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Abstract—We present the Hybrid Polar Decoder (HyPD), a
hybrid of classical CMOS and quantum annealing (QA) com-
putational structures for decoding Polar error correction codes,
which are becoming widespread in today’s 5G and tomorrow’s
6G networks. HyPD considers CMOS for the Polar code’s binary
tree traversal, and QA for executing a Quantum Polar De-
coder (QPD)–a novel QA-based maximum likelihood submodule.
Our QPD design efficiently transforms a Polar decoder into a
quadratic polynomial optimization form amenable to the QA’s
optimization process. We experimentally evaluate HyPD on a
state-of-the-art QA device with 5,627 qubits, for Polar codes of
block length 1,024 bits, in Rayleigh fading channels. Our results
show that HyPD outperforms successive cancellation list decoders
of list size eight by half an order of bit error rate magnitude at
1 dB SNR. Further experimental studies address QA compute
time at various code rates, and with increased QA qubit numbers.

Index Terms—Polar codes, quantum computation, quantum
annealing, channel decoding, cellular wireless networks

I. INTRODUCTION

The Polar Code, a type of error control code, was discovered
in 2009 [1], and subsequently shown to have a number of
desirable features: achievement of Shannon capacity for a wide
range of channels, attainment of a low error floor (minimal bit
error rate as a function of background noise), and a simpler
code construction process than other leading competitors, such
as Low Density Parity Check (LDPC) codes. While promising,
however, Polar codes face several practical challenges if they
are to manage decoder design complexity while at the same
time maintaining their capacity-achieving properties. Low-
complexity Successive Cancellation (SC) algorithms can only
achieve capacity on Polar codes that have been constructed a
priori with knowledge of the communication channel, which is
unfortunately impractical in a wireless network context where
user mobility causes wireless channels to be largely unpre-
dictable. Furthermore, SC algorithms are fundamentally serial
in nature, leading to low throughput in the decoding process.
The Successive Cancellation List (SCL) decoder can approach
Shannon capacity, but at the price of high complexity and high
latency [2], thus compromising Polar codes’ advantage over
LDPC codes in this regard. Like SC, SCL makes decisions
sequentially, which means that its decoder latency also grows
at least linearly with code block length.

Consequently, Polar Code use in 5G New Radio [3] is lim-
ited to control channels with short block lengths, due to these
considerations of processing throughput and latency surround-
ing the design of decoders discovered to date. But Polar codes’
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Figure 1: An envisioned Hybrid Polar Decoder (HyPD)
deployment scenario in a centralized RAN (C-RAN) context,
where a QA server augments a C-RAN baseband unit (BBU).

solid theoretical foundation, simple encoder implementation,
and adjustable rate from zero to one would make them viable
candidates for high speed data channels such as for 5G
enhanced Mobile Broad-Band (eMBB), and for 5G ultra-
reliable, low-latency channels (URLLC), if the latency of the
decoder could be minimized while simultaneously maintaining
a low bit error rate and near-capacity-limit rate performance.
Overcoming processing throughput and latency limitations
would also enable Polar codes’ adoption in transformative 5G
Massive Machine Type Communications (MMTC) technolo-
gies such as NB-IoT and LTE-M, which aim to scale cellular
coverage densities to millions of devices per square kilometer,
and hence put them on the 6G roadmap with more certainty.

It is with this vision in mind that this paper investigates
a radically different processing architecture for a Polar Code
decoder, one based on quantum annealing, to see if this emerg-
ing technology can potentially speed up the decoding of Polar
codes using the fundamental, quantum-physical properties of
superposition, entanglement, and tunneling. This would open
up new possibilities in the design of the Polar Code decoder,
thus overcoming the aforementioned hurdles to adoption. In
our envisioned scenario, shown in Fig. 1, quantum processing
units (QPUs) are co-located with CMOS processing units
in a Centralized-RAN (C-RAN) data center, where quantum
processors are used for heavyweight computational tasks in
the cellular baseband unit (BBU), and CMOS processing units
undertake lightweight computational tasks such as handling
the network’s control plane, transfer systems, and pre-/post-
processing the QPU-specific computation [4], [5].



This paper presents the Hybrid Polar Decoder (HyPD),
the first classical–quantum hybrid Polar decoder design that
considers error correction decoding from the perspective of
Quantum Annealing (QA). HyPD works by partitioning a long
mother Polar code’s binary tree into a number of shorter sub-
blocks, where each sub-block is a largest perfect subtree with
same leaf nodes as that of the mother Polar code (Fig. 4(a)).
We structure HyPD’s operation into classical and quantum
processing modules. Our classical module considers CMOS
hardware for the Polar code’s binary tree traversal (i.e., for up-
dating log-likelihood ratios as in SC/SCL algorithms [2]), and
it operates between the mother Polar code’s root node and the
root nodes of the partitioned sub-blocks. Our quantum module
implements a Quantum Polar Decoder (QPD) on a QA device
to solve these partitioned sub-blocks, decoding the transmitted
bits. HyPD’s classical and quantum modules exchange bit-
likelihood and bit-decision information, respectively, back and
forth in a feedback loop, until all bits are decoded.

Our quantum module’s QPD is a novel maximum-likelihood
Polar decoder design that efficiently formulates a one-to-
one mapping between the Polar code’s binary tree-structured
encoder and a quadratic polynomial form that a QA can solve
at the receiver, in order to decode the transmitted bits. This
polynomial is a linear combination of multiple cost penalty
functions we have created, which we refer to as Node, Frozen,
and Receiver constraints. The Node and Frozen constraints
work by raising a positive cost penalty to candidate bit strings
that do not agree with the Polar encoding conditions, thus
ensuring QPD outputs only valid bit strings. The Receiver
constraints add a further cost penalty to all the bit strings
whose magnitude depends on the proximity of an individual
bit string to the received information (with channel noise),
thus allowing QPD to select the most likely transmitted bit
string. The QA returns the bit string with minimal cost
penalty as its decoded solution. HyPD gathers the solution bit
strings (corresponding to sub-blocks) returned by QPD and
concatenates them, to output the final decoded codeword.

We experimentally evaluate HyPD on a state-of-the-art QA
device with 5,627 qubits: Advantage system4.1 [6], for CRC
assisted Polar codes of block length 1,024 bits in multipath
Rayleigh fading wireless channels at low signal-to-noise ratio
(SNR) regimes of practical interest. Our evaluations consider
BPSK modulation scheme and 200 data bits, which is typically
the maximum payload size of uplink control information (UCI)
in LTE and 5G-NR eMBB scenarios [7]. Results show that
HyPD operating with eight-bit sub-blocks at 300 µs compute
time outperforms SCL decoders operating at list size of eight
by half an order of bit error rate (BER) magnitude at 1 dB
SNR. Further studies present QA compute time analysis at
various coding rates and with increased qubit numbers. While
HyPD and QPD may in the future scale with noisy quantum
devices’ advances on their way to becoming fault-tolerant
quantum computers, the lessons we have learned in the design
and implementation of these decoders on QAs inform future
quantum hardware design and RAN architecture evolution.

(a) Chimera Unit Cell (b) Pegasus Unit Cell

Figure 2: The figure shows unit cell structures of Chimera
and Pegasus hardware topologies implemented in QA devices.
Nodes are physical qubits, and edges are physical couplers.

II. PRIMER: QUANTUM ANNEALING

Quantum Annealing (QA) is an optimization based ap-
proach that aims to find the lowest energy spin configuration
(i.e., solution) of an Ising model described by the Hamiltonian:

H(s) = −A(s)HI +B(s)HP (1)

HI =
∑
i

σx
i , HP =

∑
i

hiσ
z
i +

∑
i<j

Jijσ
z
i σ

z
j (2)

where HI is initial Hamiltonian, HP is problem Hamiltonian,
s = t/ta is called an annealing schedule, where t is time and
ta is annealing time, σx,z

i are spin operators (Pauli matrices)
acting on ith qubit, hi and Jij are input problem parameters.
A and B are two monotonic energy scaling signals such that
at the start of an anneal (i.e., t = 0), A(0) >> B(0) ≈ 0 and
at the end of an anneal (i.e., t = ta), B(1) >> A(1) ≈ 0.

The annealing processor initializes qubits in a pre-known
ground state of HI , where each qubit is in an equal su-
perposition state 1√

2
(|0⟩ + |1⟩), then gradually evolves this

Hamiltonian from time t = 0 until t = ta by adiabatically
introducing quantum fluctuations in a low temperature en-
vironment. This time-dependent evolution described by the
Schroedinger Equation driven by these signals A and B is
essentially the annealing algorithm. The system ideally stays
in a low energy state and probabilistically reaches the global
minima of the problem Hamiltonian HP at its conclusion. The
process of optimizing a problem in the QA is called annealing,
and the time taken for annealing is called annealing time [6].

QA hardware is essentially comprised of two types of
resources: qubits and couplers, organized regularly in groups
of unit cells. Fig. 2 shows the unit cell structures of the
Chimera and the Pegasus topologies implemented in recent
and state-of-the-art QAs, respectively. QAs optimize Ising
model problems, whose problem format matches the above
problem Hamiltonian, described by the energy function E =∑

i hisi+
∑

i<j Jijsisj , where si ∈ {−1,+1} is the ith solu-
tion variable, hi and Jij are the input problem coefficients that
the user supplies. The Ising problem format is equivalent to
quadratic unconstrained binary optimization (QUBO) model,
where the solution variables (qi) take on values in {0, 1}, and
it is obtained by the transformation si −→ 2qi − 1, resulting
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Figure 3: Encoding process of an example N = 4 Polar code.
Th,i is a node of the tree at height h with index i. xex is the
encoded codeword for the input vector uex = [u0, u1, u2, u3].

in the QUBO energy function EQ =
∑

i fiqi +
∑

i<j gijqiqj ,
where fi and gij are QUBO form coefficients of the problem.
The QA probabilistically returns the solution variable config-
uration with minimum energy at its output.

III. PRIMER: POLAR CODES

A binary (N = 2d,K) Polar code is described functionally
by a generator matrix GN = G⊗d

2 , where ⊗d operation
represents d-fold Kronecker product, and G2 =

[
1 0
1 1

]
is called

the polarization kernel. The channel polarization phenomenon
in Polar codes is a transformation of N independent bits to N
mutually interlinked bit-channels, where each bit-channel has
its own probability of being decoded correctly (i.e., reliability).
The sequence of these bit-channels in sorted order of their
reliabilities is called the reliability sequence. We now describe
the Polar code encoding process [3].

Let N be the Polar code block length adapted for transmit-
ting a message m = [m0,m1, ...,mK−1] of length K ≤ N bits.
The coding rate is then K/N . Using the reliability sequence,1

construct the encoder input vector u = [u0, u1, ..., uN−1] by
assigning the message bits to K most reliable bit-channels, and
set the remaining N − K bits to a zero-value. The ui’s that
are enforced to take a zero-value are called frozen bits. The
encoded codeword is then x = uGN .

To visualize the QPD decoder (described later in §IV-B),
we here demonstrate the encoder operation using a binary tree
representation. Let us consider an example input vector uex

= [u0, u1, u2, u3] of length N = 4 bits. Fig. 3 summarizes
the xex = uexG4 computation of this encoding. Construct a
perfect binary tree with N leaf nodes as shown in Fig. 3, and
initialize each leaf node T0,i of the tree with bit ui. Traversing
the tree from height h = 0 (leaf) to h = logN2 (root), each
node Th,i ∀h ∈ [1, logN2 ] takes an input [uL|uR] and generates
an output [uL ⊕uR|uR], where uL and uR are the bit vectors
of the left and right children of Th,i respectively, and uL⊕uR

is a bit-wise XOR operation. The output vector obtained at the
root is then the encoded codeword, which is then interleaved
and transmitted over a wireless channel.

1This work adapts the reliability sequence of the 5G-NR standard [3].

IV. DESIGN

In this section, we first detail HyPD’s decoder operation
(§IV-A) and then present the QPD’s reduction of the Polar
decoding problem into a QUBO form (§IV-B).
System Model. Let u = [u0, u1, ... , uN-1] be the input vector
corresponding to the Polar-encoded codeword x = [x0, x1, ...
, xN-1]. Let y = [y0, y1, ... , yN-1] be the respective received
information with channel noise and interference. Ls be the
log-likehood ratio (LLR) of bit s, F (s, t) be the LLR of bit
s ⊕ t, and let G(s, t, ŝ⊕ t) be the conditional LLR of bit t
with respect to previously decoded bit ŝ⊕ t. Then:

F (s, t) = 2 tanh−1(tanhLs/2 · tanhLt/2) (3)

G(s, t, ŝ⊕ t) = Ls(−1)ŝ⊕t + Lt (4)

A. HyPD: Hybrid Classical-Quantum Polar Decoder

Figure 4 summarizes the HyPD decoder operation. HyPD
works by partitioning a long mother Polar code of block length
N bits into Nsub shorter sub-blocks, where each sub-block is
a largest perfect subtree with NL leaf nodes of the mother
Polar code tree. Figure 4(a) depicts this partitioning scheme
for an example 8-bit Polar code with Nsub = 2 and NL = 4.

We structure HyPD’s decoding into classical and quantum
processing modules. The classical module operates between
the root node of the mother Polar code and the root nodes of
sub-blocks as shown in Fig. 4(a), whereas the quantum module
operates on these partitioned sub-blocks. HyPD’s decoding
begins at the root node by computing the LLRs of root node
bits from the received soft data. Similar to SC/SCL decoder
operation, we traverse the tree depth-first with priority given to
the left branches [2]. Each node in our classical module sends
to its left and right children the LLRs of their corresponding
bits, by computing F and G functions, respectively. In this
process, we obtain the bit LLRs of sub-blocks’ root nodes.
The bit LLRs corresponding to sub-blocks’ root nodes are then
our quantum module’s input, using which we solve each sub-
block on a QA device, and the solution obtained is fed back
to classical module. This solution feedback is necessary for
the classical module to compute F and G functions. Multiple
solutions can be fed back to explore more decoding paths. This
bit-likelihood and bit-decision information exchanges between
our classical and quantum modules, respectively, represents
our HyPD decoder operation. The decoder terminates when
all the bits are decoded (i.e., all sub-blocks are solved). We
next demonstrate HyPD more fully with a running example.

Consider an 8-bit Polar code as in Fig. 4(a), and compute
the LLRs of bits at the root node T3,0 (i.e., [L(yi)]) using the
received soft data. T3,0 sends to root node of Sub-block 1 the
LLRs of its corresponding bits by computing the F function
(i.e., [F (yi, yj)]). Sub-block 1 is then solved on QA and
the solution obtained (i.e., [ŷi ⊕ yj]) is sent back to T3,0.
Using this solution, T3,0 sends to root node of Sub-block 2
its corresponding conditional bit LLRs by computing the G
function (i.e., [G(yi, yj , ŷi ⊕ yj)]). Sub-block 2 is then solved
on QA and the solution obtained (i.e., [ŷj]) is sent back to



(a) HyPD: 8-bit Polar code decoder (b) QPD: Sub-block 1 decoder 
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(c) Sub-block 1 qubit connectivity 

q0 a0

q1a1

a2 q2

a3q3

a4 a5

a6 a7

T1,0

T0,0 T0,1 T0,3T0,2

T1,1

T2,0

[q0] [q1] [q2] [q3]

[a0,  q1] [a2 , q3]

[a4, a6, a2, q3]

Figure 4: (a) HyPD decoder operation for an example 8-bit Polar code. (b) QPD’s equivalent representation of Fig. 3 at the
decoder (Bits in Fig. 3 are replaced by corresponding qubits). (c) QPD’s qubit connectivity graph for Sub-block 1.

T3,0. As all the sub-blocks are now solved, HyPD decoder
terminates and outputs the decoded answer (§IV-B). While it is
possible to perform the entire decoding using only the quantum
module, the limited number of qubits in today’s QA devices
support for block lengths of up to only 128 bits. Therefore,
we consider a hybrid classical–quantum approach to enable
decoding of longer block lengths used in practice. We next
demonstrate the sub-block decoding process on the QA.

B. QPD: Quantum Polar Decoder

Let q = [q0, q1, ... , qNL−1] be the solution qubits used to
extract the input bits u = [u0, u1, ... , uNL−1] respectively.
Let F be the set of all the frozen bits, and T be the set of all
nodes in the Polar code’s binary tree. Let any ai be an ancillary
qubit used for calculation purposes. Any bi is a generic binary
variable (i.e., bi can be any solution qubit or ancillary qubit).

1) QPD’s QUBO Formulation: Our objective QUBO func-
tion comprises multiple terms, classified into three types:
Node, Frozen, and Receiver constraints. The Node constraints
(CN ) ensures that a candidate decoding agree with the Polar
encoding conditions. If a candidate decoding violates these
constraints, a cost penalty is raised for that candidate (i.e.,
the candidate is raised in energy). The Frozen constraints
(CF ) ensures all a candidate decoding agree with the frozen
bit conditions (i.e., qubits that represent frozen bits must
take a zero value). If a candidate decoding disagrees, a cost
penalty is raised for that candidate. The Receiver constraints
(CR) introduce a further cost penalty to all valid candidates,
whose magnitude depends on the proximity of an individual
candidate to the received information. They thus encourage
the decoder to find the decoding that most closely matches
the received information. The entire QUBO objective function
is a weighted linear combination of these cost functions:

argmin
q

{
WN

∑
∀T∈T

CN (T )+WF

∑
∀ui∈F

CF (qi)+WR

∑
∀j

CR(bj)
}

(5)

The positive weights WN , WF , and WR prioritize the Node,
Frozen, and Receiver constraints respectively. Experimental
evaluations show that WN = +1, WF = +4 per qubit, and

WR = 2−Rsub achieve good performance, where Rsub is the
coding rate within the sub-block under consideration.

2) Node Constraints: From III, we observe that the Polar
encoder performs only XOR operations. Let us define ET as
the set of all XOR operations the encoder performs at node
T in the encoder binary tree representation. For each T ∈ T
(defined earlier in §IV-B), we define a Node constraint as:

CN (T ) =
∑

∀XOR(bi,bj)∈ET

(bi + bj − ak − 2ak+1)
2 (6)

where bi and bj represent the qubits whose equivalent bits are
XORed at node T in the encoding process, and ak, ak+1 are
ancillary qubits. The value of k ∈ {2p|p ∈ W} is chosen such
that each ancillary qubit is only introduced once. We observe
that CN (T ) is in sum-of-squares form, thus at the minimum
energy (i.e., CN (T ) = 0), the sum bi + bj must be equal to
the sum ak + 2ak+1. Since all the variables are binary, this
implies that ak = bi⊕bj in the minimum energy configuration.
We next demonstrate the working process of Node constraints
more fully with a running example.

Let us continue with Sub-block 1, whose encoder tree can be
visualized as in Fig. 3 with input vector uex = [u0, u1, u2, u3]
and encoded codeword xex = [x0, x1, x2, x3]. Let qex =
[q0, q1, q2, q3] be the solution qubits used at the decoder to
extract the bits [u0, u1, u2, u3] respectively. Figure 4 (b) shows
QPD’s equivalent representation of Fig. 3 using respective
qubits at the decoder. In this example, T = {T2,0, T1,0, T1,1,
T0,0, T0,1, T0,2, T0,3}, and the code height is two. Similar to
encoding, we traverse the tree from leaf to root for constructing
QPD’s Node constraints as follows.

At height = 0, we note that the nodes {T0,0, T0,1, T0,2, T0,3}
perform no computation, and so the Node constraints of these
nodes are zero (i.e., CN (T0,i) = 0 ∀i). At height = 1, we
have two nodes {T1,0, T1,1} that perform one XOR operation
each (see Fig. 3). In particular, T1,0 computes u0 ⊕ u1 and
T1,1 computes u2 ⊕ u3. Thus using Eq. 6, we construct two
Node constraints as: CN (T1,0) = (q0 + q1 − a0 − 2a1)

2 and
CN (T1,1) = (q2+q3−a2−2a3)

2. Here a0 equals q0⊕q1, and a2
equals q2⊕q3 in the minimum energy solution. At height = 2,
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Figure 5: QPD’s performance of partitioned sub-blocks at SNR 1dB, showing first 20 solutions. Sub-blocks with low coding
rates achieve high Rank 1 solution probability. At coding rate 0.25, only eight distinct solutions are returned in 2, 000 anneals.

the root node T2,0 performs two XOR operations (see Fig. 3):
u0⊕u1⊕u2⊕u3, and u1⊕u3. We note that these computations
are equivalent to a0 ⊕ a2 and q1 ⊕ q3 respectively. Hence,
using Eq. 6 we construct the Node constraint: CN (T3,0) =
(a0+a2−a4−2a5)

2+(q1+ q3−a6−2a7)
2. Here a4 equals

a0⊕a2, and a6 equals q1⊕q3 in the minimum energy solution.
The output vector obtained at the root node [a4, a6, a2, q3] (see
Fig. 4 (b)) is now bit-wise equivalent to [x0, x1, x2, x3]. We
hence refer the output vector obtained at the root node to the
equivalent encoded codeword (EEC).

3) Frozen Constraints: From §III, we note that frozen bits
do not carry user information and that they are always assigned
zero value. Hence we define a Frozen constraint as:

CF (qi) = qi ∀ui ∈ F (7)

We observe that CF is minimum when the qubits that represent
frozen bits take a zero value (i.e, not one value).

4) Receiver Constraints: We next consider the EEC ob-
tained from the Node constraints, and compute its closeness
to the received information using a Receiver constraint as:

CR(bj) = (bj − Pr(bj = 1|y))2 ∀bj ∈ EEC (8)

where the probability Pr(bj = 1|y) can be computed for
various modulations and channels, using the LLR information
the HyPD’s classical module supplies (§IV-A). We note that
CR is minimum for a bj ∈ {0, 1} that has a greater probability
of being the corresponding bit at the encoder.

Fig. 4(c) depicts the qubit connectivity structure (i.e., prob-
lem graph) of Sub-block 1, showing several four-cliques,
where nodes and edges represent variables and quadratic terms
of Eq. 5 respectively. Looking at Eq. 6, we see that the
connectivity of these four-cliques mirrors the connectivity
of QPD’s Node constraints. In order to optimize a QUBO
problem on a QA device, the first step is to specify the QUBO
problem as an equivalent Ising problem (§II). Next step is to
map this Ising problem onto the physical QA hardware, via a
process known as embedding. We map QPD’s problem graphs
on to the physical QA hardware via a customized embedding
scheme, where each Ising variable (e.g., a node in Fig. 4(c)) is
mapped on to eight physical qubits present in a unit cell, and
each Ising coupler (e.g., an edge in Fig. 4(c)) is mapped on

to eight physical couplers connecting two unit cells. Heuristic
tools such as minorminer [8] can also be used for embedding
problems on QA, however, such heuristic embeddings generate
irregular-length qubit chains which may degrade the solution
quality [9]. At the end of QPD decoding, the EEC qubit
configuration is fed back to HyPD’s classical module. The
final decoded answer of HyPD is the qubit configuration that
represents user data (i.e., [qi] ∀ui ̸∈ F ).

V. IMPLEMENTATION

We implement HyPD’s classical module on 2.3 GHz
eight-core Intel CPU with 14 nm CMOS process, and quan-
tum module on 5,627-qubit Advantage system4.1 QA. Our
decoder targets 1,024-bit 5G-NR Polar codes with BPSK
modulation and 200 message data bits, which is typically the
maximum UCI payload in LTE and 5G-NR eMBB scenarios
[7]. Our encoder implementation follows 5G-NR specifications
[3]. In particular, a 11-bit CRC is attached to user data, frozen
bits and sub-channels are allocated, and then the mother polar
code encoding is performed as described in §III. This encoded
data is next passed onto sub block and channel interleavers,
and then transmitted over a wireless multipath Rayleigh fading
channel. At the receiver, we de-interleave the received soft
information accordingly and then perform HyPD’s decoding.

Current QAs have a 4–40 µs coefficient programming time,
0–10 ms post-programming thermalization time, 25–150 µs
solution readout time, and 0–10 ms post-readout thermaliza-
tion time. Thermalization times are user-specified, and we set
it equal to default 1 ms. These overhead times, however, can be
reduced several orders of magnitude by system integration (see
[5] for detailed analysis). In our particular QA device, there
are 13 defective qubits, each in a different unit cell, and we
use only 7 available physical qubits in such unit cells. Practical
challenges include embedding, coefficient range and precision,
and analog QA machine noise called integrated control error
(ICE). ICE is caused by qubit flux-noise, quantization, among
others [6], and it alters problem biases (hi → hi ± δhi) and
coupler strengths (Jij → Jij ± δJij). Although the errors
δhi and δJij are currently on the order of 10−2, these may
disturb the solution quality in scenarios where ICE noise
erases significant information from the problem. Nevertheless,
we increase the solution quality via the standard method of



Figure 6: HyPD’s end-to-end system performance. In the figure, boxes’ lower/upper whiskers and quartiles represent 10th/90th

and 25th/75th percentiles respectively. Line trends show averages, and Pf is QA parallelization factor.

running multiple anneals for a problem, where each anneal
reads out the solution bit-string once. Current QAs support
bias values in [−4.0,+4.0], and coupler strength values in
[−2.0,+1.0]. QPD’s Ising form coupler strengths take values
in [−1.0,−0.5,+0.5,+1.0] only, falling into the supported
range of QA, and we set embedding coupler strengths to −2.0.
QPD’s biases are quantized in steps of 1.5 value and shared
among physical qubits in the embedding process, tuning them
into the supported range of QA. Our end-to-end evaluation
results capture all the sources of QA imprecision (e.g., QA
analog hardware noise and control error) [6].

VI. EVALUATION

Let us define an instance I as a 1,024-bit Polar decoding
problem. We partition each instance into 128 sub-blocks with
eight bits each (as described in §IV-A). For each sub-block
decoding, we perform 2, 000 anneals, where each anneal
potentially returns a distinct solution to the problem due to
the heuristic sampling nature of QA. If N I

s is the number of
distinct solutions returned for a problem, we rank these solu-
tions in increasing order of their energies as R1, R2, ..., RNI

s
,

and note the solutions’ bit errors and occurrence probabilities.
Eight sub-blocks, each corresponding to a different instance,
are parallelized in a single QA anneal, by mapping problems to
distinct physical locations in the QA hardware. The minimum
energy solutions of QPD’s sub-blocks are fed back to HyPD’s
classical module (§IV-A).

A. QPD’s Sub-block Performance

We first investigate in Fig. 5 the sub-block decoding per-
formance of QPD. The figure shows that sub-blocks with
low coding rates (0.25 and 0.5) achieve a high probability of
finding the correct answer (i.e., a Rank 1 solution), whereas
sub-blocks with high coding rates (0.75 and 1.0) achieve a
low correct answer probability. This is because at high coding
rates, there are less frozen bits for error correction, making
it difficult for the QA to solve the problems correctly. We
further note that the number of bit errors is zero in the Rank
1 solutions at all coding rates. Solutions with higher rank (> 1)

and zero bit errors imply that ancillary qubits, but not solution
qubits that represent user data, are errored (§IV-B).

B. HyPD’s System Performance

We next investigate in Fig. 6 the end-to-end system perfor-
mance of HyPD. Time-to-solution (TTS) is a figure of merit for
the QA performance, and TTS(P ) represents the time required
to reach the minimum energy solution with a probability P ,
computed as: TTS(P ) = Ta · log(1 − P )/log(1 − P1), where
Ta is the annealing time and P1 is the probability of R1, the
minimum energy solution. If Pf problems are parallelized,
then the effective TTS of a problem is reduced by a factor Pf .
In Fig. 6, curves corresponding to Pf = 8 represents current
parallelization in a 5K-qubit QA device, whereas Pf of 20, 50,
and 100 represent projected parallelization in near-term future
QA devices with 14K, 35K, and 70K qubits respectively.
TTS Analysis. Fig. 6 (Left) shows sub-blocks’ TTS(99%)
performance with Ta = 1 µs: TTS scales proportionally with
sub-block’s coding rate, reaching a worst-case 70 µs for sub-
blocks with a 1.0 coding rate (Pf = 8). This is because at high
coding rates, R1 solution probability is low (§VI-A). With Pf

= 100, this worst-case TTS reaches to 5.6 µs. We further note
that TTS at coding rate of 1/8 deviates from the trend. This is
because at very low coding rates, the energy gap between the
minimum energy solution and the rest diminishes, making it
difficult for QA to distinguish the minimum energy solution.
To overcome this, techniques such as quantum annealing
correction may be employed [10]—we leave for future work.
Compute Time. Fig. 6 (Middle) shows HyPD’s compute time
(Tc) requirements to achieve a target bit-error-rate (BER)
performance at SNR 1 dB. We calculate compute time as: Tc =
1
Pf

∑Nsub

i=1 (Ta)i × (Na)i, where Nsub = 128 is the number of
sub-blocks. (Ta)i = 1µs is the annealing time and (Na)i is the
number of anneals, of the ith sub-block. BER is computed as
in Ref. [9] by considering population samples of Na(< 2, 000)
anneals from the entire 2, 000 conducted anneals. The figure
shows that higher compute times achieve lower BER. For a
target BER of 10−4, compute time required is 250 µs (Pf =
8). With Pf = 100, this time reduces to 20 µs.



BER Performance. Fig. 6 (Right) compares HyPD’s BER
performance head-to-head against SC and SCL decoders.
SCL’s list size (Ls) is eight, the typical upper limit on list
size for 1,024-bit Polar decoder implementations, and HyPD’s
NL = 8 (i.e., number of bits in each sub-block §IV-A). The
figure shows that HyPD operating at 300 µs compute time
outperforms SCL by an half an order of BER magnitude
at 1 dB SNR. The performance improvement is a result of
QPD decoder exploring all 2NL decoding paths (i.e., full
search) within each sub-block (§IV-A). BER performance can
be improved further by sending multiple solutions returned
by the QA to classical module, or by increasing the size of
partitioned sub-blocks (§IV-A). We note that on current QA
hardware, solving sub-blocks with size greater than eight bits
leads to poor performance because of accumulated QA ICE
errors. Further efforts are needed to enable decoding of longer
sub-blocks via QPD, wherein quantum annealing correction
may be useful [10]—we leave for future work.

VII. RELATED WORK

Polar codes’ fundamental construction and properties are
well studied [1], [11] and though proven in theory to be
capacity-achieving, their use is limited to short block lengths
due to their computationally-complex decoding algorithms.
Several studies to this end have proposed efficient decoder ar-
chitectures based on low-complexity decoding algorithms such
as SC [12], SC Stack [13], and belief propagation (BP) [14],
whereas HyPD compares favorably in performance against the
superior SCL decoding algorithm (§VI). QA machines have
been recently used to solve wireless channel decoding prob-
lems such as of LDPC codes [9], [15]–[17]. These designs,
however, operate on bipartite Tanner graph structures, and are
not applicable to binary tree structured Polar codes. Quantum
Gate-based channel decoding approaches are also being widely
investigated, wherein quantum approximate optimization algo-
rithm, quantum search methods, and syndrome-based decoding
schemes have been studied [18]–[21]. While we study HyPD
from the QA perspective, we note that implementation of same
ideas via optimization approaches on Quantum Gate-based
devices is also a promising future work direction.

VIII. CONCLUSION

HyPD is a novel QA-based hybrid classical–quantum Polar
decoder design that achieves new levels of performance be-
yond state-of-the-art SCL decoders at low SNRs of practical
interest. While today’s quantum technology offers limited
number of qubits, restricting the size of problems one can
run on such devices, our hybrid decoder design shows how
classical computation can be leveraged alongside quantum
computation to solve long Polar codes. Our extensive evalua-
tion of HyPD on leading-edge QA hardware provides insights
into today’s QA hardware performance and benefits with
increased qubit numbers. While we acknowledge the practical
feasibility of QA processors to be at least tens of years away
[5], the ideas we propose here may in the more distant future

enable applicability of long Polar codes in NextG cellular
wireless traffic channels.
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