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Abstract. Phishing attacks on enterprise employees present one of the
most costly and potent threats to organizations. We explore an under-
studied facet of enterprise phishing attacks: the email relay infrastructure
behind successfully delivered phishing emails. We draw on a dataset span-
ning one year across thousands of enterprises, billions of emails, and over
800,000 delivered phishing attacks. Our work sheds light on the network
origins of phishing emails received by real-world enterprises, differences
in email traffic we observe from networks sending phishing emails, and
how these characteristics change over time.

Surprisingly, we find that over one-third of the phishing email in our
dataset originates from highly reputable networks, including Amazon and
Microsoft. Their total volume of phishing email is consistently high across
multiple months in our dataset, even though the overwhelming major-
ity of email sent by these networks is benign. In contrast, we observe
that a large portion of phishing emails originate from networks where
the vast majority of emails they send are phishing, but their email traffic
is not consistent over time. Taken together, our results explain why no
singular defense strategy, such as static blocklists (which are commonly
used in email security filters deployed by organizations in our dataset),
is effective at blocking enterprise phishing. Based on our offline analysis,
we partnered with a large email security company to deploy a classifier
that uses dynamically updated network-based features. In a production
environment over a period of 4.5 months, our new detector was able to
identify 3-5% more enterprise email attacks that were previously unde-
tected by the company’s existing classifiers.

1 Introduction

Phishing attacks remain one of the most costly threats to enterprises, resulting in
billions of dollars in losses [11], disrupting critical infrastructure [5], and imper-
iling national security [35,51]. Although a substantial body of research has pro-
posed various countermeasures [1,21,28,44,46,49], the continued and widespread
success of phishing illustrates the need for better defenses.
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Prior work on spam and mass phishing campaigns have proposed simple
blocklists as a defense [17,38,46], with an implicit premise that phishing emails
will emanate from stable and predominantly malicious servers. In practice, many
organizations do use IP address-based blocklists, including many of the ones
in our email dataset (Sect.3.3). However, these methods have limited efficacy
against enterprise phishing; in our dataset alone, they fail to block hundreds
of thousands of phishing emails. This limitation arises because blocklists often
grow stale and can suffer from slow updating delays as they tend to rely on user
reports [48]. Given the evolving web and cloud landscape — where IP addresses
and servers frequently change ownership, host multiple independent tenants in
parallel, and /or host legitimate services that have been compromised by attack-
ers — the efficacy of such methods against modern enterprise phishing remains
unclear.

Our work seeks to better understand the network characteristics of mod-
ern enterprise phishing attacks, with the aim of identifying more nuanced and
effective defenses that go beyond static blocklisting. Performing this analysis,
which explores and characterizes the email infrastructure responsible for rout-
ing phishing emails, requires a large-scale dataset of both phishing and clean
emails from many enterprises. Although some studies have involved large cor-
pora of phishing emails [7,18,49], they focus on the content in email messages,
the infrastructure used to host phishing websites, or involve attacks targeted pri-
marily at consumers (as opposed to enterprise organizations), leaving questions
about the email delivery infrastructure unexplored.

To this end, we present the first large-scale study of the email delivery infras-
tructure used for enterprise phishing emails. This paper involves a collaboration
between academic researchers and Barracuda Networks, a large email security
provider. We analyze the email delivery path information (from the email head-
ers) across emails received by thousands of organizations. Our dataset consists
of over 800,000 successfully delivered phishing emails and 4 billion non-phishing
emails, across three different months (Jan 2020, Oct 2020, and Jan 2021). Impor-
tantly, the emails captured in our dataset have not been already blocked by any
pre-filtering services (e.g., Mimecast, Proofpoint) that organizations may employ,
providing a representative view of real-world enterprise inboxes.

Using this data, our paper investigates the following questions:

1. What networks do enterprise phishing emails originate from?

2. How does the email delivery infrastructure used in enterprise phishing attacks
evolve over time?

3. Can we use the delivery origin of an email to improve phishing detection?

Our analysis reveals several insights relevant to designing defenses. First,
networks can be categorized by how much email sent from their servers is benign
vs. phishing (Sect. 4.1). On one end of the spectrum, the infrastructure of several
prominent hosting companies (including Microsoft Azure and Amazon AWS)
send a large volume of phishing emails, even though the vast majority of their
outbound email is benign. These “low-phishing-concentration” networks remain
stable throughout the three months in our data. On the other hand, a small
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number of IP addresses and networks send a large amount of phishing emails
and only a small volume of benign emails. In contrast, this set of “high-phishing-
concentration” networks is not stable over time (Sect. 4.3), suggesting that some
subset of attackers actively switch to different networks to evade detection.

We apply the results of our empirical analysis in Barracuda’s production envi-
ronment, where we monitor the rate and proportion of phishing emails coming
from each network in an online fashion and demonstrate that we can use these
dynamically updated features to detect previously undetected phishing attacks
with a low false positive rate (Sect.6). Ultimately, the analysis and experiment
results from our work suggest that we can better combat modern enterprise
phishing by targeting the email delivery infrastructure they abuse through a
diverse set of technical and policy-based defenses.

2 Background

Our paper studies the network characteristics of phishing emails received by
enterprises. We focus on emails sent from outside the recipient’s organization,
and make no assumptions about the kind of infrastructure or tools used by the
attacker (e.g. the emails might come from a compromised external account or
reflect spoofing from an attacker-controlled server). Below, we review the key
networking-related information contained within email headers and provide an
overview of related work.

’
: Recipient Mail Intermediate Intermediate Sending Mail
Barracuda Server Server Server Server
1 4444 3.3.33 2222 1.1.11
7

Fig. 1. Example of email delivery with multiple mail servers. Barracuda collects and
analyzes emails from the recipient’s mail servers.

2.1 Email Headers

In addition to their message content, emails contain a set of headers specified
by the Simple Mail Transfer Protocol (SMTP). When Alice sends an email, her
mail client attaches envelope headers that specify the recipients’ email addresses
(RCPT TO) and a return address for the sender (MAIL FROM). The email
also contains human-readable headers that a recipient’s email client will display
as the email’s sender and recipient (FROM and TO headers respectively).

For each recipient, a copy of Alice’s email will get routed through a series
of mail servers (relays) until they arrive at the recipient’s (Bob’s) mail server.
Each relay will append a RECEIVED Header to the email message that records
information about the prior hop of the delivery path: the IP address (and/or
hostname) of the prior relay server and IP address (and/or hostname) of the
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current mail server receiving the email. In the simplest case, Alice’s mail server
will transmit her email directly to Bob’s mail server, without traversing any
intermediate mail relays, resulting in a single RECEIVED header. However,
in more complex scenarios, Alice’s email might route through a series of mail
servers, producing a set RECEIVED headers. For example, Alice or Bob might
use a large email provider that routes emails through a series of internal mail
servers for scalability and load balancing purposes. Figure 1 illustrates an exam-
ple of email delivery that involves multiple mail servers, where the RECEIVED
headers might be: [Received, from 3.3.3.3 by 4.4.4.4], [Received, from 2.2.2.2 by
3.3.3.3], [Received, from 1.1.1.1 by 2.2.2.2].

The set of RECEIVED headers describes the email relay path, the underlying
delivery infrastructure that an email traverses from sender to recipient. We refer
to the first (earliest) server in RECEIVED header as the originating server
and its IP address as the originating IP address (e.g. 1.1.1.1 in Fig.1). Since
Barracuda collects and analyzes emails from the recipients’ mail servers, our
data contains the full set of headers after email delivery.

2.2 Related Work

Below, we discuss several areas of research that are most relevant to this work.

Phishing Websites and URLs: Prior research proposes many methods to detect
phishing websites and URLs [13,26,37,42,50,52,56] and analzyed the infras-
tructure used to host phishing websites [4,31]. To detect malicious URLs,
detectors can extract lexical features [13,37], or features based on a URL’s
domain [26]. Prior work has also proposed machine learning detectors that use
features relating to a website’s content, such as text from the rendered HTML
DOM and images embedded in web pages [33,50,52,56]. Unfortunately, phish-
ing attacks have become increasingly sophisticated and employ various evasion
strategies [16,32,49,50,55]. For example, recent studies indicate that attackers
increasingly rely on compromised, legitimate websites or carefully craft their
domain names to thwart URL-based detectors [33,43].

Phishing Email Detection: Prior work on detecting email attacks has predomi-
nantly used suspicious signals in the email’s content [3,7,10,14,18,19,47]. These
approaches train machine learning models with features related to the email’s
text, URLs or attachments, and metadata such as the timing of the email and
the consistency of its sender and recipient headers. However, the continued suc-
cess of phishing illustrates that existing defenses still have significant room to
improve.

Email Authentication Protocols: Several authentication protocols aim to com-
bat spoofed emails. The Sender Policy Framework (SPF) allows a domain to
add an allowlist to its DNS record that specifies the set of IP addresses allowed
to send email on its behalf. In DKIM (DomainKeys Identified Email), domains
add a public verification key to their DNS record and then append a private-key
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signature to emails they send. DMARC (Domain-based Message Authentica-
tion, Reporting, and Conformance) allows domains to specify a policy for how
recipients should treat emails that fail to authenticate under either of the above
protocols. While protocols can provide insight into the validity of a sender of an
email, they cannot defend against other forms of deception, such as attacks that
use compromised accounts or employ visually deceptive names. Furthermore,
recent work shows it is very common for these authentication methods to break
or be misconfigured [9,40].

Malicious Email Delivery Infrastructure: Closer to our work, several studies
have examined the email delivery infrastructure used in spam emails, a different
and less deceptive email-based attack [17,20,25,38,39,42,53,54|. Ramachandran
et al. [39] found that a small number of autonomous systems (ASes) send the
majority of spam and benign emails. Building upon these results, prior work
has found that using network-level information about an email’s origin such
as IP address and AS can improve spam detection both in machine learning
models [17] and blocklists [38,46]. Furthermore, Fukushi et al. [12] found that
thousands of IP addresses from popular cloud hosting services get blocked as a
result of sending spam. They note that these IP addresses remain on blocklists
for an average of 20-30 days, and due to the transient nature of cloud service
IP addresses (e.g., machines shifting between users) this can create issues for
benign users if such IP addresses remain on blocklists for too long.

Efficacy of Modern Blocklists: Recognizing the limitations of static blocklists and
allowlists, some spam filters, such as SpamAssassin, assign a “reputation” score
to received emails based on how many spam or benign emails were received in
the past from their IP and email addresses [45]. Although several modern block-
lists (such as SURBL and Spamhause) receive frequent updates, they either do
not include network-based features (in the case of SURBL) or focus primarily on
spam (in the case of Spamhause), which is a different threat than the more tar-
geted and deceptive emails used for enterprise phishing. Furthermore, blocklists
present several practical limitations: recent prior work [23] shows that the data
sources of such blocklists are opaque and of questionable quality, and the ven-
dors providing these lists rarely explain their data collection and classification
methodology. Finally, blocklists fundamentally require someone to first report
the attack, which not only introduces a delay [48], but also means they cannot
protect against unreported or previously unseen sources of attacks.

Although the prior work shows using network-level characteristics of an
email’s origin can help thwart spam, it remains an open question whether modern
phishing campaigns targeting enterprises rely on similarly positioned infrastruc-
ture and whether phishing exhibits other interesting network-level behaviors.

3 Data

Our dataset provides a unique view of enterprise phishing emails at scale, con-
sisting of over 800,000 phishing emails and 4 billion clean emails received by
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enterprise users from external senders. The data spans 3 one-month periods:
January 2020, October 2020, and January 2021, and contains the SMTP head-
ers of emails received by enterprises who use Barracuda’s services and have opted
in to using their data for research purposes. All the enterprises in our dataset
use Microsoft Office 365 (0365) as their email provider. Our dataset consists of
emails that have been successfully delivered to enterprise 0365 accounts, so it
does not contain emails that get blocked before delivery (e.g., by an organiza-
tion’s spam filter). Thus, our data reflects the typical phishing and clean emails
that enterprise users actually encounter on a daily basis.

We analyze the effects of these email filtering services in Sect. 3.3 and show
that organizations that deploy such filters do not encounter different phishing
attacks as a result. Then, in Sect. 3.4 we analyze the accuracy of the network
origin of emails (e.g. if attackers are forging RECEIVED headers). In Sect.
3.5, we compare the rates of email authentication protocols between clean and
phishing emails. Finally, in Sect. 3.6, we discuss potential limitations with our
dataset. While we focus on analyzing the network characteristics of the phishing
emails in our dataset, such a large-scale enterprise dataset could also be used to
develop a phishing attack taxonomy or discover clusters of related attacks.

3.1 Email Classification

We label emails as “phishing” or “not-phishing” via a set of Barracuda’s com-
mercial detectors that detect phishing emails with embedded URLs. The detec-
tors use text-based signals extracted from an email’s body as well as features
extracted from the embedded URL (e.g. features from its DNS entry). These
classifiers do not incorporate features related to the network characteristics of
an email and have an estimated precision of over 99% for phishing emails that
contain a link. The precision was calculated by a team of analysts at Barracuda
who manually analyze samples of emails labeled as attacks by the classifiers. We
also manually validated that a random sample of approximately 500 emails (from
distinct campaigns) labeled as phishing within our dataset were indeed phishing
emails by inspecting the subject line, email body, and sender information. Given
the scale of our dataset (which prohibits manual labeling) and low false positive
rate of these classifiers, we treat Barracuda’s classifiers’ labels as ground truth.
Because our work focuses on the characteristics of enterprise phishing emails,
we refer to non-phishing emails as benign or “clean”, although a small subset of
these emails might correspond to phishing or other forms of abusive emails (such
as extortion and scams). As we show in Sect. 6, despite the existence of false
negatives in our dataset, we identify a set of useful features related to the net-
work origins of emails that helps uncover new, previously unclassified phishing
emails.

3.2 General Statistics

Table 1 summarizes the size of our data set. Each month in our dataset contains
200,000 - 300,000 phishing emails and over 1 billion clean emails. Phishing emails
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Table 1. Aggregate statistics of dataset.

Statistic Jan 2020/Oct 2020|Jan 2021
Phishing emails 218,079 (307,279 (282,689
Phishing campaigns 67,176 80,703 |73,925
Unique IP addresses (phishing)|16,027 (20,596 (12,743
Unique ASes (phishing) 2,808 3,317 2,075
Clean emails ~2B ~1B ~1.3B

1]

g 1.09 Jan 2020

3 0.84 - Oct 2020

5]

c | Jan 2021

0.6

(9]

o

= 0.44

1)

2

E 0.2 o

2 .z.."‘"'-'-.;‘

% 0.0

1 10 100 1000 10000 100000

rank of campaign by volume

Fig. 2. Cumulative fraction of phishing emails per campaign.

originate from over 12,000 distinct IP addresses across each month of data (row
3). For our analysis, we also mapped IP addresses to the autonomous system
(AS) they belong to using the Cymru IP address to ASN mapping API [8].

Campaign Analysis: We computed the number of distinct campaigns in our
dataset to understand whether the phishing emails in our data reflect a range
of different attacks. Following prior work [18], we define a phishing campaign as
a set of phishing emails that contain the same FROM address and normalized
subject line (lower-cased with spaces and symbols removed). Figure 2 shows the
cumulative fraction of phishing emails, as a function of each campaign, ranked
by phishing volume. Although the top-sending campaigns contribute significant
volume, (e.g. the top-1000 campaigns account for over 40% of the email volume
in all three periods), we find that the distribution is heavy-tailed and conclude
that no single campaign is skewing our dataset. While our work mainly focuses
on high-volume phishers, future work could explore smaller campaigns to reveal
patterns and threats in more targeted attacks.

Data Cleaning: We first removed all RECEIVED headers whose TP address fell
within a reserved or private address range. Then, we extracted the origin IP
address (as defined in Sect. 2.1) from the remaining set of headers (i.e. from the
first header without a private or reserved IP address).
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3.3 Effect of Email Filtering Services

Some organizations employ additional email filters (e.g. spam filters or blocklists)
that prevent some emails from reaching their users’ inboxes (and thus are not
captured by our dataset). In this section, we measure the prevalence and effect
of these “pre-filtering” services on our dataset. We find that 75% of organizations
use some pre-filtering services (e.g., a spam filter from Mimecast or Barracuda).
To determine whether an organization uses a pre-filtering service, we analyzed
their MX record: If their MX record points directly to Microsoft Office 365’s 1P
addresses, then the organization likely does not use an external filtering service,
and all email will be delivered to users’ 0365 accounts.! To understand the
impact of pre-filtering on our dataset, we examined whether organizations that
do not pre-filter their emails encounter uniquely different phishing attacks as a
result (as opposed to natural variations in phishing attacks received by different
enterprises).

Using the data from Jan 2020, we compared the phishing attacks received
only by organizations without pre-filtering (55,515 emails) to attacks at orga-
nizations that do apply pre-filters (162,564 emails). Across organizations with
no filtering, 41,474 emails originated from an IP address that also sent phish-
ing emails to organizations with filters, while 14,041 emails originated from IP
addresses that were only seen in phishing emails at organizations without fil-
tering. We checked the inverse relationship by comparing the phishing attacks
received only by organizations without pre-filtering to attacks received only by
an equally-sized random sample of organizations that do apply pre-filters (54,871
emails). Interestingly, we found the number of phishing emails received only by
organizations with pre-filtering was similar at 14,823. These numbers did not
significantly change when comparing at the AS granularity, or when we grouped
the emails by phishing campaign.

Thus, we find that the majority of phishing emails in our dataset originate
from TP addresses observed in the inboxes of both organizations that use pre-
filtering services and organizations that do not. While both sets of organizations
receive some phishing emails from distinct sets of origin IP addresses, the vol-
ume of phishing emails from the distinct origin IP addresses is comparable. These
results suggest that 1) a significant number of phishing attacks still bypass tradi-
tional email filters; and 2) our dataset provides a representative view of phishing
emails received by real-world enterprises despite the use of email pre-filtering.

3.4 Accuracy of Network Origin

In this section, we analyze the fidelity of the RECEIVED headers in phishing
emails. In particular, an attacker could obfuscate their origins by adding addi-
tional arbitrary RECEIVED headers to the start of an email’s delivery path.
However, the recipient’s mail server generates the last set of RECEIVED head-
ers, including the TP address of the server that delivered the email directly to the

! Email classified as spam by Microsoft will still appear in a user’s account, but within
a spam folder (which our dataset includes).
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Table 2. Proportion of emails that pass authentication in Jan’20.

Protocol: Pass Rate/Clean |[Phishing
SPF or DKIM 39.6%/23.3%
SPF and DKIM 10.0%/10.1%
DMARC 30.0%(10.4%

recipient’s server. Thus, we can reliably determine the email relay immediately
preceding the recipient’s mail server.

We extract the RECEIVED header that contains reliable sender information
as follows: We first find the header that contains the IP address of the recipient’s
mail server based on the recipient’s DNS MX record.? From this header, we then
know that the previous RECEIVED header was generated by the recipient’s mail
server. As a result, this header reliably reports the IP address of the server from
which it received the email.

Based on a series of tests comparing reliable email relay information and
potentially forged information, we find that at least 90.6% of phishing emails
in our dataset do not spoof the origin IP address in their RECEIVED headers
(at least not in ways that impact our analysis). For additional information on
the tests, see Appendix B, which suggests that for the vast majority of phishing
emails, we do not see strong evidence of email delivery path forgery.

3.5 Email Authentication

Given the low implementation and high misconfiguration rates of email authen-
tication protocols found by prior work (such as [9]) we investigated whether
email authentication rates differed between clean and phishing emails within
our dataset. Table 2 compares the proportion of phishing and clean emails that
pass various authentication checks in our data in January 2020; these statistics
remain consistent in October 2020 and January 2021. Although clean emails pass
at a higher rate than phishing emails, less than half of clean emails pass DMARC
validation, and 10.4% of phishing emails pass DMARC checks. Thus, while we
find that email authentication rates differ slightly between phishing and clean
emails, they fail to provide a reliable signal for detecting phishing. We confirm
this finding in Sect. 6, where we find that email authentication protocols are the
least important features when distinguishing between clean and phishing emails.

3.6 Limitations

Although we empirically determine that the usage of pre-filtering does not sig-
nificantly bias our dataset (Sect. 3.3), we acknowledge that using MX records

2 To avoid additional evasion, if multiple headers claim to involve recipient server, our
analysis only uses the last of these to ensure it reflects the true recipient server’s
information. We also ensured that we used the historical DNS MX record from the
corresponding time period the email was delivered.
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to infer the usage of pre-filtering may be imperfect. Specifically, some organiza-
tions may use multiple filtering layers not detectable through solely inspecting
their MX records (e.g., if they route email through security apps within 0365).
Other biases may arise from the fact that our dataset consists predominantly of
organizations based in the U.S. and Europe (so it may not be reflective of phish-
ing emails targeting other parts of the globe). Our dataset only captures data
up to 2021 and may not reflect any changes in the landscape of email phishing
since then. Additionally, although our dataset consists of billions of emails, it
contains only a small number of phishing emails that come from major email
service providers, such as Gmail or Outlook®. A potential explanation is that
major email providers have tight security controls on the outbound emails from
accounts they manage, which limits the type (e.g., emails with a spoofed FROM
address) and volume (i.e., rate limits on outbound emails [15]) of emails that
can be sent by attackers that use accounts on these services.

3.7 Ethics

The characterization was conducted on an existing dataset of email headers from
organizations who are active customers of Barracuda Networks. Per Barracuda’s
policies, all fetched emails were stored encrypted. Only the researchers working
on this project and authorized employees at Barracuda were allowed to access
the data, under a data-sharing agreement with the researchers’ institution and
via standard, strict access control policies. The academic researchers analyzing
this data submitted this study and received approval from their institution’s
IRB. See Appendix A for further discussion on our ethical considerations.

4 Delivery Infrastructure Characterization

In this section, we investigate the ASes and IP addresses of the email delivery
infrastructure the emails in our dataset. First, we examine the distribution of
phishing emails sent per IP and AS (Sect. 4.1). We find that a small set of
IP addresses accounts for a substantial portion of phishing emails. We then
characterize AS behaviors from two perspectives: the fraction of emails sent
from an AS that are phishing (Sect. 4.2) and the stability of the set of ASes
utilized for phishing attacks (Sect. 4.3). We conclude with an analysis of the
geographical distribution of the email delivery infrastructure (Sect. 4.4).

4.1 Network Origin Distribution of Phishing Emails

In this section, we find a significant volumes of phishing comes from a handful of
ASes and IP addresses that do not send large amounts of clean emails, suggesting
that network origin reputation features, extracted from the email delivery path,
can be a useful signal for detecting phishing emails.

3 In total, ~8 million emails originate from Google’s address space, and fewer than 50
phishing emails originate from published Gmail or Outlook IP address ranges.
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Fig. 3. Cumulative fraction of phishing Fig.4. Cumulative fraction of phishing
emails by originating IP address. The emails sent across the ASes of an email’s
200 highest-volume sending IP addresses originating IP address.

account for around 50% phishing emails.

Sender IP Address Distribution: Figure 3 shows the cumulative fraction of clean
and phishing emails sent per source IP address, sorted by the number of phishing
emails each sent. Although our dataset includes phishing emails successfully
delivered from over 10,000 unique IP addresses, the distribution is very skewed,
with around 50% of the phishing emails in our data coming from the top 200
IP addresses alone. These IP addresses account for less than 1% of the clean
emails. This result is in contrast to prior work on spam [39], which found that,
while a small set of IP addresses accounted for a significant amount of spam, the
majority of clean emails also originated from this same address set.

AS Distribution: We illustrate the distribution of phishing emails per AS in Fig. 4
(where the z-axis is sorted by the volume of phishing emails that originated from
each AS). We find that approximately 80% of the phishing emails in our dataset
come from just 100 ASes, which represent fewer than 1% of all ASes. This same
set of 100 ASes accounts for nearly 70% of the clean emails in our dataset. Nearly
60% of clean emails in this set originate from the top three ASes (2 belonging to
Amazon and 1 belonging to Microsoft). Excluding Amazon and Microsoft, the
top-100 ASes still account for the majority of phishing emails in our data, but
less than 10% of the clean emails.

Takeaways: These findings suggest that network-based reputation features can
help detect previously undetected phishing attacks from some networks (e.g.,
not Amazon or Microsoft). In subsequent sections, we explore additional aspects
about the networks sending phishing emails that can bolster the performance of
such features.

4.2 Phishing Concentration Across Networks

To characterize variations in behavior of the networks sending phishing emails,
we divided the ASes in our dataset into three categories, low, medium, and high
phishing concentration, using the following metrics: (1) the volume of delivered
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Fig. 5. Cumulative fraction of phishing emails as a function of phishing probability of
an AS, including AS phishing concentration categories. In January 2021, AS 206067
and AS 52000 had probabilities of phishing of 99.8% (with 6550 delivered phishing
emails) and 100% (with 1673 delivered phishing emails), respectively.

phishing email originating from each network; and (2) the AS’s probability of
phishing, defined as the fraction of delivered phishing emails originating from a
network divided by the total number of emails (clean and phishing) from that
network. The heuristics for each category are as follows:

— Low phishing concentration network: an AS where less than 0.1% of its
sent emails are phishing.

— Medium phishing concentration network: an AS where more than or
equal to 0.1% and less than 2% of its sent emails are phishing.

— High phishing concentration network: an AS with more than or equal to
2% of its sent emails labeled as phishing and has sent more than 150 phishing
emails in one month. This 150-email threshold removes any ASes that sent
very few total emails, which could lead to skewed probability values.*

We chose to focus on the AS-granularity to reveal coarser-grain patterns (e.g.,
large volumes of phishing emails from reputable ASes). We further explore more
fine-grained patterns (i.e., at the IP address level) in our case studies (Sect. 5.1).

Table 3 summarizes the proportion and size of each phishing concentration
category, and Fig. 5 shows the distributions of phishing emails across networks’
probability of phishing. This distribution is similar for each of the three time
periods, with a few low phishing concentration (but high phishing volume) net-
works contributing to nearly one-third of all phishing email.

Low Phishing Concentration Networks: Three networks belonging to Amazon
(AS 16509 and AS 14618) and Microsoft (AS 8075) are respounsible for over 85%

4 ASes that sent less than 150 emails collectively account for 5.5% of all phishing
emails in January 2020, 2.7% in October 2020, and 5% in January 2021.
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Table 3. Number of ASes for which a low (<0.1%), medium (0.1%-2%), or high (>2%)
proportion of their emails are phishing, and percent of phishing emails originating from
each category.

Category Jan 2020 Oct 2020 Jan 2021 Overall

# of % Phishing |# of % Phishing |# of % Phishing (% Phishing
ASes Emails Sent |ASes Emails Sent |ASes Emails Sent |[Emails Sent

Low Concentration 608 26.58 537 44.64 311 35.66 35.63
Medium Concentration/1031 25.39 502 19.94 397 13.82 19.73
High Concentration 62 42.5 44 32.76 61 43.72 39.66

Table 4. Email volume over time of the top 3 low phishing concentration networks.

ASN Date # Phishing|# Clean

14618 (Amazon)|Jan 2020/6,144 49,655,611
Oct 2020(10,574 68,629,830
Jan 2021/12,518 40,778,516
16509 (Amazon)|Jan 20207,845 35,086,658
Oct 2020/10,902 46,979,360
Jan 2021/14,465 23,541,485
8075 (Microsoft)|Jan 2020 7,507 17,481,559
Oct 2020(10,727 22,886,922
Jan 2021/11,839 15,272,305

of all phishing emails from networks in this category, and 31% of all phishing
email in our dataset. Despite the large amount of phishing emails originating
from their address space, these ASes are classified as low phishing concentration
as they are also the source of tens of millions of legitimate emails (Table4),
accounting for 60% of all legitimate email (as seen in the three large jumps in
Fig.4).

Medium Phishing Concentration Networks: This category accounts for the low-
est share of phishing emails (19.7%) and includes some smaller Internet hosting
companies. These networks are largely used to send benign email, but still orig-
inate an higher than average proportion of phishing.

High Phishing Concentration Networks: ASes in this category typically send
a relatively small number of emails overall but a high proportion of phishing
emails. This category contains the networks responsible for the largest amount
of phishing email in our dataset: over 39.7%. We find that many high phishing
concentration networks are legitimate hosting companies. To classify the net-
works, we visited the companies’ webpages and validated our classifications by
comparing them to CAIDA’s inferences [6] and to ASes’ self-classifications on
PeeringDB [34] (when available). In most cases, our classification of an AS as a
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Table 5. The 9 persistent high phishing concentration networks and their phishing
email volume over our three datasets. Networks that provide hosting services are
bolded.

Phishing Email Volume

ASN |Owner Jan 2020|Oct 2020{Jan 2021
4808 |CHINA169-BJ 2143 2405 2163
9009 |M247 Ltd 955 3207 2135
31863 |Centrilogic 557 605 1141
40676 |Psychz Networks|1974 210 618
54290 Hostwinds 2422 1340 401
60068 CDNT7 414 459 373
64236 |Unreal Servers 2014 353 372
135905 VNPT-AS-VN 581 274 355
197226 SPRINT S.A. 636 332 288

hosting provider was validated by PeeringDB and/or CAIDA classifying it as a
CONTENT provider. Most cases of disagreement were due to the AS offering both
hosting and consumer Internet services.

We found that on average, 67.6% of networks we classified as high-
concentration provide hosting services. Aside from Internet hosting companies,
the vast majority of the remaining ASes are Internet service providers, with only
1-2% belonging to other AS types, such as ENTERPRISE or EDUCATIONAL/RE-
SEARCH. We suspect many of these networks are unwitting hosts of attackers,
who quickly send a large amount of phishing email before moving on to new net-
work infrastructure (e.g., after getting caught), although some could be bullet-
proof hosting providers that use resources from legitimate upstream providers
[31]. We examine some of these “transient” malicious networks in more detail in
our case studies (Sect. 5).

Takeaways: Using network-based reputation features may be more useful for
thwarting phishing emails originating from high phishing concentration net-
works. On the other hand, since low phishing concentration networks originate a
large amount of legitimate email traffic, such reputation features will be unlikely
to accurately capture all phishing activity (e.g., Amazon/Microsoft IP addresses
are unlikely to show up on fraud-activity-based blocklists).

4.3 How Does Phishing Delivery Infrastructure Change Over Time?

In this section, we characterize the stability the email delivery infrastructure used
to send enterprise phishing emails. In particular, we examine the stability of high
phishing concentration networks and the top-100 ASes by phishing volume rank
over a period of one year.
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Fig. 6. AS probability of phishing in Jan '20 and ’21. Each point is AS that sent 100
or more phishing emails in either Jan 20 or Jan ’21. Purple regions correspond to high
phishing concentration ASes.

Year-to- Year Comparison of Phishing Probability: Comparing the fraction of an
AS’s emails to Barracuda customers that are phishing in January 2020 (X axis)
to the fraction that are phishing in January 2021 (Y axis) (for ASes that sent
at least 100 phishing emails), we find that most ASes fall fairly close to the
line X =Y, meaning they maintain a consistent probability of phishing across
the two time periods (Fig.6). The ASes in the top-right corner of Fig. 6 have a
consistently high probability of phishing, although many transition from being
very likely to send phishing emails in 2020 (compared to the global fraction of
email that is phishing) to sending exclusively phishing emails in 2021. We find
that all ASes with a probability of phishing of 0 in either time frame did not
send emails during that month, meaning they were actively used by attackers in
one year and did not send any emails during the other month to organizations
in our dataset.

Stability of High Phishing Concentration Networks: Of the 132 ASes we classify
as high phishing concentration during at least one of the months in our dataset,
the majority are only high-concentration for one month (Fig. 7a). Only 26 ASes
(19.6%) are classified as high phishing concentration in at least two out of three
months of our data, and 9 ASes (6.8%) are high-concentration across all three
months. When combined, over 25,000 phishing emails originate from the 9 per-
sistent high phishing concentration networks across the three months in our data
(Table5).
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(a) High phishing concentration ASes. (b) Top-100 ASes by phishing volume.

Fig. 7. Persistence of networks over time.

Stability of Top-100 ASes by Phishing Email Count: Out of the top-100 networks
by phishing volume, many consistently rank among the top-100 over time: 31
remain across all three months in our data, and 61 ASes appear in the top-100
phishing networks across at least two months (Fig. 7b). Overall, the top-100 ASes
by phishing volume account for 83% of the total volume of delivered phishing
emails. The 31 ASes that are consistently in the top-100 account for 44%-51%
of the total phishing email, and the 61 ASes account for 49%-65%. Of the 31
persistent networks, 26 provide hosting services, while the remaining 5 ASes are
Internet service providers.

Takeaways: While some networks are consistently reused to send phishing emails,
a larger proportion of phishing email delivery infrastructure is comparatively
transient. These nuances suggest that incorporating temporal aspects of network
behavior may help improve phishing detection while maintaining a low false
positive rate. In Sect. 5, we investigate these nuances in more detail and discuss
defensive ideas that leverage our insights. We empirically confirm this idea in a
real-world, production environment in Sect. 6.

4.4 Geographical Routes of Phishing Emails

In this section, we examine the geographical distribution of the email delivery
infrastructure used to send phishing emails. We matched the IP addresses across
our dataset’s RECEIVED headers to their country using the MaxMind Geolite2
database [27]. We matched addresses that MaxMind did not geolocate by using
WholS to identify the country that the IP address was registered under.

There are some caveats with this analysis due to the inaccuracy of geolocating
IP addresses. For example, prior work notes that, while geolocation databases
obtain good accuracy (85%, and MaxMind reports a coverage of 80%), they
are not perfect, with the two leading factors behind errors in geolocation are
IP addresses that belong to ASes with a global presence and IP addresses that
change ownership through merger and acquisition [24]. Our analysis attempts to
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3 months, ranked by volume in Jan ’20.

address some of these limitations by studying location at the country granularity,
which MaxMind claims are 99.8% correct [27] and which prior work shows
to be reasonably accurate [36], but we acknowledge that imperfect data might
inherently lead to some inaccuracies. Furthermore, results can vary based on a
company’s location and the location of those who send it legitimate email. Our
results are specific to the Barracuda customers in our dataset, which are largely
based in the US.

Probability of Phishing by Origin Country: For countries with more than 1000
emails in our dataset, Fig. 8 shows the probability of emails from each country
that were phishing. Similar to the distribution by AS, the countries with the
highest email volume (by originating IP address) also have a low probability
of phishing. However, several countries have a significant amount of outbound
email that contains a high proportion of phishing emails. For example, in at least
one month of our dataset, five countries rank in the top-100 countries by sending
volume where over 5% of these emails are phishing.

Geographic Routes of Phishing Emails: Widening our geographic analysis from
just the origin IP address to the full email relay path, we found that phishing
emails tend to route through more countries than clean emails (Fig.9). In terms
of exact paths, most emails, clean and phishing, route through a small number of
distinct country sequences. Figure 10 shows that after mapping the IP addresses
in an email’s delivery path to their country, the top-25 country routes account
for over 60% of phishing traffic in our dataset. The most common path taken
by both clean and phishing emails traversed servers that resided solely within
the US, reflecting the large proportion of US-based organizations in our data.
However, we find that this country route accounts for over 70% of traffic for
all clean emails across all time periods in our data, while less than half of all
phishing attacks were routed only through the United States. The second-most-
common route was traffic routed from US-based servers to UK-based servers,
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while the third-most-common route was from Germany to the US. Both of these
paths routed a slightly higher fraction of the overall phishing emails than their
fraction of clean emails, but these routes each carried 5% or less of the total
emails each month.

Takeaways: Our analysis shows that the number of countries in the email delivery
path and the countries themselves within the path could provide a useful feature
to improve phishing detection, as long as a defender accounts for limitations of
geolocation and dataset biases.

5 Case Studies

In this section, we investigate several nuances in network behavior by examin-
ing some illustrative examples of ASes (and the IP addresses contained within
them) in both the low and high-phishing concentration categories. First, we
take a deeper dive into the two prominent low-concentration networks, Amazon
and Microsoft (Sect. 5.1). Next, we explore two contrasting examples of high-
phishing-concentration networks: one that remains high concentration across the
three months (Sect. 5.2), and one that is comparatively transient, sending phish-
ing emails in short bursts in a single month (Sect. 5.2). In particular, we find
that many networks are quite unstable (over even a period of one month) with
respect to their phishing email traffic, motivating the need for more dynamic
solutions than static blocklists.

5.1 Low Phishing Concentration Networks

We examine specific IP addresses in ranges owned by Amazon and Microsoft to
better understand why a significant fraction (31%) of all phishing email in our
dataset originate from ASes owned by these two companies (however, phishing
still constitutes less than 0.01% of the total email sent from these networks). In
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Fig. 11. Phishing over time for particular IP addresses and ASes during January 2021.

some cases, we find that attackers use hosting services provided by Amazon and
Microsoft (i.e., AWS and Azure) to send phishing email (whether it be through
compromising or deploying a mail server on these platforms). Additionally, we
detect a potential case of account hijacking.

Amazon: AS 14618 & AS 16509. Based on the aggregate email traffic from
the Amazon IP address responsible for the largest number of phishing email
(1,324 emails in January 2021) and additional information from the email head-
ers, we identify this IP address, which belongs to a published EC2 IP address
range®, to correspond to a “dedicated” phishing email server. The emails origi-
nating from this IP address contained 388 unique FROM _EMAIL values where the
email address was noreplyQdomain.com across different domains. This informa-
tion suggests that the attackers were spoofing the FROM EMAIL value in their
attacks. Furthermore, all the phishing emails from this IP address were sent
within a short period of time (as shown in the blue curve in Fig. 11b). We cap-
tured 458 emails that were not classified as phishing from this IP address, and
did not see any phishing emails in other time snapshots. This large burst of
seemingly spoofed emails suggest the attackers either set up their own email
server on AWS or compromised a legitimate server to send a large amount of
phishing emails.

5 On aggregate, 39.36% (7,623 emails) of all phishing email originating from Amazon’s
ASes come from a published EC2 IP address range (based on Amazon’s published
IP address ranges, we were unable to determine the other Amazon services for the
remaining phishing emails) [2].
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Table 6. Phishing sending lifespan and Table 7. Clean and phishing email vol-
email volume for the top-10 phishing ume over time of AS 9009.
senders by IP within AS 9009 in January

2021. Time Period|# Phishing|# Clean
— - — Jan 2020 955 29099

Phishing Lifespan|# Phishing|# Clean Oct 2020 3907 17560

15 days 11:59:34 |245 10 Jan 2021 9135 8635

1 days 16:32:37 127 19

0 days 09:10:08 |96
10 days 12:38:23 |81
9 days 08:24:46 |71
1 days 17:15:40 |71

7 days 23:46:46 |67 88
21 days 03:07:51 |64
0 days 05:47:59 |60 3

0 days 01:03:14 |53

We were also able to identify a phishing attack potentially enabled by account
hijacking. We found a smaller volume of phishing email originating from a single
Amazon IP address, where the FROM _EMAIL address contained a legitimate cor-
porate domain and a human-looking user name (e.g. jane.smith@Qcompany.com).
The account sent 115 phishing emails to Barracuda customers in January 2021,
but did not send any phishing emails in January 2020 or October 2020. More-
over, we found about 1,500-2,000 clean emails originating from this IP address
in our dataset. Given the low proportion of phishing email and longer duration of
approximately 1 week (as shown in Fig. 11a), which matches the findings of prior
work on compromised email accounts that shows that compromise incidents can
last for days and even weeks [18,41]), we find it likely that this is a case of email
account compromise. This case may benefit from a separate defense, such as
looking for unusual patterns in account activity [41].

Microsoft: AS 8075. Similar to the first case we studied in Amazon’s ASes,
we observe that the IP address in Microsoft’s AS that sent the most phish-
ing emails behaves most like an attacker-controlled server. In total, this IP
address, which falls within an Azure Cloud range®, sent 2,465 phishing emails
and 20 clean emails in January 2021, with 578 unique FROM _EMAIL values,
where the FROM _EMAIL values for all the phishing emails are in the form of
NOREPLY@DOMAIN with different domains. Given the high number of emails,
the wide-range of unique domains, and the generic NOREPLY@ addresses, this
scenario is most consistent with an attacker using email spoofing to forge sender

5 Among the phishing emails from Microsoft’s networks, we determined that 99.6%
came from Azure Cloud IP address ranges, with the rest from Exchange Online and
Sharepoint [29,30].
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names. This TP address also exhibited a “bursty” email sending behavior (as
shown in the orange curve in Fig. 11b), similar to the first Amazon case study
(the blue curve), and we did not find any phishing email from this IP address in
the 2020 datasets.

The fact that the highest volume servers send their attacks in such short
bursts (Fig. 11b) suggests that they may be shut down after a short time and
that the pattern may be exploited as part of detection. Cloud providers could use
these patterns as a signal to identify VMs abused for sending malicious email.
Similarly, enterprise email defenses can potentially quarantine large email bursts
from a previously-unseen sending server. This attack strategy also illustrates the
limitations of using purely network-reputation-based defenses against phishing.

5.2 High Phishing Concentration Networks

In Sect. 4.3 we found that some high phishing concentration networks remain
consistently classified as such over our three time periods, while others are tran-
sient. Here, we examine each of the two cases: one that sends phishing emails
during only one month in our dataset (and displayed similar patterns to our
Amazon and Microsoft case studies), and one that consistently sends many
phishing emails over the three time periods. In particular, we highlight the insta-
bility (“burstiness”) of the IP addresses within these ASes responsible for sending
phishing email.

Bursty High Phishing Concentration Network: AS 52000. Attackers
used the IP addresses from AS 52000 (a Russian hosting company with data
centers in the Netherlands, Russia, and the U.S.) to send phishing email for
very short lifetimes: across the entire month, we see phishing email from these
addresses for less than 24 h total, and the highest volume phishing email senders
among these IP addresses sent all of their attacks within short 30-minute win-
dows. We saw two large bursts of phishing email in January 2021 (Fig.11c)
comprising a total of 1,673 phishing emails from AS 52000; no other emails in
our dataset originate from this network during that month. We found phishing
emails from 20 unique IP addresses within this AS, and the emails span 533
campaigns (as defined in Sect. 3.2). No phishing emails originated from this AS
outside of these two bursts in Jan 2021.

This behavior suggests an attacker who abuses cloud-hosted servers to send
large bursts of phishing emails before switching to new infrastructure (e.g.
because a provider terminates their services). While on aggregate AS 52000 (and
the IP addresses within it) have a poor reputation (in terms of the proportion of
fraudulent activity detected), the burstiness of the phishing email traffic means
that these IP addresses would be unlikely to end up on established blocklists.
Instead, a time-series-based anomaly detector that analyzes the volume of a par-
ticular network’s email traffic could potentially flag periods of higher phishing
risk, which smaller hosting companies could employ to flag suspect servers.
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Persistent High Phishing Concentration Network: AS 9009. We
observed a consistently high volume and proportion of phishing email origi-
nating from AS 9009 (which belongs to a UK-based hosting company). This AS
was one of the 9 networks we classified as high phishing concentration for all
three time periods (Table 7). In contrast to the bursty behavior observed in the
prior case studies, as shown in Fig. 11d, we find that phishing attacks regularly
originated from this network throughout the month of January 2021 (the other
months in our data had similar distributions). The phishing emails from AS 9009
span 1,031 unique phishing campaigns and come from 151 unique IP addresses,
where 32 of these IP addresses send over 20 phishing emails each. One reason
for the high number of unique phishing IP addresses and campaigns might be
that multiple attackers use this AS to send phishing emails.

To shed light on the volatility of the phishing IP addresses within AS 9009,
we calculated the phishing email sending lifespan of each IP address, i.e. the
time between the first phishing email we saw from the IP address to the last
phishing email (because we compute this duration over 1month windows, the
maximum lifespan is 31 days). In January 2021, the average lifespan of a phishing
IP address from this AS is 41.5h. However, as shown in Table 6, many of the IP
addresses with the highest phishing volumes continuously send phishing emails
for extended periods (weeks) of time. In this case, IP-based reputation features
would be useful for blocking phishing email. Furthermore, this longer-lived mali-
cious behavior suggests the need to adopt additional technical or policy-based
defenses to help curtail attacks coming from such networks.

6 Experiences In Production

In Sects. 4.3 and 5.1, we showed that the set of networks sending phishing emails
is not stable over time. Many networks only send high volumes of phishing emails
for a limited time (4.3), potentially reflecting the behavior of account takeover
(5.1.1) or compromised Azure or EC2 instances (5.1.2). Because this analysis
suggests that phishing detection rates can be improved by accounting for these
temporal conditions, we worked with Barracuda Networks to deploy a classifier
that better adapts to changing attacker behavior. We found that our approach
enables Barracuda to identify phishing attacks that were not identified by their
existing email classifiers or by pre-filters that customers already deployed, with-
out incurring additional false positives.

Feature Importance for Phishing Detection: First, as a proof of concept and to
better understand which features are more important for phishing detection, we
trained a Random Forest model on 12 features based on our analysis in Sect. 4
to differentiate clean and phishing emails in our dataset. Figure 12 depicts the
relative importance of these features based on Gini importance [22]. The proof
of concept classifier confirmed our understanding that probability and volume
of phishing by origin IP address were indeed the most important for phish-
ing detection. Because of the complexities and real-world impact of modifying
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production classifiers, we chose to use only these two features (which were not
already incorporated in any of Barracuda’s existing classifiers).

Production Classifier Design: Our classifier aims to better adapt to networks
that only send high volumes of enterprise phishing emails for a relatively short
period of time, while still capturing persistently malicious senders. To this end,
we designed our classifier to dynamically recalculate, on a daily basis, the fea-
tures it uses to make a decision about whether an email is phishing or not. To do
this, for each IP address from which Barracuda sees emails, it counts the num-
ber of phishing emails and the number of clean emails (according to Barracuda’s
existing classifiers) seen in a sliding window of the last n days. While some high-
phishing-concentration IP addresses are only active for 30 min (e.g., Sect. 5.2),
we found through testing different time windows that the day-granularity best
captured phishing email while minimizing false positives. Then, our detector uses
the number of phishing emails and the ratio of phishing to clean emails to cal-
culate a “phishing-risk” score. This score is used to make an independent, binary
decision about whether an email that has previously been classified as benign by
any of Barracuda’s production classifiers is phishing. We first conducted offline
experiments with historical phishing detection data, testing the performance of
window sizes n from 0-90 days and different thresholds for the “phishing-risk”
score. Then, to determine their optimal values in Barracuda’s production envi-
ronment, we conducted smaller-scale online experiments with some promising
values derived from the offline experiments. Importantly, any attacks our classi-
fier finds were previously undetected by Barracuda’s existing classifiers.

Classification Results: Over a span of nearly 5 months, the new detector
increased the number of emails flagged as phishing by 3-5% per day (beyond
those detected by Barracuda’s existing detectors), with no false positives based
on manual inspection. For one day per week during the first month of deploy-
ment, members of Barracuda’s security team manually examined all emails that
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were classified as attacks by the new detector, or reported by their users. Inter-
estingly, manual inspection found that this detector detected phishing and also
other types of email attacks (e.g., business email compromise, scams, and spam).

Takeaways: In a real-world deployment, we demonstrated that capturing the
changes of networks’ email sending behavior over time can lead to an improved
phishing detection rate, without an increase in false positives. In particular,
our classifier demonstrates a strict improvement over static sender-reputation
features - we are able to reliably find additional attacks even though some spam
filters used by organizations in our dataset already employ sender reputation
scoring heuristics [45]. We note that an attacker could evade this defense by
sending a low volume of phishing emails from a large number of IP addresses,
but such a strategy would incur additional operational costs and could still be
(partially) blocked by existing methods.

7 Conclusions and Key Lessons

We presented a large-scale analysis of the characteristics of the network delivery
infrastructure behind phishing emails targeting enterprises. Our findings provide
a useful avenue for improving phishing defenses, which we demonstrate apply in a
real-world production environment with the classifier we deployed at Barracuda
that was able to block an additional 3-5% of previously undetected phishing
emails. We distill takeaways for how the community can apply both technical
and policy-based defenses based on our results.

Features Targeting the Network Origins of an Email are Promising: Our analysis
revealed that most phishing emails in our dataset came from a few hundred IP
addresses and ASes. Additionally, excluding Amazon and Microsoft, the top-
100 ASes by phishing volume account for fewer than 5% of clean emails in our
dataset, and many phishing emails come from what we termed high-concentration
networks, those with more than 2% of their emails labeled as phishing (Sect. 4.2).
Given that these networks are both the origins of a substantial volume of phishing
emails and have a relatively large ratio of phishing to clean emails, reputation
features about an email’s originating network have the potential to provide high-
impact signals of phishing. However, since a non-negligible volume of clean email
originates from these same networks, strict blocklists may yield a higher-than-
acceptable false positive rate. Instead, our results suggest that combining these
features with others will improve phishing email detection while maintaining a
low false positive rate.

Network Phishing Behavior Over Time is an Important Consideration for Detec-
tion: Our results showed that some networks have highly variable amounts
and/or proportions of phishing emails that they send over time (Sect. 4.3).
This phenomenon provides a possible explanation for why static lists of suspi-
cious sender IP addresses or ASes, such as those used by many organizations in
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our dataset, prove insufficient at defending against enterprise phishing attacks.
Our findings suggest that defenders need more agile and flexible methods of
incorporating network-based characteristics, rather than static approaches like
blocklists, to successfully defend against phishing attacks. To illustrate this, we
showed that, in a production environment, incorporating dynamically updated
features can help uncover a significant number of previously-undetected phishing
emails (Sect. 6).

Internet Hosting Services are a Major Source of Phishing: The rise of
Infrastructure-as-a-Service (IaaS) has provided an easy path for attackers to
acquire infrastructure (Sect. 4.2 and Sect. 5), with servers on prominent and rep-
utable cloud hosting providers, such as Amazon AWS and Microsoft Azure, being
responsible for nearly one-third of all phishing emails in our dataset. An addi-
tional quarter of the phishing emails come from smaller cloud hosting companies
that are among the high-concentration networks we identified. These results sug-
gests that Internet hosting companies are well-positioned to significantly curtail
the volume of phishing emails. Future work should investigate whether networks
operators can take steps to detect and stop outbound emails sent from their
infrastructure, or whether adopting stricter security policies around email origi-
nating for cloud hosting services can decrease their phishing volume.

Attackers Face Insufficient Defensive Pressure on their Delivery Infrastructure:
Many networks consistently send a high volume or concentration of phishing
emails across multiple months in our datasets (Sect. 4.3), suggesting that attack-
ers do not face significant pressure to change servers and that information about
an email’s delivery origin remains an underutilized avenue for mitigating phish-
ing attacks. We hope our results provide impetus for changing this.
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A Ethical Considerations

In addition to consulting with and obtaining approval from our institution’s
IRB (AAATS8774 (YO1IMO0)), we carefully considered the ethics of our research
along three key dimensions discussed in the Menlo Report: (1) does our research
present minimal risk to the well-being and rights of participants? (2) does our
work take appropriate measures to minimize such risks? (3) do the benefits of
our research outweigh the risks?

In terms of benefits from the research, improving the community’s defenses
and understanding of phishing attacks has clear benefits both to the organiza-
tions in our study and to society at-large, given the widespread threat posed
by enterprise phishing attacks. Soundly and accurately studying the problem



462 E. Luo et al.

of enterprise phishing fundamentally requires analysis of large-scale, real-world
email data, which makes accessing and using our study’s data inherently neces-
sary. To minimize the harms of using such data, the clean emails that we have
access to in our dataset (i.e., emails from legitimate, non-attacker users), do
not include sensitive attributes such as the email message body, subject line,
or sender name and email address. The data in our study comes from enter-
prise email accounts, whose organizations have consented to using their data for
research purposes such as ours. Given the scale and nature our dataset, obtaining
individual consent from each user is clearly infeasible. Furthermore, the email
accounts involved in our dataset are owned and provided by each enterprise,
and it is commonplace and reasonable for enterprises to monitor and scan their
employees’ work account emails for malicious activity. As such, our work’s use
of this data does not increase the risks or jeopardize the well-being of these
users, particularly given that our analysis involves a strictly less sensitive ver-
sion of this already-collected data. Weighing this collection of factors, such as
the minimal risk to participants’ welfare posed by our study, against the benefits
of our research, we believe our work properly aligns with the ethical norms and
principles of our field.

B Email Network Origin Validation

We identify cases that are not forged based on the following four tests using the
IP address of an email’s MX-identified sender and purported origin IP address
(the first public and non-reserved IP listed in the RECEIVED headers). Combining
tests, we find at least 90.6% of phishing emails in our dataset do not spoof the
origin IP addresses in their RECEIVED headers, at least in ways that impact our
analysis.

First, for 66% of phishing emails, the IP address of the MX-identified sender
and the origin IP address belong to the same AS. Since most of our analysis
focuses on the AS-granularity, this criteria ensures that any spoofing for this set
of phishing emails will not distort or bias our results. To calibrate expectations,
we ran the same analysis on the benign emails in our dataset, for which the sender
has no reason to forge their headers; 73% of these emails had the same AS for
both their purported origin IP address and the IP address of the MX-identified
sender (a similar proportion to the phishing emails). Second, if a phishing email’s
pair of MX-identified sender IP address and origin IP address exactly matches
a pair seen for benign emails, then we also label these as instances where the
RECEIVED headers were not modified. In total, an additional 16.2% of the total
phishing emails matched this criteria. Third, an additional 2% of the total phish-
ing emails satisfied an even stronger property, where their entire relay path (all
IP addresses in their RECEIVED header) had an exact match with a path seen
in our benign email dataset. Finally, for an additional 6.4% of phishing emails,
the TP address listed in the recipient’s MX record only appeared once in the
RECEIVED headers, and it matched the purported origin IP address in the email
exactly (5.9%) or belonged to the same AS (0.5%). These appear to be internal
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emails that were flagged by O365 as emails sent from an external source. Such
cases can occur when emails are sent between different domains that belong to
the same 0365 account. Such single AS paths are not the focus of our paper’s
analysis, which investigates the AS or country-level characteristics of the delivery
path before the recipient’s servers.

The set of heuristics above cover 90.6% of all of the phishing emails in our
dataset. For the remaining 9.4%, we investigate the distribution of path lengths
(total number of RECEIVED headers) and compare to the path lengths of the
clean emails in our dataset. The remaining 9.4% includes only emails with at
least three headers, since empirically, our tests above established that all shorter
paths were not forged. So, we compare the distribution of path lengths of these
remaining emails to clean and phishing emails with at least three headers. As seen
in Fig. 13, the path length distribution between the remaining phishing emails
(green) is very similar to the clean emails (and to the overall set of phishing
emails) in our dataset.
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Fig. 13. Distribution of path lengths for emails with > 3 headers. The green bars show
the distribution for the 10% phishing emails that do not match one of our validation
criteria (Sect. 3.4). (Color figure online)

This similarity suggests that attacker manipulation did not have a significant
impact on the paths we observe, since such tampering would lead to a longer
path length (assuming that the attacker is positioned at the beginning of the
email delivery path).
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