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Abstract:

Background: Seagrasses are globally distributed marine flowering plants that play foundational
roles in coastal environments as ecosystem engineers. While research efforts have explored
various aspects of seagrass-associated microbial communities, including describing the
diversity of bacteria, fungi and microbial eukaryotes, little is known about viral diversity in these

communities.

Results: To begin to address this, we leveraged metagenomic sequencing data to generate a
catalog of bacterial metagenome-assembled genomes (MAGs) and phage genomes from the
leaves of the seagrass, Zostera marina. We expanded the robustness of this viral catalog by
incorporating publicly available metagenomic data from seagrass ecosystems. The final MAG
set represents 85 high-quality draft and 62 medium-quality draft bacterial genomes. While the
viral catalog represents 354 medium-quality, high-quality, and complete viral genomes.
Predicted auxiliary metabolic genes in the final viral catalog had putative annotations largely
related to carbon utilization, suggesting a possible role for phage in carbon cycling in seagrass

ecosystems.

Conclusions: These genomic resources provide initial insight into bacterial-viral interactions in
seagrass meadows and are a foundation on which to further explore these critical interkingdom
interactions. These catalogs highlight a possible role for viruses in carbon cycling in seagrass

beds which may have important implications for blue carbon management and climate change

mitigation.
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Background:

Seagrasses are submerged marine flowering plants that have critical roles as foundation
species in coastal ecosystems worldwide. They provide essential ecosystem services such as
stabilizing the seafloor, filtering pollutants, supporting fisheries, and driving biogeochemical
cycles [1-3]. One of their most significant contributions is their ability to sequester carbon in
both their tissues and surrounding sediments (i.e., blue carbon) [2,4]. Despite their ecological
importance, seagrass ecosystems are under increasing threat from pollution, climate change,
and coastal development. Preserving these ecosystems is critical not only for their carbon
sequestration potential but also for maintaining the biodiversity and ecological services they

provide to coastal communities.

In recent years, there has been growing recognition of the importance of microorganisms in
maintaining the health of plants [5-7]. Studies have begun to describe the composition and
structure of the bacterial community associated with seagrasses, particularly Zostera marina,
the dominant seagrass in the Northern hemisphere [8—14]. These bacterial communities are
thought to have important roles in facilitating nitrogen and sulfur cycling to benefit seagrass

growth and survival [8,9,11,12,15-17].

While research has largely focused on the bacterial component of these microbial communities,
advances in sequencing and bioinformatics now allow us to explore the role of viruses in these
systems. Phages, in particular, have been shown to influence global ocean and soil
biogeochemical cycles by modulating host population dynamics through auxiliary metabolic
genes (AMGs), which can directly alter bacterial metabolism to increase overall host fitness [18—
21]. However, the diversity and ecological roles of phage in seagrass ecosystems remains

largely unexplored.
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98

99 In this study, we generated a catalog of viruses from seagrass-associated metagenomic
100 samples, and then investigated host-viral dynamics of viral operational taxonomic units (vOTUs)
101 and bacterial metagenome-assembled genomes (MAGs) generated from Z. marina leaf
102 samples from Bodega Bay, CA. Specifically our objectives were to: (i) create a catalog of
103 vOTUs from Z. marina and other seagrass species using publicly available metagenomic
104  sequencing data, (ii) assemble a catalog of bacterial MAGs from Z. marina leaf tissue, and (iii)
105  explore bacterial-phage dynamics with a focus on exploring AMGs involved in nitrogen and

106 sulfur metabolisms.

107

108 Methods:

109

110  Sequence generation
111

112  We extracted DNA from epiphytic washes from Z. marina leaves as part of previous work

113  focused on characterizing the mycobiome using high-throughput sequencing of the ITS2 region
114 [22]. We chose three DNA extracts from that work here for deep metagenomic sequencing with
115  the goal of obtaining high quality metagenome-assembled genomes. We provided DNA to the
116  UC Davis Genome Center DNA Technologies Core for sequencing and library preparation. DNA
117  libraries were sequenced on an lllumina HiSeq4000 to generate 150 bp paired-end reads.

118

119  Metagenomic processing

120

121 We trimmed sequence reads using bbDuk v. 37.68 [23] with the following parameters: gtrim=rl

122  trimg=10 maqg=10. We then mapped against and removed any reads from the metagenomes
123  matching the available genome for Z. marina v. 3.1 [24] using bowtie2 v. 2.4.5 [25] and

124  samtools v. 1.11 [26]. We co-assembled the remaining reads from all three metagenomic
125  samples using MEGAHIT v. 1.2.9 [27].

126
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127  We identified and assessed metagenome-assembled genomes (MAGs) using the anvi'o v. 7.2
128  workflow [28]. First, we used bowtie2 v. 2.4.5 [25] and samtools v. 1.11 [26] to obtain read

129  coverage for each metagenomic sample against the assembly. Then we used “anvi-gen-

130 contigs-database” to generate a database from the co-assembly and to predict open-reading
131  frames using Prodigal v. 2.6.3 [29]. This command also identifies single-copy bacterial [30],
132  archaeal [31], and protista [32] genes using HMMER v. 3.2.1 [33] and ribosomal RNA genes
133  using barrnap [34]. We predicted taxonomic assignments for each gene call using Kaiju v. 1.8.2
134  [35] with the NCBI BLAST non redundant protein database nr including fungi and microbial

135  eukaryotes v. v. 2020-05-25. For each individual metagenomic sample, we then used “anvi-
136  profile” to construct an anvi’o profile for contigs >1 kbp with the “—cluster-contigs” option. Next
137  we ran several automatic binning algorithms including MetaBAT2 v. 2.15, MaxBin v. 2.2.1,

138 BinSanity v.0.5.4 and CONCOCT v. 1.1.0 [36—39] to generate preliminary sets of bacterial

139 MAGs. We provided the resulting set from each algorithm to DAStool v. 1.1.2 [40] to generate a
140  single optimal MAG set. MAGs from this set were then manually assessed for contamination
141 and refined using “anvi-refine”. After manual refinement, MAGs were further de-contaminated
142  using MAGpurify v. 2.1.2 [41].

143

144  We assessed MAG completeness and contamination using CheckM v. 1.2.1 [42] and CheckM2
145  v. 1.0.1 [43]. In this work we report all identified MAGs with >80% completion and <10%

146  contamination. We refer to MAGs as high quality if they were >90% complete with <5%

147  contamination, and medium quality if they were >50% complete with <10% contamination per
148  established guidelines [44]. To obtain a putative taxonomy for each MAG, we used GTDB-Tk v.
149  2.2.6 [45], which uses a combination of average nucleotide identity and phylogenetic placement
150 in the context of the Genome Taxonomy Database to taxonomically identify MAGs.

151
152 Viral identification
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153
154  In order to have a robust dataset to compare our recovered virus catalog in the context of other

155  studies, we downloaded publicly available data from NCBI GenBank from nine studies

156 [11,12,17,46-51] representing 65 metagenomic and 18 metatranscriptomic samples collected
157  from seagrass environments (Table S1).

158

159  We filter and trimmed public metagenomic data using bbDuk v. 37.68 [23] with the following

160  parameters: ktrim=r k=23 mink=11 hdist=1 tpe tbo gtrim=rl trimg=10 maqg=10. Then for each
161 study, samples were co-assembled using MEGAHIT v. 1.2.9. We used the co-assemblies for
162  each study, as well as the co-assembly from this study, when identifying viral sequences using
163  a workflow similar to Guo et al. [52]

164

165  Briefly, we identified viral sequences from metagenomic co-assemblies using VirSorter2 v. 2.2.3
166  [53], a tool that uses multiple random forest classifiers to predict whether a sequence contains a
167  DNA or RNA virus, with the following parameters: --min-length 5000, --min-score 0.5, --include-
168  groups dsDNAphage,RNA,ssDNA lavidaviridae. We then ran CheckV v0.8.1 [54] on the

169  VirSorter2 predicted viral sequences using the “end_to_end” workflow. To be conservative in
170  our analyses, we removed viral sequences with a CheckV quality score of “not-determined” and
171 “low-quality” prior to downstream analysis. We then ran VirSorter2 again on the viral sequences
172  from the CheckV workflow with the --prep-for-dramv option. We used DRAM-v v. 1.2.2 [55] to
173  “annotate” viral sequences and then “distill” annotations into predicted auxiliary metabolic genes
174  (AMGs) for phage.

175
176  Virus clustering and analysis
177

178  We clustered viral sequences = 10 kbp in length into 95% similarity viral operational taxonomic

179  units (vOTUs) using dRep v. 3.2.2 [56]. We used Prodigal v. 2.6.3 [29] to predict open reading
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180 frames in vOTUs using the -p meta option. We then provided the predicted proteins from the
181 phage vOTUs to VContact2 v. 0.9.19, as well as predicted proteins from the INPHARED August
182 2023 viral reference database, to generate viral clusters (VCs) based on viral gene-sharing

183  networks [57,58]. We further used geNomad v. 1.7.4 to assign taxonomy to phage vOTUs [59].
184  We used iPHoP v. 1.3.2 [60], which integrates across multiple methods in a machine learning
185  framework to assign host taxonomy at the genus level, to predict host-virus linkages using a
186  combination of the final bacterial MAG collection from this study and iPHoP’s reference host
187  database.

188

189  We mapped reads from each metagenome to vOTUs using bowtie2 --sensitive with a

190 minid=0.90 to quantify vOTU relative abundance [61]. We then used SAMtools and BEDTools
191  genomecov to obtain coverage estimates for each vOTU across each individual metagenomic
192  sample [26,62]. We used coverM in contig mode to parse bam files and calculate the trimmed
193  pileup coverage (tpmean) of vOTUs which displayed = 75% coverage over the length of the viral
194  sequence. Thresholds for analysis of vOTUs were based on community guidelines for length
195  (i.e. 2 10 kbp), similarity (i.e. 2 95% similarity), and detection (i.e. =2 75% of the viral genome

196 length covered = 1x by reads at = 90% average nucleotide identity) [63,64]. The viral relative
197  abundance (tpmean), CheckV quality, geNomad taxonomy, iPHoP host-prediction, MAG

198  diversity, and DRAM-v annotation results were analyzed and visualized in R v. 4.3.0 [65] using
199  the tidyverse v. 2.0.0 and phyloseq v. 1.44.0 [66,67].

200

201  To compare viral diversity between metagenomic samples (i.e. beta diversity), we calculated the
202  Hellinger distance, the Euclidean distance of Hellinger transformed relative abundance (tpmean)
203 data. We performed Hellinger transformations using the transform function in the microbiome v.
204 1.22.0 package [68], calculated the Hellinger distance using the ordinate function in phyloseq,

205 and then visualized these distances using principal-coordinate analysis (PCoA).
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206

207 Results and Discussion

208

209  Refined viral catalog from seagrass ecosystems
210

211 In total, we recovered 17,145 predicted viral genomic fragments which we clustered at 95%
212  average nucleotide identity into 3,633 vOTUs. To ensure a high quality viral catalog, we filtered
213  this dataset further using community thresholds for length and quality [63,64]. The refined viral
214  collection represents 354 viral sequences comprising 351 double-stranded DNA phage, two
215 lavidaviridae, and one RNA phage based on VirSorter2 random forest classification, with each
216  sequence representing a unique vOTU (Table S2). Of these sequences, nine are integrated
217  prophage (Figure 1A). The final catalog includes 44 complete, 28 high-quality and 282 medium-
218  quality draft viral genomic fragments (Figure 1B).

219

220 To explore the taxonomy of the viral sequences reported here, we used two complementary
221 approaches: VContact2 [57], a cluster based method, and geNomad [59], an alignment based
222  tool. We ran VContact2 [57] with INPHARED [58] reference genomes to cluster phage vOTUs
223 into 136 VCs, which represent genus-level groupings based on gene-sharing networks. Of

224  these, 35 VCs represented clusters that contained reference genomes, while the other 101 VCs
225  were unique, potentially representing novel phage genera (Figure S1A). However, 148 vOTUs
226  could not be assigned confidently to any VC.

227

228 Taxonomic classification of viruses was further refined using geNomad [59]. Most vOTUs

229  (98.58% of vOTUs) were assigned to the Caudoviricetes class of tailed double-stranded DNA
230 Dbacteriophage (Figure S1B). However, viral taxonomy is currently in revision [69], and the

231  majority of sequences could not be confidently placed into finer taxonomic ranks: 331 vOTUs

232  were unclassified at the order level, and 352 at the family level. While geNomad provided
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233  higher-level taxonomic predictions for 351 of the 354 vOTUs, more comprehensive classification
234  awaits future updates to formal viral taxonomy definitions.

235

236  The recovery of phage genomes from metagenomes varied across experimental studies (Figure
237  1C). Of the 354 viral sequences in the final catalog, 50 were recovered from the new

238 metagenomic data in this study, with the remainder derived from publicly available

239 metagenomes. Studies that contributed more viral sequences to the final catalog generally

240 employed deeper sequencing, with average depths ranging from 9.7 to 28.2 Gb per sample,
241  compared to studies with few recovered viral sequences (1.2 to 9.5 Gb per sample).

242

243  When we examined viral community composition across metagenomes, clustering by scientific
244  study was evident (Figure 1D). Notably, the viral communities in the metagenomes generated in
245  this study formed a distinct cluster. However, technical differences (e.g., sequencing depth)

246  across datasets prevented us from drawing broader conclusions regarding viral diversity based
247  on seagrass species or tissue type.

248

249  Despite the use of deep metagenomic sequencing and the integration of public metagenomes,
250  we recovered a relatively small, refined catalog of viral sequences. This highlights the limitations
251  of relying solely on short-read metagenomic sequencing to capture viral diversity, at least in

252  seagrass ecosystems. Viromics approaches (e.g., [70]) may provide more comprehensive

253 insights into these viral communities, as even with improved bioinformatics pipelines, true viral
254  diversity and abundance remains elusive.

255

256  MAG collection reflects abundant bacterial groups on Z. marina leaves

257

258 We assembled 147 total bacterial MAGs including 85 high-quality draft MAGs ( >90%

259  completion, <5% contamination), and 62 medium-quality MAGs (>80% completion, <10%
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260 contamination) (Table S3). These MAGs largely belong to the following taxonomic classes

261 (Figure 2A): Alphaproteobacteria (43), Gammaproteobacteria (35), Bacteroidia (29), and

262  Plactomycetia (16). Within these classes, the most frequently recovered orders were:

263 Rhodobacterales (28), Pirellulales (14), Flavobacteriales (12), Chitinophagales (11) and

264  Pseudomonadales (11). Notably, using GTDB-Tk 30 MAGs could not be assigned to any known
265  genus, six were unclassified at the family level, and one lacked an assignment at the order

266 level, highlighting potential evolutionary novelty compared to the current GTDB database. These
267  findings suggest that seagrass ecosystems may harbor novel bacterial species that remain

268  uncharacterized.

269

270  The taxonomic distribution of the recovered MAGs is broadly consistent with previous DNA-

271 based surveys of Zostera-associated bacteria. These studies also identified

272  Alphaproteobacteria, Gammaproteobacteria, and Bacteroidia as dominant classes, along with
273  orders such as Rhodobacterales and Flavobacteriales [9—-13]. Further a global study of Z.

274  marina reported that Planctomycetia was enriched on leaves relative to surrounding water [8].
275  Together, these results suggest that this MAG collection complements previous DNA-based
276  surveys, providing an opportunity for exploring deeper insight into the genomics and functional
277  potential of abundant bacterial taxa within Z. marina ecosystems.

278

279  Recovered phage largely predicted to infect most frequent MAG phyla

280

281  We used iPHoP [60] to predict bacteria-virus linkages but were only able to predict bacterial

282  hosts for 18 vOTUs (Figure 2B). Of these, hosts generally were distributed across the most
283  frequently recovered MAG classes (i.e., Alphaproteobacteria, Gammaproteobacteria, and
284  Bacteroidia). While the MAG collection was added to the iPHoP database to enable prediction
285  of direct links between MAGs and viruses, only one MAG, SGMAG-05 (a Saprospiraceae

286  bacterium in the class Bacteroidia) was predicted to be host to a virus from the high-quality

10
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287 catalog. This phage, vOTU566, was identified as a prophage belonging to the Caudoviricetes.
288  The remaining host-virus predictions were derived from iPHoP’s default genome library rather
289  than the MAG collection. The limited number of host-virus links identified between the MAG and
290 viral collections suggests that much more work remains to uncover these interactions within
291  seagrass ecosystems. Future studies should endeavor to sequence the bacterial community
292  alongside deeper virome sequencing to better capture viral diversity. Additionally, employing
293 physical linking techniques such as Hi-C may help characterize novel host-viral interactions.

294

295  Auxiliary metabolic genes point to phage role in carbon cycling

296

297  We used DRAM-v [55] to explore predicted AMG functions in the viral collection (Figure 2C).

298  Over half of putative AMGs were unannotated (57.47%), similar to other recent studies of phage
299 from the environment [71,72]. Given the importance of nitrogen and sulfur cycling in seagrass
300 ecosystems, we searched the annotated AMGs for putative functions related to these

301  processes. However no annotated AMGs had predictions related to nitrogen fixation or sulfur
302 cycling. This absence could be biological (e.g., such genes may be more likely to be present in
303 root or rhizosphere samples vs. leaves) or could reflect the limitations of recovering viruses from
304 metagenomic datasets. Virome sequencing will likely be necessary to confirm whether viruses
305 play arole in these nutrient cycles.

306

307 In contrast, we identified a variety of predicted AMGs with putative annotations of functions

308 related to carbon utilization, particularly carbohydrate-active enzymes (CAZymes) involved in
309 organic carbon cycling, sugar processing and plant degradation (Figure 2D). Seagrass beds are
310  known as hot spots for carbon sequestration and key contributors to blue carbon storage [2,4].
311 Additionally previous work in the Mediterranean seagrass Posidonia oceanica has shown that

312  rhizosphere sediments are enriched in sugars [46]. These findings may suggest a possible role

11
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313  for viruses in carbon cycling in seagrass beds, which may have important implications for blue
314  carbon management and climate change mitigation.

315

316  Conclusion

317

318  This study provides a valuable community resource and catalog of refined seagrass-associated

319  bacterial and viral genomes, serving as a genomic foundation for future research. These

320 comprehensive collections likely capture the most abundant groups associated with the leaves
321  of Z marina. While we found no evidence of AMGs related to nitrogen or sulfur metabolism, we
322 instead report the presence of AMGs putatively linked to carbon utilization, particularly a diverse
323 array of CAZymes that may be involved in organic carbon cycling. These results suggest that
324  viruses may play an important role in carbon sequestration and blue carbon storage within

325  seagrass ecosystems, which may have significant implications for climate change mitigation.
326  Moving forward, research should prioritize investigating the role of phages through viromic

327  techniques, which would offer deeper insights into viral ecology and phage contributions to

328 carbon cycling in seagrass habitats.

329
330
331
332
333
334
335
336
337

338
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635  Figure 1. Putative viral sequences identified from seagrass ecosystems. (A) The proviral status
636  of predicted viral genomes is shown as a bar graph, with the number above the bar representing
637 the total number of sequences. (B) CheckV quality metrics for viral sequences are shown as a
638  bar graph with bars colored by quality and the number above the bar representing the total

639 number of sequences in each bar. (C) Bar chart depicting the number of viral sequences

640 identified in the metagenomic co-assembly from each study, with the number to the right of the
641 bar representing the total number of sequences in each bar. (D) Principal-coordinate analysis
642 (PCoA) visualization of Hellinger distances of relative abundance of viral communities across

643 metagenomic samples. Samples are colored by study, and have shapes based on sample type.
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653  Figure 2. Viral-Bacterial interactions likely related to carbon metabolism. (A) Bar chart depicting
654  the number of metagenome-assembled genomes (MAGs) identified in this study, colored by
655  taxonomic class, and with the number to the right of the bar representing the total number of
656 MAGs in each bar. (B) Bar chart depicting the viral host predictions, colored by host taxonomic
657 class, and with the number to the right of the bar representing the total number of viral

658  sequences in each bar. (C) Bar chart showing the number of predicted phage auxiliary

659 metabolic genes (AMGs) summarized by DRAM-v distilled metabolic categories, with the

660 number to the right of the bar representing the total number of AMGs in each bar. (D) Bar chart
661  showing the number of predicted phage AMGs in different CAZyme families with-in the carbon
662  utilization category, with the number to the right of the bar representing the total number of

663 AMGs in each bar.

A B
5

1

1

1 ; "

UBAS160] 1 Gammaproteobactariay 5
Verrucomicrobiae { 3 t 3
0 10 20 30 40 0 i 2 3 a 5
Number of MAGs Number of viral sequences
C D
Carbon Utilization 38
Carbohydrate-Binding Modules 2
Energyq 1
Polysaccharide Lyases{ 5
Information Systems - N |
Glycoside Hydrofases 13
Transporters< I 3
GlycosylTransterases 18
0 50 100 0 5 10 15 20
665 Number of auxillary metabolic genes Number of auxillary metabolic genes

22


https://doi.org/10.1101/2024.12.06.627215
http://creativecommons.org/licenses/by-nc/4.0/

Number of viral sequences

345 300- 282

300- 3
O
S
3 200-
o
Q
200- °
o
S
©
g 100-
100-
S
44
< 28
i ]
0- 0-
No _ Yes Complete High—quality ~ Medium-quality
Proviral Status CheckV Quality
D
Crump et al. (2018)- | 1 * Sample type
Cucio et al. (2018)- | 1 0.2 ® banquettes
' A |eaf
Fraser et al. (2018)- 0 SCJJ i P B rhizome
8 0o0- E ¥ + root
Fraser et al. (2023)- 1 s H B sediment
_ Sample type > H
Miranda et al. (2022) - - 20 sediment 32 L
. 0 _0.2 Study
Mohr et al. (2021)- 0 . plant tissue 0
B both & ® Crump etal. (2018)
Rubio—Portillo et al. (2021)- | 120 < ® Cucio et al. (2018)
8 -0.4 Miranda et al. (2022)
Schorn et al. (2022) - 65 a ® Rubio—Portillo et al. (2021)
. Schorn et al. (2022)
So t al. (2022) - 96 i
gin et al. ( ) -0.6 A ® Sogin et al. (2022)
This study- | 50 4 © Thisstudy
0 40 80 120 ~0.75 -050 -025 000 025 0.50

Number of viral sequences PCoA 1: 10% variance


https://doi.org/10.1101/2024.12.06.627215
http://creativecommons.org/licenses/by-nc/4.0/

Acidimicrobiia -
Alphaproteobacteria-
Anaerolineae -
Bacteroidia -
Bdellovibrionia -
Cyanobacteriia -
Desulfobulbia -
Gammaproteobacteria -
Oligoflexia -
Phycisphaerae -
Planctomycetia -
Polyangia -
Rhodothermia -
UBA1135+

UBA796 -

UBA9160
Verrucomicrobiae -

e . T )

0 10 20 30 40

Number of MAGs

Carbon Utilization -

Energy -

Information Systems -

Organic Nitrogen-

Transporters -

Unannotated -

38

E

0 50 100

Number of auxillary metabolic genes

Alphaproteobacteria -

Clostridia -

Gammaproteobacteria -

Carbohydrate—Binding Modules -

Polysaccharide Lyases-

Glycoside Hydrolases-

GlycosylTransferases -

I -
1
5
0 1 2 3 4 5
Number of viral sequences
18
: 5 10 15 20

Number of auxillary metabolic genes



https://doi.org/10.1101/2024.12.06.627215
http://creativecommons.org/licenses/by-nc/4.0/

