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Abstract:

Colletotrichum spp. have a complicated history of association with land plants. Perhaps most
well-known as plant pathogens for the devastating effect they can have on agricultural crops,
some Colletotrichum spp. have been reported as beneficial plant endophytes. However, there
have been only a handful of reports of Colletotrichum spp. isolated from aquatic plant hosts and
their ecological role in the marine ecosystem is underexplored. To address this, we present the
draft genome and annotation of Colletotrichum sp. CLE4, previously isolated from rhizome
tissue from the seagrass Zostera marina. This genome (48.03 Mbp in length) is highly complete
(BUSCO ascomycota: 98.8%) and encodes 12,015 genes, of which 5.7% are carbohydrate-
active enzymes (CAZymes) and 12.6% are predicted secreted proteins. Phylogenetic placement
puts Colletotrichum sp. CLE4 within the C. acutatum complex, closely related to C. godetiae.
We found a 8.69% smaller genome size, 21.90% smaller gene count, and the absence of 591
conserved gene families in Colletotrichum sp. CLE4 relative to other members of the C.
acutatum complex, suggesting a streamlined genome possibly linked to its specialized
ecological niche in the marine ecosystem. Machine learning analyses using CATAStrophy on
CAZyme domains predict this isolate to be a hemibiotroph, such that it has a biotrophic phase
where the plant is kept alive during optimal environmental conditions followed by a necrotrophic
phase where the fungi actively serves a pathogen. While future work is still needed to
definitively tease apart the lifestyle strategy of Colletotrichum sp. CLEA4, this study provides
foundational insight and a high-quality genomic resource for starting to understand the

evolutionary trajectory and ecological adaptations of marine-plant associated fungi.
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Introduction:

Colletotrichum is a diverse genus of plant-associated fungi well known as both pathogens and
endophytes of terrestrial plants [1]. Many Colleotrichum exhibit a complex hemibiotrophic
lifestyle, meaning they have an initial biotrophic phase where the plant host is kept alive,
followed by a necrotrophic phase where the fungi actively harms host tissues [2]. During this
necrotrophic phase, Colleotrichum spp. cause a significant number of diseases, known as
anthracnose, in many agricultural crops worldwide, and thus has been named one of the ten
most important fungal pathogens [3]. As a result of their complex lifestyle Colleotrichum spp. are
highly adaptable, associating with a large host range of over 3,200 species of monocot and
eudicot plants [4]. While some Colleotrichum species have high host specificity, including one-
to-one associations, others can infect a wide variety of plant hosts [2,4—7]. Evolutionary
analyses suggest that the ancestor of Colletotrichum diverged in parallel with the diversification
of flowering plants on land, likely beginning with an association with eudicot plants before

adapting to other host types [6].

While Colletotrichum spp. are predominantly known for their associations with land plants, there
have been recent reports documenting their presence as endophytes of aquatic plants [8—10].
Notably, Colletotrichum species have been isolated as endophytes in seagrasses, including the
ecologically important species Zostera marina [11]. Z. marina is an early diverging marine
monocot that serves as a foundation species in coastal ecosystems across the Northern
Hemisphere, with critical roles providing habitat, stabilizing sediment, and contributing to carbon

sequestration [12—-14].

Previous amplicon-based surveys and culture-dependent studies have reported that

Colletotrichum spp. are abundant members of the fungal community associated with Z. marina,
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100 particularly on leaf tissues [11,15]. These studies have found Colletotrichum spp. to be

101 dominant on and within healthy Z. marina leaves and present in rhizomes, suggesting a

102  possible endophytic relationship. Furthermore, global mycobiome surveys of Z. marina have
103 predicted Colletotrichum spp. members to be dispersal-limited and exhibit patterns of endemism
104  to specific locations, such as California and Japan [16]. Additionally, Colletotrichum spp. have
105 been isolated from leaves and rhizomes of another seagrass species, Thalassia testudinum,
106  further supporting their potential role as endophytes in marine environments [17,18].

107

108  Given the pathogenic potential of Colletotrichum spp. in terrestrial plants, where they cause

109 black lesions characteristic of anthracnose, it is crucial to understand their ecological role in

110  seagrass environments. While no true fungi have yet been reported to cause widespread

111 disease in seagrasses [19], Colletotrichum spp. lesions might appear morphologically similar to
112  and be mistaken for those caused by the heterokont pathogen Labyrinthula zosterae, which is
113  responsible for seagrass wasting disease [20]. As climate change continues to impact marine
114  ecosystems, it is critical to understand the role of fungi like Colletotrichum sp. CLE4 in seagrass
115  health and disease dynamics.

116

117  To start to investigate the ecology of seagrass-associated Colletotrichum species, we generated
118  a draft genome and annotation for Colletotrichum sp. CLE4, previously isolated as an

119  endophyte from the seagrass Zostera marina in Ettinger & Eisen [11]. We used this genome to
120  refine taxonomic understanding of this isolate through whole-genome phylogenetic placement
121 among close relatives. We further conducted comparative genomic analyses to identify genes
122  that might have been gained or lost during adaptation to a marine monocot host, leveraging the
123  genome annotation to explore potential ecological roles of Colletotrichum sp. CLE4 in the

124 marine environment.

125
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Methods:
Molecular methods

Colletotrichum sp. CLE4 was previously isolated from healthy Z. marina rhizome tissues
collected in May 2018 from Bodega Bay, CA using Potato Dextrose Agar with 0.45 uM Millipore
filtered natural aged seawater as described in Ettinger & Eisen [11] (Figure 1A). Briefly, in that
work, the isolate was propagated on the same solid media and DNA was extracted from tissue
using a MoBio PowerSoil DNA Extraction kit. The isolate was then identified through
phylogenetic analysis using ITS-LSU regions obtained through Sanger sequencing (GenBank
Accession: MN543905). In this work, that same DNA was provided to the UC Davis Genome
Center DNA Technologies Core for genomic library preparation and sequencing. DNA libraries

were sequenced on an lllumina HiSeq4000 to generate 150 bp paired-end reads.

Assembly and annotation

Reads were assembled using the Automatic Assembly of the Fungi (AAFTF) pipeline v. 0.2.5
[21]. This pipeline trims and filters reads using BBTools v. 38.95 [22]. Then, AAFTF assembles
these trimmed reads with SPAdes v. 3.14.1 [23] using default parameters. AAFTF screens the
resulting assembly for contaminant vectors using BLAST and then uses sourmash v. 3.5.0 [24]
to identify and remove any additional contaminant contigs. AAFTF then identifies duplicate
contigs for removal using Minimap2 v. 2.17 [25]. Finally, AAFTF runs Pilon v. 1.22 [26] with

three rounds of polishing to produce short-read corrected contigs in the assembly.

Repetitive regions were identified and masked prior to genome annotation using RepeatModeler
v. 2.0.1 [27] and RepeatMasker v. 4-1-1 [28] with default options to produce a de novo library of
elements plus the elements from Fungi in Repbase to mask [29]. The repeat landscape of
Colletotrichum sp. CLE4 was visualized in R v. 4.3.0 [30] using the tidyverse v. 2.0.0 [31]. We

then used the Funannotate pipeline v. 1.8.8 to annotate the draft Colletotrichum sp. CLE4
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154  genome assembly [32]. Funannotate uses a combination of software to predict gene models
155  including Augustus v. 3.3.3, GlimmerHMM v. 3.0.4, GeneMark-ETS v. 4.62, and SNAP v.

156  2013_11_29 [33-37], and produces consensus gene model predictions using

157  EVidenceModeler v. 1.1.1 [38]. Funannotate additionally predicts tRNAs using tRNAscan v.
158  1.3.1 [39]. Funannotate then annotates consensus gene models based on similarity to Pfam-A
159  v. 35.0 [40] and dbCAN v. 9.0 [41,42] using HMMER v.3 [43] and similarity to MEROPS v. 12.0
160  [44], eggNOG v. 2.1.9 [45], InterProScan v. 5.51-85.0 [46], and UniProt v. 2022_05 [47] using
161 diamond BLASTP v. 2.0.8 [48]. Additionally, Funannotate uses Phobius v. 1.01 [49] to predict
162 transmembrane proteins and SignalP v. 5.0b [50] to predict secreted proteins. AntiSMASH v.
163  6.1.1 was used to further identify biosynthetic gene clusters [51]. EffectorP v. 3.0 was run on

164  predicted secreted proteins to predict plant effectors [52].

165  The draft assembly and predicted gene models were assessed for completion using BUSCO v.
166  5.0.0 [53] in ‘genome’ and ‘protein’ mode, respectively, with the eukartyota_odb10, fungi_odb10
167 and ascomycota_odb10 sets. To assess genome size and ploidy, we used jellyfish v. 2.3.0 [54]
168  with a k-mer size of 21 to produce a k-mer frequency histogram, which we supplied to

169  GenomeScope v. 2.0 [55] to predict haploid genome size and heterozygosity.

170

171 We used CATAStrophy v. 0.1.0 [56], a classification method based on carbohydrate-active

172  enzyme (CAZyme) patterns from filamentous fungal plant pathogens, to predict the possible
173  lifestyle strategy of Colletotrichum sp. CLE4. CATAStrophy was run in a Google Collab

174  implementation using dbCAN v. 10 [41,42].

175

176  Comparative genomics

177

178  Predicted gene models from annotated genomes were downloaded from either NCBI or JGI for

179  use in comparative analyses. Completion of downloaded predicted gene models was assessed
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using BUSCO v. 5.0.0 in ‘protein’ mode with the eukartyota_odb10, fungi_odb10 and
ascomycota_odb10 sets. To be included in analysis, the annotated protein sets needed to have
>90% completion. In total the final dataset represented 110 annotated genomes [6,57-99]
(Table S1). Briefly in addition to Colletotrichum sp. CLE4, the dataset included an in-group of 60
Colletotrichum genomes and an outgroup representing 49 genomes across six taxonomic
orders including Diaporthales (n=2), Glomerellales (n=2), Hypocreales (n=18), Ophiostomatales
(n=2), Sordariales (n=5), and Xylariales (n=20). Downloaded gene models were annotated

using InterProScan v. 5.51-85.0 [46].

Phylogenomic placement of Colletotrichum sp. CLE4 was performed using the PHYIing_unified

(https://github.com/stajichlab/PHYling unified) pipeline to generate a protein alignment of all

species in the final dataset. This pipeline utilizes HMMER v.3 [43] and ClipKIT [100] to search
for, build, and trim an alignment based on the BUSCO fungi_odb10 gene set. A maximum
likelihood phylogeny was built from this alignment using IQ-TREE2 v.2.2.6 [101], with the -p
option to indicate gene partitions [102] and the -m option to run ModelFinder Plus which
identifies the optimal evolutionary model for each partition based on BIC [103]. The resulting
phylogenetic tree was imported into R and visualized using ggtree v. 3.8.2 [104]. We also used
fastANI v. 1.33 to compare the average nucleotide identity of the draft Colletotrichum sp. CLE4

genome to the genome of its closest sister taxa based on the whole genome phylogeny.

Phylogenetic hierarchical orthogroups (HOGs) were identified using OrthoFinder v. 2.5.4 [105].
We focused analyses on the phylogenetic node containing all Colletotrichum spp. and then
compared orthogroup detection and frequency between Colletotrichum sp. CLE4 and other
members of the C. actuatum clade. HOGs were visualized in R using the UpSetR v. 1.4.0 [106]

and pheatmap v. 1.0.12 packages [107].
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206 Results

207

208  Genome structure, repeat landscape, and functional potential of Colletotrichum sp. CLE4
209

210  The genome of Colletotrichum sp. CLE4 was 48.03 Mbp in total length with 408x coverage,

211 distributed across 168 contigs with an N50 of 506,655 bp and an L50 of 32, indicating a

212  relatively contiguous assembly (Table 1). The genome is haploid, with a predicted genome size
213  based on k-mer frequency profiles of 48.3 Mbp (Figure 1B). BUSCO estimates for the genome
214  using the fungi_odb10 dataset reveal that it is highly complete with 98.8% of the expected

215  single-copy orthologs present and complete. Only 0.3% of the BUSCO genes were fragmented,
216  and 0.9% were missing. Based on these results, we believe that the genome of Colletotrichum
217  sp. CLE4 represents a high-quality resource for understanding the ecology and evolution of this
218  isolate.

219

220 Repeat content in the genome was relatively low, representing only 2.87% of the total genome,
221 with LTR and unknown elements being most prevalent (Figure 1C). The genome repeat

222 landscape indicates that elements have accumulated gradually through time in this species and
223  also exposes a possible historical expansion of repeat content, corresponding to ~11-12%

224  divergence (Figure 1D). While similar patterns of LTR and unknown element expansion have
225  been observed in Colletotrichum spp., the overall percent repeat content here is less than what
226  has been reported in other species (e.g., 6.08% in C. truncatum[108], 5.86% in C. incanum
227  [78)).

228

229  Annotation of the Colletotrichum sp. CLE4 genome using Funannotate identified a total of

230 12,015 gene models, including 11,678 mRNA genes and 337 tRNA genes, with 95.53% of gene
231  models having EggNog database annotation hits (Table 1). Additionally, 683 (5.68%) genes

232  were identified as having CAZyme domains (Figure S1). Approximately 11.97% of the genes
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233  were predicted to encode secreted proteins, including 469 predicted effectors, of which 141

234  were predicted to be cytoplasmic effectors and 328 were predicted to be apoplastic effectors.

235 Based on CAZyme content, CATAStrophy predicted that Colletotrichum sp. CLE4 was most
236 likely a hemibiotroph, specifically an extracellular (non-appressorial) mesotroph. This

237  classification is described as representing facultative biotrophic species that have longer latent
238  periods than necrotrophs and that invade extracellular host tissues [56]. This classification

239  group includes members that grow biotrophically under optimal environmental conditions, but
240 under variable conditions can cause disease [109,110]. Thus, this assignment is consistent with
241 potential for an opportunistic pathogenic lifestyle.

242 Whole-genome phylogenetic placement of Colletotrichum sp. CLE4 and genomic similarity to

243 close relatives
244

245  Whole genome phylogenetic approaches place Colletotrichum sp. CLE4 in the C. acutatum

246  complex (Figure 2), whose common ancestor was dated at 14.5 mya [6]. Within this complex,
247  Colletotrichum sp. CLE4 is placed sister to C. godetiae, which is best known for causing disease
248  in terrestrial eudicot plants [5,7]. Average nucleotide identity (ANI) between Colletotrichum sp.
249 CLE4 and its sister C. godetiae was relatively high at 98.98%. While ANI to other members of its
250 immediate clade were lower at 93.50% for C. salcis and 93.77% for C. phormii. Although ANI
251  species boundaries in fungi have yet to be used extensively to delineate species boundaries,
252  with such high similarity it's possible that Colletotrichum sp. CLE4 may represent a new marine

253  strain of C. godetiae that infects monocot plants.

254  Colletotrichum sp. CLE4 has the smallest reported genome size and fewest number of gene
255  models of any of the members in the C. acutatum complex looked at in this study. The genome
256  size of Colletotrichum sp. CLE4 is 8.69% smaller than the average genome size in the C.

257  acutatum complex (52.6 Mbp). While the gene content is 21.90% less in comparison to the
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258 average number of genes in the complex (15,383). Further, despite high ANI similarity,

259  Colletotrichum sp. CLE4 has a genome size that is 7.02% smaller compared to the genome of
260 its sister taxa C. godetiae (51.7 Mbp) and has 25.24% less gene content (16,071). Interestingly,
261  the Colletotrichum sp. CLE4 genome is only slightly smaller than the only reported endophyte
262 isolate in this complex, C. fioriniae [83], with only a 2.86% smaller genome size (49.4 Mbp in C.
263 fioriniae) and a 1.34% smaller gene content (12,178 in C. fioriniae). Zooming out to the genus
264  overall, while Colletotrichum sp. CLE4 is still among the smallest assemblies for genome size
265 and number of gene models, it is not the smallest for either metric. Additionally, the average
266 BUSCO completeness for the C. acutatum complex was 98.38% and for the Colletotrichum
267  genus was 97.39%. Thus, while smaller in genome size and gene content, the draft genome
268 assembly for Colletotrichum sp. CLE4 has a similarly high completion rate (98.8%).

269  Gene family reductions in Colletotrichum sp. CLE4

270
271 To further explore gene family gain or loss in Colletotrichum sp. CLE4, we performed

272  OrthoFinder analysis, comparing Colletotrichum sp. CLE4 with other members of the genus

273  Colletotrichum with a focus on comparisons to members of the C. acutatum complex. In total,
274  we identified 38,833 phylogenetically hierarchical orthogroups (HOGs) among all Colletotrichum
275  spp. and 23,298 HOGs among members of the C. acutatum complex.

276

277  Of these, 9197 HOGs were conserved across all members of the C. acutatum complex and

278  Colletotrichum sp. CLE4 (Figure 3A). Interestingly, Colletotrichum sp. CLE4 appears to be

279  missing 591 HOGs that are shared between all other members of the C. acutatum complex,
280  which we infer to be most likely due to gene loss in CLE4. The main functional domains of the
281 missing HOGs include hypothetical domains, transcription factors, transporters, cytochrome

282  p450s, FAD-binding domains, and heterokaryon incompatibility protein domains (Figure 3B).

10
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283  This set also included a handful of HOGs with CAZyme domains including GH3, GH43, GH76,
284 GT25, GT15, and GT90.

285

286 In total, only 18 HOGs were exclusively present in Colletotrichum sp. CLE4 and absent in other
287 members of the C. acutatum complex, many of which represented uncharacterized proteins
288  (Figure 4). However, only two of these HOGs were exclusively present in Colletotrichum sp.
289  CLEA4 relative to all other Colletotrichum spp, an uncharacterized protein and a short-chain

290 dehydrogenase (Figure S2). Seven HOGs were detected as shared with multiple members of
291  the C. gloeosporioides complex, which includes many reported endophytic species. Two HOGs
292  were predicted to be apoplastic plant effectors, representing a multicopper oxidase and a FAD-
293  binding domain protein. Further and of particular note, one HOG was predicted to be a NodB
294  homology domain-containing protein.

295

296 Discussion

297

298  Genome and annotation provide critical resource for marine-plant fungi work

299

300 This study provides the first draft genome and annotation of a marine Colletotrichum sp. and is

301  avaluable resource for future investigations into the evolution and ecology of this highly

302 adaptable fungal genus. At 98.8% BUSCO completion, this genome is comparable to other
303 members of the C. acutatum complex and the broader Colletotrichum genus. This high level of
304 completeness indicates that the assembly accurately reflects the genetic content of

305  Colletotrichum sp. CLE4 and can serve as a foundation for understanding the genomic basis of

306 its adaptation to a marine environment.

307 Interestingly, the repeat content of the Colletotrichum sp. CLE4 genome (2.87%) is lower than
308 that reported for other Colletotrichum species [78,108,111]. This could be due to the use of

309 short-read sequencing, which may collapse repetitive regions, thereby underestimating repeat

11
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310 content. However, another study has reported a significant positive correlation between genome
311 size and repeat content in Colletotrichum spp. [111]. Further, in C. tanaceti, higher repeat

312  content was suggested as a possible mechanism for expansion of pathogenicity genes [89].
313  Further studies using long-read sequencing could help clarify the repeat landscape of

314  Colletotrichum sp. CLE4 and explore its potential role in genomic streamlining and adaptation.

315  Phylogenetic placement indicates likely recent evolutionary association

316  Whole genome phylogenetic approaches place this isolate it in C. acutatum complex, which

317  evolved 14.5 mya [6], and place it sister to C. godetiae, which is best known for causing disease
318 in a broad range of terrestrial eudicot plants and having a global distribution [5,7]. Interestingly
319 in multi-locus phylogenies, C. godetiae places sister to C. lauri (no publicly available genome)
320 which has been reported once in association with neither a monocot or eudicot, but instead a
321 magnoliid plant [7,112]. The evolutionary history of the Colletotrichum genus suggests an

322  ancestral association with eudicot hosts, with subsequent diversification and independent

323 adaptation to monocot hosts as flowering plants diversified [6]. Seagrasses, such as Z. marina,
324  are early branching monocots whose ancestors recolonized the marine ecosystem 70 - 100 mya
325 [113]. The more recent evolution of the C. acutatum complex suggests that Colletotrichum sp.
326  CLE4’s relationship with seagrass likely occurred after the return of the ancestor of Z. marina to
327 the ocean, as opposed to co-evolving with Z. marina. This is similar to the timing of other

328 monocot-host jumps in C. orchidophilum and C. phormii, which both are predicted to have

329 transitioned at a date after the speciation of their host [6]. Ultimately, this means that the

330 ancestor of Colletotrichum sp. CLE4 needed to adapt to both a monocot host and the marine

331 ecosystem simultaneously.

332  Adaptations by seagrasses to the marine ecosystem may pose additional challenges as well.
333  For example, seagrasses have lost all the required genes to form stomata [114], and their cell

334  wall contains polyanionic, low-methylated pectins and sulfated galactans, in addition the
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335 polysaccharides typical of land plants [115]. The plant cell wall is considered the first line of
336 plant defense against microbial invasion and the stomata are often how fungi initially invade
337 plants [116,117]. These physiological modifications, as a result of adaptation to the marine
338 ecosystem, would likely make it harder for Colletotrichum sp. CLE4 to invade and proliferate in
339 Z marina, possibly requiring a new or divergent invasion strategy relative to the strategies and
340 genes utilized by close relatives for land plant colonization.

341
342  Genomic streamlining during adaptation to a marine monocot host

343 Comparative genomic analyses revealed smaller genome size, gene count, and absence of
344  conserved gene families (i.e., HOGs) in Colletotrichum sp. CLE4 compared to other members of
345 the C. acutatum complex. Specifically, we found that the genome size of Colletotrichum sp.
346  CLE4 was 8.69% smaller, and its gene content was 21.90% lower than the average for the C.
347  acutatum complex. This combined with the absence of 591 gene families that are conserved
348 among all other C acutatum complex members leads us to conclude that the smaller genome,
349 gene count and reduced orthologous groups may be the result of genome reduction and

350 streamlining. Genome streamlining is a well-documented phenomenon in microbial adaptation
351 to marine environments, as seen in bacteria [118], and has been recently described in fungi
352  [119]. Streamlining removes non-essential genes and non-coding DNA to improve efficiency,
353 often at the cost of metabolic versatility. For example, the marine fungus Rhodotorula

354  sphaerocarpa exhibits a 10% smaller genome size compared to its terrestrial relatives, largely
355 due to a decrease in transporter genes, particularly Major Facilitator Superfamily transporters,

356  which are key for cross-membrane transport of organic solutes [119].

357  Genomic streamlining in Colletotrichum sp. CLE4 could also be linked to adaptation to a
358 monocot host or an endophytic lifestyle. Pathogens often have expanded or unique secreted
359  enzymes related to host-specialization and virulence in comparison to non-pathogens, and

360 similar patterns have been reported for hemibiotrophic fungi compared to biotrophs [2,92,120—
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122]. However, gene family differences in some studies have been reported to be more about

relatedness than trophic lifestyle [123]. Previous work in Colletotrichum species have observed
gains and losses of CAZyme and protease encoding genes in species that have a more narrow
host range and have suggested that switching to a new host involves gene losses coupled with

expansions in lineage-specific genes [6,61,78,124].

Colletotrichum sp. CLE4 had 683 CAZyme domain predictions, which is lower than most other
Colletotrichum species. Monocot infecting Colletotrichum spp. are generally reported to have a
smaller number of CAZymes compared to eudicot infecting species (741 vs. 867 on average)
[6]. This supports that some gene content reduction may be due to specialization to a monocot
host. However, Colletotrichum sp. CLE4 has a 7.82% smaller CAZyme content when compared
to the average for other monocot infecting species, indicating that host specialization alone may

not fully explain the extent of its smaller gene content.

Retention and loss of gene families provides functional insight into adaptation

In comparison to other C. acutatum complex members, Colletotrichum sp. CLE4 has lost 591
conserved gene families. While the majority of these had no predicted function, there was an
enrichment in the loss of transcription factors, transporters, cytochrome p450s, and FAD-binding
domains, as well as some specific CAZymes. The loss of gene families with transporter domain
annotations, particularly Major Facilitator Superfamily transporters, is similar to the reports from

genomic streamlining in marine Rhodotorula in response to marine adaptation [119].

While the reduction in transporters may relate to adaptation to the marine realm, the loss of
other gene families, such as cytochrome P450s and CAZymes, could relate to specialization to

a monocot host or endophytic lifestyle. It's been suggested that having a diverse set of
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386 cytochrome p450s play a role in the colonization success or virulence of plant pathogenic fungi
387 [122,125]. In Colletotrichum spp., contractions in cytochrome p450 diversity have been

388  suggested to relate to host range and specificity [6,61,126,127].

389  Similarly, the loss of certain CAZyme gene families further highlights the specialization of

390 Colletotrichum sp. CLE4, potentially reflecting adaptations not just to marine life but also to the
391 unique defenses of its monocot host and lifestyle strategy. For example, GH3, which can help
392 detoxify plant antifungal commands, may be unnecessary depending on the specific defenses of
393 Z marina [128]. GH43 has been suggested to be important for plant-host interaction or plant
394  tissue degradation in other Colletotrichum spp. [6] and expanded across distantly related

395 pathogenic lineages [78]. While GH76 expansions in Colletotrichum have been associated with

396 host-specificity towards woody plants [124].

397 A study comparing gene family differences between monocot and eudicot-infecting

398 Colletotrichum species found that pathogenic eudicot species retained three unique gene

399 families that were lost in monocot-infecting species, including a secreted B-glucosidase (GH3); a
400 secreted protein with a FAD-binding domain, and an a-1,2-mannosidase (GH92) [6]. The loss of
401  GHS3 and FAD-binding domains in Colletotrichum sp. CLE4 aligns with this pattern, suggesting

402 that these losses may relate to specialization to a monocot host.

403  In comparison to other C. acutatum complex members, Colletotrichum sp. CLE4 had only 18
404  unique gene families, of which only two were truly unique, while several others were shared with
405 endophytic members of C. gloeosporioides species complex. Two gene families were predicted
406 to be apoplastic plant effectors, representing a multicopper oxidase and a FAD-binding domain
407  protein. While often associated with pathogenicity, effectors are also important for beneficial
408 plant-fungal interactions [129-132] and for biotrophic lifestyles, where fungi may still need to

409  suppress host defenses and evade recognition [133,134]. Further and of particular note, one
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410 gene family was predicted to be a NodB homology domain-containing protein. NodB genes are
411  chitin deacetylases involved in the production of signaling molecules, most famously in legume-
412  rhizobia symbiosis [135,136], and homologous signaling pathways have been used by symbiotic
413  fungi [137]. The retention of gene families shared with C. gloeosporioides endophytes aligns
414  with previous studies suggesting that such shared gene families across distant Colletotrichum
415  species result from recent independent acquisitions or rapid losses during host specialization
416  [2,6,61,78].

417  Pathogen or endophyte - deconvoluting a complex hemibiotrophic lifestyle

418
419  Colletotrichum spp. isolated from healthy, undamaged seagrass tissues, such as Zostera

420  marina, have not been associated with anthracnose or other known pathogenic symptoms in
421 marine plants, suggesting they may act primarily as endophytes in these environments.

422  However, given the well-documented pathogenic potential of Colletotrichum spp. in terrestrial
423 plants and their hemibiotrophic lifestyle, we used machine learning with CATAStrophy to predict
424  the lifestyle of Colletotrichum sp. CLE4.

425

426  Perhaps unsurprisingly, CATAStrophy predicted that Colletotrichum sp. CLE4 is a hemibiotroph,
427  specifically an extracellular mesotroph. This lifestyle involves a biotrophic phase, where the

428  fungus maintains the host plant's viability under favorable conditions, followed by a necrotrophic
429 phase under stress, where it acts as a pathogen. This prediction aligns with CATAStrophy's
430 classification of most other Colletotrichum spp. as mesotrophs. This dual capacity for both

431 benign and pathogenic behavior is similar to fungi like Cladosporium fulvum, which exhibits a
432  Dbiotrophic lifestyle under controlled, optimal conditions but can turn pathogenic in response to
433  environmental stress [109,110].

434
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435  The predicted potential of Colletotrichum sp. CLE4 to switch between endophytic and

436  pathogenic roles suggests that it could remain a benign endophyte under stable conditions but
437  become harmful under environmental stressors or when Z. marina is compromised. This

438 flexibility supports a growing view of many fungi as multi-niche organisms that can form either
439  Dbeneficial or pathogenic associations depending on context [138]. Thus, while Colletotrichum
440  sp. CLE4 likely functions as an endophyte in Z. marina, it may retain the genomic potential to
441  become pathogenic under adverse conditions, highlighting the importance of environmental
442  factors in shaping fungal-host dynamics, and a need for further work in understanding the exact
443  nature of its ecological role when associated with Z. marina.

444

445  Conclusion

446

447  We report the first high quality draft genome and annotation of a marine monocot infecting

448  Colletotrichum sp. The genome is near-complete (98.8%) and encodes 12,015 genes, of which
449  5.7% are CAZymes and 12.6% are predicted secreted proteins. Whole-genome phylogenetic
450 analyses place Colletotrichum sp. CLE4 within the C. acutatum complex, most closely related to
451 C. godetiae, which infects terrestrial eudicot plants. Overall, we found evidence of a streamlined
452  genome, with an 8.69% reduction in genome size, 21.90% reduction in gene content, and a loss
453  of 591 conserved gene families compared to other members of the C. acutatum complex. This
454  streamlining is likely due to adaptation to both the marine ecosystem and a monocot host. We
455  also identified unique gene families some of which were shared with members of the C.

456  gloeosporioides complex which includes several endophytes, as well as NodB homology

457  containing domain protein. Machine learning analyses predicted that Colletotrichum sp. CLE4
458 has an extracellular mesotroph lifestyle, which may indicate it still has capacity to serve as an
459  opportunistic pathogen of Z. marina. This study provides a foundational insight into

460 understanding the evolutionary trajectory and ecological adaptations of marine-plant associated

461 Colletotrichum spp. Further work is needed, including challenge experiments and
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462 transcriptomics, to assess whether CLE4 is endophyte of ZM only under optimal conditions and
463  whether new environmental stressors such as a changing climate might trigger opportunistic
464  pathogenicity.

465

466 DNA Deposition

467
468 The raw sequences were deposited at GenBank under accession no. PRUNA1140278. This

469  Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank
470  under the accession JBFUUIO00000000. The version described
471  inthis paper is version JBFUUIO10000000. All code used in this work has been deposited on

472  Github (casett/ZM_Colletotrichum_sp Genome) and archived in Zenodo (DOI:

473  10.5281/zenodo.14207532).
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Figure 1. General characteristics of Colletotrichum sp. CLE4. (A) Photograph of Colletotrichum
sp. CLE4. (B) GenomeScope profile depicting the k-mer frequency histogram used to calculate
genome size, ploidy and heterozygosity. (C) A bar plot representing the percent of the genome
composed of repetitive elements from each repeat class. (D) A stacked bar plot representing the
percent of the genome made of repeat elements from each repeat class binned by 1%
sequence divergence (CpG adjusted Kimura divergence). For (C) and (D) bars are colored
repeat class (LINE = pink, SINE = orange, LTR = green, DNA = light blue, and Unknown =
yellow). Abbreviations: long-interspersed nuclear element (LINE), small-interspersed nuclear

element (SINE), long-terminal repeat retrotransposon (LTR), and DNA transposons (DNA).
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926  Figure 2. Phylogenetic placement and genomic content comparison to other Colletotrichum
927  spp. From left to right, first, a maximum likelihood phylogeny that shows the relationship of
928  Colletotrichum sp. CLE4 to other Colletotrichum spp. lineages. This tree was generated using
929 IQ-TREE2 on an alignment of BUSCO fungi_odb10 HMMs constructed using the

930 PHYling_unified pipeline. Taxon labels in the phylogeny are shown colored by their assigned
931 Colletotrichum species complex. Next (from left to right), in association with this phylogeny, a
932  bar chart of BUSCO “protein” completion status for the ascomycota_odb10 set is shown. Bars
933 show the percentage of genes found in each genome annotation as a percentage of the total
934 gene set and are colored by BUSCO status (missing = gray, fragmented = yellow, complete and
935 duplicated = green, complete and single copy = blue). Next is a bar chart of predicted gene
936  counts for each taxon with counts colored by fungal host plant ecotype reported during isolate
937 deposition (eudicot = purple, gymnosperm = pink, magnoliid = orange, monocot = yellow).
938 Finally, there is a bar chart of the draft genome size (Mbp) for each taxon with genome size
939 colored by fungal guild (endophyte = black, plant pathogen = grey).
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943  Figure 3. Colletotrichum sp. CLE4 is missing many C. acutatum complex conserved

944  phylogenetically hierarchical orthogroups (HOGs). (A) UpSet plot depicting shared HOGs within
945  the C. acutatum complex with Colletotrichum spp. organized by their phylogenetic relationship
946  from Figure 2. Vertical bars display the counts of HOGs in each group while the dots indicate
947  the organism present in each group. Horizontal bars display the number of HOGs in the genome
948  of each organism. We have highlighted three groups of HOGs: unique HOGs to Colletotrichum
949  sp. CLE4 (blue), conserved HOGs shared by the C. acutatum complex (purple), and conserved
950 HOGs missing in Colletotrichum sp. CLE4, but shared by the rest of the C. acutatum complex
951 (yellow). (B) Bar plot depicting the distribution of PFAM annotations across the conserved

952  HOGs missing in Colletotrichum sp. CLE4 but shared by the rest of the C. acutatum complex.

953  To simplify visualization, only annotations that were observed across = 4 HOGs are depicted.
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Figure 4. Majority of unique HOGs shared with endophytic C. gloeosporiodes complex. A
heatmap is depicted here visualizing the copy number of phylogenetically hierarchical
orthogroups (HOGs) that were unique to Colletotrichum sp. CLE4 relative to other members of
the C. actutatum complex. Further, the dendrogram to the left of the heatmap clusters the HOGs
by similarity in counts between the different HOGs, while the dendrogram above clusters

genomes based on similarity in counts between the different genomes.
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Table 1. Genome and annotation statistics for Colletotrichum sp. CLE4. Here we report

available under aCC-BY-NC 4.0 International license.

various AAFTF assembly and Funannotate annotation statistics including the number of contigs

in the assembly, the number of contigs of various lengths, the total assembly length, percent

GC, N50, L50, number of gene models, percent of genes annotated with different databases,
and the number of secreted genes with EffectorP predictions. We also report here the results of
the BUSCO assessment using the fungi_odb10 gene set.
Software Statistic Colletotrichum sp. CLE4
AAFTF # contigs (>= 0 bp) 168

# contigs (>= 50,000 bp) 127

Total length (>= 0 bp) 48,026,924

Total length (>= 50,000 bp) 47,411,477

Largest contig (bp) 1,779,047

Total length (bp) 48,026,924

Repetitive regions (%) 2.87

GC (%) 52.29

N50 506,655

L50 32

# N's per 100 kbp 5.01
BUSCO (fungi_odb10) [ Complete BUSCOs 98.8
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Complete and single-copy BUSCOs 98.4
Complete and duplicated BUSCOs 0.4
Fragmented BUSCOs 0.3
Missing BUSCOs 0.9
Total BUSCO groups searched 758
Funannotate Total number of gene models 12,015
Number of mRNA genes 11,678
Number of tRNA genes 337
Genes with GO Term (%) 57.42
Genes with InterProScan hit (%) 78
Genes with EggNog hit (%) 95.53
Genes with PFAM hit (%) 69.13
Genes with CAZyme hits (%) 5.68
Genes with MEROPS hits (%) 3.67
Genes with secretion prediction (%) 11.97
EffectorP Number of total predicted effectors 469
Number of cytoplasmic effectors 141
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Number of apoplastic effectors 328
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Uncharacterized protein (N33.HOG0016987)

Colletotrichum sp. SAR 10_71 (GCA_025327135.1
Colletotrichum sp. SAR 10_70 (GCA_025327165.1
Colletotrichum sp. SAR 10_75 (GCA_025327155.1
Colletotrichum sp. SAR 10_65 (GCA_025328335.1
Colletotrichum sp. SAR11_57 (GCA _025328355.1
Colletotrichum sp. SAR 10_77 (GCA_025330015.

Colletotrichum sp. SAR 10_76 (GCA_025327145.1
Colletotrichum sp. SAR 10_86 (GCA_025327125.1

Colletotrichum asianum (GCA_009806415.1
Colletotrichum gloeosporioides (GCA_011800055.1)
Colletotrichum m_ombm orioides (JGI)

Colletotrichum fropicale (GCA_027942835.1)
Colletotrichum sp. SAR11_240 (GCA_025328625.1
Colletotrichum sp. SAR11_239 (GCA_025328985.1
Colletotrichum sp. SAR 10_96 (GCA_025329375.1)

Colletotrichum musicola (GCA_014235935.1)

Colletotrichum incanum (JGI)
Colletotrichum chlorophyti (JGI)
Colletotrichum navitas (JGI

Colletotrichum sojae (GCA_014235955.1)
Colletotrichum sublineola [
Colletotrichum caudatum I
Colletotrichum acutatum COA_”W
Colletotrichum abscissum (J _Nu.
Colletotrichum costaricense (JGI)
Colletotrichum cuscutae (JGI
Colletotrichum eremochloae (JGI
Colletotrichum fioriniae (GCA_027942845.1)
Colletotrichum fioriniae (JGI
Colletotrichum godetiae CBS193.32 w_o__
Colletotrichum m.qma_:_.oo_m (GCA_029226625.1)
Colletotrichum higginsianum (GCA_004920355.1)
Colletotrichum lupini (JGI)
Colletotrichum melonis (JGI
Colletotrichum nymphaeae (JGI)
Colletotrichum orbiculare (J _Nw
Colletotrichum paranaense (JGI
Colletotrichum phormii CBS102 mp%@%
Colletotrichum plurivorum (GCA_014235945.1)
Colletotrichum salicis (JGI)

Colletotrichum scovillei (GCA_018906675.1
Colletotrichum scovillei (GCA_018906765.1
Colletotrichum scovillei (GCA_018907675.1
Colletotrichum scovillei (GCA_011075155.1
Colletotrichum shisoi (GCA_006783085.1)
Colletotrichum simmondsii (JGI)

Colletotrichum somersetensis (JGI)
Colletotrichum sublineola (JGI)

Colletotrichum SBm:__o_W Gl)

Colletotrichum tanaceti (GCA_005350895.1)
Colletotrichum zoysiae (JGI)

Colletotrichum sp. SAR 10_98 (GCA_025329385.1)
Colletotrichum tofieldiae tmw

Colletotrichum truncatum A% A_014235925.1)
Colletotrichum falcatum (JGI)

Colletotrichum incanum (GCA_001625285.1)
Colletotrichum higginsianum (JGI

Colletotrichum sp. SAR11_59 (GCA_025328345.1)
Colletotrichum orchidophilum (JGI)

Colletotrichum cereale (JGI)

Colletotrichum sp. CLE4 (this study)
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