1.11 [26]. We co-assembled the remaining reads from all three metagenomic 124 

samples using MEGAHIT v. 1.2.9  [27].  125 

 126 
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We identified and assessed metagenome-assembled genomes (MAGs) using the anvi’o v. 7.2 127 

workflow [28]. First, we used bowtie2 v. 2.4.5 [25]  and samtools v. 1.11 [26] to obtain read 128 

coverage for each metagenomic sample against the assembly. Then we used “anvi-gen-129 

contigs-database” to generate a database from the co-assembly and to predict open-reading 130 

frames using Prodigal v. 2.6.3 [29]. This command also identifies single-copy bacterial [30], 131 

archaeal [31], and protista [32] genes using HMMER v. 3.2.1  [33] and ribosomal RNA genes 132 

using barrnap [34]. We predicted taxonomic assignments for each gene call using Kaiju v. 1.8.2 133 

[35] with the NCBI BLAST non redundant protein database nr including fungi and microbial 134 

eukaryotes v. v. 2020-05-25. For each individual metagenomic sample, we then used “anvi-135 

profile” to construct an anvi’o profile for contigs >1 kbp with the “–cluster-contigs” option. Next 136 

we ran several automatic binning algorithms including MetaBAT2 v. 2.15, MaxBin v. 2.2.1, 137 

BinSanity v.0.5.4 and CONCOCT v. 1.1.0 [36–39] to generate preliminary sets of bacterial 138 

MAGs. We provided the resulting set from each algorithm to DAStool v. 1.1.2 [40] to generate a 139 

single optimal MAG set. MAGs from this set were then manually assessed for contamination 140 

and refined using “anvi-refine”. After manual refinement, MAGs were further de-contaminated 141 

using MAGpurify v. 2.1.2 [41]. 142 

 143 

We assessed MAG completeness and contamination using CheckM v. 1.2.1 [42] and CheckM2 144 

v. 1.0.1 [43]. In this work we report all identified MAGs with >80% completion and <10% 145 

contamination. We refer to MAGs as high quality if they were >90% complete with <5% 146 

contamination, and medium quality if they were >50% complete with <10% contamination per 147 

established guidelines [44]. To obtain a putative taxonomy for each MAG, we used GTDB-Tk v. 148 

2.2.6 [45], which uses a combination of average nucleotide identity and phylogenetic placement 149 

in the context of the Genome Taxonomy Database to taxonomically identify MAGs.  150 

 151 
Viral identification 152 
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 153 
In order to have a robust dataset to compare our recovered virus catalog in the context of other 154 

studies, we downloaded publicly available data from NCBI GenBank from nine studies 155 

[11,12,17,46–51] representing 65 metagenomic and 18 metatranscriptomic samples collected 156 

from seagrass environments (Table S1). 157 

 158 

We filter and trimmed public metagenomic data using bbDuk v. 37.68 [23] with the following 159 

parameters: ktrim=r k=23 mink=11 hdist=1 tpe tbo qtrim=rl trimq=10 maq=10. Then for each 160 

study, samples were co-assembled using MEGAHIT v. 1.2.9. We used the co-assemblies for 161 

each study, as well as the co-assembly from this study, when identifying viral sequences using 162 

a workflow similar to Guo et al. [52]  163 

 164 

Briefly, we identified viral sequences from metagenomic co-assemblies using VirSorter2 v. 2.2.3 165 

[53], a tool that uses multiple random forest classifiers to predict whether a sequence contains a 166 

DNA or RNA virus, with the following parameters: --min-length 5000, --min-score 0.5, --include-167 

groups dsDNAphage,RNA,ssDNA,lavidaviridae. We then ran CheckV v0.8.1 [54] on the 168 

VirSorter2 predicted viral sequences using the “end_to_end” workflow. To be conservative in 169 

our analyses, we removed viral sequences with a CheckV quality score of “not-determined” and 170 

“low-quality” prior to downstream analysis. We then ran VirSorter2 again on the viral sequences 171 

from the CheckV workflow with the --prep-for-dramv option. We used DRAM-v v. 1.2.2 [55] to 172 

“annotate” viral sequences and then “distill” annotations into predicted auxiliary metabolic genes 173 

(AMGs) for phage.  174 

 175 
Virus clustering and analysis  176 
 177 
We clustered viral sequences  10 kbp in length into 95% similarity viral operational taxonomic 178 

units (vOTUs) using dRep v. 3.2.2 [56]. We used Prodigal v. 2.6.3 [29] to predict open reading 179 
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frames in vOTUs using the -p meta option. We then provided the predicted proteins from the 180 

phage vOTUs to VContact2 v. 0.9.19, as well as predicted proteins from the INPHARED August 181 

2023 viral reference database, to generate viral clusters (VCs) based on viral gene-sharing 182 

networks [57,58]. We further used geNomad v. 1.7.4 to assign taxonomy to phage vOTUs [59]. 183 

We used iPHoP v. 1.3.2 [60], which integrates across multiple methods in a machine learning 184 

framework to assign host taxonomy at the genus level, to predict host-virus linkages using a 185 

combination of the final bacterial MAG collection from this study and iPHoP’s reference host 186 

database.  187 

 188 

We mapped reads from each metagenome to vOTUs using bowtie2 --sensitive with a 189 

minid=0.90 to quantify vOTU relative abundance [61]. We then used SAMtools and BEDTools 190 

genomecov to obtain coverage estimates for each vOTU across each individual metagenomic 191 

sample [26,62]. We used coverM in contig mode to parse bam files and calculate the trimmed 192 

pileup coverage (tpmean) of vOTUs which displayed  75% coverage over the length of the viral 193 

sequence. Thresholds for analysis of vOTUs were based on community guidelines for length 194 

(i.e.  10 kbp), similarity (i.e.  95% similarity), and detection (i.e.  75% of the viral genome 195 

length covered  1x by reads at  90% average nucleotide identity) [63,64]. The viral relative 196 

abundance (tpmean), CheckV quality, geNomad taxonomy, iPHoP host-prediction, MAG 197 

diversity, and DRAM-v annotation results were analyzed and visualized in R v. 4.3.0 [65] using 198 

the tidyverse v. 2.0.0 and phyloseq v. 1.44.0 [66,67]. 199 

 200 

To compare viral diversity between metagenomic samples (i.e. beta diversity), we calculated the 201 

Hellinger distance, the Euclidean distance of Hellinger transformed relative abundance (tpmean) 202 

data. We performed Hellinger transformations using the transform function in the microbiome v. 203 

1.22.0  package [68], calculated the Hellinger distance using the ordinate function in phyloseq, 204 

and then visualized these distances using principal-coordinate analysis (PCoA).  205 
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 206 
Results and Discussion 207 
 208 
Refined viral catalog from seagrass ecosystems 209 
 210 
In total, we recovered 17,145 predicted viral genomic fragments which we clustered at 95% 211 

average nucleotide identity into 3,633 vOTUs. To ensure a high quality viral catalog, we filtered 212 

this dataset further using community thresholds for length and quality [63,64]. The refined viral 213 

collection represents 354 viral sequences comprising 351 double-stranded DNA phage, two 214 

lavidaviridae, and one RNA phage based on VirSorter2 random forest classification, with each 215 

sequence representing a unique vOTU (Table S2). Of these sequences, nine are integrated 216 

prophage (Figure 1A).  The final catalog includes 44 complete, 28 high-quality and 282 medium-217 

quality draft viral genomic fragments (Figure 1B).  218 

 219 

To explore the taxonomy of the viral sequences reported here, we used two complementary 220 

approaches: VContact2 [57], a cluster based method, and geNomad [59], an alignment based 221 

tool. We ran VContact2 [57] with INPHARED [58] reference genomes to cluster phage vOTUs 222 

into 136 VCs, which represent genus-level groupings based on gene-sharing networks. Of 223 

these, 35 VCs represented clusters that contained reference genomes, while the other 101 VCs 224 

were unique, potentially representing novel phage genera (Figure S1A). However, 148 vOTUs 225 

could not be assigned confidently to any VC. 226 

 227 

Taxonomic classification of viruses was further refined using geNomad [59]. Most vOTUs 228 

(98.58% of vOTUs) were assigned to the Caudoviricetes class of tailed double-stranded DNA 229 

bacteriophage (Figure S1B). However, viral taxonomy is currently in revision [69], and the 230 

majority of sequences could not be confidently placed into finer taxonomic ranks: 331 vOTUs 231 

were unclassified at the order level, and 352 at the family level. While geNomad provided 232 
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higher-level taxonomic predictions for 351 of the 354 vOTUs, more comprehensive classification 233 

awaits future updates to formal viral taxonomy definitions. 234 

 235 

The recovery of phage genomes from metagenomes varied across experimental studies (Figure 236 

1C). Of the 354 viral sequences in the final catalog, 50 were recovered from the new 237 

metagenomic data in this study, with the remainder derived from publicly available 238 

metagenomes. Studies that contributed more viral sequences to the final catalog generally 239 

employed deeper sequencing, with average depths ranging from 9.7 to 28.2 Gb per sample, 240 

compared to studies with few recovered viral sequences (1.2 to 9.5 Gb per sample).  241 

 242 

When we examined viral community composition across metagenomes, clustering by scientific 243 

study was evident (Figure 1D). Notably, the viral communities in the metagenomes generated in 244 

this study formed a distinct cluster. However, technical differences (e.g., sequencing depth) 245 

across datasets prevented us from drawing broader conclusions regarding viral diversity based 246 

on seagrass species or tissue type. 247 

 248 

Despite the use of deep metagenomic sequencing and the integration of public metagenomes, 249 

we recovered a relatively small, refined catalog of viral sequences. This highlights the limitations 250 

of relying solely on short-read metagenomic sequencing to capture viral diversity, at least in 251 

seagrass ecosystems. Viromics approaches (e.g., [70]) may provide more comprehensive 252 

insights into these viral communities, as even with improved bioinformatics pipelines, true viral 253 

diversity and abundance remains elusive.  254 

 255 
MAG collection reflects abundant bacterial groups on Z. marina leaves 256 
 257 
We assembled 147 total bacterial MAGs including 85 high-quality draft MAGs ( >90% 258 

completion, <5% contamination), and 62 medium-quality MAGs (>80% completion, <10% 259 
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contamination) (Table S3). These MAGs largely belong to the following taxonomic classes 260 

(Figure 2A): Alphaproteobacteria (43), Gammaproteobacteria (35), Bacteroidia (29), and 261 

Plactomycetia (16). Within these classes, the most frequently recovered orders were: 262 

Rhodobacterales (28), Pirellulales (14), Flavobacteriales (12), Chitinophagales (11) and 263 

Pseudomonadales (11). Notably, using GTDB-Tk 30 MAGs could not be assigned to any known 264 

genus, six were unclassified at the family level, and one lacked an assignment at the order 265 

level, highlighting potential evolutionary novelty compared to the current GTDB database. These 266 

findings suggest that seagrass ecosystems may harbor novel bacterial species that remain 267 

uncharacterized. 268 

 269 

The taxonomic distribution of the recovered MAGs is broadly consistent with previous DNA-270 

based surveys of Zostera-associated bacteria. These studies also identified 271 

Alphaproteobacteria, Gammaproteobacteria, and Bacteroidia as dominant classes, along with 272 

orders such as Rhodobacterales and Flavobacteriales [9–13]. Further a global study of Z. 273 

marina reported that Planctomycetia was enriched on leaves relative to surrounding water [8]. 274 

Together, these results suggest that this MAG collection complements previous DNA-based 275 

surveys, providing an opportunity for exploring deeper insight into the genomics and functional 276 

potential of abundant bacterial taxa within Z. marina ecosystems. 277 

 278 
Recovered phage largely predicted to infect most frequent MAG phyla  279 
 280 
We used iPHoP [60] to predict bacteria-virus linkages but were only able to predict bacterial 281 

hosts for 18 vOTUs (Figure 2B). Of these, hosts generally were distributed across the most 282 

frequently recovered MAG classes (i.e., Alphaproteobacteria, Gammaproteobacteria, and 283 

Bacteroidia). While the MAG collection was added to the iPHoP database to enable prediction 284 

of direct links between MAGs and viruses, only one MAG, SGMAG-05 (a Saprospiraceae 285 

bacterium in the class Bacteroidia) was predicted to be host to a virus from the high-quality 286 
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catalog. This phage, vOTU566, was identified as a prophage belonging to the Caudoviricetes. 287 

The remaining host-virus predictions were derived from iPHoP’s default genome library rather 288 

than the MAG collection. The limited number of host-virus links identified between the MAG and 289 

viral collections suggests that much more work remains to uncover these interactions within 290 

seagrass ecosystems. Future studies should endeavor to sequence the bacterial community 291 

alongside deeper virome sequencing to better capture viral diversity. Additionally, employing 292 

physical linking techniques such as Hi-C may help characterize novel host-viral interactions.  293 

 294 
Auxiliary metabolic genes point to phage role in carbon cycling 295 
 296 
We used DRAM-v [55] to explore predicted AMG functions in the viral collection (Figure 2C). 297 

Over half of putative AMGs were unannotated (57.47%), similar to other recent studies of phage 298 

from the environment [71,72]. Given the importance of nitrogen and sulfur cycling in seagrass 299 

ecosystems, we searched the annotated AMGs for putative functions related to these 300 

processes. However no annotated AMGs had predictions related to nitrogen fixation or sulfur 301 

cycling. This absence could be biological (e.g., such genes may be more likely to be present in 302 

root or rhizosphere samples vs. leaves) or could reflect the limitations of recovering viruses from 303 

metagenomic datasets. Virome sequencing will likely be necessary to confirm whether viruses 304 

play a role in these nutrient cycles.  305 

 306 

In contrast, we identified a variety of predicted AMGs with putative annotations of functions 307 

related to carbon utilization, particularly carbohydrate-active enzymes (CAZymes) involved in 308 

organic carbon cycling, sugar processing and plant degradation (Figure 2D). Seagrass beds are 309 

known as hot spots for carbon sequestration and key contributors to blue carbon storage [2,4]. 310 

Additionally previous work in the Mediterranean seagrass Posidonia oceanica has shown that 311 

rhizosphere sediments are enriched in sugars [46]. These findings may suggest a possible role 312 
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for viruses in carbon cycling in seagrass beds, which may have important implications for blue 313 

carbon management and climate change mitigation. 314 

 315 
Conclusion 316 
 317 
This study provides a valuable community resource and catalog of refined seagrass-associated 318 

bacterial and viral genomes, serving as a genomic foundation for future research. These 319 

comprehensive collections likely capture the most abundant groups associated with the leaves 320 

of Z. marina. While we found no evidence of AMGs related to nitrogen or sulfur metabolism, we 321 

instead report the presence of AMGs putatively linked to carbon utilization, particularly a diverse 322 

array of CAZymes that may be involved in organic carbon cycling. These results suggest that 323 

viruses may play an important role in carbon sequestration and blue carbon storage within 324 

seagrass ecosystems, which may have significant implications for climate change mitigation. 325 

Moving forward, research should prioritize investigating the role of phages through viromic 326 

techniques, which would offer deeper insights into viral ecology and phage contributions to 327 

carbon cycling in seagrass habitats. 328 

 329 

 330 

 331 

 332 

 333 

 334 

 335 

 336 

 337 

 338 
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Figure 1. Putative viral sequences identified from seagrass ecosystems. (A) The proviral status 635 

of predicted viral genomes is shown as a bar graph, with the number above the bar representing636 

the total number of sequences. (B) CheckV quality metrics for viral sequences are shown as a 637 

bar graph with bars colored by quality and the number above the bar representing the total 638 

number of sequences in each bar. (C) Bar chart depicting the number of viral sequences 639 

identified in the metagenomic co-assembly from each study, with the number to the right of the 640 

bar representing the total number of sequences in each bar. (D) Principal-coordinate analysis 641 

(PCoA) visualization of Hellinger distances of relative abundance of viral communities across 642 

metagenomic samples. Samples are colored by study, and have shapes based on sample type. 643 
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Figure 2. Viral-Bacterial interactions likely related to carbon metabolism. (A) Bar chart depicting 653 

the number of metagenome-assembled genomes (MAGs) identified in this study, colored by 654 

taxonomic class, and with the number to the right of the bar representing the total number of 655 

MAGs in each bar. (B) Bar chart depicting the viral host predictions, colored by host taxonomic 656 

class, and with the number to the right of the bar representing the total number of viral 657 

sequences in each bar. (C) Bar chart showing the number of predicted phage auxiliary 658 

metabolic genes (AMGs) summarized by DRAM-v distilled metabolic categories, with the 659 

number to the right of the bar representing the total number of AMGs in each bar. (D) Bar chart 660 

showing the number of predicted phage AMGs in different CAZyme families with-in the carbon 661 

utilization category, with the number to the right of the bar representing the total number of 662 

AMGs in each bar.  663 
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