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 2

Abstract: 45 
 46 
Colletotrichum spp. have a complicated history of association with land plants. Perhaps most 47 

well-known as plant pathogens for the devastating effect they can have on agricultural crops, 48 

some Colletotrichum spp. have been reported as beneficial plant endophytes. However, there 49 

have been only a handful of reports of Colletotrichum spp. isolated from aquatic plant hosts and 50 

their ecological role in the marine ecosystem is underexplored. To address this, we present the 51 

draft genome and annotation of Colletotrichum sp. CLE4, previously isolated from rhizome 52 

tissue from the seagrass Zostera marina. This genome (48.03 Mbp in length) is highly complete 53 

(BUSCO ascomycota: 98.8%) and encodes 12,015 genes, of which 5.7% are carbohydrate-54 

active enzymes (CAZymes) and 12.6% are predicted secreted proteins. Phylogenetic placement 55 

puts Colletotrichum sp. CLE4 within the C. acutatum complex, closely related to C. godetiae. 56 

We found a 8.69% smaller genome size, 21.90% smaller gene count, and the absence of 591 57 

conserved gene families in Colletotrichum sp. CLE4 relative to other members of the C. 58 

acutatum complex, suggesting a streamlined genome possibly linked to its specialized 59 

ecological niche in the marine ecosystem. Machine learning analyses using CATAStrophy on 60 

CAZyme domains predict this isolate to be a hemibiotroph, such that it has a biotrophic phase 61 

where the plant is kept alive during optimal environmental conditions followed by a necrotrophic 62 

phase where the fungi actively serves a pathogen. While future work is still needed to 63 

definitively tease apart the lifestyle strategy of Colletotrichum sp. CLE4, this study provides 64 

foundational insight and a high-quality genomic resource for starting to understand the 65 

evolutionary trajectory and ecological adaptations of marine-plant associated fungi.  66 

 67 
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Introduction: 74 
 75 
Colletotrichum is a diverse genus of plant-associated fungi well known as both pathogens and 76 

endophytes of terrestrial plants [1]. Many Colleotrichum exhibit a complex hemibiotrophic 77 

lifestyle, meaning they have an initial biotrophic phase where the plant host is kept alive, 78 

followed by a necrotrophic phase where the fungi actively harms host tissues [2]. During this 79 

necrotrophic phase, Colleotrichum spp. cause a significant number of diseases, known as 80 

anthracnose, in many agricultural crops worldwide, and thus has been named one of the ten 81 

most important fungal pathogens [3]. As a result of their complex lifestyle Colleotrichum spp. are 82 

highly adaptable, associating with a large host range of over 3,200 species of monocot and 83 

eudicot plants [4]. While some Colleotrichum species have high host specificity, including one-84 

to-one associations, others can infect a wide variety of plant hosts [2,4–7]. Evolutionary 85 

analyses suggest that the ancestor of Colletotrichum diverged in parallel with the diversification 86 

of flowering plants on land, likely beginning with an association with eudicot plants before 87 

adapting to other host types [6].  88 

 89 

While Colletotrichum spp. are predominantly known for their associations with land plants, there 90 

have been recent reports documenting their presence as endophytes of aquatic plants [8–10]. 91 

Notably, Colletotrichum species have been isolated as endophytes in seagrasses, including the 92 

ecologically important species Zostera marina [11]. Z. marina is an early diverging marine 93 

monocot that serves as a foundation species in coastal ecosystems across the Northern 94 

Hemisphere, with critical roles providing habitat, stabilizing sediment, and contributing to carbon 95 

sequestration [12–14].  96 

 97 

Previous amplicon-based surveys and culture-dependent studies have reported that 98 

Colletotrichum spp. are abundant members of the fungal community associated with Z. marina, 99 
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particularly on leaf tissues [11,15]. These studies have found Colletotrichum spp. to be 100 

dominant on and within healthy Z. marina leaves and present in rhizomes, suggesting a 101 

possible endophytic relationship. Furthermore, global mycobiome surveys of Z. marina have 102 

predicted Colletotrichum spp. members to be dispersal-limited and exhibit patterns of endemism 103 

to specific locations, such as California and Japan [16]. Additionally, Colletotrichum spp. have 104 

been isolated from leaves and rhizomes of another seagrass species, Thalassia testudinum, 105 

further supporting their potential role as endophytes in marine environments [17,18]. 106 

 107 

Given the pathogenic potential of Colletotrichum spp. in terrestrial plants, where they cause 108 

black lesions characteristic of anthracnose, it is crucial to understand their ecological role in 109 

seagrass environments. While no true fungi have yet been reported to cause widespread 110 

disease in seagrasses [19], Colletotrichum spp. lesions might appear morphologically similar to 111 

and be mistaken for those caused by the heterokont pathogen Labyrinthula zosterae, which is 112 

responsible for seagrass wasting disease [20]. As climate change continues to impact marine 113 

ecosystems, it is critical to understand the role of fungi like Colletotrichum sp. CLE4 in seagrass 114 

health and disease dynamics. 115 

 116 

To start to investigate the ecology of seagrass-associated Colletotrichum species, we generated 117 

a draft genome and annotation for Colletotrichum sp. CLE4, previously isolated as an 118 

endophyte from the seagrass Zostera marina in Ettinger & Eisen [11]. We used this genome to 119 

refine taxonomic understanding of this isolate through whole-genome phylogenetic placement 120 

among close relatives. We further conducted comparative genomic analyses to identify genes 121 

that might have been gained or lost during adaptation to a marine monocot host, leveraging the 122 

genome annotation to explore potential ecological roles of Colletotrichum sp. CLE4 in the 123 

marine environment. 124 

 125 
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Methods: 126 
 127 
Molecular methods 128 
 129 
Colletotrichum sp. CLE4 was previously isolated from healthy Z. marina rhizome tissues 130 

collected in May 2018 from Bodega Bay, CA using Potato Dextrose Agar with 0.45 M Millipore 131 

filtered natural aged seawater as described in Ettinger & Eisen [11] (Figure 1A). Briefly, in that 132 

work, the isolate was propagated on the same solid media and DNA was extracted from tissue 133 

using a MoBio PowerSoil DNA Extraction kit. The isolate was then identified through 134 

phylogenetic analysis using ITS-LSU regions obtained through Sanger sequencing (GenBank 135 

Accession: MN543905). In this work, that same DNA was provided to the UC Davis Genome 136 

Center DNA Technologies Core for genomic library preparation and sequencing. DNA libraries 137 

were sequenced on an Illumina HiSeq4000 to generate 150 bp paired-end reads.  138 

 139 
Assembly and annotation 140 
 141 
Reads were assembled using the Automatic Assembly of the Fungi (AAFTF) pipeline v. 0.2.5 142 

[21]. This pipeline trims and filters reads using BBTools v. 38.95 [22]. Then, AAFTF assembles 143 

these trimmed reads with SPAdes v. 3.14.1 [23] using default parameters. AAFTF screens the 144 

resulting assembly for contaminant vectors using BLAST and then uses sourmash v. 3.5.0 [24] 145 

to identify and remove any additional contaminant contigs. AAFTF then identifies duplicate 146 

contigs for removal using Minimap2 v. 2.17 [25]. Finally, AAFTF runs Pilon v. 1.22 [26] with 147 

three rounds of polishing to produce short-read corrected contigs in the assembly. 148 

Repetitive regions were identified and masked prior to genome annotation using RepeatModeler 149 

v. 2.0.1 [27] and RepeatMasker v. 4-1-1 [28] with default options to produce a de novo library of 150 

elements plus the elements from Fungi in Repbase to mask [29]. The repeat landscape of 151 

Colletotrichum sp. CLE4 was visualized in R v. 4.3.0 [30] using the tidyverse v. 2.0.0 [31]. We 152 

then used the Funannotate pipeline v. 1.8.8 to annotate the draft Colletotrichum sp. CLE4 153 
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genome assembly [32]. Funannotate uses a combination of software to predict gene models 154 

including Augustus v. 3.3.3, GlimmerHMM v. 3.0.4, GeneMark-ETS v. 4.62, and SNAP v. 155 

2013_11_29  [33–37], and produces consensus gene model predictions using 156 

EVidenceModeler v. 1.1.1 [38]. Funannotate additionally predicts tRNAs using tRNAscan v. 157 

1.3.1 [39]. Funannotate then annotates consensus gene models based on similarity to Pfam-A  158 

v. 35.0 [40] and dbCAN v. 9.0 [41,42] using HMMER v.3 [43] and similarity to MEROPS v. 12.0 159 

[44], eggNOG v. 2.1.9 [45], InterProScan v. 5.51-85.0 [46], and UniProt v. 2022_05 [47] using 160 

diamond BLASTP v. 2.0.8 [48]. Additionally, Funannotate uses Phobius v. 1.01 [49] to predict 161 

transmembrane proteins and SignalP v. 5.0b [50] to predict secreted proteins. AntiSMASH v. 162 

6.1.1 was used to further identify biosynthetic gene clusters [51]. EffectorP v. 3.0 was run on 163 

predicted secreted proteins to predict plant effectors [52]. 164 

The draft assembly and predicted gene models were assessed for completion using BUSCO v. 165 

5.0.0 [53] in ‘genome’ and ‘protein’ mode, respectively, with the eukartyota_odb10, fungi_odb10 166 

and ascomycota_odb10 sets. To assess genome size and ploidy, we used jellyfish v. 2.3.0 [54] 167 

with a k-mer size of 21 to produce a k-mer frequency histogram, which we supplied to 168 

GenomeScope v. 2.0 [55] to predict haploid genome size and heterozygosity. 169 

 170 

We used CATAStrophy v. 0.1.0 [56], a classification method based on carbohydrate-active 171 

enzyme (CAZyme) patterns from filamentous fungal plant pathogens, to predict the possible 172 

lifestyle strategy of Colletotrichum sp. CLE4. CATAStrophy was run in a Google Collab 173 

implementation using dbCAN v. 10  [41,42].   174 

 175 
Comparative genomics  176 
 177 
Predicted gene models from annotated genomes were downloaded from either NCBI or JGI for 178 

use in comparative analyses. Completion of downloaded predicted gene models was assessed 179 
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using BUSCO v. 5.0.0 in ‘protein’ mode with the eukartyota_odb10, fungi_odb10 and 180 

ascomycota_odb10 sets. To be included in analysis, the annotated protein sets needed to have  181 

>90% completion. In total the final dataset represented 110 annotated genomes [6,57–99] 182 

(Table S1). Briefly in addition to Colletotrichum sp. CLE4, the dataset included an in-group of 60 183 

Colletotrichum genomes and an outgroup representing 49 genomes across six taxonomic 184 

orders including Diaporthales (n=2), Glomerellales (n=2), Hypocreales (n=18), Ophiostomatales 185 

(n=2), Sordariales (n=5), and Xylariales (n=20). Downloaded gene models were annotated 186 

using InterProScan v. 5.51-85.0 [46].  187 

 188 

Phylogenomic placement of Colletotrichum sp. CLE4 was performed using the PHYling_unified 189 

(https://github.com/stajichlab/PHYling_unified) pipeline to generate a protein alignment of all 190 

species in the final dataset. This pipeline utilizes HMMER v.3 [43] and ClipKIT [100] to search 191 

for, build, and trim an alignment based on the BUSCO fungi_odb10 gene set. A maximum 192 

likelihood phylogeny was built from this alignment using IQ-TREE2 v.2.2.6 [101], with the -p 193 

option to indicate gene partitions [102] and the -m option to run ModelFinder Plus which 194 

identifies the optimal evolutionary model for each partition based on BIC [103]. The resulting 195 

phylogenetic tree was imported into R and visualized using ggtree v. 3.8.2 [104]. We also used 196 

fastANI v. 1.33 to compare the average nucleotide identity of the draft Colletotrichum sp. CLE4 197 

genome to the genome of its closest sister taxa based on the whole genome phylogeny.  198 

 199 

Phylogenetic hierarchical orthogroups (HOGs) were identified using OrthoFinder v. 2.5.4 [105]. 200 

We focused analyses on the phylogenetic node containing all Colletotrichum spp. and then 201 

compared orthogroup detection and frequency between Colletotrichum sp. CLE4 and other 202 

members of the C. actuatum clade.  HOGs were visualized in R using the UpSetR v. 1.4.0 [106] 203 

and pheatmap v. 1.0.12 packages [107]. 204 

 205 
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 8

Results 206 
 207 
Genome structure, repeat landscape, and functional potential of Colletotrichum sp. CLE4 208 
 209 
The genome of Colletotrichum sp. CLE4 was 48.03 Mbp in total length with 408x coverage, 210 

distributed across 168 contigs with an N50 of 506,655 bp and an L50 of 32, indicating a 211 

relatively contiguous assembly (Table 1). The genome is haploid, with a predicted genome size 212 

based on k-mer frequency profiles of 48.3 Mbp (Figure 1B). BUSCO estimates for the genome 213 

using the fungi_odb10 dataset reveal that it is highly complete with 98.8% of the expected 214 

single-copy orthologs present and complete. Only 0.3% of the BUSCO genes were fragmented, 215 

and 0.9% were missing. Based on these results, we believe that the genome of Colletotrichum 216 

sp. CLE4 represents a high-quality resource for understanding the ecology and evolution of this 217 

isolate. 218 

 219 

Repeat content in the genome was relatively low, representing only 2.87% of the total genome, 220 

with LTR and unknown elements being most prevalent (Figure 1C). The genome repeat 221 

landscape indicates that elements have accumulated gradually through time in this species and 222 

also exposes a possible historical expansion of repeat content, corresponding to ~11-12% 223 

divergence (Figure 1D). While similar patterns of LTR and unknown element expansion have 224 

been observed in Colletotrichum spp., the overall percent repeat content here is less than what 225 

has been reported in other species (e.g., 6.08% in C. truncatum [108], 5.86% in C. incanum 226 

[78]).  227 

 228 

Annotation of the Colletotrichum sp. CLE4 genome using Funannotate identified a total of 229 

12,015 gene models, including 11,678 mRNA genes and 337 tRNA genes, with 95.53% of gene 230 

models having EggNog database annotation hits (Table 1). Additionally, 683 (5.68%) genes 231 

were identified as having CAZyme domains (Figure S1). Approximately 11.97% of the genes 232 
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 9

were predicted to encode secreted proteins, including 469 predicted effectors, of which 141 233 

were predicted to be cytoplasmic effectors and 328 were predicted to be apoplastic effectors.  234 

Based on CAZyme content, CATAStrophy predicted that Colletotrichum sp. CLE4 was most 235 

likely a hemibiotroph, specifically an extracellular (non-appressorial) mesotroph. This 236 

classification is described as representing facultative biotrophic species that have longer latent 237 

periods than necrotrophs and that invade extracellular host tissues [56]. This classification 238 

group includes members that grow biotrophically under optimal environmental conditions, but 239 

under variable conditions can cause disease [109,110]. Thus, this assignment is consistent with 240 

potential for an opportunistic pathogenic lifestyle. 241 

Whole-genome phylogenetic placement of Colletotrichum sp. CLE4 and genomic similarity to 242 
close relatives  243 
 244 

Whole genome phylogenetic approaches place Colletotrichum sp. CLE4 in the C. acutatum 245 

complex (Figure 2), whose common ancestor was dated at 14.5 mya [6]. Within this complex, 246 

Colletotrichum sp. CLE4 is placed sister to C. godetiae, which is best known for causing disease 247 

in terrestrial eudicot plants [5,7]. Average nucleotide identity (ANI) between Colletotrichum sp. 248 

CLE4 and its sister C. godetiae was relatively high at 98.98%. While ANI to other members of its 249 

immediate clade were lower at 93.50% for C. salcis and 93.77% for C. phormii. Although ANI 250 

species boundaries in fungi have yet to be used extensively to delineate species boundaries, 251 

with such high similarity it's possible that Colletotrichum sp. CLE4 may represent a new marine 252 

strain of C. godetiae that infects monocot plants. 253 

Colletotrichum sp. CLE4 has the smallest reported genome size and fewest number of gene 254 

models of any of the members in the C. acutatum complex looked at in this study. The genome 255 

size of Colletotrichum sp. CLE4 is 8.69% smaller than the average genome size in the C. 256 

acutatum complex (52.6 Mbp). While the gene content is 21.90% less in comparison to the 257 
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average number of genes in the complex (15,383). Further, despite high ANI similarity, 258 

Colletotrichum sp. CLE4 has a genome size that is 7.02% smaller compared to the genome of 259 

its sister taxa C. godetiae (51.7 Mbp) and has 25.24% less gene content (16,071). Interestingly, 260 

the Colletotrichum sp. CLE4 genome is only slightly smaller than the only reported endophyte 261 

isolate in this complex, C. fioriniae [83], with only a 2.86% smaller genome size (49.4 Mbp in C. 262 

fioriniae) and a 1.34% smaller gene content (12,178 in C. fioriniae). Zooming out to the genus 263 

overall, while Colletotrichum sp. CLE4 is still among the smallest assemblies for genome size 264 

and number of gene models, it is not the smallest for either metric. Additionally, the average 265 

BUSCO completeness for the C. acutatum complex was 98.38% and for the Colletotrichum 266 

genus was 97.39%. Thus, while smaller in genome size and gene content, the draft genome 267 

assembly for Colletotrichum sp. CLE4 has a similarly high completion rate (98.8%).    268 

Gene family reductions in Colletotrichum sp. CLE4  269 
 270 
To further explore gene family gain or loss in Colletotrichum sp. CLE4, we performed 271 

OrthoFinder analysis, comparing Colletotrichum sp. CLE4 with other members of the genus 272 

Colletotrichum with a focus on comparisons to members of the C. acutatum complex. In total, 273 

we identified 38,833 phylogenetically hierarchical orthogroups (HOGs) among all Colletotrichum 274 

spp. and 23,298 HOGs among members of the C. acutatum complex.  275 

 276 

Of these, 9197 HOGs were conserved across all members of the C. acutatum complex and 277 

Colletotrichum sp. CLE4 (Figure 3A). Interestingly, Colletotrichum sp. CLE4 appears to be 278 

missing 591 HOGs that are shared between all other members of the C. acutatum complex, 279 

which we infer to be most likely due to gene loss in CLE4. The main functional domains of the 280 

missing HOGs include hypothetical domains, transcription factors, transporters, cytochrome 281 

p450s, FAD-binding domains, and heterokaryon incompatibility protein domains (Figure 3B). 282 
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This set also included a handful of HOGs with CAZyme domains including GH3, GH43, GH76, 283 

GT25, GT15, and GT90.  284 

   285 

In total, only 18 HOGs were exclusively present in Colletotrichum sp. CLE4 and absent in other 286 

members of the C. acutatum complex, many of which represented uncharacterized proteins 287 

(Figure 4). However, only two of these HOGs were exclusively present in Colletotrichum sp. 288 

CLE4 relative to all other Colletotrichum spp, an uncharacterized protein and a short-chain 289 

dehydrogenase (Figure S2). Seven HOGs were detected as shared with multiple members of 290 

the C. gloeosporioides complex, which includes many reported endophytic species. Two HOGs 291 

were predicted to be apoplastic plant effectors, representing a multicopper oxidase and a FAD-292 

binding domain protein. Further and of particular note, one HOG was predicted to be a NodB 293 

homology domain-containing protein.  294 

 295 
Discussion  296 
 297 
Genome and annotation provide critical resource for marine-plant fungi work 298 
 299 
This study provides the first draft genome and annotation of a marine Colletotrichum sp. and is 300 

a valuable resource for future investigations into the evolution and ecology of this highly 301 

adaptable fungal genus. At 98.8% BUSCO completion, this genome is comparable to other 302 

members of the C. acutatum complex and the broader Colletotrichum genus. This high level of 303 

completeness indicates that the assembly accurately reflects the genetic content of 304 

Colletotrichum sp. CLE4 and can serve as a foundation for understanding the genomic basis of 305 

its adaptation to a marine environment. 306 

Interestingly, the repeat content of the Colletotrichum sp. CLE4 genome (2.87%) is lower than 307 

that reported for other Colletotrichum species [78,108,111]. This could be due to the use of 308 

short-read sequencing, which may collapse repetitive regions, thereby underestimating repeat 309 
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content. However, another study has reported a significant positive correlation between genome 310 

size and repeat content in Colletotrichum spp. [111]. Further, in C. tanaceti, higher repeat 311 

content was suggested as a possible mechanism for expansion of pathogenicity genes [89]. 312 

Further studies using long-read sequencing could help clarify the repeat landscape of 313 

Colletotrichum sp. CLE4 and explore its potential role in genomic streamlining and adaptation. 314 

Phylogenetic placement indicates likely recent evolutionary association 315 

Whole genome phylogenetic approaches place this isolate it in C. acutatum complex, which 316 

evolved 14.5 mya [6], and place it sister to C. godetiae, which is best known for causing disease 317 

in a broad range of terrestrial eudicot plants and having a global distribution [5,7]. Interestingly 318 

in multi-locus phylogenies, C. godetiae places sister to C. lauri (no publicly available genome) 319 

which has been reported once in association with neither a monocot or eudicot, but instead a 320 

magnoliid plant [7,112]. The evolutionary history of the Colletotrichum genus suggests an 321 

ancestral association with eudicot hosts, with subsequent diversification and independent 322 

adaptation to monocot hosts as flowering plants diversified [6]. Seagrasses, such as Z. marina, 323 

are early branching monocots whose ancestors recolonized the marine ecosystem 70 - 100 mya 324 

[113]. The more recent evolution of the C. acutatum complex suggests that Colletotrichum sp. 325 

CLE4’s relationship with seagrass likely occurred after the return of the ancestor of Z. marina to 326 

the ocean, as opposed to co-evolving with Z. marina. This is similar to the timing of other 327 

monocot-host jumps in C. orchidophilum and C. phormii, which both are predicted to have 328 

transitioned at a date after the speciation of their host [6]. Ultimately, this means that the 329 

ancestor of Colletotrichum sp. CLE4 needed to adapt to both a monocot host and the marine 330 

ecosystem simultaneously.  331 

Adaptations by seagrasses to the marine ecosystem may pose additional challenges as well. 332 

For example, seagrasses have lost all the required genes to form stomata [114], and their cell 333 

wall contains polyanionic, low-methylated pectins and sulfated galactans, in addition the 334 
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polysaccharides typical of land plants [115]. The plant cell wall is considered the first line of 335 

plant defense against microbial invasion and the stomata are often how fungi initially invade 336 

plants [116,117]. These physiological modifications, as a result of adaptation to the marine 337 

ecosystem, would likely make it harder for Colletotrichum sp. CLE4 to invade and proliferate in 338 

Z. marina, possibly requiring a new or divergent invasion strategy relative to the strategies and 339 

genes utilized by close relatives for land plant colonization.  340 

 341 
Genomic streamlining during adaptation to a marine monocot host 342 

Comparative genomic analyses revealed smaller genome size, gene count, and absence of 343 

conserved gene families (i.e., HOGs) in Colletotrichum sp. CLE4 compared to other members of 344 

the C. acutatum complex. Specifically, we found that the genome size of Colletotrichum sp. 345 

CLE4 was 8.69% smaller, and its gene content was 21.90% lower than the average for the C. 346 

acutatum complex. This combined with the absence of 591 gene families that are conserved 347 

among all other C acutatum complex members leads us to conclude that the smaller genome, 348 

gene count and reduced orthologous groups may be the result of genome reduction and 349 

streamlining. Genome streamlining is a well-documented phenomenon in microbial adaptation 350 

to marine environments, as seen in bacteria [118], and has been recently described in fungi 351 

[119]. Streamlining removes non-essential genes and non-coding DNA to improve efficiency, 352 

often at the cost of metabolic versatility. For example, the marine fungus Rhodotorula 353 

sphaerocarpa exhibits a 10% smaller genome size compared to its terrestrial relatives, largely 354 

due to a decrease in transporter genes, particularly Major Facilitator Superfamily transporters, 355 

which are key for cross-membrane transport of organic solutes [119]. 356 

Genomic streamlining in Colletotrichum sp. CLE4 could also be linked to adaptation to a 357 

monocot host or an endophytic lifestyle. Pathogens often have expanded or unique secreted 358 

enzymes related to host-specialization and virulence in comparison to non-pathogens, and 359 

similar patterns have been reported for hemibiotrophic fungi compared to biotrophs [2,92,120–360 
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122]. However, gene family differences in some studies have been reported to be more about 361 

relatedness than trophic lifestyle [123]. Previous work in Colletotrichum species have observed 362 

gains and losses of CAZyme and protease encoding genes in species that have a more narrow 363 

host range and have suggested that switching to a new host involves gene losses coupled with 364 

expansions in lineage-specific genes [6,61,78,124]. 365 

 366 

Colletotrichum sp. CLE4 had 683 CAZyme domain predictions, which is lower than most other 367 

Colletotrichum species. Monocot infecting Colletotrichum spp. are generally reported to have a 368 

smaller number of CAZymes compared to eudicot infecting species (741 vs. 867 on average) 369 

[6]. This supports that some gene content reduction may be due to specialization to a monocot 370 

host. However, Colletotrichum sp. CLE4 has a 7.82% smaller CAZyme content when compared 371 

to the average for other monocot infecting species, indicating that host specialization alone may 372 

not fully explain the extent of its smaller gene content.     373 

 374 

Retention and loss of gene families provides functional insight into adaptation 375 
 376 
In comparison to other C. acutatum complex members, Colletotrichum sp. CLE4 has lost 591 377 

conserved gene families. While the majority of these had no predicted function, there was an 378 

enrichment in the loss of transcription factors, transporters, cytochrome p450s, and FAD-binding 379 

domains, as well as some specific CAZymes. The loss of gene families with transporter domain 380 

annotations, particularly Major Facilitator Superfamily transporters, is similar to the reports from 381 

genomic streamlining in marine Rhodotorula in response to marine adaptation [119].  382 

While the reduction in transporters may relate to adaptation to the marine realm, the loss of 383 

other gene families, such as cytochrome P450s and CAZymes, could relate to specialization to 384 

a monocot host or endophytic lifestyle. It's been suggested that having a diverse set of 385 
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cytochrome p450s play a role in the colonization success or virulence of plant pathogenic fungi 386 

[122,125]. In Colletotrichum spp., contractions in cytochrome p450 diversity have been 387 

suggested to relate to host range and specificity [6,61,126,127].  388 

Similarly, the loss of certain CAZyme gene families further highlights the specialization of 389 

Colletotrichum sp. CLE4, potentially reflecting adaptations not just to marine life but also to the 390 

unique defenses of its monocot host and lifestyle strategy. For example, GH3, which can help 391 

detoxify plant antifungal commands, may be unnecessary depending on the specific defenses of 392 

Z. marina [128]. GH43 has been suggested to be important for plant-host interaction or plant 393 

tissue degradation in other Colletotrichum spp. [6] and expanded across distantly related 394 

pathogenic lineages [78]. While GH76 expansions in Colletotrichum have been associated with 395 

host-specificity towards woody plants [124].  396 

A study comparing gene family differences between monocot and eudicot-infecting 397 

Colletotrichum species found that pathogenic eudicot species retained three unique gene 398 

families that were lost in monocot-infecting species, including a secreted -glucosidase (GH3); a 399 

secreted protein with a FAD-binding domain, and an -1,2-mannosidase (GH92) [6]. The loss of 400 

GH3 and FAD-binding domains in Colletotrichum sp. CLE4 aligns with this pattern, suggesting 401 

that these losses may relate to specialization to a monocot host.  402 

In comparison to other C. acutatum complex members, Colletotrichum sp. CLE4 had only 18 403 

unique gene families, of which only two were truly unique, while several others were shared with 404 

endophytic members of C. gloeosporioides species complex. Two gene families were predicted 405 

to be apoplastic plant effectors, representing a multicopper oxidase and a FAD-binding domain 406 

protein. While often associated with pathogenicity, effectors are also important for beneficial 407 

plant-fungal interactions [129–132] and for biotrophic lifestyles, where fungi may still need to 408 

suppress host defenses and evade recognition [133,134]. Further and of particular note, one 409 
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gene family was predicted to be a NodB homology domain-containing protein. NodB genes are 410 

chitin deacetylases involved in the production of signaling molecules, most famously in legume-411 

rhizobia symbiosis [135,136], and homologous signaling pathways have been used by symbiotic 412 

fungi [137]. The retention of gene families shared with C. gloeosporioides endophytes aligns 413 

with previous studies suggesting that such shared gene families across distant Colletotrichum 414 

species result from recent independent acquisitions or rapid losses during host specialization 415 

[2,6,61,78].   416 

Pathogen or endophyte - deconvoluting a complex hemibiotrophic lifestyle   417 
 418 
Colletotrichum spp. isolated from healthy, undamaged seagrass tissues, such as Zostera 419 

marina, have not been associated with anthracnose or other known pathogenic symptoms in 420 

marine plants, suggesting they may act primarily as endophytes in these environments. 421 

However, given the well-documented pathogenic potential of Colletotrichum spp. in terrestrial 422 

plants and their hemibiotrophic lifestyle, we used machine learning with CATAStrophy to predict 423 

the lifestyle of Colletotrichum sp. CLE4. 424 

 425 

Perhaps unsurprisingly, CATAStrophy predicted that Colletotrichum sp. CLE4 is a hemibiotroph, 426 

specifically an extracellular mesotroph. This lifestyle involves a biotrophic phase, where the 427 

fungus maintains the host plant's viability under favorable conditions, followed by a necrotrophic 428 

phase under stress, where it acts as a pathogen. This prediction aligns with CATAStrophy's 429 

classification of most other Colletotrichum spp. as mesotrophs. This dual capacity for both 430 

benign and pathogenic behavior is similar to fungi like Cladosporium fulvum, which exhibits a 431 

biotrophic lifestyle under controlled, optimal conditions but can turn pathogenic in response to 432 

environmental stress [109,110]. 433 

 434 
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The predicted potential of Colletotrichum sp. CLE4 to switch between endophytic and 435 

pathogenic roles suggests that it could remain a benign endophyte under stable conditions but 436 

become harmful under environmental stressors or when Z. marina is compromised. This 437 

flexibility supports a growing view of many fungi as multi-niche organisms that can form either 438 

beneficial or pathogenic associations depending on context [138]. Thus, while Colletotrichum 439 

sp. CLE4 likely functions as an endophyte in Z. marina, it may retain the genomic potential to 440 

become pathogenic under adverse conditions, highlighting the importance of environmental 441 

factors in shaping fungal-host dynamics, and a need for further work in understanding the exact 442 

nature of its ecological role when associated with Z. marina. 443 

 444 
Conclusion 445 
 446 
We report the first high quality draft genome and annotation of a marine monocot infecting 447 

Colletotrichum sp. The genome is near-complete (98.8%) and encodes 12,015 genes, of which 448 

5.7% are CAZymes and 12.6% are predicted secreted proteins. Whole-genome phylogenetic 449 

analyses place Colletotrichum sp. CLE4 within the C. acutatum complex, most closely related to 450 

C. godetiae, which infects terrestrial eudicot plants. Overall, we found evidence of a streamlined 451 

genome, with an 8.69% reduction in genome size, 21.90% reduction in gene content, and a loss 452 

of 591 conserved gene families compared to other members of the C. acutatum complex. This 453 

streamlining is likely due to adaptation to both the marine ecosystem and a monocot host. We 454 

also identified unique gene families some of which were shared with members of the C. 455 

gloeosporioides complex which includes several endophytes, as well as NodB homology 456 

containing domain protein. Machine learning analyses predicted that Colletotrichum sp. CLE4 457 

has an extracellular mesotroph lifestyle, which may indicate it still has capacity to serve as an 458 

opportunistic pathogen of Z. marina. This study provides a foundational insight into 459 

understanding the evolutionary trajectory and ecological adaptations of marine-plant associated 460 

Colletotrichum spp. Further work is needed, including challenge experiments and 461 
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transcriptomics, to assess whether CLE4 is endophyte of ZM only under optimal conditions and 462 

whether new environmental stressors such as a changing climate might trigger opportunistic 463 

pathogenicity. 464 

 465 

DNA Deposition 466 
 467 
The raw sequences were deposited at GenBank under accession no. PRJNA1140278. This 468 

Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank 469 

under the accession JBFUUI000000000. The version described 470 

in this paper is version JBFUUI010000000. All code used in this work has been deposited on 471 

Github (casett/ZM_Colletotrichum_sp_Genome) and archived in Zenodo (DOI: 472 

10.5281/zenodo.14207532).  473 
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Figure 1. General characteristics of Colletotrichum sp. CLE4. (A) Photograph of Colletotrichum 915 

sp. CLE4. (B) GenomeScope profile depicting the k-mer frequency histogram used to calculate 916 

genome size, ploidy and heterozygosity. (C) A bar plot representing the percent of the genome 917 

composed of repetitive elements from each repeat class. (D) A stacked bar plot representing the918 

percent of the genome made of repeat elements from each repeat class binned by 1% 919 

sequence divergence (CpG adjusted Kimura divergence). For (C) and (D) bars are colored 920 

repeat class (LINE = pink, SINE = orange, LTR = green, DNA = light blue, and Unknown = 921 

yellow). Abbreviations: long-interspersed nuclear element (LINE), small-interspersed nuclear 922 

element (SINE), long-terminal repeat retrotransposon (LTR), and DNA transposons (DNA).  923 
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Figure 2. Phylogenetic placement and genomic content comparison to other Colletotrichum 926 

spp. From left to right, first, a maximum likelihood phylogeny that shows the relationship of 927 

Colletotrichum sp. CLE4 to other Colletotrichum spp. lineages. This tree was generated using 928 

IQ-TREE2 on an alignment of BUSCO fungi_odb10 HMMs constructed using the 929 

PHYling_unified pipeline. Taxon labels in the phylogeny are shown colored by their assigned 930 

Colletotrichum species complex. Next (from left to right), in association with this phylogeny, a 931 

bar chart of BUSCO “protein” completion status for the ascomycota_odb10 set is shown. Bars 932 

show the percentage of genes found in each genome annotation as a percentage of the total 933 

gene set and are colored by BUSCO status (missing = gray, fragmented = yellow, complete and 934 

duplicated = green, complete and single copy = blue). Next is a bar chart of predicted gene 935 

counts for each taxon with counts colored by fungal host plant ecotype reported during isolate 936 

deposition (eudicot = purple, gymnosperm = pink, magnoliid = orange, monocot = yellow). 937 

Finally, there is a bar chart of the draft genome size (Mbp) for each taxon with genome size 938 

colored by fungal guild (endophyte = black, plant pathogen = grey).  939 
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Figure 3. Colletotrichum sp. CLE4 is missing many C. acutatum complex conserved 943 

phylogenetically hierarchical orthogroups (HOGs). (A) UpSet plot depicting shared HOGs within 944 

the C. acutatum complex with Colletotrichum spp. organized by their phylogenetic relationship 945 

from Figure 2. Vertical bars display the counts of HOGs in each group while the dots indicate 946 

the organism present in each group. Horizontal bars display the number of HOGs in the genome 947 

of each organism. We have highlighted three groups of HOGs: unique HOGs to Colletotrichum 948 

sp. CLE4 (blue), conserved HOGs shared by the C. acutatum complex (purple), and conserved 949 

HOGs missing in Colletotrichum sp. CLE4, but shared by the rest of the C. acutatum complex 950 

(yellow). (B) Bar plot depicting the distribution of PFAM annotations across the conserved 951 

HOGs missing in Colletotrichum sp. CLE4 but shared by the rest of the C. acutatum complex. 952 

To simplify visualization, only annotations that were observed across  4 HOGs are depicted.  953 
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Figure 4. Majority of unique HOGs shared with endophytic C. gloeosporiodes complex. A 956 

heatmap is depicted here visualizing the copy number of phylogenetically hierarchical 957 

orthogroups (HOGs) that were unique to Colletotrichum sp. CLE4 relative to other members of 958 

the C. actutatum complex. Further, the dendrogram to the left of the heatmap clusters the HOGs959 

by similarity in counts between the different HOGs, while the dendrogram above clusters 960 

genomes based on similarity in counts between the different genomes.  961 
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Table 1. Genome and annotation statistics for Colletotrichum sp. CLE4. Here we report 977 

various AAFTF assembly and Funannotate annotation statistics including the number of contigs 978 

in the assembly, the number of contigs of various lengths, the total assembly length, percent 979 

GC, N50, L50, number of gene models, percent of genes annotated with different databases, 980 

and the number of secreted genes with EffectorP predictions. We also report here the results of 981 

the BUSCO assessment using the fungi_odb10 gene set. 982 

Software Statistic Colletotrichum sp. CLE4 

AAFTF # contigs (>= 0 bp) 168 

# contigs (>= 50,000 bp) 127 

Total length (>= 0 bp) 48,026,924 

Total length (>= 50,000 bp) 47,411,477 

Largest contig (bp) 1,779,047 

Total length (bp) 48,026,924 

Repetitive regions (%) 2.87 

GC (%) 52.29 

N50 506,655 

L50 32 

# N's per 100 kbp 5.01 

BUSCO (fungi_odb10) Complete BUSCOs 98.8 
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Complete and single-copy BUSCOs  98.4 

Complete and duplicated BUSCOs 0.4 

Fragmented BUSCOs 0.3 

Missing BUSCOs 0.9 

Total BUSCO groups searched 758 

Funannotate  Total number of gene models 12,015 

Number of mRNA genes 11,678 

Number of tRNA genes 337 

Genes with GO Term (%) 57.42 

Genes with InterProScan hit (%) 78 

Genes with EggNog hit (%) 95.53 

Genes with PFAM hit (%) 69.13 

Genes with CAZyme hits (%) 5.68 

Genes with MEROPS hits (%) 3.67 

Genes with secretion prediction (%) 11.97 

EffectorP Number of total predicted effectors 469 

Number of cytoplasmic effectors 141 
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Number of apoplastic effectors 328 
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FAD−binding domain containing protein (N33.HOG0022759)
Zn(2)−C6 fungal−type domain−containing protein (N33.HOG0006690)
Monocarboxylate transporter (N33.HOG0019042)
Uncharacterized protein (N33.HOG0006267)
Uncharacterized protein (N33.HOG0016987)

Reported Guild
Species complex Species complex

acutatum
destructivum
gloeosporioides
graminicola
none
spaethianum
orbiculare
orchidearum
truncatum

Reported Guild
plant pathogen
endophyte
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