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Abstract
Given a multigraph G = (V, E), the edge-coloring problem (ECP) is to color the 
edges of G with the minimum number of colors so that no two adjacent edges have 
the same color. This problem can be naturally formulated as an integer program, 
and its linear programming relaxation is referred to as the fractional edge-coloring 
problem (FECP). The optimal value of ECP (resp. FECP) is called the chromatic 
index (resp. fractional chromatic index) of G, denoted by χ′(G) (resp. χ∗(G)). Let 
∆(G) be the maximum degree of G and let Γ(G) be the density of G, defined by 

	
Γ(G) = max

{
2|E(U)|
|U | − 1

: U ⊆ V, |U | ≥ 3 and odd
}

,

where E(U) is the set of all edges of G with both ends in U. Clearly, 
max{∆(G), ⌈Γ(G)⌉} is a lower bound for χ′(G). As shown by Seymour, 
χ∗(G) = max{∆(G), Γ(G)}. In the early 1970s Goldberg and Seymour inde-
pendently conjectured that χ′(G) ≤ max{∆(G) + 1, ⌈Γ(G)⌉}. Over the past five 
decades this conjecture, a cornerstone in modern edge-coloring, has been a subject 
of extensive research, and has stimulated an important body of work. In this paper 
we present a proof of this conjecture. Our result implies that, first, there are only two 
possible values for χ′(G), so an analogue to Vizing’s theorem on edge-colorings 
of simple graphs holds for multigraphs; second, although it is NP-hard in general 
to determine χ′(G), we can approximate it within one of its true value, and find it 
exactly in polynomial time when Γ(G) > ∆(G); third, every multigraph G satisfies 
χ′(G) − χ∗(G) ≤ 1, and thus FECP has a fascinating integer rounding property.
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1  Introduction

Given a multigraph G = (V, E), the edge-coloring problem (ECP) is to color the 
edges of G with the minimum number of colors so that no two adjacent edges have 
the same color. Its optimal value is called the chromatic index of G, denoted by 
χ′(G). In addition to its great theoretical interest, ECP arises in a variety of applica-
tions, so it has attracted tremendous research efforts in several fields, such as discrete 
mathematics, combinatorial optimization, and theoretical computer science. Holyer 
(1980) proved that it is NP-hard in general to determine χ′(G), even when restricted 
to a simple cubic graph, so there is no efficient algorithm for solving ECP exactly 
unless NP = P , and hence the focus of extensive research has been on near-optimal 
solutions to ECP or good estimates of χ′(G).

Let ∆(G) be the maximum degree of G. Clearly, χ′(G) ≥ ∆(G). There are two 
classical upper bounds on the chromatic index: the first of these, χ′(G) ≤ ⌊ 3∆(G)

2 ⌋, 
was established by Shannon (1949) in 1949, and the second, χ′(G) ≤ ∆(G) + µ(G), 
where µ(G) is the maximum multiplicity of edges in G, was proved independently by 
Vizing (1964) and Gupta (1967) in the 1960s. This second result is widely known as 
Vizing’s theorem, which is particularly appealing when applied to a simple graph G, 
because it reveals that χ′(G) can take only two possible values: ∆(G) and ∆(G) + 1. 
Nevertheless, in the presence of multiple edges, the gap between χ′(G) and these 
three bounds can be arbitrarily large. Therefore it is desirable to find some other 
graph theoretic parameters connected to the chromatic index.

Observe that each color class in an edge-coloring of G is a matching, so it contains 
at most (|U | − 1)/2 edges in E(U) for any U ⊆ V  with |U| odd, where E(U) is the set 
of all edges of G with both ends in U. Hence the density of G, defined by

	
Γ(G) = max

{
2|E(U)|
|U | − 1

: U ⊆ V, |U | ≥ 3 and odd
}

,

provides another lower bound for χ′(G). It follows that χ′(G) ≥ max{∆(G), Γ(G)}.
To facilitate better understanding of the parameter max{∆(G), Γ(G)}, let A be 

the edge-matching incidence matrix of G (that is, each column of A is the incidence 
vector of a matching). Then ECP can be naturally formulated as an integer program, 
whose linear programming (LP) relaxation is exactly as given below:

	

Minimize 1T x
subject to Ax = 1

x ≥ 0.

This linear program is called the fractional edge-coloring problem (FECP), and its 
optimal value is called the fractional chromatic index of G, denoted by χ∗(G). As 
shown by Seymour (1979) using Edmonds’ matching polytope theorem Edmonds 
(1965), it is always true that χ∗(G) = max{∆(G), Γ(G)}. Thus the preceding 
inequality actually states that χ′(G) ≥ χ∗(G).
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As χ′(G) is integer-valued, we further obtain χ′(G) ≥ max{∆(G), ⌈Γ(G)⌉}. 
How good is this bound? In the early 1970s Goldberg (1973) and Seymour (1979) 
independently made the following conjecture.

Conjecture 1.1  Every multigraph G satisfies χ′(G) ≤ max{∆(G) + 1 , ⌈Γ(G)⌉}.

Over the past five decades Conjecture 1.1 has been a subject of extensive research, 
and has stimulated an important body of work; see McDonald (2015) for a sur-
vey on this conjecture and Stiebitz et  al. (2012) for a comprehensive account of 
edge-colorings.

Several approximate results state that χ′(G) ≤ max{∆(G) + τ(G), ⌈Γ(G)⌉}, 
where τ(G) is a positive number depending on G. Asymptotically, Kahn (1996) showed 
that τ(G) = o(∆(G)). Scheide (2010) and Chen et al. (2009) independently proved 
that τ(G) ≤

√
∆(G)/2. Chen et  al. (2018) improved this to τ(G) ≤ 3

√
∆(G)/2. 

Recently, Chen and Jing (2019) further strengthened this as τ(G) ≤ 3
√

∆(G)/4.

There is another family of results, asserting that 

χ′(G) ≤ max{ m∆(G)+(m−3)
m−1 , ⌈Γ(G)⌉}, for increasing values of m. Such results 

have been obtained by Andersen (1977) and Goldberg (1973) for m = 5, Andersen 
(1977) for m = 7, Goldberg (1984) and Hochbaum et al. (1986) for m = 9, Nishizeki 
and Kashiwagi (1990) and Tashkinov (2000) for m = 11, Favrholdt et al. (2006) for 
m = 13, Scheide (2010) for m = 15, Chen et al. (2018) for m = 23, and Chen and 
Jing (2019) for m = 39. It is worthwhile pointing out that, when ∆(G) ≤ 39, the 
validity of Conjecture 1.1 follows instantly from Chen and Jing’s result Chen and 

Jing (2019), because 39∆(G)+36
38 < ∆(G) + 2.

Haxell and McDonald (2012) obtained a different sort of approximation to Con-
jecture 1.1: χ′(G) ≤ max{∆(G) + 2

√
µ(G) log ∆(G), ⌈Γ(G)⌉}. Another way to 

obtain approximations for Conjecture 1.1 is to incorporate the order n of G (that 
is, number of vertices) into a bound. In this direction, Plantholt (1999) proved that 
χ′(G) ≤ max{∆(G), ⌈Γ(G)⌉ + 1 +

√
n log(n/6)} for any multigraph G with even 

order n ≥ 572. In Plantholt (2013), he established an improved result that is appli-
cable to all multigraphs.

Marcotte (1990) showed that χ′(G) = max{∆(G), ⌈Γ(G)⌉} for any multigraph 
G with no K−

5 -minor, thereby confirming Conjecture 1.1 for this multigraph class. 
Recently, Haxell et al. (2019) established Conjecture 1.1 for random multigraphs.

The purpose of this paper is to present a proof of the Goldberg-Seymour conjecture.

Theorem 1.1  Every multigraph G satisfies χ′(G) ≤ max{∆(G) + 1 , ⌈Γ(G)⌉}.

Let r be a positive integer. A multigraph G = (V, E) is called an r-graph if G is 
regular of degree r and for every X ⊆ V  with |X| odd, the number of edges between 
X and V − X  is at least r. Note that if G is an r-graph, then |V(G)| is even and 
Γ(G) = r. Seymour (1979) also proposed the following weaker version of Conjec-
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ture 1.1, which amounts to saying that χ′(G) ≤ max{∆(G), ⌈Γ(G)⌉} + 1 for any 
multigraph G.

Conjecture 1.2  Every r-graph G satisfies χ′(G) ≤ r + 1 .

The following conjecture was posed by Gupta (1967) in 1967 and can be deduced 
from Conjecture 1.1, as shown by Scheide (2007).

Conjecture 1.3  Let G be a multigraph such that ∆(G) cannot be expressed in the 
form 2pµ(G) − q, for any two integers p and q satisfying p > ⌊(q + 1 )/2 ⌋ and 
q ≥ 0 . Then χ′(G) ≤ ∆(G) + µ(G) − 1 .

A multigraph G is called critical if χ′(H) < χ′(G) for any proper subgraph H of 
G. In edge-coloring theory, critical multigraphs are of special interest, because they 
have much more structural properties than arbitrary multigraphs. The following two 
conjectures are due to Jakobsen (1974, 1975) and were proved by Andersen (1977) 
to be weaker than Conjecture 1.1.

Conjecture 1.4  Let G be a critical multigraph with χ′(G) ≥ ∆(G) + 2 . Then G con-
tains an odd number of vertices.

Conjecture 1.5  Let G be a critical multigraph with χ′(G) > m∆(G)+(m−3)
m−1  for an 

odd integer m ≥ 3 . Then G has at most m − 2  vertices.

Motivated by Conjecture 1.1, Hochbaum et al. (1986) formulated the following 
conjecture concerning the approximability of ECP.

Conjecture 1.6  There is a polynomial-time algorithm that colors the edges of any 
multigraph G using at most max{χ′(G), ∆(G) + 1} colors.

Since Conjectures 1.2–1.5 are all weaker than the Goldberg-Seymour conjecture, 
the truth of them follows from Theorem 1.1 as corollaries.

Theorem 1.2  Every r-graph G satisfies χ′(G) ≤ r + 1 .

Theorem 1.3  Let G be a multigraph such that ∆(G) cannot be expressed in the form 
2pµ(G) − q, for any two integers p and q satisfying p > ⌊(q + 1 )/2 ⌋ and q ≥ 0 . 
Then χ′(G) ≤ ∆(G) + µ(G) − 1 .

Theorem 1.4  Let G be a critical multigraph with χ′(G) ≥ ∆(G) + 2 . Then G con-
tains an odd number of vertices.

Theorem 1.5  Let G be a critical multigraph with χ′(G) > m∆(G)+(m−3)
m−1  for an odd 

integer m ≥ 3 . Then G has at most m − 2  vertices.
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We have seen that FECP is intimately tied to ECP. For any multigraph G, the 
fractional chromatic index χ∗(G) = max{∆(G), Γ(G)} can be determined in poly-
nomial time by combining the Padberg-Rao separation algorithm for b-matching 
polyhedra Padberg and Rao (1982) (see also Letchford et al. 2008; Padberg and Wol-
sey 1984) with binary search. In Chen et al. (2019), Chen, Zang, and Zhao designed 
a combinatorial polynomial-time algorithm for finding the density Γ(G) of any 
multigraph G, thereby resolving a problem posed in both Stiebitz et al. (2012) and 
Jensen and Toft (2015). Nemhauser and Park (1991) observed that FECP can be 
solved in polynomial time by an ellipsoid algorithm, because the separation problem 
of its LP dual is exactly the maximum-weight matching problem (see also Schrijver 
2003, Theorem 28.6 on page 477). In Chen et al. (2019), Chen, Zang, and Zhao also 
came up with a combinatorial polynomial-time algorithm for FECP.

Our proof of Theorem 1.1 is not algorithmic in nature. It would be interesting to 
see if our proof can be adapted to yield a polynomial-time algorithm for finding an 
edge-coloring of any multigraph G with at most max{∆(G) + 1, ⌈Γ(G)⌉} colors. A 
successful implementation would lead to an affirmative answer to Conjecture 1.6 as 
well.

Some remarks may help to put Theorem 1.1 in proper perspective.
First, by Theorem 1.1, there are only two possible values for the chromatic index 

of a multigraph G: max{∆(G), ⌈Γ(G)⌉} and max{∆(G) + 1, ⌈Γ(G)⌉}. Thus an 
analogue to Vizing’s theorem on edge-colorings of simple graphs, a fundamental 
result in discrete mathematics, holds for multigraphs.

Second, Theorem 1.1 exhibits a dichotomy on edge-coloring: While Holyer’s the-
orem (Holyer 1980) tells us that it is NP-hard to determine χ′(G), we can approxi-
mate it within one of its true value, because max{∆(G) + 1, ⌈Γ(G)⌉} − χ′(G) ≤ 1. 
Furthermore, if Γ(G) > ∆(G), then χ′(G) = ⌈Γ(G)⌉, so it can be found in polyno-
mial time (Chen et al. 2019; Padberg and Rao 1982).

Third, by Theorem 1.1 and aforementioned Seymour’s theorem on fractional chro-
matic index, every multigraph G = (V, E) satisfies χ′(G) − χ∗(G) ≤ 1, which can 
be naturally extended to the weighted case. Let w(e) be a nonnegative integral weight 
on each edge e ∈ E and let w = (w(e) : e ∈ E). The chromatic index of (G, w), 
denoted by χ′

w(G), is the minimum number of matchings in G such that each edge e 
is covered exactly w(e) times by these matchings, and the fractional chromatic index 
of (G, w), denoted by χ∗

w(G), is the optimal value of the following linear program:

	

Minimize 1T x
subject to Ax = w

x ≥ 0,

where A is again the edge-matching incidence matrix of G. Clearly, χ′
w(G) is the 

optimal value of the corresponding integer program. Let Gw be obtained from G 
by replacing each edge e with w(e) parallel edges between the same ends. It is then 
routine to check that χ′

w(G) = χ′(Gw) and χ∗
w(G) = χ∗(Gw). So the inequality 

χ′
w(G) − χ∗

w(G) ≤ 1 holds for all nonnegative integral weight functions w, and 
hence FECP has a fascinating integer rounding property (see Schrijver 1986, 2003). 
(The LP relaxation (LP) of a combinatorial optimization problem (IP) is said to have 
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an integer rounding property if there exists an absolute positive constant c, such that 
the optimal value of LP differs from that of IP by at most c, for all weight func-
tions. This property is of great interest in integer programming and combinatorial 
optimization.)

So far the most powerful and sophisticated technique for multigraph edge-color-
ing is the method of Tashkinov trees (Tashkinov 2000), which generalizes the earlier 
methods of Vizing fans (Vizing 1964) and Kierstead paths (Kierstead 1984). (These 
methods are named after the authors who invented them, respectively.) Most recent 
results described above Theorem 1.1 were obtained by using the method of Tash-
kinov trees. As remarked by McDonald (2015), the Goldberg-Seymour conjecture 
and ideas culminating in this method are two cornerstones in modern edge-coloring. 
Nevertheless, this method suffers some theoretical limitation when applied to prove 
the conjecture; see Asplund and Asplund and McDonald (2016) for detailed infor-
mation. Despite various attempts to extend the Tashkinov trees (see, for instance, 
Chen et al. 2018; Chen and Jing 2019; Chen et al. 2009; Scheide 2010; Stiebitz et al. 
2012), the difficulty encountered by the method remains unresolved and, undesirably, 
another problem emerges: it becomes very difficult to preserve the structure of an 
extended Tashkinov tree under Kempe changes (the most useful tool in edge-color-
ing theory). In this paper we introduce a new type of extended Tashkinov trees and 
develop an effective control mechanism over Kempe changes, which can overcome 
all the aforementioned difficulties. The reader is referred to Chen and Jing (2019) 
for a prototype of this control mechanism and its role in the derivation of the best 
approximate result on the Goldberg-Seymour conjecture presently available.

The remainder of this paper is organized as follows. In Sect. 2, we introduce some 
basic concepts and techniques of edge-coloring theory, and exhibit some important 
properties of stable colorings. In Sect. 3, we define the extended Tashkinov trees to 
be employed in subsequent proof, and give an outline of our proof strategy. In Sect. 4, 
we establish some auxiliary results on the extended Tashkinov trees and stable color-
ings, which ensure that this type of trees is preserved under some restricted Kempe 
changes. In Sect. 5, we develop an effective control mechanism over Kempe changes, 
the so-called good hierarchy of an extended Tashkinov tree, based on its prototype 
introduced by Chen and Jing in Chen and Jing (2019) (see Condition R2 therein). 
In Sect. 6, we derive some properties satisfied by the good hierarchies introduced in 
the preceding section. In Sect. 7, we present the last step of our proof based on these 
good hierarchies.

2  Preliminaries

This section presents some basic definitions, terminology, and notation used in our 
paper, along with some important properties and results.

2.1  Terminology and notation

Let G = (V, E) be a multigraph. For each X ⊆ V , let G[X] denote the subgraph of 
G induced by X, and let G − X  denote G[V − X]; we write G − x for G − X  if 
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X = {x}. Moreover, we use ∂(X) to denote the set of all edges with precisely one 
end in X, and write ∂(x) for ∂(X) if X = {x}. For each pair x, y ∈ V , let E(x, y) 
denote the set of all edges between x and y. As it is no longer appropriate to represent 
an edge f between x and y by xy in a multigraph, we write f ∈ E(x, y) instead. For 
each subgraph H of G, let V(H) and E(H) denote the vertex set and edge set of H, 
respectively, let |H| = |V (H)|, and let G[H] = G[V (H)] and ∂(H) = ∂(V (H)).

Let e be an edge of G. A tree-sequence with respect to G and e is a sequence 
T = (y0, e1, y1, . . . , ep, yp) with p ≥ 1, consisting of distinct edges e1, e2, . . . , ep 
and distinct vertices y0, y1, . . . , yp, such that e1 = e and each edge ej  with 1 ≤ j ≤ p 
is between yj  and some yi with 0 ≤ i < j. In this paper a tree-sequence is treated as a 
tree. Given a tree-sequence T = (y0, e1, y1, . . . , ep, yp), we can naturally associate a 
linear order ≺ with its vertices, such that yi ≺ yj  if i < j. We write yi ⪯ yj  if i ≤ j. 
This linear order will be used repeatedly in subsequent sections. For each vertex yj  
of T with j ≥ 1, let T (yj) denote (y0, e1, y1, . . . , ej , yj). Clearly, T (yj) is also a 
tree-sequence with respect to G and e. We call T (yj) the segment of T induced by 
yj . Let T1 and T2 be two tree-sequences with respect to G and e. We write T2 − T1 
for E[T2] − E[T1]; with a slight abuse of notation, we also use T2 − T1 to denote 
the subgraph of T2 induced by E[T2] − E[T1]. Write T1 ⊆ T2 if T1 is a segment of 
T2, and write T1 ⊂ T2 if T1 is a proper segment of T2; that is, T1 ⊆ T2 and T1 ̸= T2.

A k-edge-coloring of G is an assignment of k colors, 1, 2, . . . , k, to the edges of G 
so that no two adjacent edges have the same color. By definition, the chromatic index 
χ′(G) of G is the minimum k for which G has a k-edge-coloring. We use [k] to denote 
the color set {1, 2, . . . , k}, and use Ck(G) to denote the set of all k-edge-colorings of 
G. Note that every k-edge-coloring of G is a mapping from E to [k].

Let φ be a k-edge-coloring of G. For each α ∈ [k], the edge set 
Eφ,α = {e ∈ E : φ(e) = α} is called a color class, which is a matching in G. For 
any two distinct colors α and β in [k], let H be the spanning subgraph of G with 
E(H) = Eφ,α ∪ Eφ,β . Then each component of H is either a path or an even cycle; 
we refer to such a component as an (α, β)-chain with respect to φ, and also call it 
an (α, β)-path (resp. (α, β)-cycle) if it is a path (resp. cycle). Possibly a component 
of H is an isolated vertex. We use Pv(α, β, φ) to denote the unique (α, β)-chain 
containing the vertex v. Clearly, for any two distinct vertices u and v, Pu(α, β, φ) 
and Pv(α, β, φ) are either identical or vertex-disjoint. Let C be an (α, β)-chain with 
respect to φ, and let φ′ be the k-edge-coloring arising from φ by interchanging α and 
β on C. We say that φ′ is obtained from φ by recoloring C, and write φ′ = φ/C. This 
operation is called a Kempe change. We also say that this Kempe change is rooted at 
v if it has degree one in C.

Let F be an edge subset of G. As usual, G − F  stands for the multigraph obtained 
from G by deleting all edges in F; we write G − f  for G − F  if F = {f}. Let 
π ∈ Ck(G − F ). For each K ⊆ E, define π(K) = ∪e∈K−F {π(e)}. For each v ∈ V , 
define

	 π(v) = π(∂(v)) and π(v) = [k] − π(v).

We call π(v) the set of colors present at v and call π(v) the set of colors missing at v. 
For each X ⊆ V , define
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	 π(X) = ∪v∈X π(v).

We call X elementary with respect to π if π(u) ∩ π(v) = ∅ for any two distinct ver-
tices u, v ∈ X . We call X closed with respect to π if π(∂(X)) ∩ π(X) = ∅; that is, 
no missing color of X appears on the edges in ∂(X). Furthermore, we call X strongly 
closed with respect to π if X is closed with respect to π and π(e) ̸= π(f) for any 
two distinct colored edges e, f ∈ ∂(X). For each subgraph H of G, write π(H) for 
π(V (H)), and write π⟨H⟩ for π(E(H)). Moreover, define

	 ∂π,α(H) = {e ∈ ∂(H) : π(e) = α},

and define

	 I[∂π,α(H)] = {v ∈ V (H) : v is incident with an edge in ∂π,α(H)}.

For an edge e ∈ ∂(H), we call its end in (resp. outside) H the in-end (resp. out-
end) relative to H. Thus I[∂π,α(H)] consists of all in-ends (relative to H) of edges 
in ∂π,α(H). If |∂π,α(H)| ≥ 2, we call α a defective color of H with respect to π, 
call each edge in ∂π,α(H) a defective edge of H with respect to π, and call each 
vertex in I[∂π,α(H)] a defective vertex of H with respect to π. A color α ∈ π(H) is 
called closed in H under π if ∂π,α(H) = ∅. For convenience, we say that H is closed 
(resp. strongly closed) with respect to π if V(H) is closed (resp. strongly closed) with 
respect to π. Let α and β be two colors that are not assigned to ∂(H) under π. We use 
π/(G − H, α, β) to denote the coloring π′ obtained from π by interchanging α and 
β in G − V (H). Since π belongs to Ck(G − F ), so does π′.

2.2  Elementary multigraphs

Let G = (V, E) be a multigraph. We call G an elementary multigraph if 
χ′(G) = ⌈Γ(G)⌉. With this notion, Conjecture 1.1 can be rephrased as follows.

Conjecture 2.1  Every multigraph G with χ′(G) ≥ ∆(G) + 2  is elementary.

Recall that G is critical if χ′(H) < χ′(G) for any proper subgraph H of G. As 
pointed out by Stiebitz et al. (2012) (see page 7), for a proof of Conjecture 2.1, it suf-
fices to consider critical multigraphs. To see this, let G be an arbitrary multigraph with 
χ′(G) ≥ ∆(G) + 2. Then G contains a critical multigraph H with χ′(H) = χ′(G), 
which implies that χ′(H) ≥ ∆(H) + 2. Note that if H is elementary, then so is G, 
because ⌈Γ(G)⌉ ≤ χ′(G) = χ′(H) = ⌈Γ(H)⌉ ≤ ⌈Γ(G)⌉. Thus both inequalities 
hold with equalities, and hence χ′(G) = ⌈Γ(G)⌉.

To prove Conjecture 1.1, we shall actually establish the following statement.

Theorem 2.1  Every critical multigraph G with χ′(G) ≥ ∆(G) + 2  is elementary.

In our proof we shall appeal to the following theorem, which reveals some inti-
mate connection between elementary multigraphs and elementary sets. This result is 
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implicitly contained in Andersen (1977) and Goldberg (1984), and explicitly stated 
in Stiebitz et al. (2012) (see Theorem 1.4 on page 8).

Theorem 2.2  Let G = (V , E) be a multigraph with χ′(G) = k + 1  for an integer 
k ≥ ∆(G) + 1 . If G is critical, then the following conditions are equivalent: 

(i)	 G is an elementary multigraph.
(ii)	 For each edge e ∈ E and each coloring φ ∈ Ck(G − e), the vertex set V is 

elementary with respect to φ.
(iii)	There exists an edge e ∈ E and a coloring φ ∈ Ck(G − e), such that the vertex 

set V is elementary with respect to φ.
(iv)	There exists an edge e ∈ E, a coloring φ ∈ Ck(G − e), and a subset X of V, 

such that X contains both ends of e, and X is elementary as well as strongly 
closed with respect to φ.

2.3  Stable colorings

In this subsection, we assume that T is a tree-sequence with respect to a multigraph 
G = (V, E) and an edge e, C is a subset of [k], and φ is a coloring in Ck(G − e), 
where k ≥ ∆(G) + 1. We say that an edge f of G is incident to T if at least one end of 
f is contained in T; this definition applies to edges of T as well. Since our proof con-
sists of a sophisticated sequence of Kempe changes, the concept of stable coloring 
introduced below will be employed to preserve some important coloring properties 
of T, such as, among others, the color on each edge and the set of colors missing at 
each vertex. Usually, C is the set of colors assigned to E(T) but not missing at any 
vertex of T.

To be specific, a coloring π ∈ Ck(G − e) is called a (T, C, φ)-stable coloring if 
the following two conditions are satisfied: 
(i)	 π(f) = φ(f) for any f ∈ E incident to T with φ(f) ∈ φ(T ) ∪ C; and
(ii)	 π(v) = φ(v) for any v ∈ V (T ).
By convention, π(e) = φ(e) = ∅. The following lemma gives an equivalent defini-
tion of stable colorings.

Lemma 2.3  A coloring π ∈ Ck(G − e) is (T , C , φ)-stable iff π(f ) = φ(f ) for any 
f ∈ E  incident to T with φ(f ) ∈ φ(T ) ∪ C  or π(f ) ∈ φ(T ) ∪ C .

Proof  Let (i′) stand for the condition specified in the “if" part. We propose to show 
that (i′) holds iff both (i) and (ii) hold.

Trivially, (i′) implies (i). If there exists v ∈ V (T ) such that π(v) ̸= φ(v), then 
some edge f incident to v satisfies π(f) ∈ φ(v) because |π(v)| = |φ(v)|. From (i′) 
we deduce that π(f) = φ(f) and hence φ(f) ∈ φ(v), a contradiction. So (i′) implies 
(ii) as well.

Conversely, let f ∈ E be an arbitrary edge incident to T with π(f) ∈ φ(T ) ∪ C. 
We claim that φ(f) = π(f). Assume the contrary: φ(f) ̸= π(f). Let v ∈ V (T ) be 
an end of f. By (ii), we have π(v) = φ(v). So π(v) = φ(v) and hence there exists an 
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edge g ∈ ∂(v) − {f} with φ(g) = π(f). It follows that φ(g) ∈ φ(T ) ∪ C. By (i), we 
obtain π(g) = φ(g), which implies π(f) = π(g), contradicting the hypothesis that 
π ∈ Ck(G − e). Our claim asserts that φ(f) = π(f) for any f ∈ E incident to T with 
π(f) ∈ φ(T ) ∪ C. Combining this with (i), we conclude that (i′) holds. � □

From the definition and Lemma 2.3 we see that the following statements hold for 
a (T, C, φ)-stable coloring π:

	● if T ′ ⊆ T  and φ(T ′) ∪ C ′ ⊆ φ(T ) ∪ C, then π is also (T ′, C ′, φ)-stable;
	● if a color α ∈ φ(T ) is closed in T under φ, then it is also closed in T under π; and
	● if φ⟨T ⟩ ⊆ φ(T ) ∪ C, then π(f) = φ(f) for all edges f on T.

Let us derive some further properties satisfied by stable colorings.

Lemma 2.4  Being (T , C , ·)-stable is an equivalence relation on Ck(G − e).

Proof  From Lemma 2.3 and the above condition (ii), it is clear that being (T, C, ·)
-stable is reflexive, symmetric, and transitive. So it defines an equivalence relation on 
Ck(G − e). � □

Lemma 2.5  Suppose T is closed but not strongly closed with respect to φ, with |V(T)| 
odd. If π is a (T , C , φ)-stable coloring, then T is also closed but not strongly closed 
with respect to π.

Proof  Let X = V (T ) and let t be the size of the set [k] − φ(X). By hypotheses, 
|V(T)| is odd and T is not strongly closed with respect to φ. Thus under the coloring φ 
each color in [k] − φ(X) is assigned to at least one edge in ∂(T ), and some color in 
[k] − φ(X) is assigned to at least two edges in ∂(T ). It follows that |∂(T )| ≥ t + 1. 
Since π is a (T, C, φ)-stable coloring, from Lemma 2.3 and the above condition (ii) 
we deduce that T is closed with respect to π and that π(X) = φ(X) (so [k] − π(X) 
is also of size t). As only colors in [k] − π(X) can be assigned to edges in ∂(T ) under 
π, some of these colors is used at least twice by the Pigeonhole Principle. Hence T is 
not strongly closed with respect to π. � □

Let P be a path in G whose edges are colored alternately by α and β in φ, with 
|P | ≥ 2, and let u and v be the ends of P with v ∈ V (T ). We say that P is a T-exit 
path with respect to φ if V (T ) ∩ V (P ) = {v} and φ(u) ∩ {α, β} ̸= ∅; in this case, v 
is called a (T, φ, {α, β})-exit and P is also called a (T, φ, {α, β})-exit path. Note that 
possibly φ(v) ∩ {α, β} = ∅; now P is a proper subpath of an (α, β)-path.

Lemma 2.6  Suppose T is closed with respect to φ, and f ∈ E(u, v) is an edge in 
∂(T ) with v ∈ V (T ). If there exists a (T , C ∪ {φ(f )}, φ)-stable coloring π, such 
that π(u) ∩ π(T ) ̸= ∅, then for any α ∈ φ(v) there exists a (T , C ∪ {φ(f )}, φ)-sta-
ble coloring σ, such that v is a (T , σ, {α, φ(f )})-exit and that the (T , σ, {α, φ(f )})
-exit path at v contains only one edge.
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Proof  Let β ∈ π(u) ∩ π(T ). By the definition of stable coloring, β ∈ φ(T ). Since 
both α and β are closed in T under φ, they are also closed in T under π by Lemma 
2.3. Define σ = π/(G − T, α, β). Clearly, σ is a (T, C ∪ {φ(f)}, π)-stable coloring. 
By Lemma 2.4, σ is also a (T, C ∪ {φ(f)}, φ)-stable coloring. Since Pv(α, φ(f), σ) 
consists of a single edge f, it is a T-exit path with respect to σ. Hence v is a 
(T, σ, {α, φ(f)})-exit. � □

2.4  Tashkinov trees

A multigraph G is called k-critical if it is critical and χ′(G) = k + 1. Throughout this 
paper, by a k-triple we mean a k-critical multigraph G = (V, E), where k ≥ ∆(G) + 1, 
together with an uncolored edge e ∈ E and a coloring φ ∈ Ck(G − e); we denote it 
by (G, e, φ).

Let (G, e, φ) be a k-triple. A Tashkinov tree with respect to e and φ is a tree-
sequence T = (y0, e1, y1, . . . , ep, yp) with respect to G and e, such that for each edge 
ej  with 2 ≤ j ≤ p, there is a vertex yi with 0 ≤ i < j satisfying φ(ej) ∈ φ(yi).

The following theorem is due to Tashkinov (2000); its proof can also be found in 
Stiebitz et al. (2012) (see Theorem 5.1 on page 116).

Theorem 2.7  Let (G, e, φ) be a k-triple and let T be a Tashkinov tree with respect to 
e and φ. Then V(T) is elementary with respect to φ.

Let G = (V, E) be a k-critical multigraph G with k ≥ ∆(G) + 1. For each edge 
e ∈ E and each coloring φ ∈ Ck(G − e), there is at least one Tashkinov tree T with 
respect to e and φ. The Tashkinov order of G, denoted by t(G), is the largest num-
ber of vertices contained in such a Tashkinov tree over all e and φ ∈ Ck(G − e). 
Scheide (2010) (see Proposition 4.5) has established the following result, which will 
be employed in our proof.

Theorem 2.8  Let G be a critical multigraph G with χ′(G) ≥ ∆(G) + 2 . If 
t(G) < 11 , then G is an elementary multigraph.

Tashkinov trees have been used successfully to establish various approximate 
results on Conjecture 1.1. The crux of this approach is to capture the density Γ(G) by 
exploring a sufficiently large Tashkinov tree (see Theorem 2.7). However, this target 
may become unreachable when the upper bound on χ′(G) (one wishes to derive) gets 
close to χ′(G), even if we allow for an unlimited number of Kempe changes; such an 
example has been found by Asplund and McDonald (2016). To carry out a proof of 
Conjecture 1.1, we introduce a type of extended Tashkinov trees in this paper by the 
procedure described below.

Definition 2.9  Given a k-triple (G, e, φ) and a tree-sequence T with respect to G and 
e, we say that a tree-sequence (T, f, y) is obtained from T by a Tashkinov augmenta-
tion (TA) under φ if φ(f) ∈ φ(T ), one end x of f is contained in T, and the other end 
y of f is outside T. A Tashkinov augmentation algorithm (TAA) consists of a sequence 
of TAs under the same edge coloring. We call a tree-sequence T ′ a closure of T under 
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φ if T ′ arises from T by TAA and cannot grow further by TA under φ (equivalently, 
T ′ has become closed).

So a Tashkinov tree with respect to e and φ is a tree-sequence obtained from (y0, e, y1) 
by TAA, where y0 and y1 are two ends of e. We point out that, although there might 
be several ways to construct a closure of T under φ, the vertex set of these closures 
is unique.

In the next section we shall give a detailed description of an algorithm for con-
structing the aforementioned extended Tashkinov trees, and present the main result 
of this paper, which implies Theorem 2.1. In view of Theorem 2.2, to prove Conjec-
ture 1.1, we may turn to finding a strongly closed elementary tree-sequence. Thus in 
our algorithm we introduce three types of extensions from a closed elementary tree-
sequence T (say, a closed Tashkinov tree), which has defective edges under a color-
ing φ (so T is not strongly closed). Specifically, we consider the maximum defective 
vertex v in the order ≺ over all (T, C, φ)-stable colorings (here C contains all colors 
used to construct T but are not missing at vertices in T, so C = ∅ when T is a Tash-
kinov tree). Let f be a defective edge incident to v under φ, with f ∈ E(u, v) and 
φ(f) = δ.

If T ∪ {u} is elementary under all (T, C ∪ {δ}, φ)-stable colorings, we add this 
edge f to T and extend the resulting tree-sequence using TAA. This first type of exten-
sions is called series extension (SE) in our algorithm.

Otherwise, we pick a color γ in φ(v); Lemma 2.6 guarantees the existence of a 
stable coloring such that v is the only common vertex of a (γ, δ)-path P and T. We 
then perform the second type of extensions, called parallel extension (PE). Each PE 
is followed by a sequence of the third type of extensions, called revisiting extension 
(RE) and performed whenever possible. During PE, we switch colors along P and 
apply TAA to T, which is no longer closed now. During REs, we repeatedly add an 
edge on some (γ, δ)-cycle intersecting T (the original T before the previous PE) and 
apply TAA, until the vertices of all (γ, δ)-cycles intersecting T are contained in the 
resulting tree-sequence. We may view each PE and its succeeding REs as a whole, in 
which PE is the primary extension while REs are auxiliary extensions.

Applying the above three extensions to closed elementary tree-sequences recur-
sively, we shall end up with a strongly closed elementary tree-sequence, thereby 
proving the Goldberg-Seymour conjecture. The elementary property of such tree-
sequences will be established in Sects. 5, 6 and 7 by further developing techniques 
introduced in Chen and Jing (2019), which essentially allow us to prove that if the 
elementary property of a closed tree-sequence T is preserved under adding a vertex 
using Algorithm 3.1, then this property can be extended even further to a closure of 
the resulting tree-sequence. To the best of our knowledge, no previous investigation 
has ever employed these three extensions; the weaker extension used in Chen and 
Jing (2019) (see Condition R1 therein) can only lead to some partial results despite 
several new techniques originating from this study.

It is worthwhile pointing out that, when encountering a non-elementary tree-
sequence, almost all previous methods proceed by reducing the size of the non-ele-
mentary tree-sequence and eventually reach a contradiction by coloring the uncolored 
critical edge e. However, our algorithm goes the other way around: when T ∪ {u} is 
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not elementary, it modifies the coloring and employs PE to construct a larger elemen-
tary tree-sequence while avoiding the edge f. Essentially our proof only requires the 
edge e to be critical as potential non-critical edges like f are bypassed.

3  Extended tashkinov trees

The purpose of this section is to present extended Tashkinov trees to be used in our 
proof and to give an outline of our proof strategy.

Given a k-triple (G, e, φ), a Tashkinov series constructed from it is a series of 
tuples (Tn, φn−1, Sn−1, Fn−1, Θn−1) for n = 1, 2, . . . output by the following 
algorithm, where Tn is a closed tree-sequence with respect to φn−1, Sn−1 ⊆ [k], 
Fn−1 ⊆ E, and Θn−1 is a label holding information on how Tn is constructed. Fur-
thermore, Tn + fn stands for the tree-sequence augmented from Tn by adding an 
edge fn, and the definition of (T, φ, {α, β})-exit can be found in the paragraph right 
above Lemma 2.6.

To help gain a clearer picture of our algorithm, we intentionally use a descriptive 
language and include Iteration 1, although it is contained in the general Iteration n.

Algorithm 3.1  Iteration 0. Let (T1, φ0, S0, F0, Θ0) be the initial tuple, such that 
φ0 = φ, T1 is a closure of e under φ0 (which is a closed Tashkinov tree with respect 
to e and φ0), and S0 = F0 = Θ0 = ∅.

Iteration 1. If T1 is strongly closed with respect to φ0, stop. Else, we construct the 
tuple (T2, φ1, S1, F1, Θ1) as follows. Set D0 = ∅.

	● Let v1 be the maximum defective vertex,1 in the order ≺ over all (T1, D0, φ0)
-stable colorings, let π0 be a corresponding coloring, let f1 be a defective edge 
(of T1 with respect to π0) incident to v1, let u1 be the other end of f1, and let 
δ1 = π0(f1).

	– If for every (T1, D0 ∪ {δ1}, π0)-stable coloring π, we have π(u1) ∩ π(T1) = ∅, 
apply SE with n = 1.

	– Else, let γ1 be an arbitrary color in π0(v1) and let π′
0 be a (T1, D0 ∪ {δ1}, π0)

-stable coloring such that v1 is a (T1, π′
0, {γ1, δ1})-exit (such π′

0 exists by 
Lemma 2.6), apply PE with n = 1.

Iteration n. If Tn is strongly closed with respect to φn−1, stop. Else, we construct the 
tuple (Tn+1, φn, Sn, Fn, Θn) as follows. Set Dn−1 = ∪i≤n−1 Si − φn−1(Tn−1) (so 
D0 = ∅).

	● If there is a subscript h ≤ n − 1 with Θh = PE and Sh = {δh, γh}, such that 

1 For each (T1, D0φ0)-stable coloring π, let vπ  be the largest defective vertex of T1 with respect to π 
in the order ≺. Then v1 is the largest vertex among all these vertices vπ  in the order ≺. By definition, 
v1 = vπ0 .
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Θi = RE for all i with h + 1 ≤ i ≤ n − 1, if any, and that some (γh, δh)-cycle O 
with respect to φn−1 intersects both V (Th) and V (G) − V (Tn), apply RE. (Note 
that this case cannot occur when n = 1.)

	● Else, let vn be the maximum defective vertex in the order ≺ over all 
(Tn, Dn−1, φn−1)-stable colorings, let πn−1 be a corresponding coloring, let fn 
be a defective edge (of Tn with respect to πn−1) incident to vn, let un be the other 
end of fn, and let δn = πn−1(fn).

	– If for every (Tn, Dn−1 ∪ {δn}, πn−1)-stable coloring π, we have 
π(un) ∩ π(Tn) = ∅, apply SE.

	– Else, pick a color γn in πn−1(vn) as follows. If vn = vi for some 1 ≤ i < n 
with Θi = PE, let n′ be the largest such i and let γn = δn′ . Other-
wise, let γn be an arbitrary color in πn−1(vn). Let π′

n−1 be an arbitrary 
(Tn, Dn−1 ∪ {δn}, πn−1)-stable coloring so that vn is a (Tn, π′

n−1, {γn, δn})
-exit (such π′

n−1 exists by Lemma 2.6), apply PE.RE. Let fn be an edge 
in O ∩ ∂(Tn) such that O contains a path L connecting fn and V (Th) with 
V (L) ⊆ V (Tn). Let φn = φn−1 and Tn+1 be a closure of Tn + fn under φn. 
Set δn = δh, γn = γh, Sn = {δn, γn}, Fn = {fn}, and Θn = RE. We call 
this extension a revisiting extension (RE), call fn an RE connecting edge, 
and call δn and γn connecting colors. Let vn be the end of fn in Tn. Note that 
vn here is neither called an extension vertex nor called a supporting vertex.

SE. Let φn = πn−1 and let Tn+1 be a closure of Tn + fn under φn. Set Sn = {δn}, 
Fn = {fn}, and Θn = SE. We call this extension a series extension (SE), call fn 
an SE connecting edge, call δn a connecting color, and call vn an extension vertex.

PE. Let φn = π′
n−1/Pvn(γn, δn, π′

n−1). Note that 
Pvn(γn, δn, π′

n−1) ∩ V (Tn) = {vn} and δn ∈ φn(vn) is a defective color of Tn. So 
Tn is not closed under φn. Let Tn+1 be a closure of Tn under φn. Set Sn = {δn, γn}, 
Fn = {fn}, and Θn = PE. We call this extension a parallel extension (PE), call 
fn a PE connecting edge, call δn and γn connecting colors, and call vn a supporting 
vertex. As fn is the first edge along Pvn(γn, δn, π′

n−1) and is colored by γn under φn, 
it is not necessarily contained in Tn+1.

Figure 1 shows the possible choices of extensions used in the construction of a 
Tashkinov series.

Definition 3.1  Let (G, e, φ) be a k-triple and let 
T = {(Ti, φi−1, Si−1, Fi−1, Θi−1) : 1 ≤ i ≤ n + 1} be a Tashkinov series con-
structed from (G, e, φ). A tree-sequence T is called an extended Tashkinov tree (ETT) 
constructed from T  under φn if Tn ⊂ T ⊆ Tn+1. We say that φn is the generating 
coloring of T. If the Tashkinov series T  is clear from the context, we may simply say 
that T is an ETT under φn.

We shall mainly work on an ETT T as defined above in the remainder of this paper. 
Such T is not necessarily closed under φn, while Tn+1 is closed.
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Throughout we reserve all symbols used for the same usage as in the algorithm. In 
particular, Di = ∪h≤i Sh − φi(Ti) for i ≥ 0. To help understand the algorithm and 
ETTs better, let us make a few remarks and offer some simple observations.

(3.1) In our proof we shall always restrict our attention to the case when |Tn| is 
odd. Suppose Tn is closed but not strongly closed with respect to φn−1. Then, by 
Lemma 2.5, the same property holds for Tn with respect to any (Tn, Dn−1, φn−1)
-stable coloring π. Let vπ  denote the largest defective vertex of Tn with respect to 
π in the order ≺. Note that vn involved in SE and PE is the largest vertex among 
all these vertices vπ  in the order ≺ and so it is uniquely determined by the triple 
(Tn, Dn−1, φn−1), while fn involved in each extension might be selected in several 
ways.

(3.2) In the algorithm δn is a defective color of Tn with respect to φn when Θn = SE 
or PE (as |∂πn−1,δn

(Tn)| ≥ 3 when |Tn| is odd), while γn is a defective color of Tn 
with respect to φn when Θn = RE. Unlike PE or SE, vn involved in RE may not be a 
maximum defective vertex. Moreover, the set Dn−1 = ∪i≤n−1 Si − φn−1(Tn−1) is 
used to store colors employed in the construction of Tn but not missing at any vertex 
of Tn−1 under φn−1.

(3.3) As described in the algorithm, after performing each PE, we grow the Tash-
kinov series by using RE, whenever possible. So revisiting extension (RE) has prior-
ity over both series and parallel extensions (SE and PE). If Θn = RE, then all edges 
in O ∩ ∂(Th) are colored with δh and all edges in O ∩ ∂(Tn) are colored with γh, 
because δh is a color missing at vh under φh = φn−1 (thereby vh is outside O), the 
only edge fh in ∂φh,γh

(Th) (see Lemma 3.2(v) to be proved) is adjacent to vh, and Tn 
is closed with respect to φn−1. Hence O contains at least one edge colored with γh in 
G[Th], at least two boundary edges of Th colored with δh, and at least two boundary 
edges of Tn colored with γh.

RE is illustrated by the following figure, in which O ∩ ∂(Tn) contains four edges 
colored with γh: both the top and bottom edges are good candidates for fn, but nei-

Fig. 1  Tashkinov series constructed by Algorithm 3.1
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ther of the middle edges can serve this purpose (Fig. 2), because O contains no path 
L connecting them and Th, with V (L) ⊆ V (Tn).

In all previous approaches to the Goldberg-Seymour conjecture using the method 
of Tashkinov trees, the trees involved in the proofs were constructed under a fix col-
oring. In sharp contrast, Algorithm 3.1 constructs tree-sequences and edge-colorings 
simultaneously as it progresses. Therefore, the structural property of an ETT embod-
ied in the extension type and the corresponding coloring might be very fragile (see 
the next paragraph for details), even under stable colorings. This could cause a seri-
ous problem when we try to prove that an ETT T with Tn ⊂ T ⊆ Tn+1 is elementary.

For example, if T is not elementary, then we would apply Kempe changes to 
reduce the size of this counterexample to reach a contradiction while keeping the 
coloring (Tn, Dn, φn)-stable. However, if Θn = PE and the (γn, δn)-path starting 
at vn has evolved to contain two or more vertices from Tn during the process, then 
the resulting tree-sequence may no longer be an ETT under the new coloring, because 
PE requires that the (γn, δn)-path starting at vn share exactly one vertex with Tn 
in order to get Tn+1. Moreover, if Θn = RE and the edge fn no longer belongs to 
any (γn, δn)-cycle during the process, then the resulting tree-sequence may not be 
an ETT under the new coloring anymore, because RE requires fn to be an edge of a 
(γn, δn)-cycle.

To circumvent this problem, we introduce the concept of mod coloring (see Defi-
nition 3.7) and impose a maximum property (see Definition 3.8) on ETT, and then we 
can ensure that the ETT structure is preserved under stable colorings (see Theorem 
3.10(vi) and Lemma 4.5). REs play an important role in the proof of Lemma 4.3 
(Theorem 3.10(iv)), which in turn leads to Lemma 4.5 (Theorem 3.10(vi)). These 
technical results are essential to deriving the elementary property of the ETT we 
consider.

Let us look back at Algorithm 3.1. Clearly, PE is the only extension that involves 
a non-stable coloring (in which one missing color at the supporting vertex has been 
changed). Based on this observation, we can exhibit some basic coloring properties 
(Lemmas 3.2−3.6) satisfied by ETTs. Recall that Dn−1 = ∪i≤n−1 Si − φn−1(Tn−1) 
is used to store colors employed in the construction of Tn but not missing at any ver-
tex of Tn−1 under φn−1.

Lemma 3.2  For n ≥ 1 , the following statements hold: 

Fig. 2  Revisiting extension (RE) 
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(i)	 φn−1(Tn) ∪ Dn−1 ⊆ φn(Tn) ∪ Dn ⊆ φn(Tn+1) ∪ Dn.
(ii)	 For any i ≤ n and v ∈ V (Ti), we have φi−1(v) = φn(v) if v is not used as a 

supporting vertex at any iteration j with i ≤ j ≤ n and Θj = PE.
(iii)	For any edge f incident to Tn, if φn−1(f) ∈ φn−1(Tn) ∪ Dn−1, then 

φn(f) = φn−1(f), unless Θn = PE and f = fn. So φn(f) ∈ φn(Tn) ∪ Dn 
provided that φn−1(f) ∈ φn−1(Tn) ∪ Dn−1.

(iv)	φn−1⟨Tn⟩ ⊆ φn−1(Tn) ∪ Dn−1 and φn⟨Tn⟩ ⊆ φn(Tn) ∪ Dn. So 
σn(f) = φn(f) for any (Tn, Dn, φn)-stable coloring σn and any edge f on Tn.

(v)	 If Θn = PE, then ∂φn,γn
(Tn) = {fn}, and edges in ∂φn,δn

(Tn) are all inci-
dent to V (Tn(vn) − vn). Furthermore, each color in φn(Tn) − {δn} is closed 
in Tn under φn.

Proof  By definition, Dn−1 = ∪i≤n−1Si − φn−1(Tn−1). So φn−1(Tn) ∪ Dn−1 =
φn−1(Tn)∪[∪i≤n−1Si − φn−1(Tn−1)]. Since φn−1(Tn−1) ⊆ φn−1(Tn), we obtain 

(1)	 φn−1(Tn) ∪ Dn−1 = φn−1(Tn) ∪ (∪i≤n−1Si).

Similarly, we can prove that 

(2)	 φn(Tn) ∪ Dn = φn(Tn) ∪ (∪i≤nSi).

(i) For any α ∈ φn−1(Tn), from Algorithm 3.1 and definition of sta-
ble colorings we see that α ∈ φn(Tn), unless Θn = PE and 
α = γn; in this exceptional case, α ∈ Sn. So φn−1(Tn) ⊆ φn(Tn) ∪ Sn and hence 
φn−1(Tn) ∪ (∪i≤n−1Si) ⊆ φn(Tn) ∪ (∪i≤nSi). It follows from (1) and (2) that 
φn−1(Tn) ∪ Dn−1 ⊆ φn(Tn) ∪ Dn. Clearly, φn(Tn) ∪ Dn ⊆ φn(Tn+1) ∪ Dn.

(ii) In Algorithm 3.1 we always work with stable colorings except during PEs, 
where only missing colors at supporting vertices are changed. So the desired state-
ment follows.

(iii) Let f be an edge incident to Tn with φn−1(f) ∈ φn−1(Tn) ∪ Dn−1. If Θn = RE, 
then φn = φn−1 by Algorithm 3.1, which implies φn(f) = φn−1(f). So we may 
assume that Θn ̸= RE. Let πn−1 be the (Tn, Dn−1, φn−1)-stable coloring as specified 
in Algorithm 3.1. By the definition of stable colorings, we obtain πn−1(f) = φn−1(f). 
If Θn = SE, then φn(f) = πn−1(f) by Algorithm 3.1. Hence φn(f) = φn−1(f). It 
remains to consider the case when Θn = PE. Let π′

n−1 be the (Tn, Dn−1 ∪ {δn}, πn−1)
-stable coloring as specified in Algorithm 3.1. By Lemma 2.4, π′

n−1 is (Tn, Dn−1, φn−1)
-stable. Hence π′

n−1(f) = φn−1(f). Since φn = π′
n−1/Pvn(δn, γn, π′

n−1) and 
Pvn(δn, γn, π′

n−1) contains only one edge fn incident to Tn (see Algorithm 3.1), we 
have φn(f) = π′

n−1(f), unless f = fn. It follows that φn(f) = φn−1(f), unless 
f = fn; in this exceptional case, φn−1(f) = δn and φn(f) = γn ∈ Sn. Hence 
φn(f) ∈ φn−1(Tn) ∪ Dn−1 ∪ Sn ⊆ φn(Tn) ∪ Dn ∪ Sn = φn(Tn) ∪ Dn by (i) and 
(2), as desired.

(iv) Let us first prove the statement φn−1⟨Tn⟩ ⊆ φn−1(Tn) ∪ Dn−1 by induction 
on n. As the statement holds trivially when n = 1, we proceed to the induction step 
and assume that the statement has been established for n − 1; that is, 
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(3)	 φn−2⟨Tn−1⟩ ⊆ φn−2(Tn−1) ∪ Dn−2.

By (3) and (iii) (with n − 1 in place of n), for each edge f on Tn−1 we have 
φn−1(f) ∈ φn−1(Tn−1) ∪ Dn−1 ⊆ φn−1(Tn) ∪ Dn−1. For each edge 
f ∈ Tn − Tn−1, from Algorithm 3.1 and TAA we see that φn−1(f) ∈ Dn−1 if f is a 
connecting edge and φn−1(f) ∈ φn−1(Tn) otherwise. Combining these observations, 
we obtain φn−1(f) ∈ φn−1(Tn) ∪ Dn−1. Hence φn−1⟨Tn⟩ ⊆ φn−1(Tn) ∪ Dn−1, 
which together with (iii) implies φn⟨Tn⟩ ⊆ φn(Tn) ∪ Dn.

It follows that for any edge f on Tn, we have φn(f) ∈ φn(Tn) ∪ Dn. Thus 
σn(f) = φn(f) for any (Tn, Dn, φn)-stable coloring σn.

(v) From the definitions of πn−1, vertex vn (maximum defective vertex) and stable 
colorings, we see that edges in ∂πn−1,δn

(Tn) are all incident to V (Tn(vn)), and each 
color in πn−1(Tn) is closed in Tn under πn−1. So, by the definitions of π′

n−1 and 
stable colorings, edges in ∂π′

n−1,δn
(Tn) are all incident to V (Tn(vn)), and each color 

in π′
n−1(Tn) is closed in Tn under π′

n−1. Thus the desired statements follow instantly 
from the definition of φn in PE. � □

The following lemma generalizes Lemma 3.2(iii) and ensures that colors on some 
edges incident to a tree remain intact if we grow it by using Algorithm 3.1.

Lemma 3.3  For any 1 ≤ i ≤ n and any edge f incident to Ti , if 
φi−1 (f ) ∈ φi−1 (Ti) ∪ Di−1 , then φj(f ) = φi−1 (f ) for any j with i ≤ j ≤ n, unless 
f = fh ∈ Fh  for some h with i ≤ h ≤ j  and Θh = PE . In particular, if f is an edge 
in G[Ti ] with φi−1 (f ) ∈ φi−1 (Ti) ∪ Di−1 , then φj(f ) = φi−1 (f ) for any j with 
i ≤ j ≤ n.

Proof  By Lemma 3.2(i), we have φh−1(Th) ∪ Dh−1 ⊆ φh(Th+1) ∪ Dh for all 
h ≥ 1. So to establish the first half, it suffices to prove the statement for j = i, which 
is exactly the same as Lemma 3.2(iii).

Note that if f is an edge in G[Ti], then f /∈ ∂(Th) for any h with i ≤ h ≤ j. Hence 
f ̸= fh ∈ Fh for any h with i ≤ h ≤ j and Θh = PE. Thus the second half also 
holds. � □

The lemma below describes some interesting properties satisfied by a sequence of 
PEs with the same supporting vertex.

Lemma 3.4  Let u be a vertex of Tn  and let Bn  be the set of all iterations j with 
1 ≤ j ≤ n, such that Θj = PE  and vj = u. Suppose Bn = {i1 , i2 , . . . , ip}, where 
1 ≤ i1 < i2 < . . . < ip ≤ n. Then the following statements hold: 

(i)	 γi2 = δi1 , γi3 = δi2 , . . . , γip
= δip−1 ;

(ii)	 φn(u) ∩ (∪j∈Bn
Sj) = φip

(u) ∩ (∪j∈BnSj) = {δip}; and
(iii)	φi1−1(u) = (φip

(u) − {δip}) ∪ {γi1} and 
φip

(u) = (φi1−1(u) − {γi1}) ∪ {δip
}.
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Proof  From the definition of Bn, we see that for any 1 ≤ j ≤ p − 1 and iteration h 
with ij + 1 ≤ h ≤ ij+1 − 1, if vh = u, then Θh = RE or SE. By Lemma 3.2(ii), we 
have 
(1)	 φij

(u) = φij+1−1(u) for 1 ≤ j ≤ p − 1. Similarly, φip
(u) = φn(u).

According to the choice of γh in a general iteration h involving PE, 
(2)	 γij+1 = δij  for 1 ≤ j ≤ p − 1, where γij+1 ∈ φij+1−1(u) and δij

∈ φij
(u).

Thus (i) follows instantly from (2). Using (1) and (2), we obtain 
(3)	 φij

(u) − {δij } = φij+1−1(u) − {γij+1} for 1 ≤ j ≤ p − 1.

Since φij
(u) is obtained from φij−1(u) by replacing γij  with δij , 

(4)	 φij−1(u) − {γij
} = φij

(u) − {δij } for 1 ≤ j ≤ p.

Combining (3) and (4), we deduce that 
(5)	 the 2p sets φij−1(u) − {γij

} and φij
(u) − {δij } for 1 ≤ j ≤ p are all equal.

By (5), the set ∪p
j=1{γij

, δij
} (and hence ∪p

j=1Sij ) is disjoint from all the 2p sets displayed 
above. So φip

(u) ∩ (∪p
j=1Sij

) = [(φip
(u) − {δip

}) ∩ (∪p
j=1Sij

)] ∪ {δip
} = {δip

}, 
which together with (1) yields (ii).

Again by (5), φi1−1(u) − {γi1} = φip
(u) − {δip}. As γi1 ∈ φi1−1(u) 

and δip
∈ φip

(u), we get φi1−1(u) = (φip
(u) − {δip}) ∪ {γi1} and 

φip
(u) = (φi1−1(u) − {γi1}) ∪ {δip

}. Therefore (iii) also holds. � □

Lemma 3.5  |Dn| ≤ n.

Proof  Recall that Dn = ∪i≤nSi − φn(Tn) (so D0 = ∅). For 1 ≤ i ≤ n, by Algo-
rithm 3.1, we have Si = {δi} if Θi = SE and Si = {δi, γi} otherwise.

If Θn = RE, then φn = φn−1 and Sn = Sn−1. So 
Dn ⊆ Dn−1. If Θn = SE, then Sn = {δn} and φn(Tn) = φn−1(Tn). It follows 
that Dn ⊆ Dn−1 ∪ {δn}. It remains to consider the case when Θn = PE. Now 
δn /∈ φn−1(Tn) and (φn−1(Tn) − {γn}) ∪ {δn} ⊆ φn(Tn). So

	

Dn = ∪i≤nSi − φn(Tn)
⊆ ∪i≤n−1Si ∪ {δn, γn} − [(φn−1(Tn) − {γn}) ∪ {δn}]
⊆ ∪i≤n−1Si ∪ {γn} − (φn−1(Tn) − {γn})
⊆ [∪i≤n−1Si − φn−1(Tn)] ∪ {γn}
⊆ Dn−1 ∪ {γn}.

Combining the above three cases, we obtain |Dn| ≤ |Dn−1| + 1 for n ≥ 1. Hence 
|Dn| ≤ n. � □
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Lemma 3.6  Suppose Θn = PE . Let σn  be a (Tn, Dn, φn)-stable coloring and 
let σn−1 = σn/Pvn (γn, δn, σn). If Pvn (γn, δn, σn) ∩ Tn = {vn}, then σn−1  is 
(Tn, Dn−1 ∪ {δn}, πn−1 )-stable and hence is (Tn, Dn−1 , φn−1 )-stable.

Proof  Let π′
n−1 be as specified in Algorithm 3.1. Recall that 

(1)	 π′
n−1 is (Tn, Dn−1 ∪ {δn}, πn−1)-stable.

By definition, φn = π′
n−1/Pvn(γn, δn, π′

n−1). So 

(2)	 π′
n−1 = φn/Pvn(γn, δn, φn).

	 We propose to show that
(3)	 σn−1 is (Tn, Dn−1 ∪ {δn}, π′

n−1)-stable.
	 By the definition of σn−1 and (2), we obtain
(4)	 σn and σn−1 agree on every edge incident to Tn except fn, for which σn(fn) = γn 

and σn−1(fn) = δn; and
(5)	 φn and π′

n−1 agree on every edge incident to Tn except fn, for which φn(fn) = γn 
and π′

n−1(fn) = δn.

Since {γn, δn} ⊆ φn(Tn) ∪ Dn and σn is (Tn, Dn, φn)-stable, (3) follows 
instantly from (4) and (5). Using (1), (3) and Lemma 2.4, we see that σn−1 is 
(Tn, Dn−1 ∪ {δn}, πn−1)-stable. So σn−1 is (Tn, Dn−1, πn−1)-stable. Since 
πn−1 is (Tn, Dn−1, φn−1)-stable, from Lemma 2.4 we conclude that σn−1 is 
(Tn, Dn−1, φn−1)-stable. � □

Observe that an extended Tashkinov tree T (see Definition 3.1) has a built-in lad-
der-like structure. So we propose to call the sequence T1 ⊂ T2 ⊂ . . . ⊂ Tn ⊂ T  the 
ladder of T, and call n the rung number of T and denote it by r(T) (so r(Tn+1) = n). 
Moreover, we call (φ0, φ1, . . . , φn) the coloring sequence of T, and call T  the Tash-
kinov series corresponding to T.

In our proof we shall frequently work with stable colorings; the following concept 
will be used to keep track of the structures of ETTs.

Definition 3.7  Let T = {(Ti, φi−1, Si−1, Fi−1, Θi−1) : 1 ≤ i ≤ n + 1} be a 
Tashkinov series constructed from a k-triple (G, e, φ) by using Algorithm 3.1. A 
coloring σn ∈ Ck(G − e) is called φn mod Tn if every tree-sequence T ∗ ⊃ Tn 
obtained from Tn + fn (resp. Tn) by TAA under σn when Θn = RE or SE (resp. 
when Θn = PE) is an ETT under σn, with a corresponding Tashkinov series 
T ∗ = {(T ∗

i , σi−1, Si−1, Fi−1, Θi−1) : 1 ≤ i ≤ n + 1}, satisfying the following 
conditions for all i with 1 ≤ i ≤ n:

T ∗
i = Ti and

σi is a (Ti, Di, φi)-stable coloring in Ck(G − e).

We call each T ∗ an ETT corresponding to (σn, Tn) (or simply corresponding to σn 
if no ambiguity arises).
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Remark  Comparing T ∗ with T , we see that T ∗
i+1 in T ∗ is obtained from T ∗

i = Ti 
by using the same connecting edge, connecting color, and extension type as Ti+1 
in T  for 1 ≤ i ≤ n. However, T ∗

n+1 may be different from Tn+1. Furthermore, 
T1 ⊂ T2 ⊂ . . . ⊂ Tn ⊂ T ∗ is the ladder of T ∗ and r(T ∗) = n. Since σi is a 
(Ti, Di, φi)-stable coloring, by Lemma 3.2(iv), we have σi(f) = φi(f) for any edge 
f on Ti and 1 ≤ i ≤ n; this fact will be used repeatedly in our paper.

To ensure that the structures of ETTs are preserved under taking stable colorings, we 
impose some restrictions on such trees.

Definition 3.8  Let T be an ETT constructed from a k-triple (G, e, φ) by using the 
Tashkinov series T = {(Ti, φi−1, Si−1, Fi−1, Θi−1) : 1 ≤ i ≤ n + 1}. We say that 
T has the maximum property (MP) under (φ0, φ1, . . . , φn) (or simply under φn if 
no ambiguity arises), if |T1| is maximum among all Tashkinov trees T ′

1 with respect 
to an edge e′ ∈ E and a coloring φ′

0 ∈ Ck(G − e′), and |Ti+1| is maximum over all 
(Ti, Di, φi)-stable colorings for any i with 1 ≤ i ≤ n − 1; that is, |Ti+1| is maxi-
mum over all tree-sequences T ′

i+1, which is a closure of Ti + fi (resp. Ti) under a 
(Ti, Di, φi)-stable coloring φ′

i if Θi = RE or SE (resp. if Θi = PE), where fi is the 
connecting edge in Fi.

Notice that in the above definition |Tn+1| is not required to be maximum over all 
(Tn, Dn, φn)-stable colorings. This relaxation allows us to proceed by induction in 
our proofs.

As described before, the tree-sequence structure generated by Algorithm 3.1 might 
be very fragile, because RE does not allow change of coloring and PE requires the 
supporting vertex to be the exit of an exit-path. At this point, it is natural to ask 
whether there exists an ETT with MP and with an arbitrarily given rung number or an 
arbitrarily given size. We shall demonstrate (see Corollary 3.11) that the answer is in 
the affirmative. The statement below follows instantly from the above two definitions 
and Lemma 2.4.

Lemma 3.9  Let T be an ETT constructed from a k-triple (G, e, φ) by using the Tash-
kinov series T = {(Ti , φi−1 , Si−1 , Fi−1 , Θi−1 ) : 1 ≤ i ≤ n + 1}, let σn  be a 
φn mod Tn  coloring, and let T∗ be an ETT corresponding to (σn, Tn) (see Defini-
tion 3.7). If T satisfies MP under φn , then T∗ satisfies MP under σn . � □

Let us introduce one more notation and two more concepts before presenting our 
main theorem. For each v ∈ V (T ), we use m(v) to denote the minimum subscript 
i such that v ∈ V (Ti). Let α and β be two colors in [k]. We say that α and β are 
T-interchangeable under φn if there is at most one (α, β)-path with respect to φn 
intersecting T (that is, the path and T have at least one vertex in common). Note that 
in this situation we can easily find an (α, β)-path disjoint from T and then switch 
colors along it while keeping the resulting coloring stable. So this concept is very 
helpful for deriving elementary property satisfied by an ETT. When T is closed (that 
is, T = Tn+1), we also say that T has the interchangeability property with respect to 
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φn if under any (T, Dn, φn)-stable coloring σn, any two colors α and β are T-inter-
changeable, provided that σn(T ) ∩ {α, β} ̸= ∅ (equivalently φn(T ) ∩ {α, β} ̸= ∅).

We aim to show, by induction on the rung number, that every ETT satisfying MP 
is elementary. To carry out the induction step, we need several auxiliary results con-
cerning ETTs with MP. Thus what we are going to prove is a stronger theorem (con-
taining six statements) given below, in which the undefined symbols and notations 
can all be found in Algorithm 3.1. Together with Theorem 2.2, statements (i) and 
(vi) will imply Theorem 2.1. Statements (ii)-(v) will be used in the proofs of (i) and 
(vi). Moreover, the proof of (iv) relies directly on MP and the design of RE, and the 
proofs of (iii) and (v) are based on the fact that the supporting and extension vertices 
involved in Algorithm 3.1 are maximum defective vertices over all stable colorings.

Theorem 3.10  Let T be an ETT constructed from a k-triple (G, e, φ) by using the 
Tashkinov series T = {(Ti , φi−1 , Si−1 , Fi−1 , Θi−1 ) : 1 ≤ i ≤ n + 1}. If T has 
MP under φn , then the following statements hold: 

(i)	 V(T) is elementary with respect to φn.
(ii)	 Tn+1 has the interchangeability property with respect to φn.
(iii)	For any i ≤ n, if vi is a supporting vertex with m(vi) = j, then every 

(Ti, Di, φi)-stable coloring σi is (T (vi) − vi, Dj−1, φj−1)-stable, so σi is 
(Tj−1, Dj−1, φj−1)-stable. Furthermore, for any two distinct supporting verti-
ces vi and vj  with i, j ≤ n, if m(vi) = m(vj), then Si ∩ Sj = ∅.

(iv)	If Θn = PE, then Pvn
(γn, δn, σn) contains precisely one vertex, vn, from Tn 

for any (Tn, Dn, φn)-stable coloring σn.
(v)	 For any (Tn, Dn, φn)-stable coloring σn and any defective color δ of Tn 

with respect to σn, if v is a vertex but not the smallest one (in the order ≺) 
in I[∂σn,δ(Tn)], then v ⪯ vi for any supporting or extension vertex vi with 
m(v) ≤ i.

(vi)	Every (Tn, Dn, φn)-stable coloring σn is a φn mod Tn coloring. (So every 
ETT corresponding to (σn, Tn) (see Definition 3.7) satisfies MP under σn by 
Lemma 3.9.)

Let us show that Theorem 2.1 can be deduced easily from statement (i) and the 
following corollary (which relies on statement (vi)).

Corollary 3.11  Let T = {(Ti , φi−1 , Si−1 , Fi−1 , Θi−1 ) : 1 ≤ i ≤ n + 1} 
be a Tashkinov series constructed from a k-triple 
(G, e, φ). Suppose Tn+1  has MP under φn . Then there exists a Tashkinov series 
T ∗ = {(T∗

i , σi−1 , Si−1 , Fi−1 , Θi−1 ) : 1 ≤ i ≤ n + 1}, satisfying the following 
conditions for 1 ≤ i ≤ n: 

(i)	 T ∗
i = Ti;

(ii)	 σi is a (Ti, Di, φi)-stable coloring in Ck(G − e); and
(iii)	|T ∗

i+1| is maximum over all (Ti, Di, σi)-stable colorings (note that Definition 
3.8 only requires this for i ≤ n − 1).

1 3

   23   Page 22 of 91



Journal of Combinatorial Optimization           (2025) 50:23 

Furthermore, if T∗
n+1  is not strongly closed with respect to σn , then there exists 

a Tashkinov series {(T∗
i , σi−1 , Si−1 , Fi−1 , Θi−1 ) : 1 ≤ i ≤ n + 2}, such that 

T∗
n+1 ⊂ T∗

n+2  and T∗
n+2  satisfies MP under σn+1 .

Proof  Let σn be a (Tn, Dn, φn)-stable coloring such that a closure of Tn (resp. of 
Tn + fn) under σn, denoted by T ∗

n+1, has maximum size over all (Tn, Dn, φn)-stable 
colorings if Θn = PE (resp. if Θn = RE or SE). By Lemma 2.4, every (Tn, Dn, σn)
-stable coloring is a (Tn, Dn, φn)-stable coloring. So |T ∗

n+1| is also maximum over 
all (Tn, Dn, σn)-stable colorings.

Since σn is (Tn, Dn, φn)-stable, it is φn mod Tn by Theorem  3.10(vi). 
Thus Definition 3.7 guarantees the existence of a Tashkinov series 
T ∗ = {(T ∗

i , σi−1, Si−1, Fi−1, Θi−1) : 1 ≤ i ≤ n + 1} that satisfies conditions (i) 
and (ii) as described above. By Lemma 3.9, |T ∗

i+1| is maximum over all (Ti, Di, σi)
-stable colorings as well for 1 ≤ i ≤ n − 1.

Suppose T ∗
n+1 is not strongly closed with respect to σn. Then we can construct 

a new tuple (T ∗
n+2, σn+1, Sn+1, Fn+1, Θn+1) by using Algorithm 3.1. Clearly, 

T ∗
n+1 ⊂ T ∗

n+2 and T ∗
n+2 satisfies MP under σn+1. � □

Proof of theorem 2.1  Let T = {(Ti, φi−1, Si−1, Fi−1, Θi−1) : 1 ≤ i ≤ n + 1} be a 
Tashkinov series constructed from a k-triple (G, e, φ), such that 

(a)	 Tn+1 satisfies MP under φn;
(b)	 subject to (a), |Tn+1| is maximum over all (Tn, Dn, φn)-stable colorings; and
(c)	 subject to (a) and (b), the integer n is maximum.

 Since G is finite, by Corollary 3.11, such a Tashkinov series T  exists. Observe that 
Tn+1 is strongly closed, for otherwise, Corollary 3.11 would enable us to further extend 
T  to a longer Tashkinov series {(T ∗

i , σi−1, Si−1, Fi−1, Θi−1) : 1 ≤ i ≤ n + 2} sat-
isfying (a) and (b), contradicting (c). By Theorem 3.10(i), V (Tn+1) is elementary 
with respect to φn. From Theorem 2.2(i) and (iv), we thus deduce that G is an ele-
mentary multigraph. �□The proof of Theorem 3.10 will take up the entire remainder 
of this paper.

4  Auxiliary results

We prove Theorem 3.10 by induction on the rung number r(T ) = n. The present 
section is devoted to a proof of statement (ii) in Theorem 3.10 in the base case and 
proofs of statements (iii)–(vi) in the general case. A complete proof of (ii) is given in 
Sect. 7.2, which is the end of this paper, and the rest of the paper is devoted to prov-
ing (i).

For n = 0, statement (i) follows from Theorem 2.7, statements (iii)-(vi) hold trivi-
ally, and statement (ii) is a corollary of the following more general lemma (because 
T1 is also a closed Tashkinov tree with respect to e and any (T1, D0, φ0)-stable color-
ing σ0).
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Lemma 4.1  Let (G, e, φ) be a k-triple, let T be a closed Tashkinov tree with respect 
to e and φ, and let α and β be two colors in [k] with φ(T ) ∩ {α, β} ̸= ∅. Then there 
is at most one (α, β)-path with respect to φ intersecting T.

Proof  Assume the contrary: there are at least two (α, β)-paths Q1 and Q2 with 
respect to φ intersecting T. By Theorem 2.7, V(T) is elementary with respect to φ. So 
T contains at most two vertices v with φ(v) ∩ {α, β} ̸= ∅, which in turn implies that 
at least two ends of Q1 and Q2 are outside T. By hypothesis, T is closed with respect 
to φ. Hence precisely one of α and β, say α, is in φ(T ). Thus we further deduce that 
at least three ends of Q1 and Q2 are outside T. Traversing Q1 and Q2 from these ends 
respectively, we can find at least three (T, φ, {α, β})-exit paths P1, P2, P3. We call 
the tuple (φ, T, α, β, P1, P2, P3) a counterexample and use K to denote the set of all 
such counterexamples.

With a slight abuse of notation, let (φ, T, α, β, P1, P2, P3) be a counterexample in 
K with the minimum |P1| + |P2| + |P3|. For i = 1, 2, 3, let ai and bi be the ends of Pi 
with bi ∈ V (T ), and fi be the edge of Pi incident to bi. Since T is closed, α ∈ φ(T ), 
and each fi ∈ ∂(T ), we have φ(fi) ̸= α. It follows that φ(fi) = β (i = 1, 2, 3) and 
thus b1, b2, b3 are distinct. Renaming subscripts if necessary, we may assume that 
b1 ≺ b2 ≺ b3. Let γ ∈ φ(b3) and let σ1 = φ/(G − T, α, γ). Then P3 is a (γ, β)-path 
under σ1. Clearly, σ1 ∈ Ck(G − e) and T is also a Tashkinov tree with respect to e 
and σ1. Furthermore, fi is colored by β under both φ and σ1 for i = 1, 2, 3.

Consider σ2 = σ1/P3. Note that β ∈ σ2(b3). Let T ′ be obtained from T (b3) by 
adding f1 and f2 and let T ′′ be a closure of T ′ under σ2. Obviously, both T ′ and T ′′ 
are Tashkinov trees with respect to e and σ2. By Theorem 2.7, V (T ′′) is elementary 
with respect to σ2.

Observe that none of a1, a2, a3 is contained in T ′′, for otherwise, let 
ai ∈ V (T ′′) for some i with 1 ≤ i ≤ 3. Since {β, γ} ∩ σ2(ai) ̸= ∅ and 
β ∈ σ2(b3), we obtain γ ∈ σ2(ai). Hence from TAA we see that P1, P2, P3 are all 
entirely contained in G[T ′′], which in turn implies γ ∈ σ2(aj) for j = 1, 2, 3. So 
V (T ′′) is not elementary with respect to σ2, a contradiction. Each Pi contains a 
subpath Li, which is a T ′′-exit path with respect to σ2. Since f1 is not contained 
in L1, we obtain |L1| + |L2| + |L3| < |P1| + |P2| + |P3|. Thus the existence of the 
counterexample (σ2, T ′′, γ, β, L1, L2, L3) violates the minimality assumption on 
(φ, T, α, β, P1, P2, P3). � □

So Theorem 3.10 is true in the base case. Suppose we have established that
(4.1) Theorem 3.10 holds for all ETTs with at most n − 1 rungs and satisfying MP, 

for some n ≥ 1.
Let us proceed to the induction step. We postpone the proof of Theorem 3.10(i) 

and (ii) to Sect. 7, and present a proof of Theorem 3.10(iii)–(vi) in this section. In our 
proof of the (i + 2)th statement in Theorem 3.10 for 2 ≤ i ≤ 4, we further assume 
that

(4. i) the jth statement in Theorem 3.10 holds for all ETTs with at most n rungs and 
satisfying MP, for all j with 3 ≤ j ≤ i + 1.

Note that (4. i) corresponds to (4.2), (4.3) and (4.4), respectively, for i = 2, 3 and 
4. For example, when we try to prove Theorem 3.10(v) (now i = 3), we assume (4.3), 
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which says that both Theorem 3.10(iii) and Theorem 3.10(iv) hold for all ETTs with 
at most n rungs and satisfying MP.

We break the proof of the induction step into a series of lemmas. The follow-
ing lemma derives some properties satisfied by supporting vertices and connecting 
colors.

Lemma 4.2  (Assuming (4.1)) Theorem 3.10(iii) holds for all ETTs with n rungs and 
satisfying MP; that is, for any i ≤ n, if vi  is a supporting vertex with m(vi) = j , then 
every (Ti , Di , φi)-stable coloring σi  is (T (vi) − vi , Dj−1 , φj−1 )-stable, so σi  is 
(Tj−1 , Dj−1 , φj−1 )-stable. Furthermore, for any two distinct supporting vertices vi  
and vj  with i, j ≤ n, if m(vi) = m(vj), then Si ∩ Sj = ∅.

Proof  By (4.1), Lemma 4.2 holds for all ETTs with at most n − 1 rungs and satisfy-
ing MP. So we may assume that T is an ETT with the corresponding Tashkinov series 
T = {(Th, φh−1, Sh−1, Fh−1, Θh−1) : 1 ≤ h ≤ n + 1} and satisfies MP under φn. 
Furthermore, i = n throughout our proof.

In the first half of this lemma, m(vn) = j and σn is a (Tn, Dn, φn)-stable col-
oring. Write T ∗ = T (vn) − vn (so T ∗ ⊆ Tj). As j ≤ n, repeated application of 
Lemma 3.2(i) yields φj−1(Tj) ∪ Dj−1 ⊆ φn−1(Tn) ∪ Dn−1 ⊆ φn(Tn) ∪ Dn. In 
particular, Dj−1 ⊆ φn(Tn) ∪ Dn. Hence σn is a (T ∗, Dj−1, φn)-stable coloring. By 
Lemma 2.4, to prove that σn is (T ∗, Dj−1, φj−1)-stable, it suffices to show that φn 
is (T ∗, Dj−1, φj−1)-stable.

If j = n, then vn is the only supporting vertex contained inside Tn but outside Tn−1. 
Recall that in Algorithm 3.1 the coloring π′

n−1 is (Tn, Dn−1 ∪ {δn}, πn−1)-stable and 
φn = π′

n−1/Pvn(γn, δn, π′
n−1), where Pvn(γn, δn, π′

n−1) ∩ V (Tn) = {vn}. So φn 
is a (T ∗, Dn−1, πn−1)-stable coloring. By Lemma 2.4, it is also a (T ∗, Dn−1, φn−1)
-stable coloring, because πn−1 is (Tn, Dn−1, φn−1)-stable. Thus we assume here-
after that j < n. As vn is the largest vertex (in the order ≺) in I[∂πn−1,δn

(Tn)] (see 
Algorithm 3.1), with δn = πn−1(fn), and vn is contained in Tj ⊆ Tn−1, we see that 
δn is a defective color of Tn−1 with respect to πn−1, and vn is not the smallest ver-
tex (in the order ≺) in I[∂πn−1,δn

(Tn−1)]. As πn−1 is also a (Tn−1, Dn−1, φn−1)
-stable coloring, applying (4.1) and Theorem 3.10(v) to v = vn and πn−1, we obtain 
vn ⪯ vh for any supporting vertex vh with j ≤ h ≤ n − 1. Thus φj−1(v) = φn(v) 
for each vertex v of T ∗ by Lemma 3.2(ii). Furthermore, φn(f) = φj−1(f) for each 
edge f incident to T ∗ with φj−1(f) ∈ φj−1(T ∗) ∪ Dj−1 by Lemma 3.3. Hence φn 
is (T ∗, Dj−1, φj−1)-stable, as desired.

Let us proceed to the second half. Now vj  is a supporting vertex with j < n and 
m(vj) = m(vn). To prove that Sn ∩ Sj = ∅, we shall actually show that

(1) there are edges f, g in G[Tn] incident to vn with φn(f) = γj  and φn(g) = δj .
Assuming (1), it follows instantly that γj , δj /∈ Sn, because φn(fn) = γn, 

fn ∈ ∂(Tn) (so fn /∈ G[Tn]), and δn ∈ φn(vn) (see Algorithm 3.1).
To justify (1), recall that in Algorithm 3.1 coloring π′

j−1 is (Tj , Dj−1 ∪ {δj}, πj−1)
-stable, P = Pvj (γj , δj , π′

j−1) contains only vertex vj  from Tj , and φj = π′
j−1/P . 

Write Q = Pvn(γj , δj , π′
j−1). Since vj ̸= vn, P and Q are vertex-disjoint under π′

j−1. 
For convenience, we still use P and Q to denote the corresponding paths under φj . By 
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(4.1) and Theorem 3.10(ii), Tj+1 has the interchangeability property with respect to 
φj . So P is the unique (γj , δj)-path intersecting Tj+1 and Q is a (γj , δj)-cycle under 
φj . Let r > j be the smallest subscript with Θr ̸= RE. Since Θn = PE, we have 
r ≤ n. From RE in Algorithm 3.1 we see that Q is fully contained in G[Tr]. Repeated 
application of Lemma 3.2(i) yields φj(Tj+1) ∪ Dj ⊆ φr−1(Tr) ∪ Dr−1. Since 
∪j

h=1Sh ⊆ φj(Tj) ∪ Dj , we have Sj ⊆ φr−1(Tr) ∪ Dr−1. So Q is also a (γj , δj)

-cycle containing vn under φn by Lemma 3.3 (with respect to Tr). Since Tr ⊆ Tn, 
we establish (1). � □

The following lemma asserts that parallel extensions (PEs) used in Algorithm 3.1 
are preserved under taking stable colorings. Its proof is perhaps the most difficult 
part of the whole paper. After reading the proof, we may fully understand why RE is 
introduced in the algorithm.

Lemma 4.3  (Assuming (4.1) and (4.2)) Theorem 3.10(iv) holds for all ETTs with n 
rungs and satisfying MP; that is, if Θn = PE , then Pvn (γn, δn, σn) contains pre-
cisely one vertex, vn , from Tn  for any (Tn, Dn, φn)-stable coloring σn .

Proof  Assume the contrary: Pvn
(γn, δn, σn) contains at least two vertices from Tn 

for some (Tn, Dn, φn)-stable coloring σn. Let j = m(vn). By applying a series 
of Kempe changes to σn, we shall construct a certain (Tj(vn) − vn, Dj−1, φj−1)
-stable coloring µ and a certain ETT T µ

j  corresponding to (µ, Tj−1) with ladder 
T1 ⊂ T2 ⊂ . . . ⊂ Tj−1 ⊂ T µ

j , such that either |T µ
j | > |Tj | or V (T µ

j ) is not elemen-
tary with respect to µ, which contradicts either the maximum property satisfied by T 
or the induction hypothesis (4.1) on Theorem 3.10(i). We divide the proof into five 
parts; the assumption on the intersection of Pvn

(γn, δn, σn) and Tn will only be used 
in the last part.

(I) In this part we exhibit some properties satisfied by supporting vertices a with 
m(a) = j and corresponding connecting colors in Tj − Tj−1, which allow us to 
restore missing color sets of these vertices except vn as under φj−1 later.

Let L be the set of all subscripts s with j ≤ s ≤ n, such that Θs = PE and 
m(vs) ≤ j, where vs is the supporting vertex involved in iteration s.

(1) For any s, t ∈ L with s < t, we have vt ⪯ vs. Consequently, vn ⪯ vs and 
m(vs) = j for all s ∈ L.

To justify this, let πt−1, St = {γt, δt}, and ft be the (Tt, Dt−1, φt−1)-stable col-
oring, the set of connecting colors, and the connecting edge, respectively, as speci-
fied in iteration t of Algorithm 3.1, with Θt = PE. Recall that δt = πt−1(ft) is a 
defective color of Tt with respect to πt−1, and vt is the largest vertex (in the order ≺) 
in I[∂πt−1,δt

(Tt)]. Since m(vt) ≤ j ≤ s < t, we have vt ∈ V (Tj) ⊆ V (Tt−1). As 
πt−1 is a (Tt−1, Dt−1, φt−1)-stable coloring and vt is not the smallest vertex (in the 
order ≺) in I[∂πt−1,δt

(Tt−1)], applying (4.1) and Theorem 3.10(v) to πt−1, Tt−1, and 
v = vt, we obtain vt ⪯ vs. Hence (1) holds.

(2) For any s, t ∈ L with s ≤ t, we have δt /∈ φs−1(Ts) (so δt ̸= γs). Conse-
quently, δt /∈ φj−1(Tj) for all t ∈ L.
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Assume the contrary: δt ∈ φs−1(u) for some u ∈ V (Ts). By Algorithm 3.1, 
δs /∈ φs−1(Ts). So s < t and hence V (Ts) is elementary with respect to φs−1 by 
(4.1) and Theorem 3.10(i). Let v be an arbitrary vertex in Ts − u. Then δt /∈ φs−1(v), 
so v is incident to an edge f with φs−1(f) = δt. As described in Algorithm 3.1, Ts is 
closed under φs−1 and thus f is contained in G[Ts]. Hence φt−1(f) = φs−1(f) = δt 
by Lemma 3.3 (for δt ∈ φs−1(u) ⊆ φs−1(Ts)). From Lemma 2.4 and the definitions 
of πt−1 and π′

t−1 in Algorithm 3.1, we see that π′
t−1 is (Tt, Dt−1, φt−1)-stable. By 

Lemma 3.2(i), φs−1(Ts) ∪ Ds−1 ⊆ φt−1(Tt) ∪ Dt−1. So π′
t−1(f) = φt−1(f) = δt. 

Since f is contained in G[Ts] and hence in G[Tt], we have v ̸∈ I[∂π′
t−1,δt

(Tt)] for 
any vertex v in Ts − u. In view of (1), vt ⪯ vs, so Tt(vt) ⊆ Ts(vs) ⊆ Ts. There-
fore vt cannot be the supporting vertex of Tt with respect to φt and the connecting 
color δt (as vt is the maximum defective vertex of Tt with corresponding defective 
color δt under π′

t−1 in Algorithm 3.1); this contradiction implies that δt /∈ φs−1(Ts). 
Since γs ∈ φs−1(Ts), we conclude that δt ̸= γs. Finally, let s be the smallest sub-
script in L. Then φj−1(Tj) = φs−1(Tj) by Algorithm 3.1 (see Lemma 3.2(ii)). So 
δt /∈ φj−1(Tj) and hence (2) is established.

We partition L into disjoint subsets L1, L2, . . . , Lκ, such that two subscripts s, t ∈ L 
are in the same subset iff vs = vt. For 1 ≤ i ≤ κ, write Li = {i1, i2, . . . , ic(i)}, 
where i1 < i2 < . . . < ic(i), and let wi denote the common supporting vertex cor-
responding to Li. For each t ∈ L, we have vt /∈ V (Tj−1) because m(vt) = j by (1). 
It follows that wi /∈ V (Tj−1) for 1 ≤ i ≤ κ. Renaming subscripts if necessary, we 
may assume that w1 ≺ w2 ≺ . . . ≺ wκ. By (1), we obtain

(3) vn = w1 (so n = 1c(1)) and 
hc(h) > hc(h)−1 > . . . > h1 > ic(i) > ic(i)−1 > . . . > i1 for any 1 ≤ h < i ≤ κ.

From (2) and Lemma 3.4(i) it is clear that
(4) for any 1 ≤ i ≤ κ, the colors in ∪t∈LiSt are

	 γi1 , γi2 = δi1 , γi3 = δi2 , . . . , γic(i) = δic(i)−1 , δic(i) ,

which are distinct.
From (4.2), Theorem 3.10(iii), (1), and (4) we deduce that
(5) for any s, t ∈ L with s < t, the intersection Ss ∩ St ̸= ∅ iff s and t are 

two consecutive subscripts in the same Li for some 1 ≤ i ≤ κ; in this case, 
Ss ∩ St = {γt} = {δs}.

(II) In this part we derive some properties satisfied by σn and establish a result on 
the so-called strong interchangeability property, which enable us to keep the rest of Tj  
“stable" while restoring missing color sets of supporting vertices in Tj − V (Tj(vn)) 
as under φj−1.

For each t with 1 ≤ t ≤ n − 1 and Θt = PE, let ϵ(t) be the smallest subscript 
r > t such that Θr ̸= RE. This ϵ(t) is well defined and ϵ(t) ≤ n, as Θn = PE ̸= RE. 
Given a coloring φ and two colors α and β, we say that α and β are Tt-strongly inter-
changeable (Tt-SI) under φ if for each vertex v in Tt − vt, the chain Pv(α, β, φ) 
is an (α, β)-cycle avoiding vt and fully contained in G[Tϵ(t)] (equivalently, 
V (Pv(α, β, φ)) ⊆ V (Tϵ(t))).

Recall that α and β are called Tt-interchangeable under φ if there is at most one 
(α, β)-path with respect to φ intersecting Tt; that is, all (α, β)-chains intersecting Tt 
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are (α, β)-cycles, with possibly one exception. Therefore, if α and β are Tt-SI under 
φ, then they are Tt-interchangeable under φ.

The following observations reveal some connections between colorings σn and 
φj−1.

Claim 4.1  The coloring σn  satisfies the following properties: 

(a1)	σn is (Tj(vn) − vn, Dj−1, φj−1)-stable;
(a2)	σn(f) = φj−1(f) for all edges f in G[Tj ] with φj−1(f) ∈ φj−1(Tj) ∪ Dj−1; 

in particular, this equality holds for all edges on Tj;
(a3)	σn(v) = φj−1(v) for all v ∈ V (Tj) − {w1, w2, . . . , wκ};
(a4)	σn(wi) ∩ (∪t∈Li

St) = {δic(i)} and φj−1(wi) = (σn(wi) − {δic(i)}) ∪ {γi1} 
for each i = 1, 2, . . . , κ;

(a5)	for any t ∈ L − {n}, the colors γt and δt are Tt-SI under σn.
To justify this claim, observe that 

φj−1(Tj) ∪ Dj−1 ⊆ φn−1(Tn) ∪ Dn−1 ⊆ φn(Tn) ∪ Dn by Lemma 3.2(i) and that 
∪t∈LSt ⊆ ∪t≤nSt ⊆ φn(Tn) ∪ Dn. Since σn is a (Tn, Dn, φn)-stable coloring, it 
suffices to prove (a1)–(a5) for φn (instead of σn).

Clearly, (a1) follows from (4.2) and Theorem 3.10(iii), and (a3) follows from 
Lemma 3.2(ii).

(a2) By Lemma 3.3, we have φn(f) = φj−1(f) for all edges f ∈ G[Tj ] with 
φj−1(f) ∈ φj−1(Tj) ∪ Dj−1. By Lemma 3.2(iv), each edge f on Tj  satisfies 
φj−1(f) ∈ φj−1(Tj) ∪ Dj−1, so the equality φn(f) = φj−1(f) holds for all edges 
f on Tj .

(a4) By Lemma  3.4(ii), we obtain φn(wi) ∩ (∪t∈Li
St) = {δic(i)} (with wi in 

place of u). Since Li consists of all subscripts t with j ≤ t ≤ n, such that vt = wi 
and Θt = PE, there hold φj−1(wi) = φi1−1(wi) and φn(wi) = φic(i)

(wi) by 
Lemma  3.2(ii). Furthermore, φi1−1(wi) = (φic(i)

(wi) − {δic(i)}) ∪ {γi1} by 
Lemma 3.4(iii) (with wi in place of u). So φj−1(wi) = (φn(wi) − {δic(i)}) ∪ {γi1} 
for 1 ≤ i ≤ κ.

(a5) Let t ∈ L − {n}. Then t < n. By the induction hypothesis (4.1) on Theo-
rem 3.10(ii), γt and δt are Tt+1- and hence Tt-interchangeable under φt. So all but 
at most one (γt, δt)-chains intersecting Tt under φt are (γt, δt)-cycles. According 
to Algorithm 3.1, Pvt

(γt, δt, φt) is a path containing only one vertex vt from Tt. 
Hence, for each vertex v in Tt − vt, Pv(γt, δt, φt) is a (γt, δt)-cycle avoiding vt. 
Since RE has priority over PE and SE in Algorithm 3.1, Pv(γt, δt, φt) is fully con-
tained in G[Tϵ(t)], for otherwise, we would have Θϵ(t) = RE, contradicting the 
definition of ϵ(t). It follows that γt and δt are Tt-SI under φt. By Lemma 3.3 (with 
respect to Tϵ(t)), we obtain φt(f) = φn(f) for each edge f on Pv(γt, δt, φt), because 
{γt, δt} ⊆ ∪i≤r−1Si ⊆ φr−1(Tr−1) ∪ Dr−1 ⊆ φr−1(Tr) ∪ Dr−1, where r = ϵ(t). 
Therefore γt and δt are Tt-SI under φn as well. This establishes Claim 4.1.

The following technical statement will be used repeatedly in our proof.

Claim 4.2  Let t ∈ Li  for some 1 ≤ i ≤ κ and let P be an arbitrary (γt , δt)-path. If 
the connecting colors γt , δt  are Tt-SI under a coloring φ ∈ C(G − e) then, for any 
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s ∈ Lh  with h ̸= i  or s < t, the colors γs, δs are Ts-SI under φ∗ = φ/P , provided 
that γs, δs are Ts-SI under φ.

To justify this, we assume that γs, δs are Ts-SI under coloring φ. For each 
v ∈ V (Ts − vs), we propose to show that Pv(γs, δs, φ∗) = Pv(γs, δs, φ), which is 
a (γs, δs)-cycle avoiding vs and fully contained in G[Tϵ(s)]. Consequently, γs, δs are 
also Ts-SI under coloring φ∗.

If h ̸= i, then {γs, δs} ∩ {γt, δt} = ∅ by (5). In this case, clearly 
Pv(γs, δs, φ∗) = Pv(γs, δs, φ). So we assume that h = i and s < t. Now 
vs = vt = wi. Observe that P contains at most one vertex vt from Tt, because γt, δt 
are Tt-SI under φ. Furthermore, ϵ(s) ≤ t, because s < t and Θt = PE ̸= RE. As 
γs, δs are Ts-SI under coloring φ, the chain Pv(γs, δs, φ) is a cycle avoiding vs and 
fully contained in G[Tϵ(s)] ⊆ G[Tt], so it is disjoint from P. Thus Pv(γs, δs, φ) is still 
a (γs, δs)-cycle avoiding vs and fully contained in G[Tϵ(s)] ⊆ G[Tt] under φ∗ and 
hence Pv(γs, δs, φ∗) = Pv(γs, δs, φ), as desired.

(III) With the preparations made in the first two parts, now we can move on to the 
aforementioned restoration of missing color sets at certain supporting vertices.

Write L∗ = L − L1. By (3), the subscripts in L∗ satisfies 
hc(h) > hc(h)−1 > . . . > h1 > ic(i) > ic(i)−1 > . . . > i1 for any 2 ≤ h < i ≤ κ. 
So 2c(2) (resp. κ1) is the largest (resp. smallest) subscripts in L∗. Starting from σn 
and following the decreasing order of subscripts t in L∗, we perform a sequence of 
(γt, δt)-Kemple changes at vt for all t ∈ L∗ and get a new coloring in C(G − e), 
under which each wi, for i ≥ 2, has the same set of missing colors as under φj−1. A 
detailed description of the algorithm is given below.

(A) Let I = ∅ and σ = σn. While I ̸= L∗, do: let t be the largest member of 
L∗ − I  and set

	 A(t) : σ = σ/Pvt
(γt, δt, σ) and I = I ∪ {t}.

Let us make some observations about this algorithm.
(6) Let I, t, σ be as specified in Algorithm (A) before performing the iteration 

A(t). Then Pvt
(γt, δt, σ) is a path containing precisely one vertex vt from Tt, with 

δt ∈ σ(vt). Furthermore, let σ′ = σ/Pvt(γt, δt, σ) and I ′ = I ∪ {t} denote the 
objects generated in the iteration A(t). Then for any s ∈ L − {n} − I ′, the colors γs 
and δs are Ts-SI under the coloring σ′.

To justify this, recall that
(7) δic(i) ∈ σn(wi) for each 2 ≤ i ≤ κ by (a4) in Claim 4.1 and
(8) for any s ∈ L − {n}, the colors γs and δs are Ts-SI under σn by (a5) in Claim 

4.1.
In particular, (8) holds for t = 2c(2), the largest subscript in L∗, which implies that 

now Pvt
(γt, δt, σn) is a path containing precisely one vertex vt = w2 from Tt, with 

δt ∈ σn(vt) by (7). Keep in mind that this Pvt
(γt, δt, σn) is the first path employed 

in Algorithm (A).
As the algorithm proceeds in the decreasing order of subscripts in L∗, using (4), 

(5), (7), (8) and applying Claim 4.2 repeatedly, we see that (6) is true.
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Claim 4.3  Let ϱ1  denote the coloring σ output by Algorithm (A). Then the following 
statements hold: 

(b1)	ϱ1 is (Tj(vn) − vn, Dj−1, φj−1)-stable;
(b2)	ϱ1(v) = φj−1(v) for all v ∈ V (Tj − vn), ϱ1(vn) = σn(vn), and 

ϱ1(f) = σn(f) = φj−1(f) for all edges f on Tj;
(b3)	for any edge f ∈ E(G), if ϱ1(f) ̸= σn(f), then f is not contained in G[Tj ] and 

{σn(f), ϱ1(f)} ⊆ ∪t∈L∗St; and
(b4)	for any i ∈ L1 − {n} (so vi = vn), the colors γi and δi are Ti-SI under ϱ1.

To justify this claim, recall from (6) that
(9) at each iteration A(t) of Algorithm (A), the chain Pvt

(γt, δt, σ) is a path con-
taining precisely one vertex vt from Tt, with δt ∈ σ(vt).

By (3) and the definitions of L and wi’s, we have
(10) vn = w1 ≺ wi for all i ≥ 2. Besides, vn ≺ vt and Tj ⊂ Tt for each iteration 

A(t) of Algorithm (A).
It follows from (9) and (10) that σ(v) = σn(v) for each v ∈ V (Tj(vn) − vn) and 

σ(f) = σn(f) for all edges f incident to Tj(vn) − vn during each iteration of Algo-
rithm (A). So σ and hence ϱ1 is a (Tj(vn) − vn, Dj−1, σn)-stable coloring. By (4.2) 
and Theorem 3.10(iii), σn is (Tj(vn) − vn, Dj−1, φj−1)-stable. From Lemma 2.4 we 
deduce that ϱ1 is (Tj(vn) − vn, Dj−1, φj−1)-stable. So (b1) holds.

By (a4) in Claim 4.1, we have
(11) φj−1(wi) = (σn(wi) − {δic(i)}) ∪ {γi1} for each vertex wi with i ≥ 2.
Recall that Sp ∩ Sq = ∅ whenever p and q are contained in different Li’s by (5). 

After executing Algorithm (A), using (4) and Lemma 3.4(iii) (more precisely, the same 
argument), we obtain ϱ1(wi) = (σn(wi) − {δic(i)}) ∪ {γi1}, so ϱ1(wi) = φj−1(wi) 
for i ≥ 2 by (11). Combining this with (a3) in Claim 4.1, we see that ϱ1(v) = φj−1(v) 
for all v ∈ V (Tj − vn). By (6), the path Pvt

(γt, δt, σ) involved in each iteration A(t) 
of Algorithm (A) is disjoint from vn = w1. So ϱ1(vn) = σn(vn) = φn(vn). In view 
of (9) and (10), we get σ(f) = σn(f) for all edges f on Tj  at each iteration A(t) of 
Algorithm (A). Hence ϱ1(f) = σn(f) = φj−1(f) for all edges f on Tj , where the 
second equality follows from (a2) in Claim 4.1. Thus (b2) is established.

Since the Kempe changes performed in Algorithm (A) only involve edges outside 
G[Tj ] and colors in ∪t∈L∗St by the first half of (6), we immediately get (b3). Clearly, 
(b4) follows from the second half of (6). This proves Claim 4.3.

By analyzing two cases in the last two parts, we now demonstrate that the desired 
coloring can indeed be obtained by making γ11  missing at a certain vertex u (to be 
introduced) outside Tj  but inside a closure of Tj(vn).

Consider the coloring ϱ1 ∈ Ck(G − e) described in Claim 4.3. By (b1), ϱ1 is 
(Tj(vn) − vn, Dj−1, φj−1)-stable, so it is a (Tj−1, Dj−1, φj−1)-stable color-
ing and hence is a φj−1 mod Tj−1 coloring by (4.1) and Theorem 3.10(vi), which 
implies that every ETT corresponding to (ϱ1, Tj−1) satisfies MP. By (b2), we have 
ϱ1(v) = φj−1(v) for each v ∈ V (Tj(vn) − vn) and ϱ1(f) = φj−1(f) for any edge 
f on Tj(vn). Thus Tj(vn) is an ETT satisfying MP under ϱ1. Let T ′

j  be a closure of 
Tj(vn) under ϱ1. (We point out that the first edge added to T ′

j − Tj(vn) by TAA is 
incident to V (Tn(vn) − vn) and colored with δn under ϱ1 by Lemma 3.2(v), (b2) and 
(b3), though we do not need this in our proof.) Then
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(12) T ′
j  is an ETT satisfying MP under ϱ1. Hence V (T ′

j) is elementary with respect 
to ϱ1 by (4.1) and Theorem 3.10(i) (as j ≤ n).

Depending on the intersection of ϱ1(T ′
j − vn) and ∪i∈L1Si, we consider two 

cases.
(IV) This part is devoted to the study of the situation when the intersection is 

nonempty.
Case 1. ϱ1(T ′

j − vn) ∩ (∪i∈L1Si) ̸= ∅.
Let u be the smallest vertex (in the order ≺) in T ′

j − vn (so u ̸= vn), such that 
ϱ1(u) ∩ (∪i∈L1Si) ̸= ∅. By (12), V (T ′

j) is elementary with respect to ϱ1. Since 
δn ∈ φn(vn) = ϱ1(vn) by (b2), we obtain δn /∈ ϱ1(T ′

j − vn); in particular, δn /∈ ϱ1(u). 
Hence, by (4) and the definition of u, there exists a minimum member r (as an inte-
ger) of L1, such that γr ∈ ϱ1(u) ∩ (∪i∈L1Si). Since m(vr) = j by (1), there holds 
r ≥ j. We propose to show, by using γr, that

(13) u ∈ V (T ′
j) − V (Tj).

Indeed, if r = 11, then γr ∈ φr−1(vn) = φj−1(vn) by Algorithm 3.1. Since 
V (Tj) is elementary with respect to φj−1 by (4.1) and Theorem 3.10(i) (for j ≤ n), 
we have γr /∈ φj−1(Tj − vn). If r > 11, then γr = δt for some t ∈ L1 by (4). Note 
that δt /∈ φj−1(Tj) by (2). So we also have γr /∈ φj−1(Tj − vn). It follows from 
(b2) that γr /∈ ϱ1(Tj − vn) in either subcase. As u ̸= vn and γr ∈ ϱ1(u), we obtain 
u /∈ V (Tj). This proves (13).

(14) ϱ1(T ′
j(u) − u) ∩ (∪i∈L1Si − {δn}) = ∅.

By the minimality assumption on u, we have ϱ1(T ′
j(u) − {vn, u}) ∩ (∪i∈L1Si) = ∅. 

Using Lemma 3.4(ii), we obtain φn(vn) ∩ (∪i∈L1Si) = {δn}. It follows from (b2) in 
Claim 4.3 that ϱ1(vn) ∩ (∪i∈L1Si) = {δn}. Thus (14) holds.

Let r be the subscript as defined above (13). Then r = 1p for some 1 ≤ p ≤ c(1). 
By (4), we have γr = γ1p

= δ1p−1  if p ≥ 2. Let L∗
1 = {11, 12, . . . , 1p−1} (so L∗

1 = ∅ 
if p = 1). Since 1p−1 < 1p = r ≤ n, we have n /∈ L∗

1. Observe that
(15) δn /∈ ∪i∈L∗

1
Si and ϱ1(vn) ∩ (∪i∈L∗

1
Si) = ∅.

Indeed, by (b2) in Claim 4.3 and Lemma 3.4(ii), we obtain ϱ1(vn) = φn(vn) and 
φn(vn) ∩ (∪i∈L1Si) = {δn}. As n /∈ L∗

1, from (4) we see that δn /∈ ∪i∈L∗
1
Si. So 

φn(vn) ∩ (∪i∈L∗
1
Si) = ∅. Hence (15) follows.

We construct a new coloring from ϱ1 by using the following algorithm.
(B) Let I = ∅ and ϱ = ϱ1. While I ̸= L∗

1, do: let t be the largest member of L∗
1 − I  

and set

	 B(t) : ϱ = ϱ/Pu(γt, δt, ϱ) and I = I ∪ {t}.

Let us exhibit some properties satisfied by this algorithm.
(16) Let I, t, ϱ be as specified in Algorithm (B) before performing the iteration 

B(t). Then δt ∈ ϱ(u), and Pu(γt, δt, ϱ) is a path containing at most one vertex vn 
from Tt, but vn is not an end of Pu(γt, δt, ϱ). Furthermore, let ϱ′ = ϱ/Pu(γt, δt, ϱ) 
and I ′ = I ∪ {t} denote the objects generated in the iteration B(t). Then for any 
s ∈ L∗

1 − I ′, the colors γs and δs are Ts-SI under the coloring ϱ′.
To justify this, recall that δ1p−1 = γr ∈ ϱ1(u) and
(17) for any i ∈ L1 − {n} (so vi = vn), the colors γi and δi are Ti-SI under ϱ1 

by (b4).
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In particular, (17) holds for t = 1p−1, the largest subscript in L∗
1, which implies 

that now Pu(γt, δt, ϱ1) is a path containing at most one vertex vn from Tt, but vn is 
not an end of Pu(γt, δt, ϱ1) by (15). Keep in mind that this Pu(γt, δt, ϱ1) is the first 
path employed in Algorithm (B).

Since the algorithm proceeds in the decreasing order of subscripts in L∗
1, using (4), 

(5), (15), (17), and applying Claim 4.2 repeatedly, we see that (16) is true.

Claim 4.4  Let ϱ2  denote the coloring ϱ output by Algorithm (B). Then the following 
statements hold: 

(c1)	ϱ2 is (Tj(vn) − vn, Dj−1, φj−1)-stable;
(c2)	ϱ2(v) = ϱ1(v) for all v ∈ V (Tj ∪ T ′

j(u) − u) and ϱ2(f) = ϱ1(f) for all 
f ∈ E(Tj ∪ T ′

j(u));
(c3)	γ11 ∈ ϱ2(u).

To justify this claim, recall from (16) that
(18) at each iteration B(t), the path Pu(γt, δt, ϱ) contains at most one vertex vn 

from Tt, but vn is not an end of Pu(γt, δt, ϱ).
Since Tj ⊆ Tt, we have ϱ(v) = ϱ1(v) for each v ∈ V (Tj(vn) − vn) and 

ϱ(f) = ϱ1(f) for each edge f incident to Tj(vn) − vn during each iteration of Algo-
rithm (B) by (18). It follows that ρ and hence ϱ2 is a (Tj(vn) − vn, Dj−1, ϱ1)-stable 
coloring. By (b1) in Claim 4.3, ϱ1 is a (Tj(vn) − vn, Dj−1, φj−1)-stable coloring. 
From Lemma 2.4 we see that (c1) holds.

Similarly, from (18) we deduce that ϱ2(v) = ϱ1(v) for all v ∈ V (Tj) 
and ϱ2(f) = ϱ1(f) for all f ∈ E(Tj). By (14) and (15), we also have 
ϱ1(T ′

j(u) − u) ∩ (∪i∈L∗
1
Si) = ∅. So T ′

j(u) does not contain the other end 
of Pu(γt, δt, ϱ) at each iteration B(t), and hence ϱ2(v) = ϱ1(v) for each 
v ∈ V (T ′

j(u) − u). Since T ′
j  is a closure of Tj(vn) under ϱ1, from TAA we deduce 

that ϱ1⟨T ′
j(u) − Tj(vn)⟩ ∩ (∪i∈L∗

1
Si) = ∅. It follows that ϱ(f) = ϱ1(f) for all 

edges f in T ′
j(u) − Tj(vn) at each iteration B(t). So ϱ2(f) = ϱ1(f) for all edges f in 

T ′
j(u) − Tj(vn) and hence (c2) holds.

By (16), we have δt ∈ ϱ(u) before each iteration B(t). So γt becomes a missing 
color at u after performing iteration B(t). It follows that γ11 ∈ ϱ2(u) (see (4)). Hence 
(c3) and therefore Claim 4.4 is established.

By (c1) in Claim 4.4, ϱ2 is (Tj(vn) − vn, Dj−1, φj−1)-stable. So it is a 
(Tj−1, Dj−1, φj−1)-stable coloring and hence is a φj−1 mod Tj−1 coloring by (4.1) 
and Theorem 3.10(vi), which implies that every ETT corresponding to (ϱ2, Tj−1) 
satisfies MP. By (b2) and (c2), we have ϱ2(f) = φj−1(f) for each edge f on Tj(vn). 
So Tj(vn) an ETT satisfying MP under ϱ2. Since T ′

j(u) is obtained from Tj(vn) by 
TAA under ϱ1, it can also be obtained from Tj(vn) by TAA under ϱ2 by (c2). Thus 
T ′

j(u) is an ETT satisfying MP under ϱ2 as well.
In view of (b2) and (c2), we have ϱ2(v) = φj−1(v) for all v ∈ V (Tj − vn), 

ϱ2(vn) = φn(vn), and ϱ2(f) = φj−1(f) for all f ∈ E(Tj). Moreover, by Lemma 3.4(iii) 
and (c3), we obtain φj−1(vn)= φ11−1(vn) ⊆ φ1c(1)

(vn) ∪ {γ11}= φn(vn) ∪ {γ11}

= ϱ2(vn) ∪ {γ11} ⊆ϱ2(vn) ∪ ϱ2(u). Therefore we can further grow T ′
j(u) by 

adding all edges on Tj  but outside G[T ′
j(u)] using TAA under ϱ2; let T 1

j  denote 
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the resulting tree-sequence. Clearly, T 1
j  is an ETT satisfying MP under ϱ2 and 

V (Tj ∪ T ′
j(u)) ⊆ V (T 1

j ), which contradicts MP satisfied by T under φn, because 
u /∈ V (Tj) by (13).

(V) Let us give an analysis of the opposite situation, which is the last part of this 
long proof.

Case 2. ϱ1(T ′
j − vn) ∩ (∪i∈L1Si) = ∅.

Recall that L1 = {11, 12, ..., 1c(1)}. Set S′ = ∪i∈L1Si. Let us make some simple 
observations about T ′

j , Tj  and Tn.
(19) ϱ1(T ′

j) ∩ S′ = ϱ1(vn) ∩ S′ = {δn} and ϱ1⟨T ′
j − Tj(vn)⟩ ∩ (S′ − {δn}) = ∅.

To justify this, note that V (T ′
j) is elementary with respect to ϱ1 by (12) and that 

ϱ1(vn) = φn(vn) by (b2). By Lemma 3.4(ii), we have φn(vn) ∩ S′ = {δn}. So 
ϱ1(vn) ∩ S′ = {δn} and hence δn /∈ ϱ1(T ′

j − vn). By the hypothesis of the present 
case, we obtain ϱ1(T ′

j) ∩ S′ = ϱ1(vn) ∩ S′ = {δn}. Since T ′
j  is a closure of Tj(vn) 

under ϱ1, from TAA we see that ϱ1⟨T ′
j − Tj(vn)⟩ ∩ (S′ − {δn}) = ∅. Hence (19) 

holds.
(20) ∂ϱ1,γn

(Tn) = {fn} and ∂ϱ1,δn(Tn ∪ T ′
j) = ∅.

To justify this, note from Lemma 3.2(v) that ∂φn,γn
(Tn) = {fn} and edges in 

∂φn,δn
(Tn) are all incident to V (Tn(vn) − vn). Since σn is (Tn, Dn, φn)-stable, 

by (b3) in Claim 4.3 and (5), we obtain ∂ϱ1,α(Tn) = ∂σn,α(Tn) = ∂φn,α(Tn) for 
α = γn, δn. In particular, ∂ϱ1,γn

(Tn) = {fn}. Since T ′
j  is a closure of Tj(vn) under 

ϱ1 and δn ∈ φn(vn) = ϱ1(vn) by (b2), from TAA we see that ∂ϱ1,δn(Tn ∪ T ′
j) = ∅. 

Hence (20) is true.
Consider the path Pvn

(γn, δn, σn) specified in the present lemma. By Algorithm 3.1, 
(4.1) and Theorem 3.10(i), we have δn, γn /∈ φn−1(Tn − vn). So δn, γn /∈ φn(Tn − vn) 
and hence δn, γn /∈ σn(Tn − vn). It follows that the other end x of Pvn

(γn, δn, σn) 
is outside Tn. Let P denote Pvn

(γn, δn, ϱ1). Then P = Pvn
(γn, δn, σn) by (b3) and 

(5). From the hypothesis of the present case, we deduce that x is outside T ′
j − vn. 

Combining these two observations, we see that x is outside Tn ∪ T ′
j . Let u be the ver-

tex of P such that the subpath P[u, x] is a (Tn ∪ T ′
j)-exit path with respect to ϱ1. At 

the beginning of our proof, we assume that Pvn
(γn, δn, σn) (and hence P) contains 

Fig. 3  The path P under ϱ1 
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at least two vertices from Tn. So u ̸= vn. By (20), all edges in E(P ) ∩ ∂(Tn ∪ T ′
j) 

are colored by γn under ϱ1 and fn is the only edge in ∂ϱ1,γn
(Tn). Therefore u is not 

incident to fn and furthermore
(21) u ∈ V (T ′

j) − V (Tn).
Figure 3 gives an illustration of P under ϱ1.
Let β ∈ ϱ1(u). By the hypothesis of the present case, we have
(22) β /∈ S′.
If β ∈ ϱ1(Tj − V (Tj(vn))), let z be the smallest vertex in Tj − V (Tj(vn)) in the 

order ≺ such that β ∈ ϱ1(z); otherwise, let z be the largest vertex of Tj  in the order 
≺ (now Tj(z) = Tj).

(23) β /∈ ϱ1(Tj(z) − z) and β /∈ ϱ1⟨Tj(z) − Tj(vn)⟩.
By the definition of z, we have β /∈ ϱ1(Tj(z) − V (Tj(vn)) − z). Since 

β ∈ ϱ1(u), by (12) and (21) we obtain β /∈ ϱ1(Tj(vn)). So β /∈ ϱ1(Tj(z) − z). 
From (b2) it follows that β /∈ φj−1(Tj(z) − z − vn) and β /∈ σn(vn) = φn(vn). By 
Lemma 3.4(iii), φj−1(vn) = φ11−1(vn) ⊆ φ1c(1)

(vn) ∪ {γ11} = φn(vn) ∪ {γ11}. 
Since β ̸= γ11  by (22), we get β /∈ φj−1(vn). Hence β /∈ φj−1(Tj(z) − z). As Tj(z) 
is obtained from Tj(vn) by TAA under φj−1, β /∈ φj−1⟨Tj(z) − Tj(vn)⟩. Therefore 
β /∈ ϱ1⟨Tj(z) − Tj(vn)⟩ by (b2). This justifies (23).

Claim 4.5  There exists a coloring ϱ3 ∈ Ck(G − e) with the following properties: 

(d1)	ϱ3 is (Tj(vn) − vn, Dj−1, φj−1)-stable;
(d2)	ϱ3(v) = ϱ1(v) for all v ∈ V (Tj(z) ∪ T ′

j(u)) − {u, z} and ϱ3(f) = ϱ1(f) for 
all f ∈ E(Tj(z) ∪ T ′

j(u)). Furthermore, δn ∈ ϱ3(z) if β ∈ ϱ1(z); and
(d3)	γ11 ∈ ϱ3(u).

(Assuming Claim 4.5) By (d1) in Claim 4.5, ϱ3 is a (Tj(vn) − vn, Dj−1, φj−1)
-stable coloring. So it is a (Tj−1, Dj−1, φj−1)-stable coloring and hence is a 
φj−1 mod Tj−1 coloring by (4.1) and Theorem 3.10(vi), which implies that 
every ETT corresponding to (ϱ3, Tj−1) satisfies MP. By (b2) and (d2), we have 
ϱ3(f) = ϱ1(f) = φj−1(f) for each edge f on Tj(vn). So Tj(vn) is an ETT satisfying 
MP under ϱ3. Since T ′

j(u) is obtained from Tj(vn) by TAA under ϱ1, it can also be 
obtained from Tj(vn) by TAA under ϱ3 by (d2). Thus T ′

j(u) is an ETT satisfying MP 
under ϱ3 as well.

In view of (b2) and (d2), we have ϱ3(v) = φj−1(v) for all 
v ∈ V (Tj(z) − {vn, z}), ϱ3(vn) = φn(vn), and ϱ3(f) = φj−1(f) for all 
f ∈ E(Tj(z)). Moreover, by Lemma 3.4(iii) and (d3), we obtain φj−1(vn) =
φ11−1(vn) ⊆ φ1c(1)

(vn) ∪ {γ11} = φn(vn) ∪ {γ11} = ϱ3(vn) ∪ {γ11} ⊆

ϱ3(vn) ∪ ϱ3(u). Therefore we can further grow T ′
j(u) by adding all edges on Tj(z) 

but outside G[T ′
j(u)] using TAA under ϱ3; let T 2

j  denote the resulting tree-sequence. 
Clearly, T 2

j  is an ETT satisfying MP. So V (T 2
j ) is elementary with respect to ϱ3 

by (4.1) and Theorem 3.10(i). If z is the largest vertex of Tj  in the order ≺, then 
V (Tj ∪ T ′

j(u)) = V (Tj(z) ∪ T ′
j(u)) ⊆ V (T 2

j ), which contradicts MP satisfied by T, 
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as u /∈ V (Tj) by (21); otherwise, δn ∈ ϱ3(z) ∩ ϱ3(vn) by (d2) and (19), which con-
tradicts the elementary property satisfied by V (T 2

j ) under ϱ3.
To prove Claim 4.5, we consider the coloring ϱ0 = ϱ1/(G − T ′

j , β, δn). Since T ′
j  

is closed with respect to ϱ1 and {vn, u} ⊆ V (T ′
j), no boundary edge of T ′

j  is col-
ored by β or δn under ϱ1 (see (19)). So ϱ0 is (T ′

j , Dj−1, ϱ1)-stable and hence is 
(Tj(vn) − vn, Dj−1, ϱ1)-stable. Clearly, Pu(γn, β, ϱ0) = Pu(γn, δn, ϱ1). Thus u is 
the only vertex shared by Pu(γn, β, ϱ0) and Tn ∪ T ′

j . Define µ0 = ϱ0/Pu(γn, β, ϱ0).

Claim 4.6  The coloring µ0  satisfies the following properties: 

(e1)	µ0 is a (Tj(vn) − vn, Dj−1, φj−1)-stable coloring;
(e2)	µ0(v) = ϱ1(v) for all v ∈ V (Tj(z) ∪ T ′

j(u)) − {u, z} and µ0(f) = ϱ1(f) for 
all f ∈ E(Tj(z) ∪ T ′

j(u)). Furthermore, δn ∈ µ0(z) if β ∈ ϱ1(z);
(e3)	γn = δ1c(1)−1 ∈ µ0(u) and β /∈ µ0(u);
(e4)	for any t ∈ L1 − {n}, the colors γt and δt are Tt-SI under µ0; and
(e5)	µ0(T ′

j − u) ∩ S′ = µ0(vn) ∩ S′ = {δn} and 
µ0⟨T ′

j − Tj(vn)⟩ ∩ (S′ − {δn}) = ∅.
To justify this, recall that ϱ1 is (Tj(vn) − vn, Dj−1, φj−1)-stable by (b1). By the 

definitions of ϱ0 and µ0, the transformation from ϱ1 to µ0 only changes colors on 
some edges disjoint from V (Tj(vn)). So (e1) holds. Statement (e3) follows instantly 
from the definition of µ0. Note that δn, β /∈ ∪t∈L1−{n}St by (4), (5) and (22), and 
that Tϵ(t) ⊆ Tn for each t ∈ L1 − {n}. Furthermore, Pu(γn, β, ϱ0) is disjoint from 
V (Tn). So (e4) can be deduced from (b4) immediately. Using (19) and the definitions 
of ϱ0 and µ0, we obtain (e5).

It remains to prove (e2). Recall from (23) that β /∈ ϱ1(Tj(z) − z) and 
β /∈ ϱ1⟨Tj(z) − Tj(vn)⟩. By (2), we obtain δn /∈ φj−1(Tj) and hence 
δn /∈ φj−1⟨Tj(z) − Tj(vn)⟩ by TAA. From (b2) we deduce that δn /∈ ϱ1(Tj(z) − vn) 
and δn /∈ ϱ1⟨Tj(z) − Tj(vn)⟩. From the definition of ϱ0 and µ0, we see that (e2) 
holds. So Claim 4.6 is established.

Let L∗
1 = L1 − {n}. We construct a new coloring from µ0 by using the following 

algorithm.
(C) Let I = ∅ and µ = µ0. While I ̸= L∗

1, do: let t be the largest member in 
L∗

1 − I  and set

	 C(t): µ = µ/Pu(γt, δt, µ) and I = I ∪ {t}.

Let ϱ3 denote the coloring µ output by Algorithm (C). We aim to show that ϱ3 is as 
described in Claim 4.5; our proof is based on the following statement.

(24) Let I, t, µ be as specified in Algorithm (C) before performing the iteration 
C(t). Then δt ∈ µ(u), and Pu(γt, δt, µ) is a path containing at most one vertex vn 
from Tt, but vn is not an end of Pu(γt, δt, µ). Furthermore, let µ′ = µ/Pu(γt, δt, µ) 
and I ′ = I ∪ {t} denote the objects generated in the iteration C(t). Then for any 
s ∈ L∗

1 − I ′, the colors γs and δs are Ts-SI under the coloring µ′.
To justify this, observe that
(25) µ0(vn) ∩ (∪i∈L∗

1
Si) = ∅ by (4), (5) and (e5).

Furthermore,
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(26) for any s ∈ L∗
1, the colors γs and δs are Ts-SI under µ0 by (e4).

In particular, (26) holds for t = 1c(1)−1, the largest subscript in L∗
1, which implies 

that now Pu(γt, δt, µ0) is a path containing at most one vertex vt = vn from Tt, but 
vn is not an end of Pu(γt, δt, µ0) by (25). In view of (e3), we have δt ∈ µ0(u). Keep 
in mind that this Pu(γt, δt, µ0) is the first path employed in Algorithm (C).

As the algorithm proceeds in the decreasing order of subscripts in L∗
1, using (4), 

(5), (25), (26) and applying Claim 4.2 repeatedly, we see that (24) is true.
To justify Claim 4.5, recall from (24) that
(27) at each iteration C(t), the path Pu(γt, δt, µ) contains at most one vertex 

vn = vt from Tt, but vn is not an end of Pu(γt, δt, µ).
Since Tj ⊆ Tt, we have µ(v) = µ0(v) for each v ∈ V (Tj(vn) − vn) and 

µ(f) = µ0(f) for each edge f incident to Tj(vn) − vn during each iteration of Algo-
rithm (C) by (27). It follows that µ and hence ϱ3 is a (Tj(vn) − vn, Dj−1, µ0)-stable 
coloring. By (e1) in Claim 4.6, µ0 is a (Tj(vn) − vn, Dj−1, φj−1)-stable coloring. 
From Lemma 2.4 we see that (d1) holds.

Since Tj(z) ⊆ Tt, from (e2) and (27) we deduce that ϱ3(v) = µ0(v) for all 
v ∈ V (Tj(z) − z) and ϱ3(f) = µ0(f) for all f ∈ E(Tj(z)). By (e5), we have 
µ0(T ′

j − u) ∩ S′ = µ0(vn) ∩ S′ = {δn} and µ0⟨T ′
j − Tj(vn)⟩ ∩ (S′ − {δn}) = ∅. 

By (4) and (5), we obtain δn /∈ ∪i∈L∗
1
Si. So at each iteration C(t) the path Pu(γt, δt, µ) 

neither contains any edge from T ′
j(u) nor terminate at a vertex in T ′

j(u) − u. It fol-
lows that ϱ3(v) = µ0(v) for all v ∈ V (T ′

j(u) − u) and ϱ3(f) = µ0(f) for all edges 
f in T ′

j(u) − Tj(vn). Hence ϱ3(v) = µ0(v) for all v ∈ V (Tj(z) ∪ T ′
j(u)) − {u, z} 

and ϱ3(f) = µ0(f) for all f ∈ E(Tj(z) ∪ T ′
j(u)). Combining this with (e2), we see 

that (d2) holds.
By (24), we have δt ∈ µ(u) before each iteration C(t). So γt becomes a missing 

color at u after performing iteration C(t). It follows that γ11 ∈ ϱ3(u) (see (4)). There-
fore (d3) is established. This completes the proof of Claim 4.5 and hence of Lemma 
4.3. � □

The following lemma asserts that supporting and extension vertices are subject to 
some order.

Lemma 4.4  (Assuming (4.1) and (4.3)) Theorem 3.10(v) holds for all ETTs with n 
rungs and satisfying MP; that is, for any (Tn, Dn, φn)-stable coloring σn  and any 
defective color δ of Tn  with respect to σn , if v is a vertex but not the smallest one (in 
the order ≺) in I [∂σn ,δ(Tn)], then v ⪯ vi  for any supporting or extension vertex vi  
with m(v) ≤ i .

Proof  By the hypothesis of Theorem 3.10, T is an ETT with the corresponding Tash-
kinov series T = {(Ti, φi−1, Si−1, Fi−1, Θi−1) : 1 ≤ i ≤ n + 1}, and T satisfies 
MP under φn. Depending on the extension type Θn, we consider two cases.

Case 1. Θn = PE. In this case, ∂φn,γn
(Tn) = {fn} by Lemma 3.2(v). Since σn 

is (Tn, Dn, φn)-stable and γn ∈ Sn ⊆ φn(Tn) ∪ Dn, we have ∂σn,γn
(Tn) = {fn}. 

So δ ̸= γn.
By Theorem  3.10(iv), Pvn

(γn, δn, σn) ∩ Tn = {vn}. Define 
σn−1 = σn/Pvn

(γn, δn, σn). Then
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(1) σn−1 is (Tn, Dn−1, φn−1)-stable by Lemma 3.6 and hence it is also 
(Tn−1, Dn−1, φn−1)-stable. Furthermore, ∂σn,δ(Tn) ⊆ ∂σn−1,δ(Tn) (because 
δ ̸= γn and possibly δ = δn).

If i = n, then v ⪯ vn by (1), as vn is the maximum defective vertex over all 
(Tn, Dn−1, φn−1)-stable colorings. So we assume that i < n. Then v ∈ Tn−1 because 
m(v) ≤ i < n. Since v is not the smallest vertex in I[∂σn,δ(Tn)] and v ∈ Tn−1, from 
(1) it can be seen that δ is a defective color of Tn−1 with respect to σn−1, and v is 
not the smallest vertex in I[∂σn−1,δ(Tn−1)]. Applying (4.3) and Theorem 3.10(v) to 
Tn−1 and σn−1 (see (1)), we obtain v ⪯ vi.

Case 2. Θn = RE or SE. In this case, φn is (Tn, Dn−1, φn−1)-stable (see Algorithm 
3.1). Since σn is (Tn, Dn, φn)-stable and φn−1(Tn) ∪ Dn−1 ⊆ φn(Tn) ∪ Dn by 
Lemma 3.2(i), σn is (Tn, Dn−1, φn−1)-stable and hence is also (Tn−1, Dn−1, φn−1)
-stable. If i = n, then v ⪯ vn, because vn the maximum defective vertex over all 
(Tn, Dn−1, φn−1)-stable colorings. So we assume that i < n. Then m(v) ≤ i < n. 
Since v ∈ Tn−1 and v is not the smallest vertex in I[∂σn,δ(Tn)], δ is a defective color 
of Tn−1 with respect to σn, and v is not the smallest vertex in I[∂σn,δ(Tn−1)]. Since 
σn is (Tn−1, Dn−1, φn−1)-stable, from (4.3) and Theorem 3.10(v) we conclude that 
v ⪯ vi. � □

By Definition 3.7, every φn mod Tn coloring is a (Tn, Dn, φn)-stable coloring. 
The lemma below says that the converse also holds when MP is satisfied, so these two 
concepts are equivalent in this case.

Lemma 4.5  (Assuming (4.1) and (4.4)) Theorem  3.10(vi) holds for all ETTs with 
n rungs and satisfying MP; that is, every (Tn, Dn, φn)-stable coloring σn  is a 
φn mod Tn  coloring. (Thus every ETT corresponding to (σn, Tn) satisfies MP 
under σn  by Lemma 3.9.)

Proof  By the hypothesis of Theorem 3.10, T is an ETT with the corresponding Tash-
kinov series T = {(Ti, φi−1, Si−1, Fi−1, Θi−1) : 1 ≤ i ≤ n + 1}, and T satisfies 
MP under φn. Clearly, every tree-sequence T ∗ obtained from Tn (resp. Tn + fn) by 
TAA under σn if Θn = PE (resp. if Θn = RE or SE) is a sub-sequence of some clo-
sure of Tn (resp. Tn + fn) under σn. So to prove that σn is φn mod Tn, it suffices to 
show that, for an arbitrary closure T ∗

n+1 of Tn (resp. Tn + fn) under σn, there exists 
a Tashkinov series T ∗ = {(T ∗

i , σi−1, Si−1, Fi−1, Θi−1) : 1 ≤ i ≤ n + 1}, satisfy-
ing the following conditions for all i with 1 ≤ i ≤ n: 

(1)	 T ∗
i = Ti and

(2)	 σi is a (Ti, Di, φi)-stable coloring in Ck(G − e).

For this purpose, we shall define a coloring σn−1 based on σn, such that 

(3)	 σn−1 is (Tn, Dn−1, φn−1)-stable and hence is also (Tn−1, Dn−1, φn−1)-stable.

By Lemma 3.2(iv), we have φn−1⟨Tn⟩ ⊆ φn−1(Tn) ∪ Dn−1, which together with 
(3) implies that σn−1(f) = φn−1(f) for every edge f on Tn and σn−1(v) = φn−1(v) 
for every vertex v in Tn. Hence Tn can be obtained by TAA from Tn−1 (resp. 
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Tn−1 + fn−1) under σn−1 if Θn−1 = PE (resp. if Θn−1 = RE or SE) in the same 
way as it under φn−1. Moreover, since Tn is closed under φn−1, it is also a closure of 
Tn−1 (resp. Tn−1 + fn−1) under σn−1 if Θn−1 = PE (resp. if Θn−1 = RE or SE). 
By (3), (4.1) and Theorem 3.10(vi), σn−1 is a Tn−1 mod φn−1 coloring. Therefore 

(4)	 there exists a Tashkinov series T ′ = {(T ∗
i , σi−1, Si−1, Fi−1, Θi−1) : 1 ≤ i ≤ n}, 

which together with σn satisfies (1) and (2) for 1 ≤ i ≤ n.

We shall then show, using Algorithm 3.1, that the desired Tashkinov series T ∗ can be 
built from T ′ by adding the tuple (T ∗

n+1, σn, Sn, Fn, Θn).
Let us now give detailed descriptions. Depending on the extension type, we dis-

tinguish between two cases.
Case 1. Θn = RE. In this case, define σn−1 = σn. Since σn is a (Tn, Dn, φn)

-stable coloring, so is σn−1. Recall that φn = φn−1 by RE in Algorithm 3.1 and 
that φn−1(Tn) ∪ Dn−1 ⊆ φn(Tn) ∪ Dn by Lemma 3.2(i). So σn−1 satisfies (3) and 
hence (4) holds.

According to Algorithm 3.1, there is a subscript h ≤ n − 1 with Θh = PE and 
Sh = {δh, γh}, such that Θi = RE for all i with h + 1 ≤ i ≤ n − 1, if any, and that 
some (γh, δh)-cycle O with respect to φn−1 contains a sub-path L with V (L) ⊆ V (Tn) 
connecting the edge fn and V (Th). Note that φh = φh+1 = . . . = φn−1. Since vh is 
an end of the exit-path Pvh

(γh, δh, φh) = Pvh
(γh, δh, φn−1), it is outside O. Take w 

in V (L) ∩ V (Th). Then w ̸= vh. As σn−1 is (Tn−1, Dn−1, φn−1)-stable by (3) and 
{δh, γh} ⊆ ∪i≤n−1Si ⊆ φn−1(Tn−1) ∪ Dn−1, every edge of L is colored the same 
under σn−1 as under φn−1.

Let O∗ be the (γh, δh)-chain containing L under 
σn−1. Then O∗ intersects Th. By (4), T ′ is a Tashkinov series, 
Θh = PE, and Θi = RE for all i with h + 1 ≤ i ≤ n − 1. From Algorithm 3.1 it 
follows that σh = σn−1, δh ∈ σh(vh), and Pvh

(γh, δh, σh) ∩ V (Th) = {vh}. Hence 
δh ∈ σn−1(vh), Pvh

(γh, δh, σn−1) = Pvh
(γh, δh, σh), and O∗ is disjoint from the 

(γh, δh)-path Pvh
(γh, δh, σn−1) (because w ∈ V (L) ⊆ V (O∗)). Applying (4.1) and 

Theorem 3.10(ii) to Tn under σn−1, we see that there is at most one (γh, δh)-path 
intersecting Tn. So O∗ must be a (γh, δh)-cycle containing L as a sub-path under 
σn−1. Therefore fn can be chosen as an RE connecting edge for Tn under σn−1, and 
T ∗ can thus be built from T ′ by adding the tuple (T ∗

n+1, σn, Sn, Fn, Θn) using RE 
of Algorithm 3.1.

Case 2. Θn = SE or PE. In this case, define σn−1 = σn if Θn = SE and 
σn−1 = σn/Pvn

(γn, δn, σn) if Θn = PE. By (4.4) and Theorem 3.10(iv), we have 

(5)	 Pvn
(γn, δn, σn) ∩ V (Tn) = {vn} when Θn = PE, because σn is (Tn, Dn, φn)

-stable.

According to Algorithm 3.1, πn−1 is a (Tn, Dn−1, φn−1)-stable coloring whose larg-
est defective vertex vn is maximum over all (Tn, Dn−1, φn−1)-stable colorings, and 
fn is colored by δn under πn−1. Observe that 

(6)	 σn−1 is (Tn, Dn−1 ∪ {δn}, πn−1)-stable and hence is (Tn, Dn−1, φn−1)-stable.
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Indeed, if Θn = SE, then φn = πn−1 by SE in Algorithm 3.1. Since σn−1 = σn is 
(Tn, Dn, φn)-stable and δn ∈ Sn ⊆ φn(Tn) ∪ Dn, the desired statement (6) holds. 
If Θn = PE, then (6) follows instantly from (5) and Lemma 3.6.

From (6) we see that both (3) and (4) hold true. Furthermore, 

(7)	 ∂σn−1,δn
(Tn) = ∂πn−1,δn

(Tn).

By (7), we obtain σn−1(fn) = πn−1(fn) = δn. By (6) and Lemma  2.4, every 
(Tn, Dn−1, σn−1)-stable coloring is also (Tn, Dn−1, φn−1)-stable. So σn−1 is a 
(Tn, Dn−1, σn−1)-stable coloring whose largest defective vertex vn is maximum 
over all (Tn, Dn−1, σn−1)-stable colorings.

Again by (6) and Lemma 2.4, a coloring is (Tn, Dn−1 ∪ {δn}, πn−1)-stable iff 
it is (Tn, Dn−1 ∪ {δn}, σn−1)-stable. So the equality σ(un) ∩ σ(Tn) = ∅ holds for 
every (Tn, Dn−1 ∪ {δn}, σn−1)-stable coloring σ iff the equality π(un) ∩ π(Tn) = ∅ 
holds for every (Tn, Dn−1 ∪ {δn}, πn−1)-stable colorings π, where un is the end 
of fn outside Tn (see Algorithm 3.1). Moreover, if Θn = PE, then vn is also a 
(Tn, σn−1, {γn, δn})-exit by the definition of σn−1 and (5). From Algorithm 3.1 we 
thus deduce that if RE does not apply to the coloring σn−1, then we can construct 
T ∗ from T ′ (see (4)) by adding the tuple (T ∗

n+1, σn, Sn, Fn, Θn) under σn, using the 
same extension type, SE or PE, as specified in Θn.

It remains to verify that indeed RE does not apply to the coloring σn−1. (Recall 
that RE has priority over both SE and PE in the construction of a Tashkinov series 
using Algorithm 3.1 (see (3.3)). That is why we need to check this.)

Assume the contrary: under σn−1, there exist an edge f ∈ ∂σn−1,γh
(Tn) 

and a (γh, δh)-cycle O containing a sub-path L with V (L) ⊆ V (Tn) connect-
ing the edge f and V (Th), where Θh = PE, Sh = {δh, γh}, and Θi = RE for 
all i with h + 1 ≤ i ≤ n − 1. Then φh = φh+1 = . . . = φn−1 by (4). Since 
Sh ⊆ φn−1(Tn−1) ∪ Dn−1, from (5) we see that σn−1(f) = φn−1(f) and that 
every edge of L is colored the same under σn−1 as under φn−1 = φh.

Let O∗ be the (γh, δh)-chain containing L under φn−1. By an argument parallel to 
that used for Case 1 (see the paragraph right above Case 2), we can ensure that O∗ 
is a (γh, δh)-cycle under φn−1 containing the sub-path L connecting the edge f and 
V (Th). Therefore Θn = RE with respect to φn−1 (see Algorithm 3.1), contradicting 
the hypothesis of the present case. � □

5  Good hierarchies

It is well known that Kempe changes play a fundamental role in edge-coloring theory. 
To ensure that an ETT under a coloring remains to be an ETT under a new coloring 
arising from Kempe changes, in this section we develop an effective control mecha-
nism over such operations, the so-called good hierarchy of an ETT, which will serve 
as a powerful tool in the proof of Theorem 3.10(i). As stated before, a prototype of 
this mechanism can be found in Chen and Jing (2019) (see Condition R2 therein). 
Throughout this section, we assume that
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(5.1) Theorem 3.10(i) and (ii) hold for all ETTs with at most n − 1 rungs and 
satisfying MP, and Theorem 3.10(iii)-(vi) hold for all ETTs with at most n rungs and 
satisfying MP.

In the case of Θn = PE, let Jn be a closure of Tn(vn) under a (Tn, Dn, φn)-sta-
ble coloring σn. By Algorithm 3.1, δn ∈ φn(vn) and |∂φn,δn

(Tn)| ≥ 2 (see (3.2)). 
By Lemma 3.2(v), edges in ∂φn,δn

(Tn) are all incident to V (Tn(vn) − vn). Since 
σ̄n(vn) = φn(vn) and ∂σn,δn

(Tn) = ∂φn,δn
(Tn), there holds V (Jn) − V (Tn) ̸= ∅. 

We use Tn ∨ Jn to denote the tree-sequence obtained from Tn by adding all vertices 
in V (Jn) − V (Tn) to Tn one by one, following the linear order ≺ in Jn, and using 
edges in Jn.

Lemma 5.1  (Assuming (5.1)) Let T be an ETT constructed from a k-triple (G, e, φ) by 
using the Tashkinov series T = {(Ti , φi−1 , Si−1 , Fi−1 , Θi−1 ) : 1 ≤ i ≤ n + 1}. 
Suppose Θn = PE  and T satisfies MP under φn . If Jn  is a closure of Tn(vn) under a 
(Tn, Dn, φn)-stable coloring σn , then V (Tn ∨ Jn) is elementary with respect to σn .

Proof  Clearly, Tn is an ETT with corresponding Tashkinov series 
T = {(Ti, φi−1, Si−1, Fi−1, Θi−1) : 1 ≤ i ≤ n} and satisfies MP under 
φn−1. Since r(Tn) = n − 1, by (5.1) and Theorem  3.10(i), V (Tn) is elementary 
with respect to φn−1. Let πn−1 and π′

n−1 be as specified in Algorithm 3.1. Since 
πn−1 is a (Tn, Dn−1, φn−1)-stable coloring and π′

n−1 is a (Tn, Dn−1 ∪ {δn}, πn−1)
-stable coloring, by definition V (Tn) is also elementary with respect to π′

n−1. As 
φn = π′

n−1/Pvn(δn, γn, π′
n−1) and δn /∈ π′

n−1(Tn), we further obtain 

(1)	 V (Tn) is elementary with respect to φn and hence elementary with respect to σn.

Since σn is a (Tn, Dn, φn)-stable coloring, it follows from (5.1) and Theorem 3.10(iii) 
that σn is (Tj(vn) − vn, Dj−1, φj−1)-stable and hence is (Tj−1, Dj−1, φj−1)-stable, 
where j = m(vn). By Theorem 3.10(vi), σn is a φj−1 mod Tj−1 coloring, so every 
ETT corresponding to (σn, Tj−1) satisfies MP. Using Lemma 3.2(iv) and Lemma 
3.3, we obtain σn(f) = φn(f) = φj−1(f) for each edge f on Tj . Hence Jn is a clo-
sure of Tn(vn) = Tj(vn) under σn. Consequently, Jn is an ETT corresponding to 
(σn, Tj−1) and satisfies MP. Since r(Jn) = j − 1 ≤ n − 1, 

(2)	 V (Jn) is elementary and closed with respect to σn by (5.1) and Theorem 3.10(i).

Suppose on the contrary that V (Tn ∨ Jn) is not elementary with respect to σn. Then 
Tn ∨ Jn contains two distinct vertices u and v such that σn(u) ∩ σn(v) ̸= ∅. By (1) and 
(2), we may assume that u ∈ V (Tn) − V (Jn) and v ∈ V (Jn) − V (Tn). So v ̸= vn. 
Let α ∈ σn(u) ∩ σn(v). Then α ̸= δn by (2), because δn ∈ φn(vn) = σn(vn). More-
over, since γn ∈ φn−1(vn) and V (Tn) is elementary with respect to φn−1, from PE 
of Algorithm 3.1 and the definition of stable colorings, we deduce that γn /∈ φn(Tn) 
and hence γn /∈ σn(Tn). So α ̸= γn. Consequently, 

(3)	 α /∈ Sn.
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Since vn is a maximum defective vertex according to Algorithm 3.1, Tn(vn) contains 
a vertex w ̸= vn. Note that w is contained in both Tn and Jn. Let β ∈ σn(w). Since 
δn ∈ σn(vn) and γn /∈ σn(Tn), by (2) we obtain 

(4)	 β /∈ Sn and the other end of Pv(α, β, σn) is w.

From (3), (4), and Algorithm 3.1, we see that ∂(Tn) contains no edge colored by α or 
β under φn and hence under σn, because σn is (Tn, Dn, φn)-stable. Combining this 
with (1), we conclude that the other end of Pu(α, β, σn) is also w. Thus Pw(α, β, σn) 
terminates at both u and v, a contradiction. � □

Let T be an ETT as specified in Theorem 3.10; that is, T is con-
structed from a k-triple (G, e, φ) by using the Tashkinov series 
T = {(Ti, φi−1, Si−1, Fi−1, Θi−1) : 1 ≤ i ≤ n + 1}. To prove that V(T) is elemen-
tary with respect to φn, we shall turn to considering a restricted ETT T ′ with lad-
der T1 ⊂ T2 ⊂ . . . ⊂ Tn ⊂ T ′ and V (T ′) = V (Tn+1), and then show that V (T ′) is 
elementary with respect to φn. For convenience, we may simply view T ′ as Tn+1.

In the remainder of this paper, we reserve the symbol Rn for a fixed closure of 
Tn(vn) under φn, if Θn = PE. Let Tn ∨ Rn be the tree-sequence as defined above 
Lemma 5.1. We assume hereafter that

(5.2) Tn+1 is a closure of Tn ∨ Rn under φn, which is a special closure of Tn 
under φn (see PE in Algorithm 3.1), when Θn = PE.

By Lemma 5.1, V (Tn ∨ Rn) is elementary with respect to φn, so we may further 
assume that

(5.3) T ̸= Tn ∨ Rn if Θn = PE, which together with (5.2) implies that Tn ∨ Rn 
is not closed with respect to φn.

(5.4) If Θn = PE, then each color in φn(Tn) ∩ φn(Rn) is closed in Tn ∨ Rn 
with respect to φn. So |Tn ∨ Rn| is odd.

To justify this, note that each color in φn(Rn) is closed in Rn under φn because 
Rn is a closure. By Lemma 3.2(v), each color in φn(Tn) − {δn} is closed in Tn 
under φn. Hence each color in φn(Tn) ∩ φn(Rn) − {δn} is closed in Tn ∨ Rn with 
respect to φn. Lemma 3.2(v) also asserts that edges in ∂φn,δn

(Tn) are all incident 
to V (Tn(vn) − vn). So δn is closed in Tn ∨ Rn as well, because it is closed in Rn. 
Hence (5.4) follows.

To prove Theorem 3.10(i), we shall appeal to a hierarchy of T of the form
(5.5) Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T , such that Tn ∨ Rn ⊂ Tn,1 

if Θn = PE and that Tn,i = T (ai) for 1 ≤ i ≤ q, where a1 ≺ a2 ≺ . . . ≺ aq are 
some vertices in T − V (Tn), called dividers of T. (So T has q dividers in total.)

As introduced before, Dn = ∪h≤nSh − φn(Tn), where Sh = {δh} if Θh = SE 
and Sh = {δh, γh} otherwise. By Lemma 3.5, we have

(5.6) |Dn| ≤ n.
Write Dn = {η1, η2, . . . , ηn′}. In Definition 5.2 given below and the remainder 

of this paper,

	● T ∗
n,0 = Tn ∨ Rn if Θn = PE and T ∗

n,0 = Tn otherwise, and T ∗
n,j = Tn,j  if j ≥ 1;

	● Dn,j = ∪h≤nSh − φn(T ∗
n,j) for 0 ≤ j ≤ q (so Dn,j ⊆ Dn);

	● vηh , for ηh ∈ Dn, is defined to be the first vertex u of T in the order ≺ with 
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ηh ∈ φn(u), if

any, and defined to be the last vertex of T in the order ≺ otherwise;

	● Tn,j(vηh
) = Tn,j  if vηh  is outside Tn,j  for 1 ≤ j ≤ q and ηh ∈ Dn; and

	● Γj = ∪ηh∈Dn,j
Γj

h for 0 ≤ j ≤ q.

Let H be a subgraph of G and let C be a subset of [k]. We say that H is C-closed with 
respect to φn if ∂φn,α(H) = ∅ for any α ∈ C, and say that H is C−-closed with 
respect to φn if it is (φn(H) − C)-closed with respect to φn.

Definition 5.2  Hierarchy (5.5) of T is called good with respect to φn if for any j with 
0 ≤ j ≤ q and any ηh ∈ Dn,j , there exists a 2-color subset Γj

h = {γj
h1

, γj
h2

} ⊆ [k], 
such that 
(i)	 Γ0

h ⊆ φn(Tn) − φn⟨Tn,1(vηh
) − T ∗

n,0⟩ and 
Γj

h ⊆ φn(Tn,j) − φn⟨Tn,j+1(vηh
) − Tn,j⟩ for 1 ≤ j ≤ q (so neither color in Γj

h 
can be used by edges on Tn,j+1 − T ∗

n,j  until after ηh becomes missing at the 
vertex vηh  in Tn,j+1 for 0 ≤ j ≤ q);

(ii)	 Γj
g ∩ Γj

h = ∅ whenever ηg and ηh are two distinct colors in Dn,j ;
(iii)	for any j with 1 ≤ j ≤ q, there exists precisely one color ηg ∈ Dn,j , such 

that Γj
g ⊆ φn(Tn,j − V (T ∗

n,j−1)) (so Γj
g ∩ Γj−1

g = ∅) and Γj
h = Γj−1

h  for all 
ηh ∈ Dn,j − {ηg};

(iv)	if Θn = PE, then Tn ∨ Rn is not (Γ0)−-closed with respect to φn and, subject 
to this, |φn(Tn) ∩ φn(Rn) − Γ0| ≥ 4; and

(v)	 Tn,j  is (∪ηh∈Dn,j
Γj−1

h )−-closed with respect to φn for all j with 1 ≤ j ≤ q.

The sets Γj
h are referred to as Γ-sets of the hierarchy (or of T) under φn.

At first glance, the concept of good hierarchies is very complicated. After reading the 
constructive proof of Theorem 5.4 shortly, one may realize that it is, nevertheless, 
fairly easy to understand. The following remarks may foster a better grasp of this 
concept.

(5.7) For 0 ≤ j ≤ q and ηh ∈ Dn,j , we have Γj
h ⊆ φn(T ∗

n,j) by Condition (i). So 
Γj

h ∩ Dn,j = ∅ and hence Γj ∩ Dn,j = ∅.

(5.8) Condition (iv) implies that Tn,1 ̸= Tn ∨ Rn if Θn = PE.
(5.9) When Θn = RE or SE, the first edge added to Tn,1 − Tn,0 is fn (see (5.5) 

and Algorithm 3.1). For 1 ≤ j ≤ q, by definitions, Dn,j ⊆ Dn,j−1, so Γj−1
h  is well 

defined for any ηh ∈ Dn,j  and ∪ηh∈Dn,j
Γj−1

h ⊆ Γj−1. In view of Condition (v), 
the first edge added to Tn,j+1 − Tn,j  is colored by a color α in Γj−1

g  for some g 
with ηg ∈ Dn,j . From Condition (i) we see that α /∈ Γj

g . So Γj
g ̸= Γj−1

g . According 
to Condition (iii), now Γj

g consists of two colors in φn(Tn,j − V (T ∗
n,j−1)). Thus 

Γj−1
g ∩ Γj

g = ∅ and hence α /∈ Γj .
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(5.10) If a color α ∈ φn(Tn,j − V (T ∗
n,j−1)) for some j with 1 ≤ j ≤ q, then 

α /∈ Γj−1 by Condition (i), and hence α is closed in Tn,j  with respect to φn by 
Condition (v). This simple observation will be used repeatedly in subsequent proofs.

(5.11) Note that not every ETT admits a good hierarchy. Suppose T does have such 
a hierarchy. To prove that V(T) is elementary with respect to φn, as usual, we shall 
perform a sequence of Kempe changes to reduce a minimum counterexample to an 
even smaller one, thereby reaching a contradiction. (The adjectives minimum and 
smaller used here are not meant with respect to the number of vertices. The rigorous 
definition of a minimum counterexample will be given in the next section; see (6.2)–
(6.5).) Since interchanging with a color in Dn,j  by a Kempe change often results in a 
coloring which is not stable, in our proof we shall use colors in Γj

h as stepping stones 
to interchange with the color ηh in Dn,j  while maintaining stable colorings in subse-
quent proofs (such an interchange property indeed holds, as we shall see). So we may 
think of Γj

h as a color set exclusively reserved for ηh (see Condition (ii)) and think 
of a good hierarchy as a control mechanism over Kempe changes. We point out that 
Condition (i) can be used to preserve colors on edges of Tn,j(vηh

) − T ∗
n,j−1 under 

Kempe changes for ηh and a color in Γj
h. Condition (v) ensures that the aforemen-

tioned interchange property is satisfied by colors closed in Tn,j . Moreover, extending 
T by TAA while keeping condition (i) for j = q leads to Condition (v). Unless T is 
already closed, Condition (iii) allows us to further extend T by TAA while keeping 
the good hierarchy property, provided that Condition (v) holds for T = Tn,q+1.

We break the proof of Theorem 3.10(i) into the following two theorems. Although 
the first theorem appears to be weaker than Theorem 3.10(i), the second one implies 
that they are actually equivalent. We only present a proof of the second theorem in 
this section, and will give a proof of the first one in the next two sections.

Theorem 5.3  (Assuming (5.1)) Let T be an ETT constructed from a k-triple (G, e, φ) by 
using the Tashkinov series T = {(Ti , φi−1 , Si−1 , Fi−1 , Θi−1 ) : 1 ≤ i ≤ n + 1}. 
Suppose T admits a good hierarchy and satisfies MP with respect to φn . Then V(T) is 
elementary with respect to φn .

Theorem 5.4  (Assuming (5.1)) Let T be an ETT constructed from a k-triple (G, e, φ) by 
using the Tashkinov series T = {(Ti , φi−1 , Si−1 , Fi−1 , Θi−1 ) : 1 ≤ i ≤ n + 1}. If 
T satisfies MP under φn , then there exists a closed ETT T ′ corresponding to (φn, Tn) 
with V (T ′) = V (Tn+1 ), such that T ′ admits a good hierarchy and satisfies MP 
with respect to φn .

Remark  Our proof of Theorem 5.4 is based on Theorem 5.3, while the proof of theo-
rem 5.3 is completely independent of Theorem 5.4.

Proof of theorem 5.4  By (5.1) and Theorem  3.10(i), V (Ti) is elementary and 
closed with respect to φi−1 for 1 ≤ i ≤ n. So each |Ti| is an odd number. Thus 
|Ti| − |Ti−1| ≥ 2 for each 1 ≤ i ≤ n. By Theorem 2.8, if |T1| ≤ 10, then G is an 
elementary multigraph, thereby proving Theorem 2.1 in this case. So we may assume 
that |T1| ≥ 11. Hence 
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(1)	 |Ti| ≥ 2i + 9 for 1 ≤ i ≤ n.

We shall actually construct an ETT T ′ from Tn by using the same connecting edge, 
connecting color, and extension type as T, which has a good hierarchy: 

(2)	 Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q+1 = T ′, such that Tn ∨ Rn ⊂ Tn,1 if Θn = PE 
and such that V (T ′) = V (Tn+1).

Since V (Tn) is elementary with respect to φn−1, by (1) we have 
|φn−1(Tn)| ≥ 2n + 11 (as e is uncolored). From Algorithm 3.1 we see that 
|φn−1(Tn)| = |φn(Tn)|. So 

(3)	 |φn(Tn)| ≥ 2n + 11. Moreover, |Dn,0| ≤ |Dn| ≤ n by (5.6).
(4)	 If Θn = PE, then we can find a 2-color set Γ0

h = {γ0
h1

, γ0
h2

} ⊆ φn(Tn) for each 
ηh ∈ Dn,0 = ∪h≤nSh − φn(Tn ∨ Rn), such that Γ0

g ∩ Γ0
h = ∅ whenever ηg and 

ηh are two distinct colors in Dn,0, and such that Tn ∨ Rn is not (Γ0)−-closed 
with respect to φn, where Γ0 = ∪ηh∈Dn,0Γ0

h.

To justify this, let α be a color in φn(Tn ∨ Rn) that is not closed in Tn ∨ Rn under 
φn; such a color exists by (5.3). In view of (3), φn(Tn) − {α} contains at least 
2n + 10 colors. So (4) follows if we pick all colors in Γ0 from φn(Tn) − {α}. 
(5)	 If Θn = PE, then there exists a 2-color set Γ0

h = {γ0
h1

, γ0
h2

} ⊆ φn(Tn) for each 
ηh ∈ Dn,0 as described in (4), such that |φn(Tn) ∩ φn(Rn) − Γ0| ≥ 4.

To justify this, let α be as specified in the proof of (4). Then α /∈ φn(Tn) ∩ φn(Rn) by 
(5.4). Since vn is a maximum defective vertex and vn ∈ Tn ∩ Rn, the ends of the uncol-
ored edge e are contained in both Tn and Rn. So |φn(Tn) ∩ φn(Rn)| ≥ 4. If we pick 
all colors in Γ0 from φn(Tn) − {α}, with priority given to those in φn(Tn) − φn(Rn), 
then |φn(Tn) ∩ φn(Rn) − Γ0| ≥ 4 by (3), thereby establishing (5).

Thus Definition 5.2(iv) is satisfied by these sets Γ0
h. Using (3), we can similarly 

get the following statement. 
(6)	 If Θn ̸= PE, then we can find a 2-color set Γ0

h = {γ0
h1

, γ0
h2

} ⊆ φn(Tn) for each 
ηh ∈ Dn,0 = Dn, such that Γ0

g ∩ Γ0
h = ∅ whenever ηg and ηh are two distinct 

colors in Dn,0.
So Definition 5.2(ii) is also satisfied by these sets Γ0

h. Let us construct T ′ by the fol-
lowing Algorithms 5.5 and 5.6. Recall that vηh  is defined to be the first vertex of T ′ 
in the order ≺′ for which ηh ∈ φn(vηh

), if any, and defined to be the last vertex of 
T ′ in the order ≺′ otherwise; and Tn,j+1(vηh

) = Tn,j+1 if vηh  is not contained in 
Tn,j+1 for 0 ≤ j ≤ q.

Given {Γ0
h : ηh ∈ Dn,0}, let us construct Tn,1 using the following procedure.

Algorithm 5.5  Step 0. Set Tn,1 = Tn ∨ Rn if Θn = PE and Tn,1 = Tn + fn oth-
erwise, where fn is the connecting edge used in Algorithm 3.1, depending on Θn.
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Step 1. While there exists f ∈ ∂(Tn,1) with φn(f) ∈ φn(Tn,1), do: set 
Tn,1 = Tn,1 + f  if the resulting Tn,1 satisfies Γ0

h ∩ φn⟨Tn,1(vηh
) − T ∗

n,0⟩ = ∅ for 
all ηh ∈ Dn,0, where T ∗

n,0 = Tn ∨ Rn if Θn = PE and T ∗
n,0 = Tn otherwise.

Step 2. Return Tn,1.
Note that if Θn = PE, then Tn ∨ Rn is not (Γ0)−-closed with respect to φn by (4) 

and (5). So Step 1 is applicable to Tn ∨ Rn, and hence Tn,1 ̸= Tn ∨ Rn. If Θn = RE 
or SE, then Tn,1 ̸= Tn by the algorithm. For each ηh ∈ Dn,0, it follows from (5), 
(6), and Step 1 that Γ0

h ⊆ φn(Tn) − φn⟨Tn,1(vηh
) − T ∗

n,0⟩. So Definition 5.2(i) is 
satisfied. Moreover, Tn,1 is (∪ηh∈Dn,1Γ0

h)−-closed with respect to φn, as stated in 
Definition 5.2(v). To justify this, assume the contrary: there exists f ∈ ∂(Tn,1) with 
φn(f) ∈ φn(Tn,1) − (∪ηh∈Dn,1Γ0

h). Then either φn(f) ∈ φn(Tn,1) − (∪ηh∈Dn,0Γ0
h) 

or φn(f) ∈ Γ0
h for some ηh ∈ Dn,0 but ηh /∈ Dn,1; in the latter case, ηh has become 

a missing color at the vertex vηh  in Tn,1. Thus we can further grow Tn,1 by using f 
and Step 1 in either case, a contradiction. Since Definition 5.2(iii) starts with j = 1, 
{Γ0

h : ηh ∈ Dn,0} and Tn,1 satisfy all the conditions specified in Definition 5.2.
Suppose we have constructed {Γi−1

h : ηh ∈ Dn,i−1} and Tn,i for all i with 
1 ≤ i ≤ j, which are as described in Definition 5.2. If Tn,j  is closed with respect to 
φn (equivalently V (Tn,j) = V (Tn+1)), set T ′ = Tn,j . Otherwise, we proceed to the 
construction of {Γj

h : ηh ∈ Dn,j} and Tn,j+1 using the following procedure.

Algorithm 5.6  Step 0. Set Γj
h = Γj−1

h  for each ηh ∈ Dn,j .

Step 1. Let f be an edge in ∂(Tn,j) with φn(f) ∈ Γj−1
h  for some ηh ∈ Dn,j , 

let Tn,j+1 = Tn,j + f , and let {γj
h1

, γj
h2

} be a 2-subset of φn(Tn,j − V (T ∗
n,j−1)). 

Replace Γj
h by {γj

h1
, γj

h2
}.

Step 2. While there exists f ∈ ∂(Tn,j+1) with 
φn(f) ∈ φn(Tn,j+1), do: set Tn,j+1 = Tn,j+1 + f  if the resulting Tn,j+1 satisfies 
Γj

h ∩ φn⟨Tn,j+1(vηh
) − Tn,j⟩ = ∅ for all ηh ∈ Dn,j .

Step 3. Return {Γj
h : ηh ∈ Dn,j} and Tn,j+1.

Let us make some observations about this algorithm and its output.
As Tn,j  is not closed with respect to φn, V (Tn,j) is a proper subset of V (Tn+1). 

By Definition 5.2(v), Tn,j  is (∪ηh∈Dn,j
Γj−1

h )−-closed with respect to φn. So there 
exists a color β ∈ ∪ηh∈Dn,j

Γj−1
h , such that ∂φn,β(Tn,j) ̸= ∅. Hence the edge f speci-

fied in Step 1 is available.
For 1 ≤ i ≤ j, we have |φn(Tn,i)| ≥ |φn(Tn)| ≥ 2n + 11 and 

|Dn,i| ≤ |Dn,0| ≤ |Dn| ≤ n by (3). So φn(Tn,i) − (∪ηh∈Dn,i
Γi−1

h ) ̸= ∅; let α be a 
color in this set. By Theorem 5.3 (see the remark right above the proof of this theorem), 
V (Tn,i) is elementary with respect to φn, which implies that |Tn,i| is odd, because 
α is closed in Tn,i under φn by Definition 5.2(v). By the definition of Tn and (5.4), 
|T ∗

n,0| is also odd. It follows that |Tn,j | − |T ∗
n,j−1| ≥ 2. So φn(Tn,j − V (T ∗

n,j−1)) 
contains at least two distinct colors, and hence the 2-subset {γj

h1
, γj

h2
} involved in 
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Step 1 exists. Thus Definition 5.2(iii) is satisfied. Since Tn,j  is elementary by Theo-
rem 5.3 and Definition 5.2(ii) is satisfied by Tn,j−1, from Step 0 and Step 1 we see 
that Definition 5.2(ii) holds for Tn,j .

Note that each color in φn(Tn,j+1) − (∪ηh∈Dn,j+1Γj
h) is closed in Tn,j+1 with 

respect to φn, for otherwise, Tn,j+1 can be augmented further using Step 2 (see the 
paragraph succeeding Algorithm 5.5 for a proof). Thus Tn,j+1 is (∪ηh∈Dn,j+1Γj

h)−

-closed with respect to φn, and hence Definition 5.2(v) holds. From the algorithm it 
follows that Γj

h ⊆ φ(Tn,j) − φn⟨Tn,j+1(vηh
) − T ∗

n,j⟩ for all ηh ∈ Dn,j , so Defini-
tion 5.2(i) holds. Thus {Γj

h : ηh ∈ Dn,j} and Tn,j+1 satisfy all the conditions in 
Definition 5.2 and hence are as desired.

Repeating the process, we can eventually get a closed ETT T ′, with 
V (T ′) = V (Tn+1), that admits a good hierarchy with respect to φn. Clearly, T ′ also 
satisfies MP under φn. � □

Consider the case when Θn = PE. By the definition of hierarchy (see (5.5)), 
Tn ∨ Rn is fully contained in Tn,1. To maintain the structure of Tn ∨ Rn under 
Kempe changes, we need the following concept in subsequent proofs. A color-
ing σ ∈ Ck(G − e) is called a (Tn ⊕ Rn, Dn, φn)-stable coloring if it is both 
(Tn, Dn, φn)-stable and (Rn, ∅, φn)-stable; that is, the following conditions are 
satisfied:

σ(f) = φn(f) for any edge f incident to Tn with φn(f) ∈ φn(Tn) ∪ Dn;
σ(f) = φn(f) for any edge f incident to Rn with φn(f) ∈ φn(Rn); and
σ(v) = φn(v) for any v ∈ V (Tn ∪ Rn).

(5.12) If σ is a (Tn ⊕ Rn, Dn, φn)-stable coloring, then σ(f) = φn(f) for any 
edge f on Tn ∪ Rn, and Rn is also a closure of Tn(vn) under σ. To justify this, note 
that, for any edge f on Tn, this equality holds by Lemma 3.2(iv). For any edge f in 
Rn − Tn, we have φn(f) ∈ φn(Rn) by the definition of Rn and TAA. It follows 
from the above definition that σ(f) = φn(f). Since σ is (Rn, ∅, φn)-stable, Rn is a 
closure of Tn(vn) under σ as well.

From Lemma 2.4 it is clear that being (Tn ⊕ Rn, Dn, ·)-stable is also an equiva-
lence relation on Ck(G − e). Moreover, every (Tn ∨ Rn, Dn, φn)-stable coloring is 
(Tn ⊕ Rn, Dn, φn)-stable, but the converse need not hold.

Observe that, in the case of Θn = PE, even when 
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  is a hierarchy of T (see (5.5)) under 
φn, and T remains an ETT under a (Tn, Dn, φn)-stable coloring σn, there is no guar-
antee that Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  is a hierarchy of T under 
σn, because Rn may not be a closure of Tn(vn) under σn. Nonetheless, we can estab-
lish the following statement.

Lemma 5.7  Let T be an ETT constructed from a k-triple (G, e, φ) by using the Tashkinov 
series T = {(Ti , φi−1 , Si−1 , Fi−1 , Θi−1 ) : 1 ≤ i ≤ n + 1}. Suppose Θn = PE  
and T satisfies MP under φn . Let Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  
be a hierarchy of T under φn , and let σn  be a (Tn ⊕ Rn, Dn, φn)-stable coloring. If 
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T can be built from Tn  by TAA under σn , then T is also an ETT satisfying MP with 
respect to σn , and Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  remains to be 
a hierarchy of T under σn .

Proof  By hypothesis, σn is a (Tn ⊕ Rn, Dn, φn)-stable coloring. So σ(f) = φn(f) 
for any edge f on Tn ∨ Rn and Rn is also a closure of Tn(vn) under σn by (5.12). 
Furthermore, σn is a (Tn, Dn, φn)-stable coloring and hence is a φn mod Tn color-
ing by (5.1) and Theorem 3.10(vi). As T can be built from Tn by TAA under σn, 
it is an ETT corresponding to σn and satisfies MP under σn by Theorem 3.10(vi). 
In view of the hierarchy of T under φn, we obtain Tn ∨ Rn ⊂ Tn,1. Hence 
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  remains to be a hierarchy of T under 
σn. � □

From the above lemma we see that if Θn = PE, σn is a (Tn ⊕ Rn, Dn, φn)-sta-
ble coloring, and T is also an ETT under σn, then each hierarchy of T under φn is 
also a hierarchy under σn. Thus, to check whether a good hierarchy of T remains 
good under a (Tn ⊕ Rn, Dn, φn)-stable coloring in subsequent proofs, we shall only 
check whether it satisfies Definition 5.2, without even stating that it is a hierarchy by 
Lemma 5.7.

We define one more term before proceeding. Let T be a tree-sequence with respect 
to G and e. A coloring π ∈ Ck(G − e) is called (T, φn)-invariant if π(f) = φn(f) 
for any f ∈ E(T − e) and π(v) = φn(v) for any v ∈ V (T ). Clearly, being (T, ·)
-invariant is also an equivalence relation on Ck(G − e). Note that for any sub-
set C of [k], a (T, C, φn)-stable coloring π is also (T, φn)-invariant, provided 
that π⟨T ⟩ ⊆ φn(T ) ∪ C. Thus, if a coloring σn is both (T, φn)-invariant and 
(Tn ⊕ Rn, Dn, φn)-stable, then each hierarchy of T under φn is also a hierarchy 
under σn.

Lemma 5.8  (Assuming (5.1)) Let T be an ETT constructed from a k-triple (G, e, φ) by 
using the Tashkinov series T = {(Ti , φi−1 , Si−1 , Fi−1 , Θi−1 ) : 1 ≤ i ≤ n + 1}. 
Suppose T satisfies MP under φn . Let σn  be obtained from φn  by recoloring some 
(α, β)-chains fully contained in G − V (T ). Then the following statements hold: 

(i)	 σn is (T, Dn, φn)-stable. In particular, σn is (T, φn)-invariant. Furthermore, if 
Θn = PE and Tn ∨ Rn ⊆ T , then σn is (Tn ⊕ Rn, Dn, φn)-stable.

(ii)	 T is an ETT satisfying MP with respect to σn.
(iii)	If T admits a good hierarchy Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q+1 = T  under 

φn, then this hierarchy of T remains good under σn, with the same Γ-sets (see 
Definition 5.2). Furthermore, if T is (∪ηh∈Dn,q+1Γq

h)−-closed with respect to 
φn, then T is also (∪ηh∈Dn,q+1Γq

h)−-closed with respect to σn.

Proof  Since the recolored (α, β)-chains are fully contained in G − V (T ), we have

(1) σn(f) = φn(f) for each edge f incident to V(T) and φn(v) = σn(v) for each 
v ∈ V (T ).

Our proof relies heavily on this observation.

1 3

Page 47 of 91     23 



Journal of Combinatorial Optimization           (2025) 50:23 

(i) From (1) and definitions, it is clear that σn is a (T, Dn, φn)-stable. In particu-
lar, σn is (T, φn)-invariant. Furthermore, if Θn = PE and Tn ∨ Rn ⊆ T , then σn is 
(Tn ∨ Rn, Dn, φn)-stable, which implies that σn is (Tn ⊕ Rn, Dn, φn)-stable.

(ii) In view of (1), T can also be obtained by TAA from Tn (resp. Tn + fn) under 
σn when Θn = PE (resp. Θn= RE or SE). Besides, σn is a (Tn, Dn, φn)-stable col-
oring. Hence, by Theorem 3.10(vi), T remains to be an ETT and satisfies MP under 
σn.

(iii) By (ii), T is also an ETT under σn. By hypothesis, 
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q+1 = T  is a good hierarchy of T under φn. Consider 
the Γ-sets specified in Definition 5.2 with respect to φn. Using (1) it is routine to check 
that these Γ-sets satisfy all the conditions in Definition 5.2 with respect to σn. So the 
given hierarchy of T remains good under σn, with the same Γ-sets. Furthermore, if 
T is (∪ηh∈Dn,q+1Γq

h)−-closed with respect to φn, then T is also (∪ηh∈Dn,q+1Γq
h)−

-closed with respect to σn. � □
In subsequent proofs, if we say that a hierarchy of an ETT under one coloring 

remains good under another coloring without giving the Γ-sets, we mean that it is a 
good hierarchy with the same Γ-sets.

6  Basic properties

As we have seen, Theorem 3.10(i) follows from Theorems 5.3 and 5.4. In the pre-
ceding section we have proved Theorem 5.4. The remainder of this paper is devoted 
to a proof of Theorem 5.3. In this section we make some technical preparations; 
the reader is referred to Chen and Jing (2019) for prototypes of some lemmas to be 
established herein.

Let T be an ETT that admits a good hierarchy 
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  and satisfies MP with respect to 
the generating coloring φn. To prove Theorem 5.3 (that is, V(T) is elementary with 
respect to φn), we apply induction on q; the induction base is Theorem 3.10(i) for Tn. 
For convenience, we view Tn,0 as an ETT with −1 divider and n rungs in the follow-
ing assumption. Throughout this section we assume that

(6.1) In addition to (5.1), Theorem 5.3 holds for every ETT that admits a good 
hierarchy and satisfies MP, with n rungs and at most q − 1 dividers, where q ≥ 0.

Let us first prove two technical lemmas that will be used in the proof of Theorem 
5.3.

Lemma 6.1  (Assuming (5.1)) Let T be an ETT constructed from a k-triple (G, e, φ) by 
using the Tashkinov series T = {(Ti , φi−1 , Si−1 , Fi−1 , Θi−1 ) : 1 ≤ i ≤ n + 1}. 
Suppose Θn = PE  and T satisfies MP under φn . Let σn  be a (Tn ⊕ Rn, Dn, φn)
-stable coloring and let α and β be two colors in [k]. Then the following statements 
hold: 

(i)	 α and β are Rn-interchangeable under σn if α ∈ σn(Rn);
(ii)	 α and β are Tn-interchangeable under σn if α ∈ σn(Tn);
(iii)	α and β are Tn ∨ Rn-interchangeable under σn if α ∈ σn(Tn ∨ Rn) is closed 
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in Tn ∨ Rn under σn; and
(iv)	α and β are Tn ∨ Rn-interchangeable under σn if α ∈ σn(Tn) and 

β ∈ σn(Rn).

Proof  Since σn is a (Tn ⊕ Rn, Dn, φn)-stable coloring, it is (Tn, Dn, φn)-stable by 
definition. Let j = m(vn). It follows from (5.1) and Theorem 3.10(iii) that σn is a 
(Tj(vn) − vn, Dj−1, φj−1)-stable coloring. So σn is (Tj−1, Dj−1, φj−1)-stable and 
hence, by (5.1) and Theorem 3.10(vi), it is a φj−1 mod Tj−1 coloring, and every 
ETT corresponding to (σn, Tj−1) satisfies MP. Furthermore, σ(f) = φn(f) for any 
edge f in Tn ∪ Rn by (5.12) and σn(v) = φn(v) for all v ∈ V (Tn ∪ Rn).

(i) Since Rn is a closure of Tn(vn) under φn and σn is (Rn, ∅, φn)-stable, Rn is 
also a closure of Tn(vn) under σn. Since σn is φj−1 mod Tj−1, Rn is an ETT corre-
sponding to (σn, Tj−1) and satisfies MP under σn. Let α and β be as specified in the 
lemma. As r(Rn) = j − 1 < n, by (5.1) and Theorem 3.10(ii), there is at most one 
(α, β)-path with respect to σn intersecting Rn. Hence α and β are Rn-interchange-
able under σn.

Let us make some observations before proving statements (ii) and (iii). By (5.4), 
each color in φn(Tn) ∩ φn(Rn) is closed in Tn ∨ Rn with respect to φn. Since σn is 
a (Tn ⊕ Rn, Dn, φn)-stable coloring, by definition we obtain 

(1)	 each color in σn(Tn) ∩ σn(Rn) is closed in Tn ∨ Rn under σn.
(2)	 α and β are Tn-interchangeable under σn if α ∈ σn(Tn), α ̸= δn, and β ̸= δn.

To justify (2), note that α ̸= γn, because γn /∈ φn(Tn) = σn(Tn). So α /∈ Sn. Nev-
ertheless, the case β = γn may occur.

Let us first consider the case when β ̸= γn. Since σn is (Tn, Dn, φn)-sta-
ble, Pvn

(γn, δn, σn) ∩ Tn = {vn} by (5.1) and Theorem 3.10(iv). Define 
σ′

n = σn/Pvn(γn, δn, σn). By Lemma 3.6, σ′
n is (Tn, Dn−1, φn−1)-stable. From 

(5.1) and Theorem 3.10(ii) we deduce that α and β are Tn-interchangeable under σ′
n. 

So they are Tn-interchangeable under σn because {α, β} ∩ Sn = ∅.
It remains to consider the case when β = γn. In this case, fn is the only edge in 

∂σn,γn
(Tn) = ∂φn,γn

(Tn) by Lemma 3.2(v). Since V (Tn) is elementary with respect 
to φn, it is also elementary with respect to σn. Together with ∂σn,α(Tn) = ∅, we see 
that there is at most one (α, γn)-path with respect to σn intersecting Tn. So α and β 
are Tn-interchangeable under σn. Thus (2) is established.

By (1), δn is closed in Tn ∨ Rn with respect to σn. So statement (ii) follows 
instantly from (2) and statement (iii).

(iii) Assume the contrary: there are at least two (α, β)-paths P1 and P2 with respect 
to σn intersecting Tn ∨ Rn. We may assume that 

(3)	 α ∈ σn(Tn) ∩ σn(Rn).

To justify this, let A be the set of four ends of P1 and P2. Then at least two vertices 
from A are outside Tn ∨ Rn because, by Lemma 5.1, V (Tn ∨ Rn) is elementary 
with respect to σn. Thus P1 ∪ P2 contains two vertex-disjoint subpaths Q1 and Q2, 

1 3

Page 49 of 91     23 



Journal of Combinatorial Optimization           (2025) 50:23 

which are two Tn ∨ Rn-exit paths with respect to σn. Let u ∈ V (Tn) ∩ V (Rn), let 
η ∈ σn(u), and let σ′

n = σn/(G − Tn ∨ Rn, α, η). By (1), η is closed in Tn ∨ Rn 
with respect to σn; so is α by hypothesis. Hence σ′

n is a (Tn ⊕ Rn, Dn, φn)-sta-
ble coloring, and Q1 and Q2 are two Tn ∨ Rn-exit paths with respect to σ′

n. Since 
Pu(η, β, σ′

n) contains at most one of Q1 and Q2, replacing σn and α by σ′
n and η, 

respectively, we obtain (3).
Let v be a vertex in V (Tn) ∩ V (Rn) with α ∈ σn(v). Clearly, we may assume 

that P1 = Pv(α, β, σn). By (i), we may further assume that P2 is disjoint from Rn. 
So P2 intersects Tn. Therefore α and β are not Tn-interchangeable under σn. Since 
γn /∈ φn(Tn) = σn(Tn), we have α ̸= γn. By (2), we may assume that α = δn or 
β = δn.

Suppose β = δn. By Lemma 3.2(v) and the definition of stable colorings, edges 
in ∂σn,δn

(Tn) are all incident to V (Tn) ∩ V (Rn). Thus both P1 and P2 intersect 
V (Tn) ∩ V (Rn), contradicting statement (i).

Suppose α = δn. By (1), δn is closed in Tn ∨ Rn under σn. Since vn is a maximum 
defective vertex, V (Tn) ∩ V (Rn) contains both ends of the uncolored edge e, so there 
exists a color θ ∈ σn(Tn) ∩ σn(Rn) − {δn}. Let σ′′

n = σn/(G − Tn ∨ Rn, δn, θ). 
Then σ′′

n is also (Tn ⊕ Rn, Dn, φn)-stable. From the existence of P1 and P2, we see 
that θ and β are not Tn ∨ Rn-interchangeable under σ′′

n, contradicting our observa-
tion (2) above the case when α ̸= δn and β ̸= δn.

(iv) Assume the contrary: there are at least two (α, β)-paths P1 and P2 with respect 
to σn intersecting Tn ∨ Rn. Let u be a vertex in Tn with α ∈ σn(u) and let v be a 
vertex in Rn with β ∈ σn(v). By (ii) (resp. (i)), Pu(α, β, σn) (resp. Pv(α, β, σn)) is 
the only (α, β)-path with respect to σn intersecting Tn (resp. Rn). Hence we may 
assume that P1 = Pu(α, β, σn), P2 = Pv(α, β, σn) (rename subscripts if necessary), 
and Pu(α, β, σn) ̸= Pv(α, β, σn). Moreover, neither Pu(α, β, σn) nor Pv(α, β, σn) 
has an end in V (Tn) ∩ V (Rn), which in turn implies that 

(4)	 u ∈ V (Tn) − V (Rn) and v ∈ V (Rn) − V (Tn).

By (4) and statement (ii), Pv(α, β, σn) is disjoint from Tn. Let σ′
n = σn/Pv(α, β, σn). 

By Lemma 5.8, σ′
n is a (Tn, Dn, φn)-stable coloring. By Lemma 5.1, V (Tn ∨ Rn) 

is elementary with respect to σn. Since α ∈ σn(u) and β ∈ σn(v), from TAA we see 
that no edge in Rn(v) − Tn(vn) is colored by α or β under both φn and σn. Thus 
edges in Rn(v) − Tn(vn) are colored exactly the same under σ′

n as under σn and 
σn(x) = σ′

n(x) for any x ∈ V (Rn(v) − v)) ∪ V (Tn). Let R′
n be a closure of Tn(vn) 

under σ′
n. Then v ∈ V (R′

n). In view of Lemma 5.1, V (Tn ∨ R′
n) is elementary with 

respect to σ′
n. However, α ∈ σ′

n(u) ∩ σ′
n(v), a contradiction. � □

Lemma 6.2  (Assuming (6.1)) Let T be an ETT satisfying MP con-
structed from a k-triple (G, e, φ) by using the Tashkinov series 
T = {(Ti , φi−1 , Si−1 , Fi−1 , Θi−1 ) : 1 ≤ i ≤ n + 1}. Suppose T has a good hier-
archy Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T . Let p be a subscript with 
1 ≤ p ≤ q, and let α ∈ φn(Tn,p) and β ∈ [k] − {α}. If α is closed in Tn,p under 
φn , then α and β are Tn,p-interchangeable under φn .
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Proof  Assume the contrary: Let p be the smallest index such that there exist two 
(α, β)-paths Q1 and Q2 with respect to φn intersecting Tn,p. Let us make some 
simple observations about Tn,p before proceeding. Since Tn,p satisfies MP under φn 
and p ≤ q, 

(1)	 V (Tn,p) is elementary with respect to φn by (6.1) and Theorem 5.3.

By hypthesis, α ∈ φn(Tn,p) is closed in Tn,p with respect to φn, which together with 
(1) yields 

(2)	 |Tn,p| is odd.

As Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  is a good hierarchy, 

(3)	 Tn,p is (∪ηh∈Dn,pΓp−1
h )−-closed with respect to φn by Definition 5.2(v).

Depending on whether β is contained in φn(Tn,p), we consider two cases.
Case 1. β ∈ φn(Tn,p).
In this case, by (1) and (2), |∂φn,β(Tn,p)| is even. From the existence of Q1 and 

Q2, we see that G contains two vertex-disjoint (Tn,p, φn, {α, β})-exit paths P1 and 
P2. For i = 1, 2, let ai and bi be the ends of Pi with bi ∈ V (Tn,p). Renaming sub-
scripts if necessary, we may assume that b1 ≺ b2. We distinguish between two sub-
cases according to the location of b2.

Subcase 1.1. b2 ∈ V (Tn,p) − V (T ∗
n,p−1).

Since the edge on P2 incident to b2 is a boundary edge of Tn,p and is colored by β, 
we have β ∈ Γp−1

h  for some h with ηh ∈ Dn,p by (3), which together with Definition 
5.2(i) implies that β ∈ φ(Tn,p−1). Let γ ∈ φn(b2). By the assumption of the present 
subcase and Definition 5.2(i), we have γ /∈ Γp−1. Hence γ is closed with respect to 
φn in Tn,p by (3) (see (5.10) for details). So 

(4)	 both α and γ are closed in Tn,p under φn.

Let µ1 = φn/(G − Tn,p, α, γ). By Lemma 5.8, 
(5)	 the given hierarchy of Tn,p remains good under µ1, with the same Γ-sets as those 

under φn (see Definition 5.2). Furthermore, Tn,p is (∪ηh∈Dn,pΓp−1
h )−-closed 

under µ1 and β ∈ µ1(Tn,p−1).

Note that P1 and P2 are two (Tn,p, µ1, {γ, β})-exit paths. Let µ2 = µ1/Pb2(γ, β, µ1). 
Since Pb2(γ, β, µ1) ∩ Tn,p = {b2}, all edges incident to V (Tn,p(b2) − b2) are col-
ored the same under µ2 as under µ1. So β ∈ µ2(Tn,p−1). By (5) and Lemma 5.8, 
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,p−1 ⊆ Tn,p(b2) − b2 is a good hierarchy of the ETT 
Tn,p(b2) − b2 (satisfying MP) under µ2, with the same Γ-sets as Tn,p under φn. So 

(6)	 Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,p−1 ⊂ Tn,p(b2) is a good hierarchy of the ETT 
Tn,p(b2) (satisfying MP) under µ2, with the same Γ-sets as Tn,p under φn.
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Thus from (6) and (6.1) on Theorem 5.3, we conclude that V (Tn,p(b2)) is elementary 
with respect to µ2. However, β ∈ µ2(Tn,p−1) ∩ µ2(b2), a contradiction.

Subcase 1.2. b2 ∈ V (T ∗
n,p−1).

We propose to show that 

(7)	 there exists a color θ ∈ φn(Tn) that is closed in both T ∗
n,0 and Tn,1 under φn if 

p = 1, and a color θ ∈ φn(Tn,p−1) that is closed in both Tn,p−1 and Tn,p under 
φn if p ≥ 2.

Our proof is based on the following simple observation (see (3) in the proof of Theo-
rem 5.4). 

(8)	 |φn(Tn)| ≥ 2n + 11 and |Dn,i| ≤ |Dn| ≤ n for 0 ≤ i ≤ q.
Let us first assume that p = 1. When Θn ̸= PE, let θ be a color in 
φn(Tn) − (∪ηh∈Dn,1Γ0

h); such a color exists by (8). From Algorithm 3.1 we see 
that Tn is closed under φn. By (3), Tn,1 is (∪ηh∈Dn,1Γ0

h)−-closed under φn. So θ 
is as desired. When Θn = PE, we have |φn(Tn) ∩ φn(Rn) − Γ0| ≥ 4 by Defini-
tion 5.2(iv). Let θ ∈ φn(Tn) ∩ φn(Rn) − Γ0 − {δn}. It follows from (5.4) that θ is 
closed in Tn ∨ Rn under φn. Since Tn,1 is (∪ηh∈Dn,1Γ0

h)−-closed with respect to 
φn, θ also closed in Tn,1 under φn as desired.

Next we assume that p ≥ 2. By (8), we have |φn(Tn,p−2)| ≥ |φn(Tn)| ≥ 2n + 11 
and |Dn,p−1| ≤ |Dn| ≤ n. So there exists a color θ in 
φn(Tn,p−2) − (∪ηh∈Dn,p−1Γp−2

h ). Since φn(Tn,p−2) ⊆ φn(Tn,p−1), we get 
θ ∈ φn(Tn,p−1) − (∪ηh∈Dn,p−1Γp−2

h ). By Definition 5.2(v), θ is closed in Tn,p−1 
under φn. From the definition of θ and Definition 5.2(iii), it follows that θ /∈ Γp−1. 
So θ ∈ φn(Tn,p) − Γp−1 ⊆ φn(Tn,p) − (∪ηh∈Dn,pΓp−1

h ). By (3), θ is closed in Tn,p 
under φn. Hence (7) is established.

Let µ3 = φn/(G − Tn,p, α, θ). Since both α and θ are closed in Tn,p with respect 
to φn, by Lemma 5.8, Tn,p admits a good hierarchy and satisfies MP with respect 
to µ3. Thus Tn,p−1 also admits a good hierarchy and satisfies MP with respect to 
µ3 if p ≥ 2. By (7), θ is closed in T ∗

n,0 if p = 1 and closed in Tn,p−1 if p ≥ 2 under 
µ3. Note that both P1 and P2 are (T ∗

n,p−1, µ3, {θ, β})-exit paths. So θ and β are not 
T ∗

n,0-interchangeable under µ3 if p = 1 and not Tn,p−1-interchangeable under µ3 if 
p ≥ 2, which contradicts Lemma 6.1(iii) or the interchangeability property of Tn 
when p = 1, and the minimality assumption on p when p ≥ 2.

Case 2. β /∈ φn(Tn,p).
In this case, |∂φn,β(Tn,p)| is odd and at least three by (1) and (2). From the exis-

tence of Q1 and Q2, we see that G contains at least three (Tn,p, φn, {α, β})-exit paths 
P1, P2, P3. For i = 1, 2, 3, let ai and bi be the ends of Pi with bi ∈ V (Tn,p), and fi 
be the edge of Pi incident to bi. Renaming subscripts if necessary, we may assume 
that b1 ≺ b2 ≺ b3.

Subcase 2.1. b3 ∈ V (Tn,p) − V (T ∗
n,p−1).

For convenience, we call the tuple (φn, Tn,p, α, β, P1, P2, P3) a counterexample 
and use K to denote the set of all such counterexamples. With a slight abuse of nota-
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tion, we still use (φn, Tn,p, α, β, P1, P2, P3) to denote a counterexample in K with 
the minimum |P1| + |P2| + |P3|. Let γ ∈ φ(b3). By the hypothesis of the present 
subcase and Definition 5.2(i), we have γ /∈ Γp−1. So γ is closed in Tn,p under φn by 
(3). Note that γ might be some ηh ∈ Dn.

Let µ4 = φn/(G − Tn,p, α, γ). By Lemma 5.8, Tn,p admits a good hierarchy and 
satisfies MP under µ4. Note that P1, P2, P3 are three (Tn,p, µ4, {γ, β})-exit paths.

Consider µ5 = µ4/Pb3(γ, β, µ4). Clearly, β ∈ µ5(b3) and 
β /∈ Γp−1. Since Pb3(γ, β, µ4) ∩ Tn,p = {b3}, it is easy to see that all edges incident 
to V (Tn,p(b3) − b3) are colored the same under µ5 as under µ4. By Lemma 5.8, 
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,p−1 ⊂ Tn,p(b3) − b3 is a good hierarchy of the ETT 
Tn,p(b3) − b3 satisfying MP under µ5, with the same Γ-sets as Tn,p under φn. So 

(9)	 Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,p−1 ⊂ Tn,p(b3) is a good hierarchy of Tn,p(b3) 
under µ5, with the same Γ-sets as Tn,p under φn.

Let H be obtained from Tn,p(b3) by adding f1 and f2. Since β /∈ Γp−1, it can be seen 
from (9) that 

(10)	 Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,p−1 ⊂ H  is a good hierarchy of H under µ5, 
with the same Γ-sets as Tn,p under φn.

By (5.1) and Theorem 3.10(vi), H satisfies MP under µ5. Set T ′ = H . Let us grow T ′ 
by using the following algorithm: 
(11)	While there exists f ∈ ∂(T ′) with µ5(f) ∈ µ5(T ′), do: set T ′ = T ′ + f  if the 

resulting T ′ satisfies Γp−1
h ∩ µ5⟨T ′(vηh

) − Tn,p−1⟩ = ∅ for all ηh ∈ Dn,p−1.

Note that this algorithm is exactly the same as Step 2 in Algorithm 5.6. From (11) 
we see that 

(12)	 T ′ is (∪ηh∈D′
n,p

Γp−1
h )−-closed with respect to µ5, where 

D′
n,p = ∪h≤nSh − µ5(T ′) (so D′

n,p ⊆ Dn,p−1).

In view of (10) and (11), we conclude that 

(13)	 Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,p−1 ⊂ T ′ is a good hierarchy of T ′ under µ5, 
with the same Γ-sets as Tn,p under φn.

Clearly, T ′ satisfies MP under µ5. By (13), (6.1), and Theorem 5.3, V (T ′) is elemen-
tary with respect to µ5. Observe that none of a1, a2, a3 is contained in T ′, for oth-
erwise, let ai ∈ V (T2) for some i with 1 ≤ i ≤ 3. Since {β, γ} ∩ µ5(ai) ̸= ∅ and 
β ∈ µ5(b3), we obtain γ ∈ φ2(ai). Recall that β, γ /∈ Γp−1. Hence from (11) we see 
that P1, P2, P3 are all entirely contained in G[T ′], which in turn implies γ ∈ φ2(aj) 
for j = 1, 2, 3. So V (T ′) is not elementary with respect to µ5, a contradiction. There-
fore, each Pi contains a subpath Li, which is a T ′-exit path with respect to µ5. Since 
f1 is not contained in L1, we obtain |L1| + |L2| + |L3| < |P1| + |P2| + |P3|. Thus, 
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in view of (12), the existence of the counterexample (µ5, T ′, γ, β, L1, L2, L3) vio-
lates the minimality assumption on (φn, Tn,p, α, β, P1, P2, P3).

Subcase 2.2. b3 ∈ V (T ∗
n,p−1).

The proof in this subcase is essentially the same as that in Subcase 1.2. Let θ be 
a color as described in (7). Consider µ3 = φn/(G − Tn,p, α, θ). Then we can verify 
that θ and β are not T ∗

n,0-interchangeable under µ3 if p = 1 and not Tn,p−1-inter-
changeable under µ3 if p ≥ 2, which contradicts Lemma 6.1(iii) or the minimality 
assumption on p; for the omitted details, see the proof in Subcase 1.2. � □

Let us make some further preparations before proving Theorem 5.3. Let 
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q+1 = T  be a good hierarchy of T (see (5.5) and 
Definition 5.2). Recall that T ∗

n,0 = Tn ∨ Rn if Θn = PE and T ∗
n,0 = Tn oth-

erwise, T ∗
n,0 ⊂ Tn,1 by (5.5), and T ∗

n,i = Tn,i if i ≥ 1. Let T be constructed 
from T ∗

n,q using TAA by recursively adding edges e1, e2, . . . , ep and vertices 
y1, y2, . . . , yp, where yi is the end of ei outside T (yi−1) for i ≥ 1, with T (y0) = T ∗

n,q. 
Write T = T ∗

n,q ∪ {e1, y1, e2, ..., ep, yp}. The path number of T, denoted by p(T), 
is defined to be the smallest subscript i ∈ {1, 2, ..., p} such that the sequence 
(yi, ei+1, ..., ep, yp) corresponds to a path in G, where ej  is between yj−1 and yj  for 
i + 1 ≤ j ≤ p. Note that p(T ) = p if this path contains the vertex yp only.

A coloring σn ∈ Ck(G − e) is called a (T ∗
n,0, Dn, φn)-weakly stable coloring if it 

is a (Tn ⊕ Rn, Dn, φn)-stable coloring when Θn = PE and is a (Tn, Dn, φn)-sta-
ble coloring when Θn ̸= PE. By Lemma 3.2(iv) and (5.12), every (T ∗

n,0, Dn, φn)
-weakly stable coloring is (T ∗

n,0, φn)-invariant.
A coloring σn ∈ Ck(G − e) is called a (T ∗

n,i, Dn, φn)-weakly stable coloring, 
with 1 ≤ i ≤ q, if it is both a (T ∗

n,0, Dn, φn)-weakly stable and a (T ∗
n,i, φn)-invariant 

coloring. By Lemma 3.2(iv), every (T ∗
n,i, Dn, φn)-stable coloring is (T ∗

n,i, Dn, φn)
-weakly stable. From Theorem 3.10(vi) it is also clear that, under a (T ∗

n,i, Dn, φn)
-weakly stable coloring σn, T ∗

n,i is an ETT satisfying MP (this statement will fre-
quently be used directly in subsequent proofs without even citing Theorem 3.10(vi)).

As stated before, our proof of Theorem 5.3 proceeds by induction on q (see (6.1)). 
The induction step will be carried out by contradiction. Throughout the remainder 
of this section and Subsection 7.1, (T, φn) stands for a minimum counterexample to 
Theorem 5.3; that is,

(6.2) T is an ETT that admits a good hierarchy 
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1

= T  and satisfies MP with respect to the generating coloring φn;
(6.3) subject to (6.2), V(T) is not elementary with respect to φn;
(6.4) subject to (6.2) and (6.3), p(T) is minimum; and
(6.5) subject to (6.2)–(6.4), |T | − |Tn,q| is minimum.
Our objective is to find another counterexample (T ′, σn) to Theorem 5.3, which 

violates the minimality assumption (6.4) or (6.5) on (T, φn).
The following fact will be used frequently in subsequent proof.
(6.6) V (T (yp−1)) is elementary with respect to φn.
Let us exhibit some basic properties satisfied by the minimum counterexample 

(T, φn) as specified above.

Lemma 6.3  For 0 ≤ i ≤ p − 1 , the inequality
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	 |φn(T (yi)) − φn(T ∗
n,0 − V (Tn)) − φn⟨T (yi) − T ∗

n,q⟩| ≥ 2n + 11

holds, where T (y0 ) = T∗
n,q . Furthermore, if

	 |φn(T (yi)) − φn(T ∗
n,0 − V (Tn)) − φn⟨T (yi) − T ∗

n,q⟩ − (Γq ∪ Dn,q)| ≤ 4,

then there exist 7 distinct colors ηh ∈ Dn,q ∩ φn(T (yi)) such that 
(Γq

h ∪ {ηh}) ∩ φn⟨T (yi) − T∗
n,q⟩ = ∅, where Γq  and Γq

h  are introduced in Defini-
tion 5.2.

Proof  By (6.6), T (yp−1) is elementary with respect to φn. Since the number of ver-
tices in T (yi) − V (T ∗

n,q) is i, and the number of edges in T (yi) − T ∗
n,q  is also i, we 

obtain |φn(T (yi) − V (T ∗
n,q))| ≥ |φn⟨T (yi) − T ∗

n,q⟩|. Hence

	

|φn(T (yi)) − φn(T ∗
n,0 − V (Tn)) − φn⟨T (yi) − T ∗

n,q⟩|
≥ |φn(T (yi))| − |φn(T ∗

n,0 − V (Tn))| − |φn⟨T (yi) − T ∗
n,q⟩|

≥ |φn(T (yi))| − |φn(T ∗
n,0 − V (Tn))| − |φn(T (yi) − V (T ∗

n,q))|
= |φn(T ∗

n,q)| − |φn(T ∗
n,0 − V (Tn))|

≥ |φn(T ∗
n,0)| − |φn(T ∗

n,0) − φn(Tn)|
= |φn(Tn)|
≥ 2n + 11,

where the last inequality can be found in the proof of Theorem 5.4 (see (3) therein). 
So the first inequality is established.

Suppose the second inequality also holds. Then these two inequali-
ties guarantee the existence of at least 2n + 7 colors in the intersection C of 
φn(T (yi)) − φn(T ∗

n,0 − V (Tn)) − φn⟨T (yi) − T ∗
n,q⟩ and Γq ∪ Dn,q . By (5.6), 

we have |Dn,q| ≤ |Dn| ≤ n and |Γq| ≤ 2|Dn,q| ≤ 2n. So |Γq ∪ Dn,q| ≤ 3n. 
Since |C| ≤ |Γq ∪ Dn,q|, it follows that 2n + 7 ≤ 3n, which implies n ≥ 7. Note 
that C = ∪ηh∈Dn,q

(Γq
h ∪ {ηh}) ∩ C and |(Γq

h ∪ {ηh}) ∩ C| ≤ 3 for any ηh in 
Dn,q . Since |C| ≥ 2n + 7 and n ≥ 7, by the Pigeonhole Principle, there exist at 
least 7 distinct colors ηh in Dn,q , such that |(Γq

h ∪ {ηh}) ∩ C| = 3, or equivalently, 
Γq

h ∪ {ηh} ⊆ C. For each of these ηh, clearly ηh ∈ Dn,q ∩ φn(T (yi)) and 
(Γq

h ∪ {ηh}) ∩ φn⟨T (yi) − T ∗
n,q⟩ = ∅ by the definition of C. � □

Let v be a vertex of T and T ′ ⊂ T . By T ′ ≺ v we mean that u ≺ v for any 
u ∈ V (T ′). Given a color α ∈ [k], we use vα to denote the first vertex u of T in the 
order ≺ for which α ∈ φn(u), if any, and defined to be the last vertex of T in the 
order ≺ otherwise.

Lemma 6.4  Suppose q ≥ 1  and α ∈ φn(Tn,q). If there exists a subscript 
i with 0 ≤ i ≤ q, such that α is closed in T∗

n,i  with respect to φn , then 
α /∈ φn⟨Tn,q − T∗

n,r⟩, where r is the largest such i. If there is no such subscript i, 
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then α ∈ ∪ηh∈Dn,j Γ
j−1
h ⊆ Γ j−1  for 1 ≤ j ≤ q, Θn = PE , vα ∈ V (Tn) − V (Rn), 

and α /∈ φn⟨Tn,q − Tn⟩.

Proof  Recall that T has a good hierarchy by (6.2). Let us first assume the existence 
of a subscript i with 0 ≤ i ≤ q, such that α is closed in T ∗

n,i with respect to φn. By 
definition, r is the largest such i. As the statement holds trivially when r = q, we 
may assume that r < q. Let s be an arbitrary index with r + 1 ≤ s ≤ q. From the 
definition of r, we see that α is not closed in Tn,s with respect to φn. It follows 
from Definition 5.2(v) that α ∈ Γs−1

h  for some ηh ∈ Dn,s ⊆ Dn,s−1. By definition, 
Dn,s = ∪h≤nSh − φn(Tn,s), so ηh /∈ φn(Tn,s) and hence Tn,s(vηh

) = Tn,s (see 
paragraphs above Definition 5.2 for the notation Tn,s(vηh

)). Since α ∈ Γs−1
h , Definition 

5.2(i) (with j = s − 1) implies α /∈ φn⟨Tn,s(vηh
) − T ∗

n,s−1⟩ = φn⟨Tn,s − T ∗
n,s−1⟩. 

As this property holds for all s with r + 1 ≤ s ≤ q, we get α /∈ φn⟨Tn,q − T ∗
n,r⟩.

Next we assume that there exists no subscript i with 0 ≤ i ≤ q, such that α is 
closed in T ∗

n,i with respect to φn. Since α ∈ φn(Tn,q), it follows from (5.10) that 
α ∈ φn(T ∗

n,0). By Definition 5.2(v), we obtain 

(1)	 α ∈ ∪ηh∈Dn,j
Γj−1

h ⊆ Γj−1 for 1 ≤ j ≤ q.

Hence α ∈ Γj  for all 0 ≤ j ≤ q − 1. From the definition of Γ0, we see that 
vα ∈ V (Tn). If Θn ̸= PE, then α would be closed in Tn = T ∗

n,0 under φn, a con-
tradiction. So Θn = PE. Moreover, since α is not closed in T ∗

n,0, by (5.4), we have 
vα ∈ V (Tn) − V (Rn). Since Rn is a closure of Tn(vn) under φn, using (6.6) and 
TAA we obtain 

(2)	 α /∈ φn(Rn − V (Tn)) and α /∈ φn⟨Rn − Tn⟩.
(3)	 α /∈ φn⟨Tn,q − T ∗

n,0⟩.
Let s be an arbitrary index with 1 ≤ s ≤ q. By (1), we have α ∈ Γs−1

h  for 
some ηh ∈ Dn,s ⊆ Dn,s−1. As Dn,s = ∪h≤nSh − φn(Tn,s), there holds 
ηh /∈ φn(Tn,s). So Tn,s(vηh

) = Tn,s. From Definition 5.2(i) (with j = s − 1), we 
deduce that α /∈ φn⟨Tn,s(vηh

) − T ∗
n,s−1⟩ = φn⟨Tn,s − T ∗

n,s−1⟩. Since this property 
is valid for all s with 1 ≤ s ≤ q, we establish (3).

Combining (2) and (3), we conclude that α /∈ φn⟨Tn,q − Tn⟩. � □
Our proof of Theorem 5.3 relies heavily on the following two technical lemmas.

Lemma 6.5  Let α and β be two colors in φn(T (yp−1 )). Suppose both 
vα ≺ vβ  and α /∈ φn⟨T (vβ) − T∗

n,q⟩ hold if {α, β} − φn(T∗
n,q) ̸= ∅. Then 

Pvα
(α, β, φn) = Pvβ

(α, β, φn) if one of the following cases occurs: 

(i)	 q ≥ 1, and α ∈ φn(Tn,q) or {α, β} ∩ Dn,q = ∅;
(ii)	 q = 0, and α ∈ φn(Tn) or {α, β} ∩ Dn = ∅; and
(iii)	α ∈ φn(T ∗

n,q) and is closed in T ∗
n,q with respect to φn.

Furthermore, in Case (iii), Pvα
(α, β, φn) = Pvβ

(α, β, φn) is the only (α, β)-path 
with respect to φn  intersecting T∗

n,q .
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Proof  Let a = vα and b = vβ . We distinguish among three cases according to the 
locations of a and b.

Case 1. {a, b} ⊆ V (T ∗
n,q).

By (6.6), V (T ∗
n,q) is elementary with respect to φn. So a (resp. b) is the only vertex 

in T ∗
n,q missing α (resp. β). If both α and β are closed in T ∗

n,q with respect to φn, then 
no boundary edge of T ∗

n,q is colored by α or β. Hence Pa(α, β, φn) = Pb(α, β, φn) 
is the only path intersecting T ∗

n,q. So we may assume that α or β is not closed in T ∗
n,q 

with respect to φn. It follows that if q = 0, then Θn = PE, for otherwise, Algorithm 
3.1 would imply that both α and β are closed in Tn = T ∗

n,0, a contradiction. Therefore
(1) T ∗

n,0 = Tn ∨ Rn if q = 0.
Let us first assume that precisely one of α and β is closed in T ∗

n,q with respect to 
φn. In this subcase, by Lemma 6.2 if q ≥ 1 and by (1) and Lemma 6.1(iii) if q = 0, 
colors α and β are T ∗

n,q-interchangeable under φn, so Pa(α, β, φn) = Pb(α, β, φn) 
is the only path intersecting T ∗

n,q.
Next we assume that neither α nor β is closed in T ∗

n,q with 
respect to φn. In this subcase, we only need to show that 
Pa(α, β, φn) = Pb(α, β, φn). Symmetry allows us to assume that a ≺ b. Let r be the 
subscript with β ∈ φn(T ∗

n,r − V (T ∗
n,r−1)), where 0 ≤ r ≤ q and T ∗

n,−1 = ∅. Then 
a, b ∈ V (T ∗

n,r). By (6.2), Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  is a good 
hierarchy of T. If r ≥ 1, then β is closed in Tn,r with respect to φn by Definition 
5.2 (see (5.10)). From the above discussion about T ∗

n,q (with r in place of q), we 
similarly deduce that Pa(α, β, φn) = Pb(α, β, φn). So we may assume that r = 0. 
If Θn ̸= PE, then both α and β are closed in Tn with respect to φn (see Algorithm 
3.1), so Pa(α, β, φn) = Pb(α, β, φn) by (6.6). If Θn = PE, then it follows from 
Lemma 6.1(i), (ii) and (iv) that Pa(α, β, φn) = Pb(α, β, φn).

Case 2. {a, b} ∩ V (T ∗
n,q) = ∅.

By the hypotheses of the present case and the present lemma, we have 
{α, β} ∩ Dn,q = ∅ if q ≥ 1 and {α, β} ∩ Dn = ∅ if q = 0. So

(2) α, β /∈ Dn,q ∪ φn(T ∗
n,q) if q ≥ 1 and α, β /∈ Dn ∪ φn(T ∗

n,0) if q = 0.
By the definitions of Dn and Dn,q , we have Dn ∪ φn(Tn) ⊆ Dn,q ∪ φn(T ∗

n,q). By 
Lemma 3.2(iv) and Algorithm 3.1, we obtain φn⟨T (a)⟩ ⊆ Dn ∪ φn(T (a) − a) and 
φn⟨T (b)⟩ ⊆ Dn ∪ φn(T (b) − b). Since T ∗

n,q ≺ a ≺ b and α /∈ φn⟨T (b) − T ∗
n,q⟩ (by 

the hypotheses of the present case and the present lemma), from (2) we see that
(3) α, β /∈ φn⟨T (b)⟩.
Suppose on the contrary that Pa(α, β, φn) ̸= Pb(α, β, φn). Consider 

σn = φn/Pb(α, β, φn). By (2), σn is a (T ∗
n,q, Dn, φn)-stable coloring, so it is 

also a (T ∗
n,q, Dn, φn)-weakly stable coloring. Thus, by (3) and (6.6), every edge 

of T(b) is colored under σn the same as under φn. So T(b) is still an ETT satis-
fying MP with respect to σn. Moreover, from (2), (3), and (6.6), we deduce that 
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T (b) is still a good hierarchy of T(b) under σn, 
with the same Γ-sets as T under φn (see Definition 5.2). As α ∈ σn(a) ∩ σn(b), the 
pair (T (b), σn) is a counterexample to Theorem 5.3, which contradicts the minimal-
ity assumption (6.5) on (T, φn).

Case 3. a ∈ V (T ∗
n,q) and b /∈ V (T ∗

n,q).
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By the hypotheses of the present case and the present lemma, (6.6) and TAA, we 
obtain

(4) α /∈ φn⟨T (b) − T ∗
n,q⟩ and β /∈ φn(T (b) − b). So β is not used by any edge in 

T (b) − T ∗
n,q, except possibly e1 when q = 0 and T ∗

n,0 = Tn (now e1 = fn in Algo-
rithm 3.1 and β ∈ Dn).

Let us first assume that α is closed in T ∗
n,q with respect to φn. By Lemma 6.2 

if q ≥ 1 and by Lemma 6.1(iii) or Theorem 3.10(ii) (see (5.1)) if q = 0, colors α 
and β are T ∗

n,q-interchangeable under φn. So Pa(α, β, φn) is the only (α, β)-path 
intersecting T ∗

n,q. Suppose on the contrary that Pa(α, β, φn) ̸= Pb(α, β, φn). Then 
Pb(α, β, φn) is vertex-disjoint from T ∗

n,q and hence contains no edge incident to T ∗
n,q.

Consider σn = φn/Pb(α, β, φn). It is routine to check that σn is a (T ∗
n,q, Dn, φn)

-weakly stable coloring, and T(b) is an ETT satisfying MP with respect to σn. More-
over, Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T (b) is a good hierarchy of T(b) under 
σn, with the same Γ-sets as T under φn, by (4). As α ∈ σn(a) ∩ σn(b), the pair 
(T (b), σn) is a counterexample to Theorem 5.3, which contradicts the minimality 
assumption (6.5) on (T, φn).

So we assume hereafter that
(5) α is not closed in T ∗

n,q with respect to φn.
Hence our objective is to show that Pa(α, β, φn) = Pb(α, β, φn). Assume the con-

trary: Pa(α, β, φn) ̸= Pb(α, β, φn). We distinguish between two subcases according 
to the value of q.

Subcase 3.1. q = 0.
By the hypothesis of the present lemma, α ∈ φn(Tn) or {α, β} ∩ Dn = ∅. So 

α /∈ Dn. From (5) and Algorithm 3.1 we deduce that T ∗
n,0 ̸= Tn. Hence

(6) Θn = PE, which together with (5) and (5.4) yields a /∈ V (Tn) ∩ V (Rn).
Consider σn = φn/Pb(α, β, φn). We claim that
(7) σn is a (T ∗

n,0, Dn, φn)-weakly stable coloring.
To justify this, note that if a ∈ V (Tn) − V (Rn), then α, β /∈ φn(Rn) by (6.6) and 

the hypothesis of the present case. By definition, σn is (Rn, ∅, φn)-stable. In view of 
Lemma 6.1(ii), Pb(α, β, φn) is disjoint from Tn and hence contains no edge incident 
to Tn. So σn is (Tn, Dn, φn)-stable. Hence (7) holds. Suppose a ∈ V (Rn) − V (Tn). 
By the hypothesis of the present lemma, {α, β} ∩ Dn = ∅. By (6.6), we also have 
α, β /∈ φn(Tn). Thus α, β /∈ φn(Tn) ∪ Dn. By definition, σn is (Tn, Dn, φn)-stable. 
Using Lemma 6.1(i), Pb(α, β, φn) is disjoint from Rn and hence contains no edge 
incident to Rn. By definition, σn is (Rn, ∅, φn)-stable. Therefore (7) is true.

From (4), (7) and (6.6) we see that σn(f) = φn(f) for each f ∈ E(T (b)) and 
σn(u) = φn(u) for each u ∈ V (T (b) − b) (recall that every (T ∗

n,0, Dn, φn)-weakly 
stable coloring is (T ∗

n,0, φn)-invariant). Furthermore, T(b) is an ETT satisfying MP 
with respect to σn, and Tn = Tn,0 ⊂ T (b) is a good hierarchy of T(b) under σn, 
with the same Γ-sets as T under φn. As α ∈ σn(a) ∩ σn(b), the pair (T (b), σn) is a 
counterexample to Theorem 5.3, which contradicts the minimality assumption (6.5) 
on (T, φn).

Subcase 3.2. q ≥ 1.
Let us first assume that α is closed in T ∗

n,i with respect to φn for some i with 
0 ≤ i ≤ q. Let r be the largest subscript i with this property. Then r ≤ q − 1 by (5). 
Note that α ∈ φn(T ∗

n,r) since α is closed in T ∗
n,r and |T ∗

n,r| is odd (because it is 
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elementary and closed for colors in φn(T ∗
n,r − V (T ∗

n,r−1))). By Lemma 6.4, we have 
α /∈ φn⟨Tn,q − T ∗

n,r⟩, which together with (4) yields
(8) α /∈ φn⟨T (b) − T ∗

n,r⟩.
By Lemma 6.2 if r ≥ 1 and by Theorem 3.10(ii) or Lemma 6.1(iii) if r = 0, col-

ors α and β are T ∗
n,r-interchangeable under φn. So Pa(α, β, φn) is the only (α, β)

-path with respect to φn intersecting T ∗
n,r. Hence Pb(α, β, φn) is vertex-disjoint from 

T ∗
n,r and therefore contains no edge incident to T ∗

n,r. Let σn = φn/Pb(α, β, φn). By 
Lemma 5.8, σn is a (T ∗

n,r, Dn, φn)-weakly stable coloring, and T ∗
n,r is an ETT hav-

ing a good hierarchy and satisfying MP with respect to σn. By (4) and TAA, β is not 
used by any edge in T (b) − T ∗

n,r, except possibly e1 when r = 0 and T ∗
n,0 = Tn (now 

e1 = fn in Algorithm 3.1 and β ∈ Dn). Since σn is (Tn, Dn, φn)-stable, it follows 
from (8) and (6.6) that σn(f) = φn(f) for each f ∈ E(T (b)) and σn(u) = φn(u) 
for each u ∈ V (T (b) − b). So T(b) is an ETT satisfying MP with respect to σn. 
Moreover,

(9) Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T (b) is a good hierarchy of T(b) under σn, 
with the same Γ-sets as T under φn.

Since σn(f) = φn(f) for each f ∈ E(T (b)) and σn(u) = φn(u) for each 
u ∈ V (T (b) − b), to justify (9), it suffices to verify that Definition 5.2(v) is satisfied 
with respect to σn; that is, Tn,j  is (∪ηh∈Dn,j

Γj−1
h )−-closed with respect to σn for 

1 ≤ j ≤ q. As the statement holds trivially if Pb(α, β, φn) is vertex-disjoint from 
Tn,j , we may assume that Pb(α, β, φn) intersects Tn,j . Thus r + 1 ≤ j ≤ q. Observe 
that α ∈ ∪ηh∈Dn,j

Γj−1
h , for otherwise, α is closed in Tn,j  with respect to φn by Defi-

nition 5.2(v), contradicting the definition of r. By (6.6), we also obtain β /∈ φn(Tn,j). 
Consequently, Tn,j  is (∪ηh∈Dn,j

Γj−1
h )−-closed with respect to σn. (Note that α may 

become closed in Tn,j  with respect to σn. Yet, even in this situation the desired state-
ment is true.) This proves (9).

As α ∈ σn(a) ∩ σn(b), the existence of (T (b), σn) contradicts the minimality 
assumption (6.5) on (T, φn).

Next we assume that α is not closed in T ∗
n,i with respect to φn for any i with 

0 ≤ i ≤ q. By the hypothesis of the present subcase, q ≥ 1. In view of Lemma 6.4, 
we obtain

(10) α ∈ ∪ηh∈Dn,j
Γj−1

h ⊆ Γj−1 for 1 ≤ j ≤ q, Θn = PE, a ∈ V (Tn) − V (Rn), 
and α /∈ φn⟨Tn,q − Tn⟩.

It follows from (4), (10) and TAA that
(11) α /∈ φn⟨T (b) − Tn⟩ and β /∈ φn⟨T (b) − T ∗

n,0⟩.
Since Rn is a closure of Tn(vn) under φn, using (10), (6.6) and TAA we obtain
(12) α, β /∈ φn(Rn) and β /∈ φn⟨Rn − Tn⟩.
By Lemma  6.1(ii), colors α and β are Tn-interchangeable under φn. So 

Pa(α, β, φn) is the only (α, β)-path with respect to φn intersecting Tn. Hence 
Pb(α, β, φn) is vertex-disjoint from Tn and therefore contains no edge incident to Tn. 
Consider σn = φn/Pb(α, β, φn). By Lemma 5.8, σn is a (Tn, Dn, φn)-stable color-
ing, and Tn is an ETT satisfying MP with respect to σn. From (11) and (12) we further 
deduce that σn is a (T ∗

n,0, Dn, φn)-weakly stable coloring, σn(f) = φn(f) for each 
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f ∈ E(T (b)), and σn(u) = φn(u) for each u ∈ V (T (b) − b). So T(b) is an ETT 
satisfying MP with respect to σn. Moreover, Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T (b) 
is a good hierarchy of T(b) under σn, with the same Γ-sets as T under φn (see (10) 
and the proof of (9) for omitted details). As α ∈ σn(a) ∩ σn(b), the existence of 
(T (b), σn) contradicts the minimality assumption (6.5) on (T, φn). � □

Lemma 6.6  Let α and β be two colors in φn(T (yp−1 )), let Q be an (α, β)-chain 
with respect to φn , and let σn = φn/Q. Suppose one of the following cases occurs: 

1)	 q ≥ 1, α ∈ φn(Tn,q), and Q is an (α, β)-path disjoint from Pvα
(α, β, φn);

2)	 q = 0, α ∈ φn(Tn), or α ∈ φn(T ∗
n,0) with α, β /∈ Dn, and Q is an (α, β)-path 

disjoint from Pvα
(α, β, φn); and

3)	 T ∗
n,q ≺ vα ≺ vβ , α, β /∈ Dn,q, α /∈ φn⟨T (vβ) − T (vα)⟩, and Q is an arbitrary 

(α, β)-chain.
Then the following statements hold: 
(i)	 σn is a (T ∗

n,q, Dn, φn)-weakly stable coloring;
(ii)	 T ∗

n,q is an ETT satisfying MP with respect to σn; and
(iii)	if q ≥ 1, then Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q  is a good hierarchy of Tn,q 

under σn, with the same Γ-sets (see Definition 5.2) as T under φn, and Tn,q is 
(∪ηh∈Dn,q Γq−1

h )−-closed with respect to σn.

Furthermore, in Case 3, T is also an ETT satisfying MP with respect to σn , and 
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  remains to be a good hierarchy of 
T under σn , with the same Γ -sets (see Definition 5.2) as T under φn .

Remark  In the proof of Theorem 5.3, frequently we need to check whether a “smaller" 
counterexample T ′ with Tn,q ⊂ T ′ has a good hierarchy with the same Γ-sets under 
σn as T under φn. Lemma 6.6 is established to fulfill such needs: We shall use the 
above Statement (iii) to ensure that Definition 5.2(i)–(v) are satisfied by Tn,q and that 
Definition 5.2(v) is satisfied by T ′. Since the Γ-sets used under σn are the same as 
those under φn, Definition 5.2(ii)–(iv) are automatically satisfied by T ′. One techni-
cal question remains unanswered: How can we verify that Definition 5.2(i) is satis-
fied by T ′? It is only a straightforward matter, as we shall see.

Proof of Lemma 6.6  Write a = vα and b = vβ . Let us consider the three cases 
described in the lemma separately.

Case 1. q ≥ 1, α ∈ φn(Tn,q), and Q is an (α, β)-path disjoint from Pa(α, β, φn).
We distinguish between two subcases according to the location of b.
Subcase 1.1. b ∈ V (Tn,q).
Let us first assume that there exists a subscript i with 0 ≤ i ≤ q, such that α or β 

is closed in T ∗
n,i with respect to φn. Let r be the largest such i. By (5.10) and Lemma 

6.4, we have 

(1)	 {a, b} ⊆ V (T ∗
n,r) and α, β /∈ φn⟨Tn,q − T ∗

n,r⟩.
(2)	 α and β are T ∗

n,r-interchangeable under φn. So Pa(α, β, φn) = Pb(α, β, φn).
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To justify this, note that if r ≥ 1, then (2) holds by Lemma 6.2. So we assume that 
r = 0. Then α or β is closed in T ∗

n,0 with respect to φn. Hence, by Lemma 6.1(iii) 
if Θn = PE and by (5.1) and Theorem 3.10(ii) otherwise, α and β are T ∗

n,0-inter-
changeable under φn. This proves (2).

It follows from (2) that Q is vertex-disjoint from T ∗
n,r and hence contains no edge 

incident to T ∗
n,r. By Lemma 5.8, σn = φn/Q is a (T ∗

n,r, Dn, φn)-weakly stable color-
ing, and T ∗

n,r is an ETT satisfying MP with respect to σn. By (1) and (6.6), we obtain 
σn(f) = φn(f) for each edge f of Tn,q and σn(u) = φn(u) for each vertex u of Tn,q. 
Therefore σn is a (Tn,q, Dn, φn)-weakly stable coloring. By the definition of r, for 
any r + 1 ≤ j ≤ q and θ ∈ {α, β}, we have ∂φn,θ(Tn,j) ̸= ∅, so θ ∈ ∪ηh∈Dn,j

Γj−1
h  

by Definition 5.2(v). It is then routine to check that Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q  
is a good hierarchy of Tn,q under σn, with the same Γ-sets as T under φn

2, and Tn,q 
is (∪ηh∈Dn,q Γq−1

h )−-closed with respect to σn.

Next we assume that there exists no subscript i with 0 ≤ i ≤ q, such that α or β is 
closed in T ∗

n,i with respect to φn. By Lemma 6.4, we have 

(3)	 α, β ∈ ∪ηh∈Dn,j
Γj−1

h ⊆ Γj−1 for 1 ≤ j ≤ q, Θn = PE, a, b ∈ V (Tn) − V (Rn), 
and α, β /∈ φn⟨Tn,q − Tn⟩.

Since Rn is a closure of Tn(vn) under φn, using (6.6) and TAA we obtain 

(4)	 α, β /∈ φn(Rn).

By Lemma 6.1(ii), colors α and β are Tn-interchangeable under φn. So Pa(α, β, φn) 
is the only (α, β)-path with respect to φn intersecting Tn. Hence Q is vertex-disjoint 
from Tn and therefore contains no edge incident to Tn. By Lemma 5.8, σn = φn/Q 
is a (Tn, Dn, φn)-stable coloring, and Tn is an ETT satisfying MP with respect to σn. 
By (3), (4) and (6.6), we further deduce that σn is a (T ∗

n,0, Dn, φn)-stable coloring, 
σn(f) = φn(f) for each edge f of Tn,q, and σn(u) = φn(u) for each vertex u of 
Tn,q. It is then routine to check that the desired statements hold.

Subcase 1.2. b /∈ V (Tn,q).
Let us first assume that there exists a subscript i with 0 ≤ i ≤ q, such that α is 

closed in T ∗
n,i with respect to φn. Let r be the largest such i. By (5.10), Lemma 6.4 

and TAA, we have 

(5)	 a ⊆ V (T ∗
n,r) and α /∈ φn⟨Tn,q − T ∗

n,r⟩. Furthermore, no edge in Tn,q − T ∗
n,r is 

colored by β, except possibly e1 when r = 0 and T ∗
n,0 = Tn (now e1 = fn in 

Algorithm 3.1 and β ∈ Dn).

Using the same argument as that of (2), we obtain 

(6)	 α and β are T ∗
n,r-interchangeable under φn.

2 See the justification of (9) in the proof of Lemma 6.5 for omitted details. Note that α or β may become 
closed in Tn,j  with respect to σn for some j with r + 1 ≤ j ≤ q. Yet, even in this situation Definition 
5.2(v) remains valid with respect to σn.
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It follows from (6) that Q is vertex-disjoint from T ∗
n,r and hence contains no 

edge incident to T ∗
n,r. By Lemma 5.8, σn = φn/Q is a (T ∗

n,r, Dn, φn)-weakly 
stable coloring, and T ∗

n,r is an ETT satisfying MP with respect to σn. Using 
(5), we obtain σn(f) = φn(f) for each edge f of Tn,q and σn(u) = φn(u) for 
each vertex u of Tn,q. Therefore σn is a (Tn,q, Dn, φn)-weakly stable coloring, 
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q  is a good hierarchy of Tn,q under σn, with the same 
Γ-sets as T under φn, and Tn,q is (∪ηh∈Dn,q Γq−1

h )−-closed with respect to σn (see 
the justification of (9) in the proof of Lemma 6.5 for omitted details).

Next we assume that there exists no subscript i with 0 ≤ i ≤ q, such that α is 
closed in T ∗

n,i with respect to φn. By Lemma 6.4, we have 

(7)	 α ∈ ∪ηh∈Dn,j
Γj−1

h ⊆ Γj−1 for 1 ≤ j ≤ q, Θn = PE, a ∈ V (Tn) − V (Rn), 
and α /∈ φn⟨Tn,q − Tn⟩.

It follows that (4) also holds. By Lemma 6.1(ii), colors α and β are Tn-interchange-
able under φn. So Pa(α, β, φn) is the only (α, β)-path with respect to φn intersect-
ing Tn. Hence Q is vertex-disjoint from Tn and therefore contains no edge incident 
to Tn. By Lemma 5.8, σn = φn/Q is a (Tn, Dn, φn)-stable coloring, and Tn is an 
ETT satisfying MP with respect to σn. Since b /∈ V (Tn,q), no edge in Tn,q − T ∗

n,0 is 
colored by β by TAA, because T ∗

n,0 = Tn ∨ Rn by (7). Using (4) and (7), it is routine 
to check that the desired statements hold.

Case 2. q = 0, α ∈ φn(Tn), or α ∈ φn(T ∗
n,0) with α, β /∈ Dn, and Q is an (α, β)

-path disjoint from Pvα
(α, β, φn).

Let us first assume that α or β is closed in T ∗
n,0 with respect to φn. By Lemma 6.1(iii) 

or Theorem 3.10(ii) (see (5.1)), colors α and β are T ∗
n,0-interchangeable under φn. So 

Pa(α, β, φn) is the only (α, β)-path intersecting T ∗
n,0, and hence Q is vertex-disjoint 

from T ∗
n,0. It is then routine to check that σn = φn/Q is a (T ∗

n,0, Dn, φn)-weakly 
stable coloring, and T ∗

n,0 is an ETT satisfying MP with respect to σn by Theorem 
3.10(vi). So we assume hereafter that 

(8)	 neither α nor β is closed in T ∗
n,0 with respect to φn.

By the hypothesis of the present case, α ∈ φn(Tn) or {α, β} ∩ Dn = ∅. So α /∈ Dn. 
From (8) and Algorithm 3.1 we deduce that T ∗

n,0 ̸= Tn. Hence 

(9)	 Θn = PE, which together with (5.4) yields a, b /∈ V (Tn) ∩ V (Rn).

Let us show that 

(10)	 σn = φn/Q is a (T ∗
n,0, Dn, φn)-weakly stable coloring.

To justify this, note that if one of a and b is contained in V (Tn) − V (Rn) and the 
other is contained in V (Rn) − V (Tn), then α and β are T ∗

n,0-interchangeable under 
φn by Lemma 6.1(iv). So Q is vertex-disjoint from T ∗

n,0 and hence (10) holds. In 
view of (9), we may assume that 

(11)	if a, b ∈ V (T ∗
n,0), then either a, b ∈ V (Tn) − V (Rn) or a, b ∈ V (Rn) − V (Tn).
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Let us first assume that a ∈ V (Tn) − V (Rn). Then α /∈ φn(Rn) by (6.6) and 
b ∈ V (Tn) − V (Rn) if b ∈ V (T ∗

n,0) by (11). So α and β are Tn-interchangeable 
under φn by Lemma  6.1(ii) and β /∈ φn(Rn) by (6.6). It follows that Q is ver-
tex-disjoint from Tn and that σn(f) = φn(f) for any edge f incident to Rn with 
φn(f) ∈ φn(Rn). Hence (10) holds.

Next we assume that a ∈ V (Rn) − V (Tn). Then α /∈ φn(Tn) by (6.6) and 
b ∈ V (Rn) − V (Tn) if b ∈ V (T ∗

n,0) by (11). So α and β are Rn-interchangeable 
under φn by Lemma 6.1(i) and β /∈ φn(Tn) by (6.6). It follows that Q is vertex-
disjoint from Rn. By the hypothesis of the present case, {α, β} ∩ Dn = ∅. So 
α, β /∈ φn(Tn) ∪ Dn and hence (10) holds.

From (10) we deduce that T ∗
n,0 is an ETT satisfying MP with respect to σn.

Case 3. T ∗
n,q ≺ vα ≺ vβ , α, β /∈ Dn,q, α /∈ φn⟨T (vβ) − T (vα)⟩, and Q is an arbi-

trary (α, β)-chain.
By (6.6), V (T (yp−1)) is elementary with respect to φn. So α, β /∈ φn(T ∗

n,q). By 
hypothesis, α, β /∈ Dn,q. Hence 

(12)	 α, β /∈ φn(T ∗
n,q) ∪ Dn,q .

By the definitions of Dn and Dn,q , we have Dn ∪ φn(Tn) ⊆ Dn,q ∪ φn(T ∗
n,q). So 

α, β /∈ φn(Tn) ∪ Dn. From Lemma 3.2(iv), TAA and the hypothesis of the present 
case, we further deduce that 

(13)	 α, β /∈ φn⟨T (b)⟩.

In view of Lemma 6.5, we obtain 

(14)	 Pa(α, β, φ) = Pb(α, β, φ). (Possibly Q is this path.)

Since T ∗
n,q ≺ a ≺ b, using (12)-(14), it is straightforward to verify that σn = φn/Q 

is a (T ∗
n,q, Dn, φn)-stable coloring, so σn is also (T ∗

n,q, Dn, φn)-weakly stable.
From (12) and (13) we also see that T(b) can be obtained from T ∗

n,q by using TAA, 
no matter whether Q = Pa(α, β, φ). Thus T is an ETT corresponding to (σn, Tn). As 
neither α nor β is contained in any Γ-set, it is clear that T also satisfies MP under σn, 
and Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  remains to be a good hierarchy 
of T under σn, with the same Γ-sets as T under φn. � □

7  Elementariness and interchangeability

In Sect.  5 we have developed a control mechanism over Kempe changes; that is, 
a good hierarchy of an ETT. In Sect. 6 we have derived some properties satisfied 
by such hierarchies. Now we are ready to present a proof of Theorem 5.3 by using 
Kempe changes based on these hierarchies, whose origin can be traced back to Tash-
kinov’s proof of Theorem 2.7 (Tashkinov 2000) (see Stiebitz et al. 2012 for an Eng-
lish version).
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7.1  Proof of theorem 5.3

By hypothesis, T is an ETT constructed from a k-triple (G, e, φ) by using the Tash-
kinov series T = {(Ti, φi−1, Si−1, Fi−1, Θi−1) : 1 ≤ i ≤ n + 1}. Furthermore, T 
admits a good hierarchy Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q+1 = T  and satisfies MP 
with respect to φn. Our objective is to show that V(T) is elementary with respect to 
φn.

As introduced in the preceding section, T = T ∗
n,q ∪ {e1, y1, e2, ..., ep, yp}, where 

yi is the end of ei outside T (yi−1) for i ≥ 1, with T (y0) = T ∗
n,q. Suppose on the 

contrary that V(T) is not elementary with respect to φn. Then
(7.1) φn(T (yp−1)) ∩ φn(yp) ̸= ∅ by (6.6).
For ease of reference, recall that (see (3) in the proof of Theorem 5.4)
(7.2) |φn(Tn)| ≥ 2n + 11 and |Dn,j | ≤ |Dn| ≤ n for 0 ≤ j ≤ q.
In our proof, by A ∩ B = ∅ we mean A and B are vertex-disjoint, provided that A 

is a path and B is a tree. We shall frequently make use of a coloring σn ∈ Ck(G − e) 
with properties (i)-(iii) as described in Lemma 6.6; that is,

(7.3) σn is a (T ∗
n,q, Dn, φn)-weakly stable coloring, and T ∗

n,q is an ETT satisfy-
ing MP with respect to σn. Furthermore, if q ≥ 1, then Tn,q admits a good hierarchy 
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q  under σn, with the same Γ-sets (see Definition 5.2) 
as T under φn, and Tn,q is (∪ηh∈Dn,q Γq−1

h )−-closed with respect to σn (see the 
remark succeeding Lemma 6.6).

Claim 7.1  p ≥ 2 .

Assume the contrary: p = 1; that is, T = T ∗
n,q ∪ {e1, y1}. Then

(1) there exists a color α in φn(T ∗
n,q) ∩ φn(y1) by (7.1).

We consider two cases according to the value of q.
Case 1. q = 0. In this case, from (1) and Algorithm 3.1 we see that Θn ̸= SE. 

Let us first assume that Θn = RE. Let δn, γn be as specified in RE of Algorithm 
3.1. Since α, δn ∈ φn(Tn), both of them are closed in Tn with respect to φn. Hence 
Py1(α, δn, φn) is vertex-disjoint from Tn. Let σn = φn/Py1(α, δn, φn). Then 
δn ∈ σn(Tn) ∩ σn(y1). By Lemma 5.8, σn is a (Tn, Dn, φn)-stable coloring and 
hence, by Theorem 3.10(vi), it is a φn mod Tn coloring. In view of Definition 3.7, 
fn = e1 is still an RE connecting edge under σn. From Algorithm 3.1 we see that 
q ≥ 1 and e1 is contained in a (δn, γn)-cycle under σn, which is impossible because 
δn ∈ σn(y1).

So we may assume that Θn = PE. Let β = φn(e1). From TAA we see that 
β ∈ φn(T ∗

n,0). Let θ ∈ φn(Tn) ∩ φn(Rn). Then θ is closed in T ∗
n,0 under φn by 

(5.4). By Lemma  6.1(iii), Pvθ
(α, θ, φn) is the only (α, θ)-path intersecting T ∗

n,0. 
Thus Py1(α, θ, φn) ∩ T ∗

n,0 = ∅. Let σn = φn/Py1(α, θ, φn). Then θ is also closed 
in T ∗

n,0 with respect to σn, and σn is a (T ∗
n,0, Dn, φn)-weakly stable coloring by 

Lemma 5.8. In view of Lemma 6.1(iii), β and θ are T ∗
n,0-interchangeable under σn. 

As Py1(θ, β, σn) ∩ T ∗
n,0 ̸= ∅ and θ, β ∈ σn(T ∗

n,0), there are at least two (θ, β)-paths 
with respect to σn intersecting T ∗

n,0, a contradiction.
Case 2. q ≥ 1. In this case, by Definition 5.2(v), we have
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(2) Tn,q is (∪ηh∈Dn,q Γq−1
h )−-closed with respect to φn

So e1 is colored by some color γ in ∪ηh∈Dn,q Γq−1
h . By Definition 5.2(i) and (5.9), 

we have γ /∈ Γq. Let θ ∈ φn(Tn,q) − φn(T ∗
n,q−1). Then θ /∈ Γq−1 (so θ ̸= γ) by 

Definition 5.2(i). Furthermore, θ is closed in Tn,q under φn by (2). In view of Lemma 
6.2, α and θ are Tn,q-interchangeable under φn. So Pvθ

(α, θ, φn) = Pvα
(α, θ, φn) 

is the unique (α, θ)-path intersecting Tn,q. Hence Py1(α, θ, φn) ∩ Tn,q = ∅. Let 
σn = φn/Py1(α, θ, φn). Then σn satisfies all the properties described in (7.3) by 
Lemma  6.6. Since e1 is still colored by γ ∈ Γq−1 under σn and γ /∈ Γq, we can 
obtain T from Tn,q by TAA under σn, so T is an ETT satisfying MP under σn. More-
over, Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q+1 = T  remains to be a good hierarchy of T 
under σn, with the same Γ-sets as those under φn. Hence (T, σn) is also a minimum 
counterexample to Theorem 5.3 (see (6.2)–(6.5)). As Py1(θ, γ, σn) ∩ Tn,q ̸= ∅ and 
θ, γ ∈ σn(Tn,q), there are at least two (θ, γ)-paths with respect to σn intersecting 
Tn,q, contradicting Lemma 6.5(iii) (with σn in place of φn), because θ, γ ∈ σn(Tn,q) 
and θ is also closed in Tn,q under σn by (2). Hence Claim 7.1 is justified.

Recall that the path number p(T) of T is the smallest subscript i ∈ {1, 2, ..., p}, 
such that the sequence (yi, ei+1, ..., ep, yp) corresponds to a path in G, where p ≥ 2 
by Claim 7.1. Depending on the value of p(T), we distinguish among three situations, 
labeled as Situations 7.1, 7.2, and 7.3.

Situation 7.1  p(T ) = 1. Now T − V (T ∗
n,q) is a path obtained by using TAA under 

φn.

Claim 7.2  We may assume that φn(yi) ∩ φn(yp) ̸= ∅ for some i with 1 ≤ i ≤ p − 1 .

To justify this, let α ∈ φn(T (yp−1)) ∩ φn(yp) (see (7.1)). If α ∈ φn(yi) ∩ φn(yp) 
for some i with 1 ≤ i ≤ p − 1, we are done. So we assume that 

(1)	 α ∈ φn(T ∗
n,q) ∩ φn(yp) and α /∈ φn(yi) for all 1 ≤ i ≤ p − 1.

(2)	 If Θn = PE and q = 0, then we may further assume that α ∈ φn(Tn).

Let us justify (2). By (1), we have α ∈ φn(T ∗
n,0). Suppose α ∈ φn(Rn − V (Tn)). 

Then α /∈ Γ0 by Definition 5.2(i). In view of (7.2), we have |φn(Tn)| ≥ 11 + 2n 
and |Γ0| ≤ 2|Dn,0| ≤ 2n. So there exists β ∈ φn(Tn) − Γ0. By Lemma 6.1(iv), α 
and β are T ∗

n,0-interchangeable under φn. Thus Pvα
(α, β, φn) = Pvβ

(α, β, φn) and 
Pyp

(α, β, φn) is disjoint from T ∗
n,0. Let σn = φn/Pyp

(α, β, φn). By Lemma 6.6 (the 
second case), σn is a (T ∗

n,0, Dn, φn)-weakly stable coloring, and T ∗
n,0 is an ETT 

satisfying MP with respect to σn. Note that T can also be obtained from T ∗
n,0 by 

TAA under σn, because α, β ∈ σn(T ∗
n,0). Hence T is an ETT satisfying MP under 

σn as well. Since α, β /∈ Γ0 and α, β /∈ φn(T (yp−1) − V (T ∗
n,0)), the hierarchy 

Tn = Tn,0 ⊂ Tn,1 = T  remains to be good under σn, with the same Γ-sets as those 
under φn. Therefore (T, σn) is also a minimum counterexample to Theorem 5.3 (see 
(6.2)–(6.5)). As β ∈ σn(Tn) ∩ σn(yp), replacing φn by σn and α by β if necessary, 
we see that (2) holds.

Depending on whether α is used by edges in T − T ∗
n,q, we consider two cases.
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Case 1. α /∈ φn⟨T − T ∗
n,q⟩. In this case, let β ∈ φn(yp−1). Then β is 

not used by any edge in T − T ∗
n,q, except possibly e1 when q = 0 and 

T ∗
n,0 = Tn (now e1 = fn in Algorithm 3.1 and φn(e1) = β ∈ Dn). By (1) and 

(2), we have α ∈ φn(Tn,q) if q ≥ 1 and α ∈ φn(Tn) if q = 0. It follows from 
Lemma 6.5 that Pvα

(α, β, φn) = Pyp−1(α, β, φn). So Pyp
(α, β, φn) is disjoint from 

Pvα
(α, β, φn). Let σn = φn/Pyp

(α, β, φn). By Lemma  6.6, σn satisfies all the 
properties described in (7.3). In particular, if e1 = fn and φn(e1) = β ∈ Dn, then 
σn(e1) = φn(e1), which implies that e1 is outside Pyp

(α, β, φn). So σn(f) = φn(f) 
for each f ∈ E(T ) and σn(u) = φn(u) for each u ∈ V (T (yp−1)). Thus T can be 
obtained from T ∗

n,q + e1 by TAA and is an ETT satisfying MP under σn. Furthermore, 
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  remains to be a good hierarchy of T 
under σn, with the same Γ-sets as those under φn. Therefore, (T, σn) is also a mini-
mum counterexample to Theorem 5.3 (see (6.2)–(6.5)). As β ∈ σn(yp−1) ∩ σn(yp), 
replacing φn by σn if necessary, we see that Claim 7.2 is true.

Case 2. α ∈ φn⟨T − T ∗
n,q⟩. In this case, let ej  be the edge with the smallest 

subscript in T − T ∗
n,q such that φ(ej) = α. We distinguish between two subcases 

according to the value of j.
Subcase 2.1. j ≥ 2. In this subcase, let β ∈ φn(yj−1). Then β is not 

used by any edge in T (yj) − T ∗
n,q, except possibly e1 when q = 0 and 

T ∗
n,0 = Tn (now e1 = fn in Algorithm 3.1 and φn(e1) = β ∈ Dn). By (1) and (2), we 

have α ∈ φn(Tn,q) if q ≥ 1 and α ∈ φn(Tn) if q = 0. It follows from Lemma 6.5 that 
Pvα

(α, β, φn) = Pyj−1(α, β, φn). So Pyp
(α, β, φ) is disjoint from Pvα

(α, β, φn). 
Let σn = φn/Pyp

(α, β, φn). By Lemma 6.6, σn satisfies all the properties described 
in (7.3). In particular, if e1 = fn and φn(e1) = β ∈ Dn, then σn(e1) = φn(e1), 
which implies that e1 is outside Pyp

(α, β, φn). So T can be obtained from T ∗
n,q + e1 

by TAA under σn and hence is an ETT satisfying MP under σn.
Note that β /∈ Γq by Definition 5.2(i) and that σn(u) = φn(u) 

for each u ∈ V (T (yp−1)) by (6.6). If α /∈ Γq, then clearly 
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  is a good hierarchy of T under 
σn, with the same Γ-sets as those under φn. If α ∈ Γq, say α ∈ Γq

h for some 
ηh ∈ Dn,q, then Definition 5.2(i) implies that ηh ∈ φn(w) for some w ⪯ yj−1. Since 
only edges outside T(w) may change colors between α and β as we transform φn 
into σn, it follows that Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  remains to 
be a good hierarchy of T under σn, with the same Γ-sets as those under φn. Hence 
(T, σn) is also a minimum counterexample to Theorem 5.3 (see (6.2)–(6.5)). Since 
β ∈ σn(yj−1) ∩ σn(yp), replacing φn by σn if necessary, we see that Claim  7.2 
holds.

Subcase 2.2. j = 1. In this subcase, α = φ(e1). Note that α /∈ Γq by Definition 
5.2(i) and (5.9). We propose to show that 

(3)	 there exists a color γ in φn(Tn,q) − Γq if q ≥ 1 and in φn(Tn) − Γ0 if q = 0, 
such that γ is closed in T ∗

n,q with respect to φn.

Let us first assume that q ≥ 1. By (7.2), we obtain |φn(Tn,q)| ≥ |φn(Tn)| ≥ 2n + 11 
and |Γq−1| ≤ 2|Dn,q−1| ≤ 2n. So |φn(Tn,q) − Γq−1| ≥ 11. By Definition 5.2(iii), 
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we have |Γq − Γq−1| = 2. So |φn(Tn,q) − (Γq−1 ∪ Γq)| ≥ 9. Let γ be a color in 
φn(Tn,q) − (Γq−1 ∪ Γq). By Definition 5.2(v), γ is closed in Tn,q with respect to φn.

Next we assume that q = 0. Again, by (7.2), we have |φn(Tn)| ≥ 2n + 11 and 
|Γ0| ≤ 2|Dn,0| ≤ 2|Dn| ≤ 2n. Let γ be a color in φn(Tn) − Γ0 if Θn ̸= PE and a 
color in φn(Tn) ∩ φn(Rn) − Γ0 if Θn = PE (see Definition 5.2(iv)). By Algorithm 
3.1 and (5.4), γ is closed in T ∗

n,0 with respect to φn. So (3) holds.
By (3) and Lemma 6.5, Pvα

(α, γ, φn) = Pvγ
(α, γ, φn) is the only (α, γ)-path 

intersecting T ∗
n,q. So Pyp

(α, γ, φn) is disjoint from T ∗
n,q and hence it does not con-

tain e1. Let σn = φn/Pyp
(α, γ, φn). Then σn satisfies all the properties described 

in (7.3) by Lemma 6.6. Moreover, σn(u) = φn(u) for all u ∈ V (T (yp−1)) by (6.6). 
Since α, γ ∈ φn(T ∗

n,q), we have α, γ ∈ σn(T ∗
n,q). Hence we can obtain T from 

T ∗
n,q + e1 by using TAA under σn, so T is an ETT satisfying MP under σn. Since 

α, γ /∈ Γq, the hierarchy Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  remains to 
be good under σn, with the same Γ-sets as those under φn. Therefore, (T, σn) is also 
a minimum counterexample to Theorem 5.3 (see (6.2)–(6.5)). Since e1 is outside 
Pyp

(α, γ, φn), we have σn(e1) = α. As γ ∈ σn(yp) ∩ σn(v) for some v ∈ V (Tn,q) 
and α ̸= γ, the present subcase reduces to Case 1 if γ /∈ σn⟨T − T ∗

n,q⟩ or to Subcase 
2.1 if γ ∈ σn⟨T − T ∗

n,q⟩. This proves Claim 7.2.

Claim 7.3  We may assume that φn(yp−1 ) ∩ φn(yp) ̸= ∅.

To justify this, let K be the set of all minimum counterexamples (T, φn) to Theo-
rem 5.3 (see (6.2)–(6.5)), and let i be the largest subscript with 1 ≤ i ≤ p − 1, such 
that there exists a member (T, µn) of K with µn(yi) ∩ µn(yp) ̸= ∅; this i exists by 
Claim 7.2. We aim to show that i = p − 1. Thus Claim 7.3 follows by replacing φn 
with µn, if necessary.

With a slight abuse of notation, we assume that φn(yi) ∩ φn(yp) ̸= ∅ and assume, 
on the contrary, that i ≤ p − 2. Let α ∈ φn(yi) ∩ φn(yp). Using (6.6) and TAA, we 
obtain

(1) α /∈ φn(T (yi−1)), where T (y0) = T ∗
n,q. So α is not used by any edge in 

T (yi+1) − T ∗
n,q, except possibly e1 when q = 0 and T ∗

n,0 = Tn (now e1 = fn in 
Algorithm 3.1 and φn(e1) = α ∈ Dn).

Recall that Definition 5.2 involves Γq
h = {γq

h1
, γq

h2
} for each ηh ∈ Dn,q. Nev-

ertheless, the proof of this claim only involves one ηh ∈ Dn,q. For simplicity, we 
abbreviate its corresponding γq

hj
 to γj  for j = 1, 2. By Definition 5.2(i) and (5.9), 

we have

(2) γj ∈ φn(Tn,q) if q ≥ 1 and γj ∈ φn(Tn) if q = 0. Moreover, if ηh ∈ φn(yt) 
for some t ≥ 1, then γj /∈ φn⟨T (yt) − T ∗

n,q⟩ for j = 1, 2.
Depending on whether α ∈ Dn,q , we consider two cases.
Case 1. α /∈ Dn,q . In this case, let θ ∈ φn(yi+1). From TAA and (6.6) it follows 

that
(3) θ /∈ φn(T (yi)), so θ is not used by any edge in T (yi+1) − T ∗

n,q, except possibly 
e1 when q = 0 and T ∗

n,0 = Tn (now e1 = fn in Algorithm 3.1 and φn(e1) = θ ∈ Dn).
If θ /∈ Dn,q , then {α, θ} ∩ Dn,q = ∅. By the definitions of Dn and Dn,q , we 

have φn(Tn) ∪ Dn ⊆ φn(T ∗
n,q) ∪ Dn,q , which together with (1) and (3) implies 
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{α, θ} ∩ Dn = ∅. Hence Pyi
(α, θ, φn) = Pyi+1(α, θ, φn) by Lemma  6.5. Let 

σn = φn/Pyp
(α, θ, φn). Since both yi and yi+1 are contained in T − V (T ∗

n,q) and 
(1) holds, by Lemma 6.6 (the third case), σn satisfies all the properties described 
in (7.3). Furthermore, T is also an ETT satisfying MP with respect to σn, and 
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  remains to be a good hierarchy of T 
under σn, with the same Γ-sets as those under φn. Hence (T, σn) is also a minimum 
counterexample to Theorem 5.3 (see (6.2)–(6.5)). Since θ ∈ σn(yp) ∩ σn(yi+1), we 
reach a contradiction to the maximality assumption on i.

So we may assume that θ ∈ Dn,q . Let θ = ηh ∈ Dn,q. In view of (2) and Lemma 6.5, 
we obtain Pvγ1

(α, γ1, φn) = Pyi
(α, γ1, φn), which is disjoint from Pyp

(α, γ1, φn). 
Let σn = φn/Pyp

(α, γ1, φn). By Lemma 6.6, σn satisfies all the properties described 
in (7.3). In particular, if e1 = fn and φn(e1) = α ∈ Dn, then σn(e1) = φn(e1), which 
implies that e1 is outside Pyp

(α, γ1, φn). By (6.6), (1) and (2), we have σn(u) = φn(u) 
for each u ∈ V (T (yp−1)) and σn(f) = φn(f) for each edge f in T (yi+1). So T can 
be obtained from T ∗

n,q + e1 by TAA under σn, and hence is an ETT satisfying MP 
under σn. Furthermore, Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  remains to 
be a good hierarchy of T under σn, with the same Γ-sets as those under φn. Hence 
(T, σn) is also a minimum counterexample to Theorem 5.3 (see (6.2)–(6.5)), with 
γ1 ∈ σn(yp) ∩ σn(Tn,q).

Using (2) and Lemma 6.5, we obtain Pvγ1
(ηh, γ1, σn) = Pyi+1(ηh, γ1, σn), which 

is disjoint from Pyp
(ηh, γ1, σn). Let σ′

n = σn/Pyp(ηh, γ1, σn). By Lemma 6.6, σ′
n 

satisfies all the properties described in (7.3) (with σ′
n in place of σn). In particular, if 

e1 = fn and σn(e1) = ηh ∈ Dn, then σ′
n(e1) = σn(e1), which implies that e1 is outside 

Pyp
(ηh, γ1, σn). By (6.6), (2) and (3), we have σ′

n(u) = σn(u) for each u ∈ V (T (yp−1)) 
and σ′

n(f) = σn(f) for each edge f in T (yi+1). So T can be obtained from T ∗
n,q + e1 

by TAA under σ′
n, and hence is an ETT satisfying MP under σ′

n. Furthermore, 
since ηh ∈ σ′

n(yi+1), the hierarchy Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  
remains to be good under σ′

n, with the same Γ-sets as those under φn. Therefore 
(T, σ′

n) is also a minimum counterexample to Theorem 5.3 (see (6.2)–(6.5)). Since 
ηh ∈ σ′

n(yp) ∩ σ′
n(yi+1), we reach a contradiction to the maximality assumption on 

i.
Case 2. α ∈ Dn,q . In this case, let α = ηh ∈ Dn,q . Then Γq

h = {γ1, γ2} (see 
the paragraph above (2)). Renaming subscript if necessary, we may assume that 
φn(ei+1) ̸= γ1. By (1) and (2), we have

(4) γ1 /∈ φn⟨T (yi+1) − T ∗
n,q⟩ and ηh is not used by any edge in T (yi+1) − T ∗

n,q, 
except possibly e1 when q = 0 and T ∗

n,0 = Tn (now e1 = fn in Algorithm 3.1 and 
φn(e1) = ηh ∈ Dn,q ⊆ Dn).

By (4) and Lemma  6.5, we obtain Pvγ1
(ηh, γ1, φn) = Pyi

(ηh, γ1, φn), which 
is disjoint from the path Pyp

(ηh, γ1, φn). Let σn = φn/Pyp
(ηh, γ1, φn). By 

Lemma 6.6, σn satisfies all the properties described in (7.3). In particular, if e1 = fn 
and φn(e1) = ηh ∈ Dn, then σn(e1) = φn(e1), which implies that e1 is outside 
Pyp

(ηh, γ1, φn). By (6.6) and (4), we have σn(u) = φn(u) for each u ∈ V (T (yp−1)) 
and σn(f) = φn(f) for each edge f in T (yi+1). So T can be obtained from T ∗

n,q + e1 
by TAA under σn, and hence is an ETT satisfying MP under σn. Furthermore, 
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  remains to be a good hierarchy of T 
under σn, with the same Γ-sets as those under φn. Therefore, (T, σn) is also a mini-
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mum counterexample to Theorem 5.3 (see (6.2)–(6.5)), with γ1 ∈ σn(yp) ∩ σn(Tn,q). 
Let θ ∈ σn(yi+1). From TAA we see that

(5) θ is not used by any edge in T (yi+1) − T ∗
n,q under σn, except possibly e1 when 

q = 0 and T ∗
n,0 = Tn (now e1 = fn in Algorithm 3.1 and σn(e1) = θ ∈ Dn).

By (6.6), we have θ ̸= γ1. Using (4) and Lemma  6.5, we get 
Pvγ1

(θ, γ1, σn) = Pyi+1(θ, γ1, σn). Let σ′
n = σn/Pyp(θ, γ1, σn). By Lemma 6.6, σ′

n 
satisfies all the properties described in (7.3) (with σ′

n in place of σn). In particular, 
if e1 = fn and σn(e1) = θ ∈ Dn, then σ′

n(e1) = σn(e1), which implies that e1 is 
outside Pyp

(θ, γ1, σn). From (6.6) and (4) we deduce that σ′
n(u) = σn(u) for each 

u ∈ V (T (yp−1)), and σ′
n(f) = σn(f) for each edge f in T (yi+1). So T can also be 

obtained from T ∗
n,q + e1 by TAA under σ′

n, and hence is an ETT satisfying MP under 
σ′

n. Furthermore, Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  remains to be a 
good hierarchy of those under σ′

n, with the same Γ-sets as those under φn. Therefore, 
(T, σ′

n) is also a minimum counterexample to Theorem 5.3 (see (6.2)–(6.5)). Since 
θ ∈ σ′

n(yp) ∩ σ′
n(yi+1), we reach a contradiction to the maximality assumption on i. 

Hence Claim 7.3 is established.
By Claim 7.1, p ≥ 2. By Claim 7.3, φn(yp−1) ∩ φn(yp) ̸= ∅. Let 

α ∈ φn(yp−1) ∩ φn(yp) and β = φn(ep). Let σn be obtained from φn by recol-
oring ep with α and let T ′ = T (yp−1). Then β ∈ σn(yp−1) ∩ σn(T ′(yp−2)) and 
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T ′ is a good hierarchy of T ′ under σn. So (T ′, σn) 
is a counterexample to Theorem 5.3 (see (6.2)–(6.4)), which violates the minimality 
assumption (6.5) on (T, φn). This completes our discussion about Situation 7.1.

Situation 7.2  p(T ) = p. Now ep is not incident to yp−1.

By (7.1), there exists a color α ∈ φn(T (yp−1)) ∩ φn(yp). We divide this situa-
tion into 3 cases and further into 6 subcases (see Figure 4), depending on whether 
vα = yp−1 or α ∈ Dn,q . Our proof of Subcase 1.1 is self-contained. Yet, in our dis-
cussion Subcase 1.2 may be redirected to Subcase 1.1 and Subcase 2.1, and Subcase 
2.1 may be redirected to Subcase 1.1, etc. Figure 4 illustrates such redirections (note 
that no cycling occurs).

Throughout this situation we reserve the symbol θ for φn(ep). Clearly, θ ̸= α.
Case 1. α ∈ φn(yp) ∩ φn(yp−1) and α ∈ Dn,q .
Let α = ηm ∈ Dn,q. For simplicity, we abbreviate the two colors γq

m1  and γq
m2  in 

Γq
m (see Definition 5.2) to γ1 and γ2, respectively. Since ηm ∈ φn(yp) ∩ φn(yp−1), 

from TAA and Definition 5.2(i) we see that
(1) γ1, γ2 /∈ φn⟨T (yp−1) − T ∗

n,q⟩ and ηm is not used by any edge in T − T ∗
n,q, 

except possibly e1 when q = 0 and T ∗
n,0 = Tn (now e1 = fn in Algorithm 3.1 and 

φn(e1) = ηm ∈ Dn,q ⊆ Dn).
By (1) and Lemma 6.5 (with respect to (T, φn)), we have
(2) Pvγj

(ηm, γj , φn) = Pyp−1(ηm, γj , φn) for j = 1, 2.

Let us consider two subcases according to whether θ ∈ φn(yp−1).
Subcase 1.1. θ /∈ φn(yp−1).
In our discussion about this subcase, we shall appeal to the following two 

tree-sequences:
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	● T − = (T ∗
n,q, e1, y1, e2, . . . , ep−2, yp−2, ep, yp) and

	● T ∗ = (T ∗
n,q, e1, y1, e2, . . . , yp−2, ep, yp, ep−1, yp−1).

Note that T − is obtained from T by deleting yp−1 and T ∗ arises from T by inter-
changing the order of (ep−1, yp−1) and (ep, yp). We propose to show that both T − 
and T ∗ are ETTs corresponding to φn. By the hypothesis of the present subcase, 
φn(ep) = θ /∈ φn(yp−1). Thus if T (yp−2) ̸= Tn, then φn(ep−1) and φn(ep) are in 
φn(T (yp−2)), and therefore both T − and T ∗ can be obtained from T (yp−2) by using 
TAA under φn. So we assume that T (yp−2) = Tn. If Θn = RE or SE, we must have 
that ep is incident to Tn and therefore θ ∈ φn(yp−1), because Tn is closed under 
φn. Thus we deduce that Θn = PE because θ /∈ φn(yp−1). Hence φn(ep−1) and 
φn(ep) are in φn(Tn) following Algorithm 3.1, and therefore both T − and T ∗ can 
be obtained from T (yp−2) by using TAA under φn as well. Therefore both T − and 
T ∗ are ETTs corresponding to φn. In view of the maximum property enjoyed by T, 
we further conclude that both T − and T ∗ are ETTs satisfying MP with respect to φn.

Let us first assume that θ /∈ Γq. Now it is easy to see that 
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T − is a good hierarchy of T − under φn, with the 
same Γ-sets (see Definition 5.2) as T. (If θ ∈ Γq, say θ ∈ Γq

h, and ηh ∈ φn(yp−1), then 
T − no longer satisfies Definition 5.2(i).) Observe that γ1 /∈ φn(yp), for otherwise, 
γ1 is missing at two vertices in T −. Thus (T −, φn) is a counterexample to Theorem 
5.3 (see (6.2) and (6.3)), which violates the minimality assumption (6.4) or (6.5) on 
(T, φn). Let us turn to considering T ∗. Since θ /∈ φn(yp−1) and θ /∈ Γq, it is clear 
that Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T ∗ is a good hierarchy of T ∗ under φn, with 
the same Γ-sets as T. Moreover, by (1), we have γ1 /∈ φn⟨T ∗(yp) − T ∗

n,q⟩. It follows 
from Lemma 6.5 (with respect to (T ∗, φn)) that Pvγ1

(ηm, γ1, φn) = Pyp
(ηm, γ1, φn), 

contradicting (2).
Next we assume that θ ∈ Γq. Then θ ∈ Γq

h for some ηh ∈ Dn,q. If ηh /∈ φn(yp−1), 
then ηh ∈ φn(T (yp−2)) by Definition 5.2(i). So we can still ensure that both T − and 
T ∗ have good hierarchies under φn. Thus, using the same argument as employed in 
the preceding paragraph, we can reach a contradiction. Hence we may assume that 
ηh ∈ φn(yp−1).

Clearly, θ ̸= γ1 or γ2. Renaming subscripts if necessary, we may assume that
(3) θ ̸= γ2.

Fig. 4  Redirections
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Since Pvγ2
(ηm, γ2, φn) = Pyp−1(ηm, γ2, φn) by (2), this path is disjoint from 

Pyp
(ηm, γ2, φn). Let µ1 = φn/Pyp

(ηm, γ2, φn). By Lemma  6.6, µ1 satisfies all 
the properties described in (7.3) (with µ1 in place of σn). In particular, if e1 = fn 
and φn(e1) = ηm ∈ Dn, then µ1(e1) = φn(e1), which implies that e1 is outside 
Pyp

(ηm, γ2, φn). By (1) and (3), we have µ1(f) = φn(f) for each f ∈ E(T ) and 
µ1(u) = φn(u) for each u ∈ V (T (yp−1)). So we can obtain T from T ∗

n,q + e1 by 
using TAA under µ1; thereby T is an ETT satisfying MP under µ1. Furthermore, 
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  remains to be a good hierarchy of 
T under µ1, with the same Γ-sets as those under φn. Therefore, (T, µ1) is also a 
minimum counterexample to Theorem 5.3 (see (6.2)–(6.5)), in which γ2 is missing 
at two vertices.

By Lemma 6.3, we have |µ1(T (yp−2)) − µ1(T ∗
n,0 − V (Tn))

−µ1⟨T (yp−2) − T ∗
n,q⟩| ≥ 2n + 11, where T (y0) = T ∗

n,q. It follows 
that |µ1(T (yp−2)) − µ1(T ∗

n,0 − V (Tn)) − µ1⟨T − T ∗
n,q⟩| ≥ 2n + 9. As 

|Γq| ≤ 2|Dn,q| ≤ 2|Dn| ≤ 2n by Lemma 3.5, using (6.6) we obtain
(4) there exists a color β in µ1(T (yp−2)) − µ1(T ∗

n,0 − V (Tn)) − µ1⟨T − T ∗
n,q⟩ − Γq.

By Lemma 6.5 (with γ2 in place of α), Pvγ2
(β, γ2, µ1) = Pvβ

(β, γ2, µ1), so it 
is disjoint from Pyp

(β, γ2, µ1). Let µ2 = µ1/Pyp
(β, γ2, µ1). By Lemma  6.6, µ2 

satisfies all the properties described in (7.3) (with µ2 in place of σn). By (1), (3) 
and (4), we have β, γ2 /∈ µ1⟨T (yp) − T ∗

n,q⟩. So µ2(f) = µ1(f) for each f ∈ E(T ) 
and µ2(u) = µ1(u) for each u ∈ V (T (yp−1)). Hence we can obtain T from 
T ∗

n,q + e1 by using TAA under µ2; thereby T satisfies MP under µ2. Furthermore, 
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  remains to be a good hierarchy of T 
under µ2, with the same Γ-sets as those under µ1. Therefore, (T, µ2) is also a mini-
mum counterexample to Theorem 5.3 (see (6.2)–(6.5)), in which β is missing at two 
vertices. Since θ ∈ Γq

h and ηh ∈ φn(yp−1) = µ1(yp−1) = µ2(yp−1), we obtain
(5) θ /∈ µ2⟨T (yp−1) − T ∗

n,q⟩.
By (4), we also have
(6) β /∈ µ2⟨T − T ∗

n,q⟩.
It follows from (5) and Lemma  6.5 (with θ in place of α) that 

Pvθ
(β, θ, µ2) = Pvβ

(β, θ, µ2), so it is disjoint from Pyp
(β, θ, µ2). Finally, set 

µ3 = µ2/Pyp
(β, θ, µ2). By Lemma 6.6, µ3 satisfies all the properties described in 

(7.3) (with µ3 in place of σn). From (5) and (6) we see that T can be obtained from 
T ∗

n,q + e1 by using TAA under µ3. Hence T is an ETT satisfying MP under µ3. Note 
that µ3(f) = µ2(f) for each f ∈ E(T (yp−1)), µ3(ep) = β, and µ3(u) = µ2(u) for 
each u ∈ V (T (yp−1)). Moreover, β /∈ Γq by (4). It is a routine matter to check that 
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  remains to be a good hierarchy of 
T under µ3, with the same Γ-sets as those under µ2. Since µ3(ep) = β /∈ Γq and 
vβ ≺ yp−1, we see that T − has a good hierarchy and is an ETT satisfying MP with 
respect to µ3. As θ is missing at two vertices in T −, we conclude that (T −, µ3) is a 
counterexample to Theorem 5.3 (see (6.2) and (6.3)), which contradicts the minimal-
ity assumption (6.4) or (6.5) on (T, φn).

Subcase 1.2. θ ∈ φn(yp−1).
In this subcase, from (6.6) and TAA we see that
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(7) θ /∈ φn(T (yp−2)), so θ /∈ Γq and hence θ ̸= γ1, γ2. Furthermore, θ is not used 
by any edge in T (yp−1) − T ∗

n,q, except possibly e1 when q = 0 and T ∗
n,0 = Tn (now 

e1 = fn in Algorithm 3.1 and φn(e1) = θ ∈ Dn).
Since Pvγ1

(ηm, γ1, φn) = Pyp−1(ηm, γ1, φn) by (2), this path is disjoint 
from Pyp

(ηm, γ1, φn). Let µ1 = φn/Pyp
(ηm, γ1, φn). By Lemma  6.6, µ1 satis-

fies all the properties described in (7.3) (with µ1 in place of σn). In particular, if 
e1 = fn and φn(e1) = ηm ∈ Dn, then µ1(e1) = φn(e1), which implies that e1 
is outside Pyp

(ηm, γ1, φn). By (1) and (6.6), we have µ1(f) = φn(f) for each 
f ∈ E(T ) and µ1(u) = φn(u) for each u ∈ V (T (yp−1)). So we can obtain T from 
T ∗

n,q + e1 by using TAA under µ1, and hence T satisfies MP under µ1. Furthermore, 
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  remains to be a good hierarchy of T 
under µ1, with the same Γ-sets as those under φn. Therefore, (T, µ1) is also a mini-
mum counterexample to Theorem 5.3 (see (6.2)–(6.5)), in which γ1 is missing at two 
vertices.

From (1) and the definition of µ1, we see that
(8) γ1 /∈ µ1⟨T − T ∗

n,q⟩.
From (8) and Lemma  6.5 (with γ1 in place of α), we deduce that 

Pvγ1
(θ, γ1, µ1) = Pyp−1(θ, γ1, µ1), which is disjoint from Pyp

(θ, γ1, µ1). Let 
µ2 = µ1/Pyp

(θ, γ1, µ1). By Lemma 6.6, µ2 satisfies all the properties described in 
(7.3) (with µ2 in place of σn). In particular, if e1 = fn and µ1(e1) = θ ∈ Dn, then 
µ2(e1) = µ1(e1), which implies that e1 is outside Pyp

(θ, γ1, µ1). In view of (7), 
(8) and (6.6), we have µ2(f) = µ1(f) for each f ∈ E(T (yp−1)), µ2(ep) = γ1, and 
µ2(u) = µ1(u) for each u ∈ V (T (yp−1)). Moreover, θ /∈ Γq. So T can be obtained 
from T ∗

n,q + e1 by using TAA under µ2, and hence is an ETT satisfying MP under µ2. 
It is a routine matter to check that Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  
remains to be a good hierarchy of T under µ2, with the same Γ-sets as those under 
µ1. Therefore, (T, µ2) is also a minimum counterexample to Theorem 5.3 (see (6.2)–
(6.5)). Since θ ∈ µ2(yp) ∩ µ2(yp−1) and µ2(ep) = γ1 /∈ µ2(yp−1), the present sub-
case reduces to Subcase 1.1 if θ ∈ Dn,q  and reduces to Subcase 2.1 (to be discussed 
below) if θ /∈ Dn,q .

Case 2. α ∈ φn(yp) ∩ φn(yp−1) and α /∈ Dn,q .
By the definitions of Dn and Dn,q, we have φn(Tn) ∪ Dn ⊆ φn(T ∗

n,q) ∪ Dn,q . 
Using (6.6) and this set inclusion, we obtain

(9) α /∈ φn(T (yp−2)) and α /∈ Dn. So α /∈ φn⟨T − T ∗
n,q⟩ by TAA (see, for 

instance, (1)).
Recall that T (y0) = T ∗

n,q and θ = φn(ep). We consider two subcases according to 
whether θ ∈ φn(yp−1).

Subcase 2.1. θ /∈ φn(yp−1).
In our discussion about this subcase, we shall also appeal to the following two 

tree-sequences:
	● T − = (T ∗

n,q, e1, y1, e2, . . . , ep−2, yp−2, ep, yp) and

	● T ∗ = (T ∗
n,q, e1, y1, e2, . . . , yp−2, ep, yp, ep−1, yp−1).
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As stated in Subcase 1.1, T − is obtained from T by deleting yp−1 and T ∗ arises from 
T by interchanging the order of (ep−1, yp−1) and (ep, yp). Furthermore, both T − and 
T ∗ are ETTs satisfying MP with respect to φn. Observe that

(10) Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T ∗ is a good hierarchy of T ∗ 
under φn, unless θ ∈ Γq

h for some ηh ∈ Dn,q such that ηh ∈ φn(yp−1).
Let us first assume that the exceptional case in (10) does not occur; that is, there 

exists no ηh ∈ Dn,q such that ηh ∈ φn(yp−1) and θ ∈ Γq
h. It is easy to see that now 

Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T − is a good hierarchy of T − under φn.
By Lemma 6.3, we have |φ1(T (yp−2)) − φn(T ∗

n,0 − V (Tn))
−φ1⟨T (yp−2) − T ∗

n,q⟩| ≥ 2n + 11 holds, where T (y0) = T ∗
n,q. Since |Dn| ≤ n by 

Lemma 3.5, using (6.6) we obtain
(11) there exists a color β in 

φn(T (yp−2)) − φn(T ∗
n,0 − V (Tn)) − φn⟨T − T ∗

n,q⟩ − Dn.
Note that β /∈ φn(yp), for otherwise, (T −, φn) would be a counterexample to 

Theorem 5.3 (see (6.2) and (6.3)), which violates the minimality assumption (6.4) or 
(6.5) on (T, σn). Since α, β /∈ φn⟨T − T ∗

n,q⟩ and α, β /∈ Dn by (9) and (11), applying 
Lemma 6.5 (with α, β switched in the lemma) to (T, φn) and (T ∗, φn), respectively, 
we obtain Pvβ

(α, β, φn) = Pyp−1(α, β, φn) and Pvβ
(α, β, φn) = Pyp

(α, β, φn), a 
contradiction.

So we assume that the exceptional case in (10) occurs; that is, there exists 
ηh ∈ Dn,q such that ηh ∈ φn(yp−1) and θ ∈ Γq

h. For simplicity, we abbreviate the 
two colors γq

h1
 and γq

h2
 in Γq

h (see Definition 5.2) to γ1 and γ2, respectively. Renam-
ing subscripts if necessary, we may assume that θ = γ1. By Definition 5.2(i) and 
TAA, we have

(12) γ2 /∈ φn⟨T − T ∗
n,q⟩ and ηh is not used by any edge in T − T ∗

n,q, except 
possibly e1 when q = 0 and T ∗

n,0 = Tn (now e1 = fn in Algorithm 3.1 and 
φn(e1) = ηh ∈ Dn,q ⊆ Dn).

By (12) and Lemma 6.5 (with α in place of β), we obtain 
Pvγ2

(α, γ2, φn) = Pyp−1(α, γ2, φn), which is disjoint from Pyp
(α, γ2, φn). Let 

µ1 = φn/Pyp
(α, γ2, φn). By Lemma 6.6, µ1 satisfies all the properties described in 

(7.3) (with µ1 in place of σn). Since α, γ2 /∈ φn⟨T (yp) − T ∗
n,q⟩ by (9) and (12), we have 

µ1(f) = φn(f) for each f ∈ E(T ) and µ1(u) = φn(u) for each u ∈ V (T (yp−1)). 
So we can obtain T from T ∗

n,q + e1 by using TAA under µ1, and hence T is an ETT sat-
isfying MP under µ1. Furthermore, Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  
remains to be a good hierarchy of T under µ1, with the same Γ-sets as those under 
φn. Therefore, (T, µ1) is also a minimum counterexample to Theorem 5.3 (see (6.2)–
(6.5)), in which γ2 is missing at two vertices.

If ηh ∈ µ1(yp), then ηh ∈ µ1(yp) ∩ µ1(yp−1), ηh ∈ Dn,q, and 
µ1(ep) = γ1 /∈ φn(yp−1). Thus the present subcase reduces to Subcase 1.1. So we 
may assume that ηh /∈ µ1(yp). By (12) and the definition of µ1, we have

(13) γ2 /∈ µ1⟨T − T ∗
n,q⟩ and ηh is not used by any edge in T − T ∗

n,q under µ1, 
except possibly e1 when q = 0 and T ∗

n,0 = Tn (now e1 = fn in Algorithm 3.1 and 
µ1(e1) = ηh ∈ Dn).

By (13) and Lemma 6.5 (with γ2 in place of α), we obtain 
Pvγ2

(ηh, γ2, µ1) = Pyp−1(ηh, γ2, µ1), which is disjoint from Pyp
(ηh, γ2, µ1). Let 
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µ2 = µ1/Pyp
(ηh, γ2, µ1). By Lemma 6.6, µ2 satisfies all the properties described in 

(7.3) (with µ2 in place of σn). In particular, if e1 = fn and µ1(e1) = ηh ∈ Dn, then 
µ2(e1) = µ1(e1), which implies that e1 is outside Pyp

(ηh, γ2, µ1). By (13), we have 
µ2(f) = µ1(f) for each f ∈ E(T ) and µ2(u) = µ1(u) for each u ∈ V (T (yp−1)). So 
we can obtain T from T ∗

n,q + e1 by using TAA under µ2, and hence T is an ETT sat-
isfying MP under µ2. Furthermore, Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  
remains to be a good hierarchy of T under µ2, with the same Γ-sets as those under 
µ1. Therefore, (T, µ2) is also a minimum counterexample to Theorem 5.3 (see (6.2)–
(6.5)), in which ηh ∈ µ2(yp) ∩ µ2(yp−1), ηh ∈ Dn,q, and µ2(ep) = γ1 /∈ µ2(yp−1). 
Thus the present subcase reduces to Subcase 1.1.

Subcase 2.2. θ ∈ φn(yp−1).
Let us first assume that θ ∈ Dn,q; that is, θ = ηm for some ηm ∈ Dn,q. For sim-

plicity, we use ε1 and ε2 to denote the two colors γq
m1  and γq

m2  in Γq
m (see Definition 

5.2), respectively. By Definition 5.2(i) and TAA, we have
(14) ε1, ε2 /∈ φn⟨T − T ∗

n,q⟩ and ηm is not used by any edge in T (yp−1) − T ∗
n,q, 

except possibly e1 when q = 0 and T ∗
n,0 = Tn (now e1 = fn in Algorithm 3.1 and 

φn(e1) = ηm ∈ Dn).
By (14) and Lemma 6.5, we obtain Pvε1

(α, ε1, φn) = Pyp−1(α, ε1, φn), which is 
disjoint from Pyp

(α, ε1, φn). Let µ1 = φn/Pyp
(α, ε1, φn). By Lemma 6.6, µ1 satis-

fies all the properties described in (7.3) (with µ1 in place of σn). By (9) and (14), we 
have

(15) α, ε1 /∈ µ1⟨T − T ∗
n,q⟩ and ηm is not used by any edge in T (yp−1) − T ∗

n,q 
under µ1, except possibly e1 when q = 0 and T ∗

n,0 = Tn (now e1 = fn in Algorithm 
3.1 and µ1(e1) = ηm ∈ Dn).

So µ1(f) = φn(f) for each f ∈ E(T ) and µ1(u) = φn(u) for each u ∈ V (T (yp−1)). 
Thus T can be obtained from T ∗

n,q + e1 by using TAA under µ1, and hence is an ETT sat-
isfying MP under µ1. Furthermore, Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  
remains to be a good hierarchy of T under µ1, with the same Γ-sets as those under 
φn. Therefore, (T, µ1) is also a minimum counterexample to Theorem 5.3 (see (6.2)–
(6.5)), in which ε1 is missing at two vertices.

By (15) and Lemma 6.5 (with ε1 in place of α), we obtain 
Pvε1

(ηm, ε1, µ1) = Pyp−1(ηm, ε1, µ1), which is disjoint from Pyp
(ηm, ε1, µ1). Let 

µ2 = µ1/Pyp
(ηm, ε1, µ1). By Lemma 6.6, µ2 satisfies all the properties described in 

(7.3) (with µ2 in place of σn). In particular, if e1 = fn and µ1(e1) = ηm ∈ Dn, then 
µ2(e1) = µ1(e1), which implies that e1 is outside Pyp

(ηm, ε1, µ1). In view of (15), we have 
µ2(f) = µ1(f) for each f ∈ E(T (yp−1)), µ2(ep) = ε1, and µ2(u) = µ1(u) for each 
u ∈ V (T (yp−1)). So T can be obtained from T ∗

n,q + e1 by using TAA under µ2, and hence 
satisfies MP under µ2. Furthermore, Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  
remains to be a good hierarchy of T under µ2, with the same Γ-sets as those under 
µ1. Therefore, (T, µ2) is also a minimum counterexample to Theorem 5.3 (see (6.2)–
(6.5)), in which ηm ∈ µ2(yp) ∩ µ2(yp−1), ηm ∈ Dn,q, and µ2(ep) = ε1 /∈ µ2(yp−1). 
Thus the present subcase reduces to Subcase 1.1.

Next we assume that θ /∈ Dn,q . Set T (y0) = T ∗
n,q. We propose to show that

(16) there exists a color β ∈ φn(T (yp−2)) − φn(T ∗
n,0 − V (Tn))

−φn⟨T − T ∗
n,q⟩ − Dn,q , such that either β /∈ Γq or β ∈ Γq

h for some 
ηh ∈ Dn,q ∩ φn(T (yp−2)).
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To justify this, note that if |φn(T (yp−2))−φn(T ∗
n,0 − V (Tn))−φn⟨T (yp−2) − T ∗

n,q⟩
−(Γq ∪ Dn,q)| ≥ 5, then |φn(T (yp−2))−φn(T ∗

n,0 − V (Tn))−φn⟨T − T ∗
n,q⟩

−(Γq ∪ Dn,q)| ≥ 3, because T − T (yp−2) contains precisely two edges. Thus there 
exists a color β ∈ φn(T (yp−2))−φn(T ∗

n,0 − V (Tn))−φn⟨T − T ∗
n,q⟩ − Dn,q , such 

that β /∈ Γq.
So we assume that |φn(T (yp−2))−φn(T ∗

n,0 − V (Tn))−φn⟨T (yp−2) − T ∗
n,q⟩

−(Γq ∪ Dn,q)| ≤ 4. By Lemma 6.3, there exist 7 distinct colors ηh ∈ Dn,q ∩ φn(T (yp−2)) 
such that (Γq

h ∪ {ηh}) ∩ φn⟨T (yp−2) − T ∗
n,q⟩ = ∅. Let β be an arbitrary color 

in such a Γq
h. From Definition 5.2, we see that Γq

h ⊆ φn(T ∗
n,q)⊆ φn(T (yp−2)), 

Γq
h ∩ φn(T ∗

n,0 − V (Tn)) = ∅, and Γq
h ∩ Dn,q = ∅ (see (5.7)). So β ∈ φn(T (yp−2))

−φn(T ∗
n,0 − V (Tn)) − φn⟨T (yp−2) − T ∗

n,q⟩ − Dn,q . Since T − T (yp−2) con-
tains precisely two edges, there exists β ∈ φn(T (yp−2))−φn(T ∗

n,0 − V (Tn)) − φn

⟨T − T ∗
n,q⟩ − Dn,q , such that β ∈ Γq

h for some ηh ∈ Dn,q ∩ φn(T (yp−2)). Hence 
(16) is established.

By the definitions of Dn and Dn,q , we have φn(Tn) ∪ Dn ⊆ φn(T ∗
n,q) ∪ Dn,q . 

By (16), β /∈ φn(T ∗
n,0 − V (Tn)) ∪ Dn,q. It follows from these two observations that

(17) if q ≥ 1, then β ∈ φn(T ∗
n,q) or β /∈ Dn; if q = 0, then β ∈ φn(Tn) or β /∈ Dn.

By (9), (16), (17) and Lemma 6.5, we obtain Pvβ
(α, β, φn) = Pyp−1(α, β, φn), 

which is disjoint from Pyp
(α, β, φn). Let µ3 = φn/Pyp

(α, β, φn). By Lemma 6.6, 
µ3 satisfies all the properties described in (7.3) (with µ3 in place of σn). By (9) and 
(16), we have α, β /∈ φn⟨T − T ∗

n,q⟩. So
(18) α, β /∈ µ3⟨T − T ∗

n,q⟩,
µ3(f) = φn(f) for each f ∈ E(T ), and µ3(u) = φn(u) for each u ∈ V (T (yp−1)). 

Thus we can obtain T from T ∗
n,q + e1 by using TAA under µ3, and hence T is an ETT sat-

isfying MP under µ3. Furthermore, Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  
remains to be a good hierarchy of T under µ3, with the same Γ-sets as those under 
φn. Therefore, (T, µ3) is also a minimum counterexample to Theorem 5.3 (see (6.2)–
(6.5)), in which β is missing at two vertices.

Since θ ∈ φn(yp−1), it follows from (6.6) that θ /∈ φn(T ∗
n,q). By assumption, 

θ /∈ Dn,q . As φn(Tn) ∪ Dn ⊆ φn(T ∗
n,q) ∪ Dn,q , we obtain

(19) θ /∈ Dn and hence θ /∈ µ3⟨T (yp−1) − T ∗
n,q⟩ by TAA.

By (17)-(19) and Lemma 6.5, we obtain Pvβ
(θ, β, µ3) = Pyp−1(θ, β, µ3), which is 

disjoint from Pyp
(θ, β, µ3). Let µ4 = µ3/Pyp

(θ, β, µ3). By Lemma 6.6, µ4 satisfies 
all the properties described in (7.3) (with µ4 in place of σn). By (18) and (19), we have 
µ4(f) = µ3(f) for each f ∈ E(T (yp−1)) and µ4(u) = µ3(u) for each u ∈ V (T (yp−1)). 
So we can obtain T from T ∗

n,q + e1 by using TAA under µ4, and hence T is an ETT satis-
fying MP under µ4. Since either β /∈ Γq or β ∈ Γq

h for some ηh ∈ Dn,q ∩ µ3(T (yp−2)) 
by (16), it follows that Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  remains to be 
a good hierarchy of T under µ4, with the same Γ-sets as those under µ3. Therefore, 
(T, µ4) is also a minimum counterexample to Theorem 5.3 (see (6.2)–(6.5)), in which 
θ ∈ µ4(yp) ∩ µ4(yp−1), θ /∈ Dn,q , and µ4(ep) = β /∈ µ4(yp−1). Thus the present 
subcase reduces to Subcase 2.1.

Case 3. α ∈ φn(yp) ∩ φn(v) for some vertex v ≺ yp−1.
Set T (y0) = T ∗

n,q. Let us first impose some restrictions on α.
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(20) We may assume that α ∈ φn(T (yp−2)) − φn⟨T − T ∗
n,q⟩, such that either 

α /∈ Dn,q ∪ Γq if q ≥ 1 and α /∈ Dn ∪ Γ0 if q = 0, or α is some ηh ∈ Dn,q satisfy-
ing Γq

h ∩ φn⟨T − T ∗
n,q⟩ = ∅.

To justify this, note that if |φn(T (yp−2))φn(T ∗
n,0 − V (Tn)) − φn

⟨T (yp−2) − T ∗
n,q⟩−(Γq ∪ Dn,q)| ≥ 5, then |φn(T (yp−2))−φn(T ∗

n,0 − V (Tn))
−φn⟨T − T ∗

n,q⟩−(Γq ∪ Dn,q)| ≥ 3, because T − T (yp−2) contains precisely 
two edges. Thus there exists a color β ∈ φn(T (yp−2))−φn(T ∗

n,0 − V (Tn))
−φn⟨T − T ∗

n,q⟩ − (Γq ∪ Dn,q). Clearly, β ∈ φn(T (yp−2))−φn⟨T − T ∗
n,q⟩ and 

β /∈ Dn,q ∪ Γq if q ≥ 1 and β /∈ Dn ∪ Γ0 if q = 0 (note that β /∈ Dn because 
β /∈ φn(T ∗

n,0 − V (Tn)) ∪ Dn,0).
If |φn(T (yp−2))−φn(T ∗

n,0 − V (Tn))−φn⟨T (yp−2) − T ∗
n,q⟩−(Γq ∪ Dn,q)| ≤ 4, 

then, by Lemma 6.3, there exist 7 distinct colors ηh ∈ Dn,q ∩ φn(T (yp−2)) such 
that (Γq

h ∪ {ηh})∩φn⟨T (yp−2) − T ∗
n,q⟩ = ∅. Since T − T (yp−2) contains 

precisely two edges, there exists one of these ηh, denoted by β, such that 
(Γq

h ∪ {ηh}) ∩ φn⟨T − T ∗
n,q⟩ = ∅.

Combining the above observations, we conclude that
(21) there exists β ∈ φn(T (yp−2)) − φn⟨T − T ∗

n,q⟩, such that either 
β /∈ Dn,q ∪ Γq if q ≥ 1 and β /∈ Dn ∪ Γ0 if q = 0, or β is some ηh ∈ Dn,q satisfy-
ing Γq

h ∩ φn⟨T − T ∗
n,q⟩ = ∅.

If β ∈ φn(yp), then (20) holds by replacing α with β (recall the hypothesis of the 
present case). So we assume hereafter that β /∈ φn(yp). Let Q = Pyp

(α, β, φn) and 
let σn = φn/Q. We propose to show that one of the following statements (a) and (b) 
holds: 

(a)	 σn is a (T ∗
n,q, Dn, φn)-weakly stable coloring, T is also an ETT satisfying MP 

with respect to σn, and Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  remains 
to be a hierarchy of T under σn, with the same Γ-sets (see Definition 5.2) as those 
under φn. Moreover, (20) holds with respect to (T, σn).

(b)	 There exists an ETT T ′ satisfying MP with respect to φn, such that 
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T ′ is a good hierarchy of T ′ under φn, with 
the same Γ-sets as T under φn. Moreover, V (T ′) is not elementary with respect 
to φn and p(T ′) < p(T ).

Note that if (b) holds, then (T ′, φn) would be a counterexample to Theorem 5.3 (see 
(6.2) and (6.3)), which violates the minimality assumption (6.4) on (T, φn).

Let us first assume that Q is vertex-disjoint from T (yp−1). By Lemma 5.8, σn 
is both (T (yp−1), Dn, φn)-stable and (T (yp−1), φn)-invariant. If Θn = PE, then 
σn is also (Tn ⊕ Rn, Dn, φn)-stable. Furthermore, T (yp−1) is an ETT satisfying 
MP with respect to σn, and Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T (yp−1) is a good 
hierarchy of T (yp−1), with the same Γ-sets as T under σn. By definition, σn is a 
(T ∗

n,q, Dn, φn)-weakly stable coloring. By the hypothesis of Case 3 and assumption 
on β, we have φn(ep) ̸= α, β. Thus it is clear that (a) is true, and (20) follows if we 
replace φn by σn and α by β.
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Next we assume that Q and T (yp−1) have vertices in common. Let u be 
the first vertex of Q contained in T (yp−1) as we traverse Q from yp. Define 
T ′ = T (yp−1) ∪ Q[u, yp] if u = yp−1 and T ′ = T (yp−2) ∪ Q[u, yp] otherwise. 
By the hypothesis of Case 3 and (21), we have α, β ∈ φn(T (yp−2)). So T ′ can be 
obtained from T (yp−2) by using TAA under φn, with p(T ′) < p(T ). It follows that 
T ′ is an ETT satisfying MP with respect to φn.

By Definition 5.2, we have Dn,q ∩ Γq = ∅ (see (5.7)). Thus
(22) β /∈ Γq by (21).
Let us proceed by considering three possibilities for α.
• α /∈ Γq. Since both α and β are outside Γq (see (22)), it is easy to see that 

Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T ′ is a good hierarchy of T ′ under φn, with the 
same Γ-sets as T under φn. Hence (b) holds.

• α ∈ Γq ∩ φn⟨T − T ∗
n,q⟩. Let α ∈ Γq

h for some ηh ∈ Dn,q. Since 
φ(ep) ̸= α, we have α ∈ φn⟨T (yp−1) − T ∗

n,q⟩. Hence ηh ∈ φn(T (yp−2)) by Defini-
tion 5.2(i). Furthermore, β ∈ φn(T (yp−2)) and β /∈ Γq by (21) and (22). Therefore, 
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T ′ is a good hierarchy of T ′ under φn, with the 
same Γ-sets as T under φn. Hence (b) holds.

• α ∈ Γq − φn⟨T − T ∗
n,q⟩. By the definition of Γq, we have α ∈ φn(Tn,q) 

if q ≥ 1 and α ∈ φn(Tn) if q = 0. It follows from Lemma  6.5 that 
Pvα

(α, β, φn) = Pvβ
(α, β, φn), which is disjoint from Q. By Lemma  6.6, 

σn = φn/Q satisfies all the properties described in (7.3). Since α, β /∈ φn⟨T − T ∗
n,q⟩ 

by the assumption on α, (21) and (6.6), we have σn(f) = φn(f) for each f ∈ E(T ) 
and σn(u) = φn(u) for each u ∈ V (T (yp−1)). So we can obtain T from T ∗

n,q + e1 
by using TAA under σn, and hence T is an ETT satisfying MP under σn. Furthermore, 
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  remains to be a good hierarchy of T 
under σn, with the same Γ-sets as those under φn. Therefore, (T, σn) is also a mini-
mum counterexample to Theorem 5.3 (see (6.2)–(6.5)), in which β is missing at two 
vertices. So (a) holds and therefore (20) is established by replacing φn with σn and 
β with α.

Let α be a color as specified in (20). Recall that θ = φn(ep). We consider two 
subcases according to whether θ ∈ φn(yp−1).

Subcase 3.1. θ /∈ φn(yp−1).
Consider the tree-sequence T − = (T ∗

n,q, e1, y1, e2, . . . , ep−2, yp−2, ep, yp). As 
stated in Subcase 1.1, T − arises from T by deleting yp−1, and T − is an ETT satisfy-
ing MP with respect to φn. Observe that

(23) Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T − is a good hierarchy of T − under φn, 
unless θ ∈ Γq

m for some ηm ∈ Dn,q such that ηm ∈ φn(yp−1).
It follows that the exceptional case stated in (23) must occur, for otherwise, 

(T −, φn) would be a counterexample to Theorem 5.3 (see (6.2) and (6.3)), which 
violates the minimality assumption (6.4) or (6.5) on (T, φn). So θ ∈ Γq

m for some 
ηm ∈ Dn,q such that ηm ∈ φn(yp−1).

Since α ∈ φn(T (yp−2)), we have α ̸= ηm by (6.6). From Definition 5.2(i), we 
see that

(24) θ /∈ φn⟨T (yp−1) − T ∗
n,q⟩.
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By the definition of Γq, we have θ ∈ φn(Tn,q) if q ≥ 1 and θ ∈ φn(Tn) if q = 0. 
Thus, by (20), (24) and Lemma 6.5, we obtain Pvα

(α, θ, φn) = Pvθ
(α, θ, φn), which 

is disjoint from Pyp
(α, θ, φn). Let µ1 = φn/Pyp

(α, θ, φn). By Lemma 6.6, µ1 satis-
fies all the properties described in (7.3) (with µ1 in place of σn). Using (20) and (24), 
we get

(25) α, θ /∈ µ1⟨T (yp−1) − T ∗
n,q⟩,

µ1(f) = φn(f) for each f ∈ E(T (yp−1)), µ1(ep) = α /∈ Γq (see (20)), and 
µ1(u) = φn(u) for each u ∈ V (T (yp−1)). So we can obtain T from T ∗

n,q + e1 by 
using TAA under µ1 and hence T is an ETT satisfying MP under µ1. Furthermore, 
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  remains to be a good hierarchy of T 
under µ1, with the same Γ-sets as those under φn. Therefore, (T, µ1) is also a mini-
mum counterexample to Theorem 5.3 (see (6.2)–(6.5)), in which θ is missing at two 
vertices.

By (25) and Lemma 6.5, we obtain Pvθ
(ηm, θ, µ1) = Pyp−1(ηm, θ, µ1), which is 

disjoint from Pyp
(ηm, θ, µ1). Let µ2 = µ1/Pyp

(ηm, θ, µ1). By Lemma 6.6, µ2 sat-
isfies all the properties described in (7.3) (with µ2 in place of σn). Note that ηm is 
not used by any edge in T − T ∗

n,q under µ1, except possibly e1 when q = 0 and 
T ∗

n,0 = Tn (now e1 = fn in Algorithm 3.1 and µ1(e1) = ηm ∈ Dn). So e1 is out-
side Pyp

(ηm, θ, µ1). Hence µ2(f) = µ1(f) for each f ∈ E(T ), and µ2(u) = µ1(u) 
for each u ∈ V (T (yp−1)). It follows that T can be obtained from T ∗

n,q + e1 
by using TAA and hence is an ETT satisfying MP under µ2. Furthermore, 
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  remains to be a good hierarchy of T 
under µ2, with the same Γ-sets as those under µ1. Therefore, (T, µ2) is also a minimum 
counterexample to Theorem 5.3 (see (6.2)–(6.5)). Since ηm ∈ µ2(yp) ∩ µ2(yp−1), 
ηm ∈ Dn,q, and µ2(ep) = α /∈ µ2(yp−1), the present subcase reduces to Subcase 1.1.

Subcase 3.2. θ ∈ φn(yp−1).
We first assume that θ ∈ Dn,q . Let θ = ηm ∈ Dn,q . For simplicity, we abbreviate 

the two colors γq
m1  and γq

m2  in Γq
m (see Definition 5.2) to γ1 and γ2, respectively. By 

(20) and Definition 5.2(i), we have
(26) {α, γ1, γ2} ∩ φn⟨T − T ∗

n,q⟩ = ∅.
By (26) and Lemma 6.5, we obtain Pvα

(α, γ1, φn) = Pvγ1
(α, γ1, φn), which is 

disjoint from Pyp
(α, γ1, φn). Let µ1 = φn/Pyp

(α, γ1, φn). By Lemma 6.6, µ1 satis-
fies all the properties described in (7.3) (with µ1 in place of σn). Since µ1(f) = φn(f) 
for each f ∈ E(T ), and µ1(u) = φn(u) for each u ∈ V (T (yp−1)), we can obtain T 
from T ∗

n,q + e1 by using TAA under µ1 and hence T is an ETT satisfying MP under 
µ1. Furthermore, Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  remains to be a 
good hierarchy of T under µ1, with the same Γ-sets as those under µ1. Therefore, 
(T, µ1) is also a minimum counterexample to Theorem 5.3 (see (6.2)–(6.5)), in which 
γ1 is missing at two vertices. In view of (26) and Definition 5.2(i), we get

(27) {α, γ1, γ2} ∩ µ1⟨T − T ∗
n,q⟩ = ∅, and ηm is not used by any edge in T − T ∗

n,q 
under µ1, except possibly e1 when q = 0 and T ∗

n,0 = Tn (now e1 = fn in Algorithm 
3.1 and µ1(e1) = ηm ∈ Dn,q ⊆ Dn).

By (27) and Lemma 6.5, we obtain Pvγ1
(γ1, ηm, µ1) = Pyp−1(γ1, ηm, µ1), which 

is disjoint from Pyp
(γ1, ηm, µ1). Let µ2 = µ1/Pyp

(γ1, ηm, µ1). By Lemma 6.6, µ2 
satisfies all the properties described in (7.3) (with µ2 in place of σn). In particular, 
if e1 = fn and µ1(e1) = ηm ∈ Dn, then µ2(e1) = µ1(e1), which implies that e1 is 
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outside Pyp
(γ1, ηm, µ1). Since µ2(f) = µ1(f) for each f ∈ E(T (yp−1)) by (27), 

and µ2(u) = µ1(u) for each u ∈ V (T (yp−1)), we can obtain T from T ∗
n,q + e1 by 

using TAA under µ2 and hence T is an ETT satisfying MP under µ2. Furthermore, 
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  remains to be a good hierarchy of T 
under µ2, with the same Γ-sets as those under µ1. Therefore, (T, µ2) is also a minimum 
counterexample to Theorem 5.3 (see (6.2)–(6.5)). Since ηm ∈ µ2(yp) ∩ µ2(yp−1), 
ηm ∈ Dn,q, and µ2(ep) = γ1 /∈ µ2(yp−1), the present subcase reduces to Subcase 
1.1.

Next we assume that θ /∈ Dn,q . By (6.6) and the hypothesis of the present subcase, 
we have θ /∈ φn(T ∗

n,q). So θ /∈ φn(T ∗
n,q) ∪ Dn,q, which implies θ /∈ φn(Tn) ∪ Dn. 

In particular,
(28) θ /∈ Dn,q ∪ Γq  if q ≥ 1 and θ /∈ Dn ∪ Γ0 if q = 0. Furthermore, θ is not used 

by any edge in T (yp−1) − T ∗
n,q by TAA (see, for instance, (1)).

We proceed by considering two possibilities for α.

	● α /∈ Dn,q . Now it follows from (20) that

(29) α /∈ Dn,q ∪ Γq if q ≥ 1 and α /∈ Dn ∪ Γ0 if q = 0.
By (20) and Lemma  6.5, we obtain Pvα

(α, θ, φn) = Pyp−1(α, θ, φn), which is 
disjoint from Pyp

(α, θ, φn). Let σn = φn/Pyp
(α, θ, φn). By Lemma 6.6, σn satisfies 

all the properties described in (7.3). Since σn(f) = φn(f) for each f ∈ E(T (yp−1)) 
by (20) and (28), and σn(u) = φn(u) for each u ∈ V (T (yp−1)), we can obtain T 
from T ∗

n,q + e1 by using TAA under σn and hence T is an ETT satisfying MP under 
σn. In view of (28) and (29), Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  remains 
to be a good hierarchy of T under σn, with the same Γ-sets as those under φn. There-
fore, (T, σn) is also a minimum counterexample to Theorem 5.3 (see (6.2)–(6.5)). 
Since θ ∈ σn(yp) ∩ σn(yp−1), θ /∈ Dn,q , and σn(ep) = α /∈ σn(yp−1), the present 
subcase reduces to Subcase 2.1.

	● α ∈ Dn,q . Let α = ηh ∈ Dn,q . For simplicity, we use ε1 and ε2 to denote the 
two colors γq

h1
 and γq

h2
 in Γq

h (see Definition 5.2), respectively. By (20), we have

(30) {α, ε1, ε2} ∩ φn⟨T − T ∗
n,q⟩ = ∅.

By (30) and Lemma 6.5, we obtain Pvα
(α, ε1, φn) = Pvε1

(α, ε1, φn), which is 
disjoint from Pyp

(α, ε1, φn). Let µ1 = φn/Pyp
(α, ε1, φn). By Lemma 6.6, µ1 satis-

fies all the properties described in (7.3) (with µ1 in place of σn). Since µ1(f) = φn(f) 
for each f ∈ E(T ) by (30), and µ1(u) = φn(u) for each u ∈ V (T (yp−1)), we can 
obtain T from T ∗

n,q + e1 by using TAA under µ1 and hence T is an ETT satisfying MP 
under µ1. Furthermore, Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  remains to 
be a good hierarchy of T under µ1, with the same Γ-sets as those under φn. Therefore, 
(T, µ1) is also a minimum counterexample to Theorem 5.3 (see (6.2)–(6.5)), in which 
ε1 is missing at two vertices. From (30) and Definition 5.2(i) we see that

(31) ε1 /∈ µ1⟨T − T ∗
n,q⟩.

By (31) and Lemma  6.5, we obtain Pvε1
(θ, ε1, µ1) = Pyp−1(θ, ε1, µ1), which 

is disjoint from Pyp
(θ, ε1, µ1). Let µ2 = µ1/Pyp

(θ, ε1, µ1). By Lemma  6.6, 
µ2 satisfies all the properties described in (7.3) (with µ2 in place of σn). In 
view of (28) and (31), we have µ2(f) = µ1(f) for each f ∈ E(T (yp−1)) and 
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µ1(u) = φn(u) for each u ∈ V (T (yp−1)). So T can be obtained from T ∗
n,q + e1 

by using TAA and hence is an ETT satisfying MP under µ2. Furthermore, 
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  remains to be a good hierarchy of T 
under µ2, with the same Γ-sets as those under µ1. Therefore, (T, µ2) is also a mini-
mum counterexample to Theorem 5.3 (see (6.2)–(6.5)). Since θ ∈ µ2(yp) ∩ µ2(yp−1), 
θ /∈ Dn,q , and µ2(ep) = ε1 /∈ µ2(yp−1), the present subcase reduces to Subcase 2.1. 
This completes our discussion about Situation 7.2.

Situation 7.3  2 ≤ p(T ) ≤ p − 1.

Recall that T = T ∗
n,q ∪ {e1, y1, e2, ..., ep, yp}, and the path number p(T) of T is the 

smallest subscript t ∈ {1, 2, ..., p} such that the sequence (yt, et+1, ..., ep, yp) cor-
responds to a path in G. Set Iφn

= {1 ≤ t ≤ p − 1 : φn(yp) ∩ φn(yt) ̸= ∅}. We use 
max(Iφn

) to denote the maximum element of Iφn  if Iφn
̸= ∅. For convenience, set 

max(Iφn
) = −1 if Iφn

= ∅.
If max(Iφn

) ≥ p(T ), then we may assume that max(Iφn
) = p − 1 (the proof is 

exactly the same as that of Claim 7.3). Let α ∈ φn(yp−1) ∩ φn(yp) and β = φn(ep). 
Let σn be obtained from φn by recoloring ep with α and let T ′ = T (yp−1). Then 
β ∈ σn(yp−1) ∩ σn(T ′) and Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T ′ is a good hierar-
chy of T ′ under σn. So (T ′, σn) is a counterexample to Theorem 5.3 (see (6.2) and 
(6.3)), which violates the minimality assumption (6.4) or (6.5) on (T, φn).

So we may assume hereafter that max(Iφn
) < p(T ). Let i = max(Iφn

) if 
Iφn

̸= ∅, and let j = p(T ). Then ej  is not incident to yj−1. In our proof we reserve 
y0 for the maximum vertex (in the order ≺) in T ∗

n,q.

Claim 7.4  We may assume that there exists α ∈ φn(yp) ∩ φn(T (yj−2 )), such 
that either α /∈ Γq ∪ φn(T∗

n,0 − V (Tn)) or α ∈ Γq
m  for some ηm ∈ Dn,q  with 

vηm ⪯ yj−2 .

To establish this statement, we consider two cases, depending on whether Iφ is 
empty.

Case 1. Iφ ̸= ∅.
By assumption, max(Iφn

) < p(T ). So i ≤ j − 1. Let α ∈ φn(yp) ∩ φn(yi). By 
(6.6), we obtain

(1) α /∈ φn(T ∗
n,q). So α /∈ Γq ∪ φn(T ∗

n,0 − V (Tn)).
If i ≤ j − 2, then α ∈ φn(T (yj−2)), as desired. Thus we may assume that 

i = j − 1.
(2) There exists a color β ∈ φn(T (yj−2))φn(T ∗

n,0 − V (Tn))
−φn⟨T (yj−1) − T ∗

n,q⟩ − (Γq ∪ Dn,q) or a color β ∈ Γq
m for some ηm ∈ Dn,q with 

vηm ⪯ yj−2 and (Γq
m ∪ {ηm}) ∩ φn⟨T (yj−1) − T ∗

n,q⟩ = ∅.
To justify this, note that if |φn(T (yj−2))−φn(T ∗

n,0 − V (Tn))−φn⟨T (yj−2) − T ∗
n,q⟩

−(Γq ∪ Dn,q)| ≥ 5, then there exists a color β in φn(T (yj−2))−φn(T ∗
n,0 − V (Tn))

−φn⟨T (yj−1) − T ∗
n,q⟩−(Γq ∪ Dn,q), because T (yj−1) − T (yj−2) contains only 

one edge.
I f 

|φn(T (yj−2)) − φn(T ∗
n,0 − V (Tn)) − φn⟨T (yj−2) − T ∗

n,q⟩ − (Γq ∪ Dn,q)| ≤ 4 , 
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then, by Lemma 6.3, there exist 7 distinct colors ηh ∈ Dn,q ∩ φn(T (yj−2)) such 
that (Γq

h ∪ {ηh}) ∩ φn⟨T (yj−2) − T ∗
n,q⟩ = ∅. Since T (yj−1) − T (yj−2) con-

tains only one edge, there exists at least one of these ηh, say ηm, such that 
(Γq

m ∪ {ηm}) ∩ φn⟨T (yj−1) − T ∗
n,q⟩ = ∅. So (2) is true.

Depending on whether α is contained in Dn,q , we distinguish between two 
subcases.

Subcase 1.1. α ∈ Dn,q . In this subcase, let α = ηh ∈ Dn,q . For simplicity, we 
abbreviate the two colors γq

h1
 and γq

h2
 in Γq

h (see Definition 5.2) to γ1 and γ2, respec-
tively. Since ηh ∈ φn(yj−1), by Definition 5.2(i) and TAA, we have

(3) γ1, γ2 /∈ φn⟨T (yj−1) − T ∗
n,q⟩, and ηh is not used by any edge in T (yj−1) − T ∗

n,q, 
except possibly e1 when q = 0 and T ∗

n,0 = Tn (now e1 = fn in Algorithm 3.1 and 
φn(e1) = ηh ∈ Dn,q ⊆ Dn).

By (3) and Lemma 6.5, we obtain Pvγ1
(γ1, ηh, φn) = Pyj−1(γ1, ηh, φn), which is 

disjoint from Pyp
(γ1, ηh, φn). Let µ1 = φn/Pyp

(γ1, ηh, φn). By Lemma 6.6, µ1 satis-
fies all the properties described in (7.3) (with µ1 in place of σn). In particular, if e1 = fn 
and φn(e1) = ηh ∈ Dn, then µ1(e1) = φn(e1), which implies that e1 is outside 
Pyp

(γ1, ηh, φn). Using (3) and (6.6), we get µ1(f) = φn(f) for each f ∈ E(T (yj−1)) 
and µ1(u) = φn(u) for each u ∈ V (T (yp−1)). So we can obtain T from T ∗

n,q + e1 by 
using TAA under µ1, and hence T is an ETT satisfying MP under µ1. Furthermore, 
since ηh ∈ µ1(yj−1), the hierarchy Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  
remains to be good under µ1, with the same Γ-sets as those under µ1. Therefore, 
(T, µ1) is also a minimum counterexample to Theorem 5.3 (see (6.2)–(6.5)), in which 
γ1 is missing at two vertices.

From (3) we see that
(4) γ1, γ2 /∈ µ1⟨T (yj−1) − T ∗

n,q⟩, and ηh is not used by any edge in T (yj−1) − T ∗
n,q 

under µ1, except possibly e1 when q = 0 and T ∗
n,0 = Tn (now e1 = fn in Algorithm 

3.1 and µ1(e1) = ηh ∈ Dn,q ⊆ Dn).
Let β be a color as specified in (2). Note that
(5) β /∈ µ1⟨T (yj−1) − T ∗

n,q⟩, β /∈ Dn,q , and β ̸= ηh = α.
Since γ1 ∈ µ1(Tn,q) if q ≥ 1 and γ1 ∈ µ1(Tn) if q = 0, from (4) and Lemma 6.5 we 

deduce that Pvγ1
(γ1, β, µ1) = Pvβ

(γ1, β, µ1), which is disjoint from Pyp
(γ1, β, µ1). 

Let µ2 = µ1/Pyp
(γ1, β, µ1). By Lemma 6.6, µ2 satisfies all the properties described 

in (7.3) (with µ2 in place of σn). By (4), (5) and (6.6), we have µ2(f) = µ1(f) 
for each f ∈ E(T (yj−1)), and µ2(u) = µ1(u) for each u ∈ V (T (yp−1)). So we can 
obtain T from T ∗

n,q + e1 by using TAA under µ2 and hence T is an ETT satisfying 
MP under µ2. If β /∈ Γq, then clearly Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  
remains to be a good hierarchy of T under µ2, with the same Γ-sets as those under 
µ1. So we assume that β ∈ Γq. By (2), we have β ∈ Γq

m for some ηm ∈ Dn,q 
with vηm ⪯ yj−2 and (Γq

m ∪ {ηm}) ∩ φn⟨T (yj−1) − T ∗
n,q⟩ = ∅. It follows that 

Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  is still a good hierarchy of T under µ2, 
with the same Γ-sets as those under µ1. Therefore, (T, µ2) is also a minimum counter-
example to Theorem 5.3 (see (6.2)–(6.5)), in which β ∈ µ2(yp) ∩ µ2(T (yj−2)). From 
(2) and the definitions of µ1 and µ2, we see that either β /∈ Γq ∪ φn(T ∗

n,0 − V (Tn)) 
or β ∈ Γq

m for some ηm ∈ Dn,q with vηm ⪯ yj−2. Thus Claim 7.4 holds by replacing 
φn with µ2 and α with β.
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Subcase 1.2. α /∈ Dn,q . In this subcase, using (1) and the set inclusion 
φn(Tn) ∪ Dn ⊆ φn(T ∗

n,q) ∪ Dn,q , we get
(6) α /∈ Dn. So α is not used by any edge in T (yj−1) − T ∗

n,q by TAA.
Let β be a color as specified in (2). Then there are two possibilities for β.
• β ∈ φn(T (yj−2)) − φn(T ∗

n,0 − V (Tn)) − φn⟨T (yj−1) − T ∗
n,q⟩ − (Γq ∪ Dn,q). 

Now it follows from Lemma 6.5 that Pvβ
(α, β, φn) = Pyj−1(α, β, φn), so this path 

is disjoint from Pyp
(α, β, φn). Let σn = φn/Pyp

(α, β, φn). By Lemma  6.6, σn 
satisfies all the properties described in (7.3). By (6), the assumption on β and 
(6.6), we have σn(f) = φn(f) for each f ∈ E(T (yj−1)), and σn(u) = φn(u) for 
each u ∈ V (T (yp−1)). So we can obtain T from T ∗

n,q + e1 by using TAA under 
σn and hence T satisfies MP under σn. Since α, β /∈ Γq (see (1)), the hierarchy 
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  remains to be good under σn, with 
the same Γ-sets as those under φn. Therefore, (T, σn) is also a minimum counterex-
ample to Theorem 5.3 (see (6.2)–(6.5)), in which β ∈ σn(yp) ∩ σn(T (yj−2)). Thus 
Claim 7.4 holds by replacing φn with σn and α with β.

• β ∈ Γq
m for some ηm ∈ Dn,q with vηm ⪯ yj−2 and 

(Γq
m ∪ {ηm}) ∩ φn⟨T (yj−1) − T ∗

n,q⟩ = ∅. Note that ηm ∈ φn(T (yj−2)) and hence 
α ̸= ηm by (6.6). In view of Lemma 6.5, we obtain Pvβ

(α, β, φn) = Pyj−1(α, β, φn), 
which is disjoint from Pyp

(α, β, φn). Let σn = φn/Pyp
(α, β, φn). By Lemma 6.6, 

σn satisfies all the properties described in (7.3). By (6), the assumption on β and 
(6.6), we have σn(f) = φn(f) for each f ∈ E(T (yj−1)), and σn(u) = φn(u) for 
each u ∈ V (T (yp−1)). So we can obtain T from T ∗

n,q + e1 by using TAA under 
σn and hence T is an ETT satisfying MP under σn. Since α /∈ Γq (see (1)) and 
ηm ∈ φn(T (yj−2)), the hierarchy Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  
remains to be good under σn, with the same Γ-sets as those under φn. Therefore, 
(T, σn) is also a minimum counterexample to Theorem 5.3 (see (6.2)–(6.5)), in 
which β ∈ σn(yp) ∩ σn(T (yj−2)). Thus Claim 7.4 holds by replacing φn with σn 
and α with β.

Case 2. Iφ = ∅.
Let α ∈ φn(yp) ∩ φn(T (yp−1)). By the hypothesis of the present case, we have 

α ∈ φn(T ∗
n,q). If α /∈ Γq ∪ φn(T ∗

n,0 − V (Tn)), we are done. So we assume that 
α ∈ Γq ∪ φn(T ∗

n,0 − V (Tn)).
Subcase 2.1. α ∈ φn(T ∗

n,0 − V (Tn)) − Γq. Let us first show that
(7) there exists a color β ∈ φn(T ∗

n,q) − φn(T ∗
n,0 − V (Tn)) − Γq.

Indeed, since V (T ∗
n,q) is elementary with respect to φn, we have |φn(T ∗

n,q)
−φn(T ∗

n,0 − V (Tn)) −Γq| ≥ |φn(T ∗
n,0) −φn(T ∗

n,0 − V (Tn)) − Γq|
= |φn(Tn) − Γq|. In view of (7.2), we obtain |φn(Tn)| ≥ 2n + 11 and 
|Γq| ≤ 2|Dn,q| ≤ 2n. So |φn(T ∗

n,q) − φn(T ∗
n,0 − V (Tn)) − Γq| ≥ 11, which 

implies (7).
By (7) and Lemma 6.5, we obtain Pvα

(α, β, φn) = Pvβ
(α, β, φn), which is dis-

joint from Pyp
(α, β, φn). Let σn = φn/Pyp

(α, β, φn). By Lemma 6.6, σn satisfies all 
the properties described in (7.3). Since α, β ∈ φn(T ∗

n,q), we have σn(f) = φn(f) for 
each f ∈ E(T ∗

n,q), and σn(u) = φn(u) for each u ∈ V (T (yp−1)). So we can obtain 
T from T ∗

n,q + e1 by using TAA under σn and hence T is an ETT satisfying MP under 
σn. As α, β /∈ Γq, the hierarchy Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  
remains to be good under σn, with the same Γ-sets as those under φn. Therefore, 
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(T, σn) is also a minimum counterexample to Theorem 5.3 (see (6.2)–(6.5)), in 
which β ∈ σn(yp) ∩ σn(T (yj−2)). Thus Claim 7.4 holds by replacing φn with σn 
and α with β.

Subcase 2.2. α ∈ Γq. Let α ∈ Γq
m for some ηm ∈ Dn,q. Depending on whether 

ηm is contained in φn(T (yp−1)), we consider two possibilities.
• ηm /∈ φn(T (yp−1)). By Definition 5.2(i), we have α /∈ φn⟨T − T ∗

n,q⟩. Let β 
be a color in φn(yp−1). By Lemma 6.5, we obtain Pvα

(α, β, φn) = Pvβ
(α, β, φn), 

which is disjoint from Pyp
(α, β, φn). Let σn = φn/Pyp

(α, β, φn). By Lemma 6.6, 
σn satisfies all the properties described in (7.3). Since β ∈ φn(yp−1), we see that 
β ̸= φn(ep) as ep is incident with yp−1. Because T (yp−1) is elementary (see 
(6.6)), by the construction of T, β was not used by any edge on T − T ∗

n,q under 
φn, except possibly e1 when q = 0 and T ∗

n,0 = Tn (now e1 = fn in Algorithm 
3.1 and φn(e1) = β ∈ Dn,q ⊆ Dn). In particular, in the case that e1 = fn and 
φn(e1) = β ∈ Dn, Lemma  6.6 guarantees σn(e1) = φn(e1). Moreover, since 
α /∈ φn⟨T − T ∗

n,q⟩ and α, β ∈ φn(T (yp−2)), we have σn(f) = φn(f) for each 
f ∈ E(T ), and σn(u) = φn(u) for each u ∈ V (T (yp−1)). So we can obtain T from 
T ∗

n,q + e1 by using TAA under σn and hence T is an ETT satisfying MP under σn. 
Furthermore, the hierarchy Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  remains 
to be good under σn, with the same Γ-sets as those under φn. Therefore, (T, σn) 
is also a minimum counterexample to Theorem 5.3 (see (6.2)–(6.5)), in which 
β ∈ σn(yp) ∩ σn(y(p − 1)). However, by recoloring ep with β, we have reached a 
smaller counterexample than T, which violates the minimality assumption (6.4) or 
(6.5) on (T, φn).

• ηm ∈ φn(T (yp−1)). Note that ηm /∈ φn(T ∗
n,q) because ηm ∈ Dn,q. So 

ηm ∈ φn(yt) for some 1 ≤ t ≤ p − 1. If t ≤ j − 2, then Claim  7.4 holds. Thus 
we may assume that t ≥ j − 1. Since ηm ∈ φn(yt), it is not used by any edge 
in T (yt) − T ∗

n,q, except possibly e1 when q = 0 and T ∗
n,0 = Tn (now e1 = fn in 

Algorithm 3.1 and φn(e1) = ηm ∈ Dn,q ⊆ Dn). Since α ∈ Γq
m, by Definition 

5.2(i), α is not used by any edge in T (yt) − T ∗
n,q. It follows from Lemma 6.5 that 

Pvα
(α, ηm, φn) = Pyt

(α, ηm, φn), which is disjoint from Pyp
(α, ηm, φn). Let 

σn = φn/Pyp
(α, ηm, φn). By Lemma 6.6, σn satisfies all the properties described in 

(7.3). In particular, if e1 = fn and φn(e1) = ηm ∈ Dn, then σn(e1) = φn(e1), which 
implies that e1 is outside Pyp

(α, ηm, φn). Since σn(f) = φn(f) for each f ∈ E(T (yt)) 
and σn(u) = φn(u) for each u ∈ V (T (yp−1)), we can obtain T from T ∗

n,q + e1 
by using TAA under σn, so T is an ETT satisfying MP under σn. Furthermore, As 
α, ηm ∈ σn(T (yt)), the hierarchy Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  
remains to be good under σn, with the same Γ-sets as those under φn. Therefore, 
(T, σn) is also a minimum counterexample to Theorem 5.3 (see (6.2)–(6.5)), in 
which ηm ∈ σn(yp) ∩ σn(yt). Thus the present subcase reduces to the case when 
max(Iσn

) ≥ p(T ) if j ⪯ t (see the paragraphs above Claim 7.4), and reduces to Case 
1 (where Iσn

̸= ∅) if t = j − 1. This proves Claim 7.4.
Let α be a color as specified in Claim 7.4; that is, 

α ∈ φn(yp) ∩ φn(T (yj−2)), such that either α /∈ Γq ∪ φn(T ∗
n,0 − V (Tn)) or 

α ∈ Γq
m for some ηm ∈ Dn,q with vηm ⪯ yj−2. Since T (yj) − T (yj−2) con-

tains precisely two edges, Lemma  6.3 guarantees the existence of a color β in 
φn(T (yj−2)) − φn(T ∗

n,0 − V (Tn)) − φn⟨T (yj) − T ∗
n,q⟩ − (Γq ∪ Dn,q) or a color 
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β = ηh ∈ Dn,q ∩ φn(T (yj−2)) such that (Γq
h ∪ {ηh}) ∩ φn⟨T (yj) − T ∗

n,q⟩ = ∅. 
Note that

(8) β /∈ φn⟨T (yj) − T ∗
n,q⟩ ∪ Γq.

Let Q = Pyp
(α, β, φn). We consider two cases, depending on whether Q inter-

sects T (yj−1).
Case 1. Q and T (yj−1) have vertices in common. Let u be the first vertex of Q 

contained in T (yj−1) as we traverse Q from yp. Define T ′ = T (yj−1) ∪ Q[u, yp] 
if u = yj−1 and T ′ = T (yj−2) ∪ Q[u, yp] otherwise. By the choices of α and 
β, we have α, β ∈ φn(T (yj−2)). So T ′ can be obtained from T (yj−2) by 
using TAA under φn. It follows that T ′ is an ETT satisfying MP with respect to 
φn, with p(T ′) < p(T ). If α /∈ Γq, then both α and β are outside Γq (see (8)), so 
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T ′ is a good hierarchy of T ′ under φn, with 
the same Γ-sets as T under φn. If α ∈ Γq, then α ∈ Γq

m for some ηm ∈ Dn,q with 
vηm ⪯ yj−2 by Claim 7.4. Since α, ηm ∈ φn(T (yj−2)) and β /∈ Γq, it is clear that 
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T ′ is also a good hierarchy of T ′ under φn, with 
the same Γ-sets as T under φn. So (T ′, φn) is a counterexample to Theorem 5.3 (see 
(6.2) and (6.3)), which violates the minimality assumption (6.4) on (T, φn).

Case 2. Q is vertex-disjoint from T (yj−1). Let σn = φn/Q. By Lemma 5.8, σn is 
(T (yj−1), Dn, φn)-stable. In particular, σn is (T (yj−1), φn)-invariant. If Θn = PE, 
then σn is also (Tn ⊕ Rn, Dn, φn)-stable. Furthermore, T (yj−1) is an ETT satisfy-
ing MP with respect to σn, and Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T (yj−1) is a good 
hierarchy of T (yj−1) under σn, with the same Γ-sets as T under φn. By definition, σn 
is a (T ∗

n,q, Dn, φn)-weakly stable coloring. If α /∈ Γq, then both α and β are outside 
Γq (see (8)), so Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T  is a good hierarchy of T under 
σn, with the same Γ-sets as T under φn. If α ∈ Γq, then α ∈ Γq

m for some ηm ∈ Dn,q 
with vηm ⪯ yj−2 by Claim 7.4. Since α, ηm ∈ φn(T (yj−2)) and β /∈ Γq, it is clear 
that Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T  is also a good hierarchy of T under σn, 
with the same Γ-sets as T under φn. So (T, σn) is a counterexample to Theorem 5.3, 
in which β is missing at two vertices.

From the choice of β above (8) and the definition of σn, we see that
(9) either β /∈ σn(T ∗

n,0 − V (Tn)) ∪ σn⟨T (yj) − T ∗
n,q⟩ ∪ (Γq ∪ Dn,q) or 

β = ηh ∈ Dn,q ∩ σn(T (yj−2)), such that (Γq
h ∪ {ηh}) ∩ σn⟨T (yj) − T ∗

n,q⟩ = ∅.

Let θ ∈ σn(yj). Then θ /∈ Γq. We proceed by considering two subcases.
Subcase 2.1. θ /∈ Dn,q . In this subcase, using (6.6) and the set inclusion 

φn(Tn) ∪ Dn ⊆ φn(T ∗
n,q) ∪ Dn,q , we obtain

(10) θ /∈ σn(T (yj−1)) and θ /∈ Dn. So θ is not assigned to any edge in T (yj) − T ∗
n,q 

by TAA.
As described in (9), there are two possibilities for β.
• β /∈ σn(T ∗

n,0 − V (Tn)) ∪ σn⟨T (yj) − T ∗
n,q⟩ ∪ (Γq ∪ Dn,q). Observe that 

β /∈ Dn if q = 0. By Lemma 6.5, we obtain Pvβ
(β, θ, σn) = Pyj

(β, θ, σn), which 
is disjoint from Pyp

(β, θ, σn). Let µ1 = σn/Pyp
(β, θ, σn). By Lemma  6.6, µ1 

satisfies all the properties described in (7.3). By (10), the assumption on β and 
(6.6), we have µ1(f) = σn(f) for each f ∈ E(T (yj)) and µ1(u) = σn(u) for 
each u ∈ V (T (yp−1)). So we can obtain T from T ∗

n,q + e1 by using TAA under 
µ1 and hence T is an ETT satisfying MP under µ1. As β, θ /∈ Γq , the hierarchy 
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Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  remains to be good under µ1, with 
the same Γ-sets as those under σn. Therefore, (T, µ1) is also a minimum counter-
example to Theorem 5.3 (see (6.2)–(6.5)), in which θ ∈ µ1(yp) ∩ µ1(yj). Thus the 
present subcase reduces to the case when max(Iµ1) ≥ p(T ) (see the paragraphs 
above Claim 7.4).

• β = ηh ∈ Dn,q ∩ σn(T (yj−2)), such that (Γq
h ∪ {ηh}) ∩ σn⟨T (yj) − T ∗

n,q⟩ = ∅. 
For simplicity, we abbreviate the two colors γq

h1
 and γq

h2
 in Γq

h (see Definition 5.2) to 
γ1 and γ2, respectively. By Lemma 6.5, we obtain Pvβ

(β, γ1, σn) = Pvγ1
(β, γ1, σn), 

which is disjoint from Pyp
(β, γ1, σn). Let µ2 = σn/Pyp

(β, γ1, σn). By Lemma 6.6, 
µ2 satisfies all the properties described in (7.3). By the assumption on β, neither β nor 
γ1 is used by any edge in T (yj) − T ∗

n,q. So µ2(f) = σn(f) for each f ∈ E(T (yj)). 
By (6.6), we get µ2(u) = σn(u) for each u ∈ V (T (yp−1)). It follows that T can be 
obtained from T ∗

n,q + e1 by using TAA under µ2 and hence T is an ETT satisfying MP 
under µ2. Furthermore, the hierarchy Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  
remains to be good under µ2, with the same Γ-sets as those under σn. Therefore, 
(T, µ2) is also a minimum counterexample to Theorem 5.3 (see (6.2)–(6.5)), in which 
γ1 is missing at both yp and vγ1 .

From the assumption on β and the definition of µ2, we deduce that (11) 
β = ηh ∈ Dn,q∩µ2(T (yj−2)), such that (Γq

h ∪ {ηh})∩µ2⟨T (yj) − T ∗
n,q⟩= ∅.

By (11) and Lemma 6.5, we obtain Pvγ1
(θ, γ1, µ2) = Pyj

(θ, γ1, µ2), which is dis-
joint from Pyp

(θ, γ1, µ2). Let µ3 = µ2/Pyp
(θ, γ1, µ2). By Lemma 6.6, µ3 satisfies 

all the properties described in (7.3). By (10), (11) and (6.6), we have µ3(f) = µ2(f) 
for each f ∈ E(T (yj)) and µ3(u) = µ2(u) for each u ∈ V (T (yp−1)). So we can 
obtain T from T ∗

n,q + e1 by using TAA under µ3 and hence T is ETT satisfying MP 
under µ3. Furthermore, the hierarchy Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  
remains to be good under µ3, with the same Γ-sets as those under µ2. Therefore, 
(T, µ3) is also a minimum counterexample to Theorem 5.3 (see (6.2)–(6.5)), in which 
θ is missing at both yp and yj . Thus the present subcase reduces to the case when 
max(Iµ3) ≥ p(T ) (see the paragraphs above Claim 7.4).

Subcase 2.2. θ ∈ Dn,q . Let θ = ηt ∈ Dn,q . For simplicity, we use ε1 and ε2 to 
denote the two colors γq

t1  and γq
t2  in Γq

t  (see Definition 5.2), respectively. Then
(12) ε1, ε2 /∈ σn⟨T (yj) − T ∗

n,q⟩ and ηt is not used by any edge in T (yj) − T ∗
n,q 

under σn, except possibly e1 when q = 0 and T ∗
n,0 = Tn (now e1 = fn in Algorithm 

3.1 and σn(e1) = ηt ∈ Dn,q ⊆ Dn).
By (12) and Lemma  6.5 (with ε1 in place of α), we obtain 

Pvε1
(ε1, β, σn) = Pvβ

(ε1, β, σn), which is disjoint from Pyp
(ε1, β, σn). Let 

µ4 = σn/Pyp
(ε1, β, σn). By Lemma  6.6, µ4 satisfies all the properties described 

in (7.3). By (9), we have β /∈ σn⟨T (yj) − T ∗
n,q⟩, which together with (12) and 

(6.6) implies µ4(f) = σn(f) for each f ∈ E(T (yj)) and µ4(u) = σn(u) for each 
u ∈ V (T (yp−1)). So we can obtain T from T ∗

n,q + e1 by using TAA under µ4 and 
hence T is an ETT satisfying MP under µ4. Since β /∈ Γq by (9) and ηt ∈ µ4(yj), the 
hierarchy Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  remains to be good under 
µ4, with the same Γ-sets as those under σn. Therefore, (T, µ4) is also a minimum 
counterexample to Theorem 5.3 (see (6.2)–(6.5)), in which ε1 is missing at both yp 
and vε1 .
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From (12) and (6.6) it can be seen that
(13) ε1, ε2 /∈ µ4⟨T (yj) − T ∗

n,q⟩ and ηt /∈ µ4(T (yj−1)). So ηt is not used by any 
edge in T (yj) − T ∗

n,q under µ4, except possibly e1 when q = 0 and T ∗
n,0 = Tn (now 

e1 = fn in Algorithm 3.1 and µ4(e1) = ηt ∈ Dn,q ⊆ Dn).
By (13) and Lemma 6.5, we obtain Pvε1

(ε1, ηt, µ4) = Pyj
(ε1, ηt, µ4), which is dis-

joint from Pyp
(ε1, ηt, µ4). Let µ5 = µ4/Pyp

(ε1, ηt, µ4). By Lemma 6.6, µ5 satisfies 
all the properties described in (7.3). In particular, if e1 = fn and µ4(e1) = ηt ∈ Dn, 
then µ5(e1) = µ4(e1), which implies that e1 is outside Pyp

(ε1, ηt, µ4). By (13) and 
(6.6), we have µ5(f) = µ4(f) for each f ∈ E(T (yj)) and µ5(u) = µ4(u) for each 
u ∈ V (T (yp−1)). So we can obtain T from T ∗

n,q + e1 by using TAA under µ5 and 
hence T is an ETT satisfying MP under µ5. Since ηt, ε1 ∈ µ5(T (yj)), the hierarchy 
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T  remains to be good under µ5, with 
the same Γ-sets as those under µ4. Therefore, (T, µ5) is also a minimum counterex-
ample to Theorem 5.3 (see (6.2)–(6.5)), in which θ = ηt is missing at both yp and 
yj . Thus the present subcase reduces to the case when max(Iµ5) ≥ p(T ) (see the 
paragraphs above Claim 7.4).

This completes our discussion about Situation 7.3 and hence our proof of Theorem 
5.3. � □

7.2  Proof of theorem 3.10(ii)

In the preceding subsection we have proved Theorem 5.3 and hence Theorem 3.10(i). 
To complete the proof of Theorem 3.10, we still need to establish the interchange-
ability property as described in Theorem 3.10(ii).

Lemma 7.1  Suppose Theorem 3.10(i), (iv), and (vi) hold for all ETTs with n rungs 
and satisfying MP, and suppose Theorem 3.10(ii) holds for all ETTs with n − 1  rungs 
and satisfying MP. Then Theorem 3.10(ii) holds for all ETTs with n rungs and satisfy-
ing MP; that is, Tn+1  has the interchangeability property with respect to φn .

Proof  Let T = Tn+1, let σn be a (T, Dn, φn)-stable coloring, and let α and β be 
two colors in [k] with α ∈ σn(T ) (equivalently α ∈ φn(T )). We aim to prove that 
α and β are T-interchangeable under σn. Assume the contrary: there are at least 
two (α, β)-paths Q1 and Q2 with respect to σn intersecting T. By Theorem 3.10(i), 
V(T) is elementary with respect to φn, so it is also elementary with respect to σn. 
Since T = Tn+1 is closed with respect to φn, it is also closed with respect to σn. As 
α ∈ σn(T ), it follows that |V(T)| is odd and β /∈ σn(T ). From the existence of Q1 
and Q2, we see that G contains at least three (T, σn, {α, β})-exit paths P1, P2, P3.

We call the tuple (σn, T, α, β, P1, P2, P3) a counterexample and use K 
to denote the set of all such counterexamples. With a slight abuse of nota-
tion, let (σn, T, α, β, P1, P2, P3) be a counterexample in K with the minimum 
|P1| + |P2| + |P3|. For i = 1, 2, 3, let ai and bi be the ends of Pi with bi ∈ V (T ), 
and fi be the edge of Pi incident to bi. Renaming subscripts if necessary, we may 
assume that b1 ≺ b2 ≺ b3. We propose to show that

(1) b2 /∈ V (Tn)

1 3

   23   Page 86 of 91



Journal of Combinatorial Optimization           (2025) 50:23 

Otherwise, b2 ∈ V (Tn). Let γ be a color in σn(Tn) − {δn} if Θn = PE and a 
color in σn(Tn) otherwise. Since T = Tn+1 is closed with respect to σn, both α and 
γ are closed in T with respect to σn. Let µ1 = σn/(G − T, α, γ). Then P1 and P2 are 
two (Tn, µ1, {γ, β})-exit paths. By Lemma 5.8, µ1 is a (T, Dn, σn)-stable coloring, 
so it is also (T, Dn, φn)-stable. As Tn ⊂ T , µ1 is a (Tn, Dn, φn)-stable coloring.

If Θn = SE or RE then, by Algorithm 3.1 and Lemma 3.2(i), µ1 is 
(Tn, Dn−1, φn−1)-stable and hence is (Tn−1, Dn−1, φn−1)-stable. By Theo-
rem 3.10(vi) and TAA, Tn is an ETT corresponding to µ1 (see Definition 3.7) and 
satisfies MP under µ1, with n − 1 rungs. Since P1 and P2 are two (Tn, µ1, {γ, β})
-exit paths and γ ∈ µ1(Tn) = σn(Tn), there are at least two (γ, β)-paths with respect 
to µ1 intersecting Tn. Hence γ and β are not Tn-interchangeable under µ1, contra-
dicting Theorem 3.10(ii) because Tn has n − 1 rungs.

So we assume that Θn = PE. Since Tn is an ETT under φn−1, V (Tn) 
is elementary under φn−1 by Theorem  3.10(i), and hence δn ∈ φn(Tn) and 
γn /∈ φn(Tn) by Algorithm 3.1. Since σn is (T, Dn, φn)-stable, φn(Tn) = σn(Tn) 
and ∂φn,γn

(Tn) = ∂σn,γn
(Tn). As γ ∈ σn(Tn) − δn, δn ∈ σn(Tn), and 

γn, β /∈ σn(Tn), we have γ /∈ {γn, δn} and β ̸= δn. In view of Lemma 3.2(v), we 
obtain |∂φn,γn

(Tn)| = 1. So |∂σn,γn
(Tn)| = 1, which implies β ̸= γn, because 

{f1, f2} ⊆ ∂σn,β(Tn) (as b2 ∈ V (Tn)). Therefore {β, γ} ∩ {γn, δn} = ∅. Since 
µ1 is (Tn, Dn, φn)-stable, Pvn

(γn, δn, µ1) ∩ Tn = {vn} by Theorem 3.10(iv). Let 
µ2 = µ1/Pvn

(γn, δn, µ1). Then µ2 is (Tn, Dn−1, φn−1)-stable by Lemma 3.6. As 
{β, γ} ∩ {γn, δn} = ∅, we see that P1 and P2 are two (Tn, µ2, {γ, β})-exit paths and 
γ ∈ µ2(Tn). So there are at least two (γ, β)-paths with respect to µ2 intersecting Tn. 
Thus γ and β are not Tn-interchangeable under µ2, contradicting Theorem 3.10(ii) 
because Tn has n − 1 rungs. Therefore (1) is established.

Let γ ∈ σn(b3) and let µ3 = σn/(G − T, α, γ). By Lemma 5.8, µ3 is (T, Dn, φn)
-stable and hence is (Tn, Dn, φn)-stable. By Theorem 3.10(vi), T is an ETT corre-
sponding to µ3 and satisfies MP under µ3. Furthermore, fi is colored by β under both 
µ3 and σn, for i = 1, 2, 3, and P3 = Pb3(β, γ, µ3).

Consider µ4 = µ3/Pb3(β, γ, µ3). Clearly, β ∈ µ4(b3). Since 
Pb3(β, γ, µ3) ∩ T = {b3}, by Lemma 5.8, µ4 is (T (b3) − b3, Dn, φn)-stable and 
T (b3) − b3 is an ETT corresponding to µ4 and satisfies MP under µ4. Since b2 ≺ b3, 
it is contained in T (b3) − b3. So (1) implies that b3 is not the first vertex added to Tn 
in the construction of T. According to Algorithm 3.1, b3 is added to T (b3) − b3 by 
TAA under φn. Since colors on the edges of T (b3) are not affected under this Kempe 
change and µ3 is (T, Dn, φn)-stable, b3 can still be added to T (b3) − b3 by TAA 
under µ4. Hence T (b3) is still an ETT satisfying MP under µ4 by Theorem 3.10(vi). 
Let T ′ be a closure of T (b3) under µ4. Then T ′ is an ETT satisfying MP under µ4. 
Since both f1 and f2 are colored by β under µ4 and β ∈ µ4(b3), the ends of f1 and 
f2 are all contained in T ′. By Theorem 3.10(i), V (T ′) is elementary with respect to 
µ4, because T ′ has n rungs.

Observe that none of a1, a2, a3 is contained in T ′, for otherwise, let ai ∈ V (T ′) 
for some i with 1 ≤ i ≤ 3. Since {β, γ} ∩ µ4(ai) ̸= ∅ and β ∈ µ4(b3), we obtain 
γ ∈ µ4(ai). Hence from TAA we see that P1, P2, P3 are all entirely contained in 
G[T ′], which in turn implies γ ∈ µ4(aj) for j = 1, 2, 3. So V (T ′) is not elementary 
with respect to µ4, a contradiction. Thus each Pi contains a subpath Li, which is a T ′
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-exit path with respect to µ4. Since both ends of f1 are contained in T ′, f1 is outside 
L1. It follows that |L1| + |L2| + |L3| < |P1| + |P2| + |P3|. Therefore the existence 
of the counterexample (µ4, T ′, γ, β, L1, L2, L3) violates the minimality assumption 
on (σn, T, α, β, P1, P2, P3). This completes our proof of Lemma 7.1 and hence the 
whole proof of Theorem 3.10. � □
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