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Inconel 718 stands out as a prominent member of the nickel-based superalloys within the
Inconel family. This study focuses on determining the property closures of stiffness parameters
of polycrystalline Inconel 718 alloy under variations in its microstructural texture. The
orientation distribution function, as a one-point probability descriptor, is used to delineate
the microstructural texture. Concurrently, the effects of the uncertainty of single-crystal
properties and microstructural texture on the property closures are analyzed. A few examples
of functionally graded structures are proposed using the material property closures obtained
for the Inconel 718 alloy by setting the primary objective to increase dimensional stability
under specific loading conditions. In particular, two design cases are explored: single-variable
instances such as the design of axially graded beams and columns, and the dual-variable
scenarios of designing radially graded pressurized cylinders. For single-variable cases, the
Rayleigh-Ritz methodology is employed to derive property functions, while for dual-variable
cases, linear trade-off functions are meticulously proposed based on stress distributions.

Nomenclature
𝜒 Single-crystal property

𝜖 Components of strain tensor

𝜔 Integration weight

𝜎 Components of stress tensor

A Orientation distribution function

r Rodrigues orientation vector

𝐶 Parameters of stiffness tensor

𝐸 Modulus of elasticity

𝐹 Applied force

𝐼 Moment of inertia

𝐽 Jacobian

𝑝 Applied pressure

𝑈 Rayleigh-Ritz potential

𝑢 Deflection
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I. Introduction

Functionally graded materials (FGMs) can be classified as materials with properties varying along one or more
directions to enhance the target performance of structures. Recently, there has been a growing interest in FGMs

within the field of additive manufacturing, where properties can be manipulated by adjusting microstructural texture,
constituents, or compositions [1, 2]. This capability opens the door to fabricating intricate FGMs characterized by
multidimensional and directional gradient architectures, all achievable through tailored process conditions. Inconel
718 (IN-718) is a nickel-based superalloy mainly composed of chromium, nickel, and iron, with adjusted amounts
of aluminum, molybdenum, and titanium which provides corrosion-resistance and high-strength [3]. It has several
important applications in various industries particularly in aerospace, oil and gas, and chemical processing owing to its
exceptional properties [4, 5]. IN-718 exhibits flexibility in FGM production through the variations in microstructural
grain orientations. In this work, the material property closures of IN-718 for stiffness parameters have been developed by a
finite element discretization method, where the orientation distribution functions (ODFs) quantifying the microstructural
texture are varied within the constraints. The ODF is a probabilistic approach for modeling microstructural texture and
compute texture-dependent properties [6].

The previous work [7, 8] utilized linear programming and machine learning algorithms to determine the property
closures of face-centered cubic (FCC)-Aluminum and hexagonal close-packed (HCP)-Titanium microstructures by
utilizing the ODF approach. Furthermore, Acar [9] developed another analytical approach to quantify the randomness in
microstructures and its impact on material properties. By integrating an analytical uncertainty quantification algorithm
with linear programming, the full spectrum of possible material properties under uncertainty was determined. This
methodology was applied to predict stiffness parameters for 𝛼-Titanium and a range of multiphysics parameters,
including stiffness, yield strength, and magnetostrictive strain, for Galfenol. Researchers have made strides in extending
the first-order theory of microstructure design to incorporate morphological texture, paving the way for the development
of combined property closures and second-order microstructure design [10]. A subsequent study [11] enhanced the
microstructure-sensitive design framework by integrating second-order homogenization theories, which utilize two-point
spatial correlations to predict effective properties within the microstructure. Proust and Kalidindi [12] provided a
comprehensive guide for researchers and designers to illustrate first-order elasto-plastic property closures, highlighting
the critical role of crystallographic texture in influencing the yield and elastic properties of cubic polycrystalline metals.
In a similar vein, Landry and Knezevic [13] introduced a computational approach leveraging fast Fourier transforms
(FFTs) to establish elastic property closures for HCP metals. Their methodology involved creating a directory of
non-zero Fourier transforms for each elastic stiffness tensor component, calculating Fourier transforms of ODFs, and
determining ODF-to-elastic property bounds in Fourier space. Recent research has also explored the application of
convolutional neural networks (CNNs) to predict effective properties and generate property closures. By harnessing
two-point spatial correlations of voxelated eigen-microstructures, this CNN architecture offers a promising avenue for
advancing microstructure design and property prediction [14].

Also, several recent experimental studies have explored the production of single-component Ni-based superalloy
parts using additive manufacturing techniques [15–18]. Despite these advancements, the investigation of functional
grading within such components remains relatively underexplored. Notably, selective laser melting produced parts
exhibit promising mechanical properties [19, 20], yet they are also characterized by significant anisotropy due to the
directional columnar grain growth inherent in this process [21, 22]. The texture of these materials plays a crucial role in
their mechanical performance, as evidenced by research on Ni-based single-crystal superalloys [23, 24]. These studies
highlight that mechanical properties, including fatigue life and creep resistance, vary significantly with crystallographic
orientation [24]. In particular, orientations with lower stiffness tend to demonstrate longer fatigue life and improved
creep strength under tensile loading [24]. As a result, the (001) crystallographic direction, known for its low stiffness, is
favored in gas turbine blade applications. Furthermore, Popovich et al. [16] have demonstrated that IN-718 functionally
graded components can exhibit controlled transitions in microstructure, texture, and properties across various length
scales. By tailoring the fabrication process, it is possible to achieve specific functional gradients that cater to the
requirements of different applications.

A significant amount of research was performed to prove that the functionally graded materials can improve the
structural performance [25–27]. Closed-form solutions for the stress and displacement distributions within functionally
graded spherical vessels and hollow cylinders were derived by Tutuncu and Ozturk [28] under solely internal uniform
pressure by utilizing the infinitesimal theory of elasticity. The material stiffness gradient following straightforward
power law toward the radial direction of the vessel wall was assumed by keeping a constant Poisson’s ratio. Later,
Woldemichael and Bezzie [29] unveiled the impact of both graded-index and Poisson’s ratio on the numerical elastic
outcomes of an FGM composed of a thick-walled cylinder subjected to internal pressure within an in-plane strain setting.
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Another study conducted by Sburlati [30] for thick-walled internally and externally pressurized cylinders applied an
analytical solution. It aimed to compare the outcomes of two scenarios: one involving a fully graded cylinder and
the other with partial grading in the internal coating thickness of the cylinder. On the other hand, Ranganathan et al.
[31] observed the structural performance of a functionally graded column, where they compared the buckling load for
various functions of the modulus of elasticity. The only applied constraint was that the average modulus of elasticity
for each case remained equal. They used two methods: the Rayleigh-Ritz method and the linear perturbation method
to solve the eigenvalue problem. Some other studies [32–35] explored the effectiveness of functionally graded beam
performance at static and dynamic loading conditions where the desired properties of the materials were varied by
changing the proportion of fiber/matrix of composites. After this observation, it can be concluded that the functionally
graded structures have adequate advantages over the conventional homogeneous structures. However, to the best of the
authors’ knowledge, there has been a notable lack of comprehensive studies that incorporate the effects of variations in
the microstructural texture when designing FGMs.

This study aims to identify the property closures for stiffness parameters of polycrystalline IN-718 by examining
variations in microstructural texture. In parallel, it investigates how uncertainties in single-crystal properties and
microstructural texture affect these property closures. Finally, several examples of functionally graded structures are
proposed by utilizing the property closures computed for IN-718, with the primary objective of enhancing dimensional
stability under specific loading conditions. The complete summary of the present study is illustrated in Fig. 1. The left
side of the diagram represents the study’s workflow, outlining the inputs, outputs, and methodologies involved, while the
right side provides a visual representation of the study’s key elements.

Fig. 1 Comprehensive illustration of study workflow: Input-output framework and methodological overview.

II. Methodology

A. Computation of stiffness properties
In this study, the crystallographic texture of the IN-718 microstructure is represented through the utilization of

ODFs. These functions measure the volume densities of various crystallographic orientations in a polycrystalline
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material and are used to derive homogenized properties. Eventually, the ODFs are defined by several techniques such as
Rodrigues parameters [36–38] and Euler angles [39–41]. More precisely, a local finite element discretization method
has been employed within the Rodrigues orientation space framework to calculate the homogenized properties in this
research. Equation (1) shows the definition of the ODFs (A), focusing on the requirement for crystal volume densities
to adhere to a constraint ensuring volume normalization [42]. This approach contains 𝑁 distinct nodes and 𝑁elm finite
elements, with each element containing 𝑁int integration points. The specific ODF value assigned to each node within
the mesh is associated with the volume density of the corresponding crystallographic orientation. The calculation
of the orientation-dependent homogenized material property, represented by < 𝜒 >, involves utilizing single-crystal
property values (𝜒) together with the nodal point ODFs, as demonstrated in Equation (2). This current study utilizes
the isotropic single-crystal stiffness matrix from this referred article [43] where 𝐶11 = 242.18 GPa, 𝐶12 = 138.85 GPa,
and 𝐶66 = 104.20 GPa. ∫

Ω

𝐴(r)𝑑𝜈 =

𝑁𝑒𝑙𝑚∑︁
𝑛=1

𝑁𝑖𝑛𝑡∑︁
𝑚=1

𝐴(rm)𝑤𝑚 |𝐽𝑛 |
1

(1 + rm.rm)2 = 1 (1)

⟨𝜒⟩ =
∫
Ω

𝜒(r)𝐴(r)𝑑𝜈 =

𝑁𝑒𝑙𝑚∑︁
𝑛=1

𝑁𝑖𝑛𝑡∑︁
𝑚=1

𝜒(rm)𝐴(rm) 𝑤𝑚 |𝐽𝑛 |
1

(1 + rm.rm)2 (2)

B. Property closure formulation
The property closure is a convex space demonstrating all possible values of the selected properties (closure variables)

obtainable by feasible microstructure designs. In this study, the property closures for stiffness parameters of IN-718
microstructures are determined using gradient-based optimization. The objective function for a specific property closure
of 𝐶𝑖 𝑗 versus 𝐶𝑘𝑙 is defined as a minimization problem exhibited by Equation (3), where the desired function 𝑓 (A) has
been set as |𝐶𝑖 𝑗 − 𝐶𝑘𝑙 | by considering the volume normalization constraint for the ODFs given in Equation (1) and the
fundamental non-negativity constraints on ODFs. Later, by increasing and decreasing the magnitude of 𝐶𝑖 𝑗 and 𝐶𝑘𝑙 , the
boundary points of the property closures can be obtained. At this time, the lower bounds (A𝑙𝑏) are null matrix and upper
bounds (A𝑢𝑏) are set to the maximum optimal number that reduces the run time. Furthermore, the local maximum
and minimum values of the desired stiffness matrix components are determined by adjusting the lower bound (A𝑙𝑏)
and upper bound (A𝑢𝑏) values. When the function 𝑓 (A) has been set as 𝐶𝑖 𝑗 or 𝐶𝑘𝑙 , the objective function can address
both maximization and minimization while the constraints remain unchanged. All ODFs must satisfy the condition of
volume normalization within the fundamental region, thus the volume fraction is equal to unity as shown in Equation
(1). This constraint can be expressed as a linear equation, q𝑇A=1, in terms of the ODF values at nodal points. Using a
similar approach, the homogenized material property, which is dependent on orientation and denoted as < 𝜒 >, can be
calculated using single-crystal property values (𝜒) and the ODFs at nodal points, as shown in Equation (2). This can
also be represented as a linear equation, < 𝜒 >= p𝑇A, where p is the property matrix found using Equation (2).

min
𝐴

𝑓 (A) = min p𝑇A such that


𝐴 ≥ 0
q𝑇A = 1

A𝑙𝑏 ≤ A ≤ A𝑢𝑏

(3)

C. Uncertainty quantification for the property closures
In this study, two sources of microstructural uncertainty are considered: variations in crystallographic texture

and single-crystal properties. The texture is characterized by the ODFs (A), which quantifies the volume fraction of
crystals in a polycrystalline material oriented in specific directions. The ODF provides a probabilistic framework for
representing and adjusting the orientation of grains, where a slight modification in the probability of one orientation
influences others. Furthermore, property closures are constructed based on the entire set of possible ODFs. As such,
introducing uncertainty in the ODFs or textures is inherently constrained within the bounds of the established property
closure. This ensures that any variation in texture remains within the feasible material behavior space defined by the
closure. In contrast, uncertainty in single-crystal properties can directly influence the microstructural property closures.
A small variation in the property matrix (p) can alter the size and shape of these closures. To simplify this complexity,
the variations of the property closures can first be investigated at the corner points. In a two-dimensional space, this
approach yields a maximum of four uncertain points, each corresponding to a corner point. These points help define the
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new closure, accounting for a specific level of uncertainty. Consequently, variations in the property matrix result in two
extreme matrices, which manifest as four distinct points for two key stiffness components in the two-dimensional space.
This process allows to construct a revised closure that reflects the impact of uncertainty on stiffness parameters.

D. Design of FGM structures

1. FGM design: single-variable case
The single-variable instance includes the axially graded beam and column cases, where the Rayleigh-Ritz method

is employed to construct the function of the modulus of elasticity to achieve a specific objective. The Rayleigh-Ritz
method is an analytical approach used in structural engineering to approximate the behavior of columns and beams.
It involves expressing the energy storage, energy decapitation, and work done; then minimizing the potential energy
functional [44]. This method allows efficient approximation of the deflections and stresses in columns and beams
under various loading conditions, aiding in the design and analysis of structures as illustrated in Fig. 2. In this current
work, pinned-pinned supported column and simply supported beam are analyzed and their corresponding Rayleigh-Ritz
potential is expressed in Equations (4) and (6).

Fig. 2 (a)-(b) Schematic diagram of the pinned-pinned column and simply supported beam; (c)-(d) Brief outline
of analytical method and finite element analysis (FEA). The function of displacement and elastic moduli are
expressed by 𝑢(𝑥) and 𝐸 (𝑥), whereas 𝐹𝑐𝑟 and 𝐹 represent the column critical load of buckling and beam load,
respectively.

𝑈 =
1
2

∫ 𝐿

0
𝐸 (𝑥) 𝐼

(
𝜕2𝑢(𝑥)
𝜕𝑥2

)2

𝑑𝑥 − 1
2

∫ 𝐿

0
𝐹

(
𝜕𝑢

𝜕𝑥

)2
𝑑𝑥 (4)

𝑢(𝑥) = 𝐴1 sin
𝜋𝑥

𝐿
+ 𝐴0

𝐸 (𝑥) = 𝑎1 sin
𝜋𝑥

𝐿
+ 𝑎0

(5)

𝑈 =
1
2

∫ 𝐿

0
𝐸 (𝑥) 𝐼

(
𝜕2𝑢(𝑥)
𝜕𝑥2

)2

𝑑𝑥 − 𝐹𝑢

(
𝐿

2

)
(6)

𝑢(𝑥) = 𝐴5𝑥5 + 𝐴4𝑥4 + 𝐴3𝑥3 + 𝐴2𝑥2 + 𝐴1𝑥1 + 𝐴0

𝐸 (𝑥) = 𝑎4𝑥4 + 𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥1 + 𝑎0
(7)

Sinusoidal expressions are assumed for deflection and modulus of elasticity distributions of pinned-pinned column
as depicted in Equations (5). To solve the unknown coefficients of 𝑢(𝑥) and 𝐸 (𝑥), proper boundary conditions are
utilized. The deflections at both ends should be zero, which ensures that 𝐴0 is zero. On the other hand, the exact
boundary value of 𝐸 at the ends and mid-point are considered as minimum and maximum, respectively. With these
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assumptions, the constants of the 𝐸 (𝑥) distribution are solved. Next, the following equation 𝜕𝑈
𝜕𝐴1

= 0 can uphold the
solution of the critical buckling load. On the contrary, the fifth and fourth order polynomial functions are assumed to
represent the deflection and modulus of elasticity variations along the axially graded beam case as expressed in Equation
(7). The six constant coefficients of the deflection equation are solved from four boundary conditions of the simply
supported beam (the resisting moment by the supports or bending moment of the structures at two ends and deflection at
two ends are zero) and two equations of 𝜕𝑈

𝜕𝐴𝑖
= 0. The constant coefficient values of the modulus of elasticity are solved

similarly in the column case.
In both scenarios, the distribution of Young’s modulus reaches a maximum at the midpoint of the span and a

minimum at the left and right ends. However, the modulus variation follows a sinusoidal pattern for pinned-pinned
columns and a polynomial function for simply supported beams. This ensures optimal structural stability within the
given Young’s modulus range. For column buckling, the modulus distribution and deflection at each point are first
estimated, which enables the evaluation of the critical buckling load using the Rayleigh-Ritz method. In parallel, a
column with a variable modulus of elasticity is modeled in Abaqus, which also provides the critical buckling load. Next,
the deflection and critical load computed by these two methods are compared, as shown in Fig. 2 (c). On the other
hand, the analysis for beam bending starts with the distribution of the modulus of elasticity and then estimates the
deflection trends at various points. This information enables the accurate determination of the exact deflection using the
Rayleigh-Ritz method. Concurrently, the beam can be modeled with a variable modulus of elasticity in Abaqus, which
also calculates the deflection along its length. Later, these two results can be compared, as illustrated in Fig. 2 (d).

2. FGM design: dual variable case
In this case, a radially graded pressurized cylinder that is designed to enhance dimensional stability by utilizing the

radial (𝜎11) and tangential (𝜎22) stress distributions is introduced. In this model, only internal pressure (𝑝𝑖) is taken
into account for modeling the cylinder. The radial and tangential stresses are formulated as depicted in Equation (8).
According to these, the axial stress is independent of radius, and thus the radial and tangential stresses play a significant
role in deforming the cylinder. Hence, the corresponding strain components can be minimized when the values of the
stiffness matrix elements, 𝐶11 and 𝐶12, are higher. The connecting line segment of two maximum points (𝐶𝑚𝑎𝑥

11 , 𝐶𝑚𝑎𝑥
22 )

of the property closure serves as the basis for constructing a function dependent on two stiffness parameters, as detailed
in the linear trade-off equation (Equation (9)), where 𝐶𝑚 and (𝐶𝑚 + Δ𝐶) represent the minimum and maximum values,
respectively.

𝜎11 =
𝑟2
𝑖
𝑝𝑖

𝑟2
𝑜 − 𝑟2

𝑖

(
1 + 𝑟2

𝑜

𝑟2

)
𝜎22 =

𝑟2
𝑖
𝑝𝑖

𝑟2
𝑜 − 𝑟2

𝑖

(
1 − 𝑟2

𝑜

𝑟2

) (8)

𝐶11 = 𝐶𝑚 + |𝜎11 |
|𝜎11 | + |𝜎22 |

Δ𝐶

𝐶22 = 𝐶𝑚 + |𝜎22 |
|𝜎11 | + |𝜎22 |

Δ𝐶

(9)

After setting the stiffness matrix, the strain and displacement of the elements can be calculated analytically by Equations
(10) and (11). To determine the strain components of the isotropic material, the stiffness matrix is considered constant
throughout the radius whereas 10 different stiffness matrices are developed that correspond to each element for the
FGM case. In the simulation process, the Abaqus finite element scheme is employed to analyze the stress, strain, and
deformation of a pressurized cylinder subjected to internal pressure only. A radial discretization of the cylinder is
modeled using 10 elements, with varying stiffness properties. These stiffness variations are derived from the relationship
outlined in Equation (9), as referenced in the analytical case. This method allows for a detailed examination of the
material’s mechanical response, capturing localized effects and ensuring alignment with the analytical predictions.

[𝜀]𝑛 = [𝐶]−1
𝑛 [𝜎]𝑛 (10)

𝑢1 (𝑛 + 1) =
𝑛∑︁
𝑖=0

𝜀11 (𝑛)Δ𝑥1 (11)
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III. Results and Discussion

A. Property closures for stiffness parameters
Exemplary property closures are developed to predict all possible values of stiffness parameters (𝐶11, 𝐶12, 𝐶22,

and 𝐶66), as well as Young’s modulus (𝐸11) and Poisson’s ratio (𝜈12), of IN-718 alloy. The boundaries of closure are
represented by the green discontinuous lines as shown in Fig. 3 and 4. These boundaries are obtained by solving the
minimization problem, the objective function for optimizing the property closure of 𝐶𝑖 𝑗 versus 𝐶𝑘𝑙 is defined as a
minimization problem, aiming to minimize the absolute difference |𝐶𝑖 𝑗 −𝐶𝑘𝑙 | while satisfying the volume normalization
constraint and fundamental non-negativity constraints for ODFs. Furthermore, the objective function can be modified
to incorporate both maximization and minimization by setting the desired function 𝑓 (A) as 𝐶𝑖 𝑗 or 𝐶𝑘𝑙 , allowing for
the determination of local maximum and minimum values of specific stiffness matrix components, all while keeping
the constraints unchanged. These local maximum and minimum points are exhibited by internally drawn black and
blue curves as appeared in Fig. 3 and 4.. Eventually, the intersection point of these lines in each closure converges
a randomly oriented texture providing isotropic properties. As a result, the intersection of the black and blue curves
indicates that 𝐶11 = 𝐶22 = 𝐶33 = 283.52 GPa, 𝐶12 = 𝐶13 = 𝐶23 = 117.05 GPa, and 𝐶44 = 𝐶55 = 𝐶66 = 82.52 GPa,
signifying an isotropic state where the probabilities (ODFs) of all texture components are equal. Moving away from this
intersection point, the microstructure begins to exhibit non-isotropic properties, often transitioning into a transversely
isotropic nature, where the probabilities of different texture components diverge. This divergence can be quantified by
introducing a new term, deviation, as illustrated in Fig. 3. As we move further from the isotropic point, this deviation
increases, reaching a maximum at a specific point that reflects the extreme behavior of a particular stiffness component.

Fig. 3 Representation of microstructures along 𝐶11 minimization/maximization lines inside the closure of 𝐶11
versus 𝐶12 (ODFs are on Rodrigues orientation space).

The boundary points of the property closures represent extreme microstructures, where specific textures dominate
with the highest probabilities compared to others. While these configurations may be theoretically conceivable, they are
extremely challenging to produce experimentally. In contrast, points closer to the intersection of the black and blue
curves correspond to more randomly oriented microstructures, which are generally less challenging to manufacture
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experimentally. One key observation from Fig. 4 is that the shape of the property closures remains consistent for similar
sets of stiffness components. For instance, if the stiffness parameters are grouped as 𝐶11, 𝐶22, and 𝐶33; 𝐶12, 𝐶13, and
𝐶23; and 𝐶44, 𝐶55, and 𝐶66, the property closures for 𝐶11 vs. 𝐶12 and 𝐶22 vs. 𝐶13 will appear similar. In other words,
the stiffness components within the same group can be interchanged in Fig. 4, a property attributable to the material
symmetry of cubic (FCC/BCC) structures. From Fig. 4 (c), it can be also observed that the property closure for a
similar group of stiffness components, 𝐶11 vs 𝐶22, is symmetric about a 45° line, indicating that they can be mutually
interchanged. Additionally, another closure illustrating the relationship between 𝐸11 and 𝜈12 is shown in Fig. 4(d).
This closure can be mapped with the 𝐶11 vs. 𝐶12 closure, where the corner points of both closures represent the same
microstructures. Interestingly, due to the crystal symmetry, the parameters 𝐸11, 𝐸22, and 𝐸33; as well as 𝜈12, 𝜈13, and
𝜈23 can be interchanged.

Fig. 4 Property closures of (a) 𝐶11 vs. 𝐶12, (b) 𝐶11 vs. 𝐶66, (c) 𝐶11 vs. 𝐶22 and (d) 𝐸11 vs. 𝜈12

B. Effect of uncertainty on property closures
The current section discusses the uncertainty in microstructural property closures arising from variations in

microstructural textures (ODFs) and single-crystal properties. The ODF provides a probabilistic framework for
representing grain orientations, and changes in one orientation influence others. Property closures are constructed
based on the entire set of possible ODFs, ensuring that uncertainty in the ODF remains within the feasible material
behavior space as appeared in Fig. 5 (a). If the points on the boundary of the closures are considered under the effects
of the microstructural uncertainty, the resulting properties will shift but remain constrained within the closure, either on
or inside the boundary. Similarly, if points are selected within the closures assumed under the effects of uncertainty,
the resultant microstructure will exhibit properties that may shift in any direction, yet these too will remain confined
within the closure. In contrast, uncertainty in single crystal properties directly influences closure size and shape. To
simplify the analysis, the present work has focused on the uncertainty at the corner points of the closure, which define
the new stochastic closure accounting for uncertainty. To capture the uncertainty propagation due to variations in single
crystal properties, a 1% variation is introduced. This means two extreme scenarios are considered: one where all single
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crystal stiffness components are at their maximum and another where all are at their minimum. The revised closure,
reflecting this uncertainty, is illustrated in Fig. 5 (b), with each corner representing four extreme uncertain points (a
combination of 𝐶𝑖 𝑗 ± 𝛿𝐶𝑖 𝑗 ). Here, 𝛿𝐶𝑖 𝑗 represents the propagated variation in any specific stiffness component 𝐶𝑖 𝑗 ,
which depends on both the magnitude of 𝐶𝑖 𝑗 at the point of interest and the percentage of variation applied to the
single crystal properties. A larger 𝐶𝑖 𝑗 and a higher variation percentage result in a greater 𝛿𝐶𝑖 𝑗 , and vice versa. Fig. 5
illustrates the uncertainty effect on the property closure for 𝐶11 versus 𝐶12 alone. Since the remaining property closures
are similarly influenced by the propagated uncertainty, these are omitted to avoid redundant results.

Fig. 5 Effect of uncertainty on the property closures of 𝐶11 vs. 𝐶12 for (a) Uncertain ODF and (b) Uncertain
single crystal property (1% variation)

C. FGM structures

1. Single variable case
The Rayleigh-Ritz (R-R) method is employed to derive an optimal modulus of elasticity function, ensuring maximum

stability for columns and beams. The modulus is set to vary between values corresponding to the randomly oriented
microstructure and the maximum achievable modulus. However, the R-R derived modulus function assumes material
isotropy, meaning 𝐸11 = 𝐸22 = 𝐸33 at any given point, with these values changing along the 𝑥-axis according to the
optimal function. In practice, the function is only applied to 𝐸11 in FGMs, as not all stiffness components can be
adjusted by the same function. Specifically, as we move further from the intersection point of black and blue curves on
property closures, the microstructure begins to exhibit transversely isotropic behavior (𝐶11 ≠ 𝐶22 = 𝐶33). This makes it
impractical to design an isotropic microstructure that follows a unified function. Therefore, in axially graded FGMs, the
R-R driven function is primarily applied to 𝐸11, as shown in Fig. 6 (a) and (b) depicting how stiffness components
change with respect to 𝑥. Four distinct material models are considered, each assigned to a pinned-pinned column and
a simply supported beam. A comprehensive overview of these four cases is concisely summarized in Table 1. The
isotropic materials produced by the point A (intersection of blue and black lines in Fig. 4) microstructure are denoted by
‘iso’. The analytical approach considers only variations in the modulus of elasticity, whereas the real scenario differs
slightly, with all stiffness parameters varying throughout the AB (A to the maximum value of 𝐶11 in Fig. 4) line of the
microstructures. This real scenario is denoted by AB-FGM, while the ideal FGM is denoted by iso-FGM. The beam and
column have lengths, heights, and thicknesses of 50 cm, 4 cm, and 1 cm, respectively.
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Fig. 6 Elastic stiffness components and modulus of elasticity with respect to corresponding elements; (a)
Pinned-pinned column, (b) Simply supported beam, and (c) Radially graded pressurized cylinder.

Table 1 Summary of different beams/columns model and their characteristics

Short name Presence on closures Relations Microstructures
iso-A Intersection of black and blue

curves
E11 = E22 = E33 ≠ f(x) Randomly oriented

(shown in Fig. 3)
iso-FGM Indirect (derived from R-R

method)
E11 = E22 = E33 = f(x) Not applicable

AB-FGM Black curve (randomly ori-
ented point to𝐶𝑚𝑎𝑥

11 or 𝐸𝑚𝑎𝑥
11 )

E11 ≠ E22 = E33
E11 = f(x)

Shown in ‘Supplemen-
tary Materials’

B Point of 𝐶𝑚𝑎𝑥
11 or 𝐸𝑚𝑎𝑥

11 E11 ≠ E22 = E33
E11 ≠ f(x)

Preferential orientations
(shown in Fig. 3)

In analytical analysis, the R-R method is applied, whereas for FEA, the commercial package Abaqus is utilized. For
both the pinned-pinned column and the simply supported beam, the structures are divided into a sufficient number of S8R
elements to ensure an acceptable range of convergent results. The S8R element is an 8-node quadrilateral shell element
with reduced integration, where each node possesses six degrees of freedom: three translations and three rotations. This
element supports both geometric and material nonlinearities, making it acceptable for the current investigation. For the
FGM structures, the model is divided into 40 equal portions, with the left 20 portions being symmetric to the right 20.
The corresponding stiffness components are illustrated in Fig. 6 (a) and (b). The analytical and FEA results of the
axially graded column and beam are illustrated in Fig. 7. Six distinct bars represent six specific outcomes under varying
material or method conditions. For the beam, a 5 kN force is applied to examine the deflection under different material
scenarios. The relative analysis, which calculates the increase in critical load and the reduction in maximum deflection,
is performed with respect to isotropically produced structures using the R-R analytical method. This relative analysis
offers dimension- and load-independent results, making it ideal for structural comparisons. In other words, changes in
the applied load or dimensions of the beam and column do not affect these results. A comprehensive observation reveals
that both the beam and column achieve greater stability when manufactured by the proposed FGM model. The axially
graded (sinusoidal) pinned-pinned column can withstand ∼ 13% higher load compared to the isotropic one and the
graded (polynomial) simply-supported beam demonstrates ∼ 12% lower deflection than the isotropic one. It is also
observed that structures constructed with preferentially oriented microstructures (B) exhibit higher stability compared to
others. However, the results from FGM demonstrate that it is not essential to use this extreme microstructure throughout
the entire structure. In fact, it can often be more cost-effective to avoid constructing the whole structure with such
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microstructure.

Fig. 7 Comparison of analytical method and FEA for (a) Pinned-pinned column, (b) Simply supported beam.
(Blue bars correspond to left vertical axis and green bars correspond to right vertical axis)

2. Dual variable case
The analytical and FEA (Abaqus) results for the radially graded pressurized cylinder are depicted in Fig. 8 and 9,

respectively. The cylinder has internal and outer radii of 10 mm and 15 mm, with only 200 MPa of internal pressure
applied in this specific example. Analytically, the axial direction is not strain-free, despite zero applied stress in this
direction; a small amount of axial strain develops due to the Poisson effect. However, the FEA under plain strain
conditions demonstrates null axial strain. Since an infinitely long pressurized cylinder is considered, the strain in the
longitudinal direction can be neglected. Consequently, the Abaqus FEA model employs a sufficient number of CPE8
elements to construct the cylinder’s cross-section, ensuring that the result converges within an acceptable range. The
CPE8 element is an 8-node quadrilateral element designed for plane strain analysis, making it particularly suitable for
thick-walled pipes or pipes subjected to high internal pressure. The plane strain assumption implies that the strain
normal to the pipe surface is negligible compared to the strains within the plane of the surface. Additionally, the
quadrilateral shape of the CPE8 element provides a more accurate representation of curved geometries. For the isotropic
structure, the entire cylindrical section is assumed to be composed of a randomly oriented microstructure, resulting
in a perfectly isotropic behavior. In contrast, for the radially graded FGM cylinder, the model is segmented into 10
equal portions along the radial direction. The stiffness components corresponding to these sections are depicted in Fig.
6 (c), where 𝐶11 and 𝐶22 adhere to a linear trade-off equation based on the radial and hoop stress distributions. The
microstructures connecting the two points of maximum 𝐶11 and 𝐶22 in Fig. 4 (c) are utilized to construct the radially
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graded cylinder. Since 𝐶11 and 𝐶22 are selected simultaneously, there is no control over 𝐶33, which also exhibits slight
variations along the radial direction. The detailed microstructures along the radial direction can be accessed in the
‘Supplementary Materials’ section. The comprehensive observation from these two different analyses confirms that the
proposed FGM structures can significantly reduce cylinder deformation under the specified loading conditions. The
proposed radially graded pressurized cylinder can exhibit ∼ 16% and ∼ 13% more dimensional stability according to
the results of the analytical method and FEA, respectively, under internal pressure.

Fig. 8 Results for the radially graded pressurized cylinder obtained by the analytical approach (a) Stress
distributions, (b)-(c) Strain distributions, and (d) Radial displacements.
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Fig. 9 Results for the radially graded pressurized cylinder obtained by FEA (a) Stress distributions and (b)
Sections and FEA mesh (different colors represent grading on properties), (c) Strain distributions, and (d) Radial
displacements.

IV. Conclusion
This study has established property closures for stiffness parameters of polycrystalline IN-718 by investigating the

effects of microstructural texture variations. The analysis also includes the impact of uncertainties in single-crystal
properties and microstructural texture on these property closures. By leveraging the computed property closures,
several designs have been proposed for functionally graded structures that demonstrate enhanced dimensional stability
under specific loading conditions. The functionally graded structures can be designed with specific objectives such as
optimization of stress distributions and minimization of strains while adhering to constraints associated with material
property closures demonstrating all possible values of properties obtainable by any feasible microstructural texture. The
presented design approach in this study is found to be promising for enhancing structural performance across various
applications. Accordingly, the proposed designs, including a radially graded pressurized cylinder, an axially graded
(sinusoidal) pinned-pinned column, and an axially graded (polynomial) simply supported beam, showcase notable
improvements. It is also observed that structures constructed with preferentially oriented microstructures exhibit higher
stability compared to other configurations. However, findings from FGMs reveal that it is not essential to apply these
extreme microstructural orientations uniformly across the entire structure. FGMs demonstrate the ability to deliver
comparable performance by strategically varying the material properties, which leads to a more efficient design without
the need for achieving specific (and biased) orientations. This flexibility in the microstructure can help optimize both
performance and material use, making FGMs a more versatile option.

Supplementary Materials
The ODFs in Rodrigues orientation space and the <111>, <100> and <110> pole figures of the microstructures used

for both single-variable and dual-variable FGMs can be accessed from this GitHub link:
https://github.com/MARUF087/Microstructures-of-FGM-structures.git
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