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Abstract

Given a multigraph G = (V, E'), the edge-coloring problem (ECP) is to color the
edges of G with the minimum number of colors so that no two adjacent edges have
the same color. This problem can be naturally formulated as an integer program,
and its linear programming relaxation is referred to as the fractional edge-coloring
problem (FECP). The optimal value of ECP (resp. FECP) is called the chromatic
index (resp. fractional chromatic index) of G, denoted by x'(G) (resp. x*(G)). Let
A(G) be the maximum degree of G and let I'(G) be the density of G, defined by

I'(G) —max{TUE(fj)ﬂ : UCV, |U| >3 and odd},

where E(U) is the set of all edges of G with both ends in U. Clearly,
max{A(G), [T'(G)]} is a lower bound for x'(G). As shown by Seymour,
X*(G) = max{A(G), T'(G)}. In the early 1970s Goldberg and Seymour inde-
pendently conjectured that x'(G) < max{A(G) + 1, [T'(G)]}. Over the past five
decades this conjecture, a cornerstone in modern edge-coloring, has been a subject
of extensive research, and has stimulated an important body of work. In this paper
we present a proof of this conjecture. Our result implies that, first, there are only two
possible values for x/'(G), so an analogue to Vizing’s theorem on edge-colorings
of simple graphs holds for multigraphs; second, although it is NP-hard in general
to determine x'(G), we can approximate it within one of its true value, and find it
exactly in polynomial time when I'(G) > A(G); third, every multigraph G satisfies
X' (@) — x*(G) < 1, and thus FECP has a fascinating integer rounding property.
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1 Introduction

Given a multigraph G = (V, E), the edge-coloring problem (ECP) is to color the
edges of G with the minimum number of colors so that no two adjacent edges have
the same color. Its optimal value is called the chromatic index of G, denoted by
X' (@). In addition to its great theoretical interest, ECP arises in a variety of applica-
tions, so it has attracted tremendous research efforts in several fields, such as discrete
mathematics, combinatorial optimization, and theoretical computer science. Holyer
(1980) proved that it is NP-hard in general to determine x’(G), even when restricted
to a simple cubic graph, so there is no efficient algorithm for solving ECP exactly
unless VP = P, and hence the focus of extensive research has been on near-optimal
solutions to ECP or good estimates of x'(G).

Let A(G) be the maximum degree of G. Clearly, x'(G) > A(G). There are two

classical upper bounds on the chromatic index: the first of these, x'(G) < L%(G)j,
was established by Shannon (1949) in 1949, and the second, X' (G) < A(G) + u(G),
where 1(G) is the maximum multiplicity of edges in G, was proved independently by
Vizing (1964) and Gupta (1967) in the 1960s. This second result is widely known as
Vizing’s theorem, which is particularly appealing when applied to a simple graph G,
because it reveals that x’(G) can take only two possible values: A(G) and A(G) + 1.
Nevertheless, in the presence of multiple edges, the gap between x'(G) and these
three bounds can be arbitrarily large. Therefore it is desirable to find some other
graph theoretic parameters connected to the chromatic index.

Observe that each color class in an edge-coloring of G is a matching, so it contains
atmost (|U| — 1)/2 edges in E(U) forany U C V with |U| odd, where E(U) is the set
of all edges of G with both ends in U. Hence the density of G, defined by

F(G):max{2|UE(£J)1|: UCV, |U|l>3 and odd},

provides another lower bound for X' (G). It follows that X' (G) > max{A(G), T'(G)}.

To facilitate better understanding of the parameter max{A(G), I'(G)}, let 4 be
the edge-matching incidence matrix of G (that is, each column of 4 is the incidence
vector of a matching). Then ECP can be naturally formulated as an integer program,
whose linear programming (LP) relaxation is exactly as given below:

Minimize 17
subject to Ax =1
x > 0.

This linear program is called the fractional edge-coloring problem (FECP), and its
optimal value is called the fractional chromatic index of G, denoted by x*(G). As
shown by Seymour (1979) using Edmonds’ matching polytope theorem Edmonds
(1965), it is always true that x*(G) = max{A(G), I'(G)}. Thus the preceding
inequality actually states that x'(G) > x*(G).
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As X'(G) is integer-valued, we further obtain x/'(G) > max{A(G), [T(G)]}.
How good is this bound? In the early 1970s Goldberg (1973) and Seymour (1979)
independently made the following conjecture.

Conjecture 1.1 Every multigraph G satisfies X'(G) < max{A(G) + 1, [['(G)]}.

Over the past five decades Conjecture 1.1 has been a subject of extensive research,
and has stimulated an important body of work; see McDonald (2015) for a sur-
vey on this conjecture and Stiebitz et al. (2012) for a comprehensive account of
edge-colorings.

Several approximate results state that x'(G) < max{A(G) + 7(Q), [T(G)]},
where 7(G) is a positive number depending on G. Asymptotically, Kahn (1996) showed
that 7(G) = o(A(G)). Scheide (2010) and Chen et al. (2009) independently proved

that 7(G) < 4/A(G)/2. Chen et al. (2018) improved this to 7(G) < {/A(G)/2.
Recently, Chen and Jing (2019) further strengthened this as 7(G) < ¢/A(G)/4.

There is another family of results, asserting that

X'(G) < max{%, [T(G)]}, for increasing values of m. Such results
have been obtained by Andersen (1977) and Goldberg (1973) for m = 5, Andersen
(1977) for m = 7, Goldberg (1984) and Hochbaum et al. (1986) for m = 9, Nishizeki
and Kashiwagi (1990) and Tashkinov (2000) for m = 11, Favrholdt et al. (2006) for
m = 13, Scheide (2010) for m = 15, Chen et al. (2018) for m = 23, and Chen and
Jing (2019) for m = 39. It is worthwhile pointing out that, when A(G) < 39, the
validity of Conjecture 1.1 follows instantly from Chen and Jing’s result Chen and

Jing (2019), because 22ET0 - A(@) 4 2.

Haxell and McDonald (2012) obtained a different sort of approximation to Con-
jecture 1.1: x'(G) < max{A(G) + 2y/u(G)log A(G), [T'(G)]}. Another way to
obtain approximations for Conjecture 1.1 is to incorporate the order n of G (that
is, number of vertices) into a bound. In this direction, Plantholt (1999) proved that
X' (G) < max{A(G), [T(G)] + 1+ y/nlog(n/6)} for any multigraph G with even
order n > 572. In Plantholt (2013), he established an improved result that is appli-
cable to all multigraphs.

Marcotte (1990) showed that x'(G) = max{A(G), [T'(G)]} for any multigraph
G with no K -minor, thereby confirming Conjecture 1.1 for this multigraph class.
Recently, Haxell et al. (2019) established Conjecture 1.1 for random multigraphs.

The purpose of this paper is to present a proof of the Goldberg-Seymour conjecture.

Theorem 1.1 Every multigraph G satisfies X' (G) < max{A(G) + 1, [T'(G)1}.
Let r be a positive integer. A multigraph G = (V, E) is called an r-graph if G is
regular of degree » and for every X C V with |X]| odd, the number of edges between

X and V — X is at least ». Note that if G is an r-graph, then |V(G)| is even and
I'(G) = r. Seymour (1979) also proposed the following weaker version of Conjec-
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ture 1.1, which amounts to saying that x'(G) < max{A(G), [['(G)]} + 1 for any
multigraph G.

Conjecture 1.2 Every r-graph G satisfies X' (G) < r + 1.

The following conjecture was posed by Gupta (1967) in 1967 and can be deduced
from Conjecture 1.1, as shown by Scheide (2007).

Conjecture 1.3 Let G be a multigraph such that A(G) cannot be expressed in the
form 2pu(G) — q, for any two integers p and q satisfying p > [(q¢+ 1)/2] and
q>0.Then X'(G) < A(G) + n(G) — 1.

A multigraph G is called critical if x'(H) < x'(G) for any proper subgraph H of
G. In edge-coloring theory, critical multigraphs are of special interest, because they
have much more structural properties than arbitrary multigraphs. The following two
conjectures are due to Jakobsen (1974, 1975) and were proved by Andersen (1977)
to be weaker than Conjecture 1.1.

Conjecture 1.4 Let G be a critical multigraph with x'(G) > A(G) + 2. Then G con-
tains an odd number of vertices.

mA(G)+(m—38

Conjecture 1.5 Let G be a critical multigraph with X' (G) > ' ) for an

odd integer m > 3. Then G has at most m — 2 vertices.

Motivated by Conjecture 1.1, Hochbaum et al. (1986) formulated the following
conjecture concerning the approximability of ECP.

Conjecture 1.6 There is a polynomial-time algorithm that colors the edges of any
multigraph G using at most max{x'(G), A(G) + 1} colors.

Since Conjectures 1.2—1.5 are all weaker than the Goldberg-Seymour conjecture,
the truth of them follows from Theorem 1.1 as corollaries.

Theorem 1.2 Every r-graph G satisfies X' (G) < r + 1.

Theorem 1.3 Let G be a multigraph such that A(G) cannot be expressed in the form
20u(G) — q, for any two integers p and q satisfying p > |(¢+ 1)/2]| and q¢ > 0.
Then X' (G) < A(G) + pu(G) — 1.

Theorem 1.4 Let G be a critical multigraph with x'(G) > A(G) + 2. Then G con-
tains an odd number of vertices.

Theorem 1.5 Let G be a critical multigraph with ' (G) > mAOHM=5) 4,0 4 odd

m—1
integer m > 3. Then G has at most m — 2 vertices.
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We have seen that FECP is intimately tied to ECP. For any multigraph G, the
fractional chromatic index x*(G) = max{A(G), I'(G)} can be determined in poly-
nomial time by combining the Padberg-Rao separation algorithm for A-matching
polyhedra Padberg and Rao (1982) (see also Letchford et al. 2008; Padberg and Wol-
sey 1984) with binary search. In Chen et al. (2019), Chen, Zang, and Zhao designed
a combinatorial polynomial-time algorithm for finding the density I'(G) of any
multigraph G, thereby resolving a problem posed in both Stiebitz et al. (2012) and
Jensen and Toft (2015). Nemhauser and Park (1991) observed that FECP can be
solved in polynomial time by an ellipsoid algorithm, because the separation problem
of its LP dual is exactly the maximum-weight matching problem (see also Schrijver
2003, Theorem 28.6 on page 477). In Chen et al. (2019), Chen, Zang, and Zhao also
came up with a combinatorial polynomial-time algorithm for FECP.

Our proof of Theorem 1.1 is not algorithmic in nature. It would be interesting to
see if our proof can be adapted to yield a polynomial-time algorithm for finding an
edge-coloring of any multigraph G with at most max{A(G) + 1, [T'(G)]} colors. A
successful implementation would lead to an affirmative answer to Conjecture 1.6 as
well.

Some remarks may help to put Theorem 1.1 in proper perspective.

First, by Theorem 1.1, there are only two possible values for the chromatic index
of a multigraph G: max{A(G), [['(G)]} and max{A(G) + 1, [T'(G)]}. Thus an
analogue to Vizing’s theorem on edge-colorings of simple graphs, a fundamental
result in discrete mathematics, holds for multigraphs.

Second, Theorem 1.1 exhibits a dichotomy on edge-coloring: While Holyer’s the-
orem (Holyer 1980) tells us that it is NP-hard to determine x’'(G), we can approxi-
mate it within one of its true value, because max{A(G) + 1, [T'(G)]} — ¥ (G) < 1.
Furthermore, if I'(G) > A(G), then x'(G) = [T'(G)], so it can be found in polyno-
mial time (Chen et al. 2019; Padberg and Rao 1982).

Third, by Theorem 1.1 and aforementioned Seymour’s theorem on fractional chro-
matic index, every multigraph G = (V, E) satisfies x'(G) — x*(G) < 1, which can
be naturally extended to the weighted case. Let w(e) be a nonnegative integral weight
on each edge e € F and let w = (w(e) : e € E). The chromatic index of (G, w),
denoted by x4, (G), is the minimum number of matchings in G such that each edge e
is covered exactly w(e) times by these matchings, and the fractional chromatic index
of (G, w), denoted by x7,(G), is the optimal value of the following linear program:

Minimize 17z
subject to Ax=w
x>0,

where A4 is again the edge-matching incidence matrix of G. Clearly, x/,(G) is the
optimal value of the corresponding integer program. Let G, be obtained from G
by replacing each edge e with w(e) parallel edges between the same ends. It is then
routine to check that x),(G) = x'(Gy) and x5 (G) = x*(Gy). So the inequality
Xo(G) — x5 (G) <1 holds for all nonnegative integral weight functions w, and
hence FECP has a fascinating integer rounding property (see Schrijver 1986, 2003).
(The LP relaxation (LP) of a combinatorial optimization problem (IP) is said to have
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an integer rounding property if there exists an absolute positive constant ¢, such that
the optimal value of LP differs from that of IP by at most ¢, for all weight func-
tions. This property is of great interest in integer programming and combinatorial
optimization.)

So far the most powerful and sophisticated technique for multigraph edge-color-
ing is the method of Tashkinov trees (Tashkinov 2000), which generalizes the earlier
methods of Vizing fans (Vizing 1964) and Kierstead paths (Kierstead 1984). (These
methods are named after the authors who invented them, respectively.) Most recent
results described above Theorem 1.1 were obtained by using the method of Tash-
kinov trees. As remarked by McDonald (2015), the Goldberg-Seymour conjecture
and ideas culminating in this method are two cornerstones in modern edge-coloring.
Nevertheless, this method suffers some theoretical limitation when applied to prove
the conjecture; see Asplund and Asplund and McDonald (2016) for detailed infor-
mation. Despite various attempts to extend the Tashkinov trees (see, for instance,
Chen et al. 2018; Chen and Jing 2019; Chen et al. 2009; Scheide 2010; Stiebitz et al.
2012), the difficulty encountered by the method remains unresolved and, undesirably,
another problem emerges: it becomes very difficult to preserve the structure of an
extended Tashkinov tree under Kempe changes (the most useful tool in edge-color-
ing theory). In this paper we introduce a new type of extended Tashkinov trees and
develop an effective control mechanism over Kempe changes, which can overcome
all the aforementioned difficulties. The reader is referred to Chen and Jing (2019)
for a prototype of this control mechanism and its role in the derivation of the best
approximate result on the Goldberg-Seymour conjecture presently available.

The remainder of this paper is organized as follows. In Sect. 2, we introduce some
basic concepts and techniques of edge-coloring theory, and exhibit some important
properties of stable colorings. In Sect. 3, we define the extended Tashkinov trees to
be employed in subsequent proof, and give an outline of our proof strategy. In Sect. 4,
we establish some auxiliary results on the extended Tashkinov trees and stable color-
ings, which ensure that this type of trees is preserved under some restricted Kempe
changes. In Sect. 5, we develop an effective control mechanism over Kempe changes,
the so-called good hierarchy of an extended Tashkinov tree, based on its prototype
introduced by Chen and Jing in Chen and Jing (2019) (see Condition R2 therein).
In Sect. 6, we derive some properties satisfied by the good hierarchies introduced in
the preceding section. In Sect. 7, we present the last step of our proof based on these
good hierarchies.

2 Preliminaries

This section presents some basic definitions, terminology, and notation used in our
paper, along with some important properties and results.

2.1 Terminology and notation

Let G = (V, E) be a multigraph. For each X C V, let G[X] denote the subgraph of
G induced by X, and let G — X denote G[V — X]; we write G — x for G — X if

@ Springer



Journal of Combinatorial Optimization (2025) 50:23 Page 7 of 91 23

X = {x}. Moreover, we use O(X) to denote the set of all edges with precisely one
end in X, and write 9(z) for 9(X) if X = {z}. For each pair z,y € V, let E(x, y)
denote the set of all edges between x and y. As it is no longer appropriate to represent
an edge f'between x and y by xy in a multigraph, we write f € E(x,y) instead. For
each subgraph H of G, let V(H) and E(H) denote the vertex set and edge set of H,
respectively, let |H| = |V (H)|,and let G[H] = G|V (H)] and 0(H) = 0(V (H)).

Let e be an edge of G. A tree-sequence with respect to G and e is a sequence
T = (yo,€1,Y1,---,€p,Yp) With p > 1, consisting of distinct edges eq, ez, ..., ey
and distinct vertices yo, Y1, - - - , ¥p, such that e; = e and each edge e; with1 < j <p
is between y; and some y; with 0 < 4 < j. In this paper a tree-sequence is treated as a
tree. Given a tree-sequence T' = (yo, €1, Y1, - - - , €p, Yp), We can naturally associate a
linear order < with its vertices, such that y; < y; if i < j. We write y; < y; if i < 3.
This linear order will be used repeatedly in subsequent sections. For each vertex y;
of T with j > 1, let T'(y;) denote (yo,e1,¥1,---,¢€;,y;). Clearly, T'(y;) is also a
tree-sequence with respect to G and e. We call T'(y;) the segment of T induced by
y;. Let T1 and T be two tree-sequences with respect to G and e. We write T — T
for E[Ty] — E[T1]; with a slight abuse of notation, we also use 75 — T} to denote
the subgraph of 75 induced by E[Ts] — E[T}]. Write 77 C T if T is a segment of
T, and write 17 C Ty if T} is a proper segment of To; that is, 77 C T5 and T # Tb.

A k-edge-coloring of G is an assignment of k colors, 1,2, ..., k, to the edges of G
so that no two adjacent edges have the same color. By definition, the chromatic index
X' (@) of G is the minimum k for which G has a k-edge-coloring. We use [£] to denote
the color set {1,2,...,k}, and use C¥(G) to denote the set of all k-edge-colorings of
G. Note that every k-edge-coloring of G is a mapping from E to [£].

Let ¢ be a k-edge-coloring of G. For each « € [k], the edge set
E,o={e€ E: ¢(e) = a} is called a color class, which is a matching in G. For
any two distinct colors o and 3 in [k], let H be the spanning subgraph of G with
E(H) = E, o UE, g. Then each component of H is either a path or an even cycle;
we refer to such a component as an («, §)-chain with respect to ¢, and also call it
an («, B8)-path (resp. («, 8)-cycle) if it is a path (resp. cycle). Possibly a component
of H is an isolated vertex. We use P,(«a, 3, ) to denote the unique («, 8)-chain
containing the vertex v. Clearly, for any two distinct vertices u and v, P, («, 5, ¢)
and P, (a, 3, ¢) are either identical or vertex-disjoint. Let C be an (v, 8)-chain with
respect to ¢, and let ¢’ be the k-edge-coloring arising from ¢ by interchanging o and
B on C. We say that ¢’ is obtained from ¢ by recoloring C, and write ¢’ = ¢ /C'. This
operation is called a Kempe change. We also say that this Kempe change is rooted at
v if it has degree one in C.

Let F be an edge subset of G. As usual, G — F' stands for the multigraph obtained
from G by deleting all edges in F; we write G — f for G — F if F = {f}. Let
7 € C*(G — F).Foreach K C E,define 7(K) = Upex_r {m(e)}. Foreachv € V,
define

w(v) = w(0(v)) and 7(v) = [k] — 7(v).

We call w(v) the set of colors present at v and call T(v) the set of colors missing at v.
For each X C V, define
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T(X) = Upex 7(v).

We call X elementary with respect to 7 if T(u) N7 (v) = @ for any two distinct ver-
tices u,v € X. We call X closed with respect to 7 if 7(9(X)) N7T(X) = 0; that is,
no missing color of X appears on the edges in 9(X ). Furthermore, we call X strongly
closed with respect to 7 if X is closed with respect to 7 and 7(e) # 7(f) for any
two distinct colored edges e, f € 9(X). For each subgraph H of G, write 7(H ) for
7(V(H)), and write w(H) for w(E(H)). Moreover, define

Orna(H)={ec0(H):w(e) =a},

and define

I[0; o(H)]={ve V(H):v is incident with an edge in 0r(H)}.

For an edge e € O(H), we call its end in (resp. outside) H the in-end (resp. out-
end) relative to H. Thus I[0; o(H)] consists of all in-ends (relative to H) of edges
in On o(H). If |0x,0(H)| > 2, we call a a defective color of H with respect to m,
call each edge in 0, o(H) a defective edge of H with respect to 7, and call each
vertex in I[0r o(H)| a defective vertex of H with respect to . A color o € 7(H) is
called closed in H under 7 if 0 o(H) = (0. For convenience, we say that H is closed
(resp. strongly closed) with respect to « if V(H) is closed (resp. strongly closed) with
respect to . Let o and 8 be two colors that are not assigned to 9(H ) under 7. We use
7 /(G — H, a, ) to denote the coloring 7’ obtained from 7 by interchanging « and
Bin G — V(H). Since 7 belongs to C*(G — F), so does .

2.2 Elementary multigraphs

Let G=(V,E) be a multigraph. We call G an elementary multigraph if
X' (@) = [T(G)]. With this notion, Conjecture 1.1 can be rephrased as follows.

Conjecture 2.1 Every multigraph G with x'(G) > A(G) + 2 is elementary.

Recall that G is critical if x'(H) < x/(G) for any proper subgraph H of G. As
pointed out by Stiebitz et al. (2012) (see page 7), for a proof of Conjecture 2.1, it suf-
fices to consider critical multigraphs. To see this, let G be an arbitrary multigraph with
X' (G) > A(G) + 2. Then G contains a critical multigraph H with x'(H) = x'(G),
which implies that x'(H) > A(H) + 2. Note that if H is elementary, then so is G,
because [[(G)] < X' (G) = X'(H) = [T(H)] < [T(G)]. Thus both inequalities
hold with equalities, and hence x'(G) = [T'(G)].

To prove Conjecture 1.1, we shall actually establish the following statement.

Theorem 2.1 Every critical multigraph G with X' (G) > A(G) + 2 is elementary.

In our proof we shall appeal to the following theorem, which reveals some inti-
mate connection between elementary multigraphs and elementary sets. This result is
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implicitly contained in Andersen (1977) and Goldberg (1984), and explicitly stated
in Stiebitz et al. (2012) (see Theorem 1.4 on page 8).

Theorem 2.2 Let G = (V, E) be a multigraph with X'(G) = k + 1 for an integer
k> A(G) + 1. If G is critical, then the following conditions are equivalent:

(1) G is an elementary multigraph.

(ii) For each edge e € E and each coloring ¢ € C*(G — €), the vertex set V is
elementary with respect to .

(iii) There exists an edge e € E and a coloring o € C*(G — €), such that the vertex
set Vis elementary with respect to .

(iv) There exists an edge e € E, a coloring p € C*(G — ¢), and a subset X of V,
such that X contains both ends of e, and X is elementary as well as strongly
closed with respect to .

2.3 Stable colorings

In this subsection, we assume that 7 is a tree-sequence with respect to a multigraph
G = (V,E) and an edge e, C is a subset of [k], and ¢ is a coloring in C*(G — e),
where k > A(G) + 1. We say that an edge f'of G is incident to T if at least one end of
fis contained in T; this definition applies to edges of T as well. Since our proof con-
sists of a sophisticated sequence of Kempe changes, the concept of stable coloring
introduced below will be employed to preserve some important coloring properties
of T, such as, among others, the color on each edge and the set of colors missing at
each vertex. Usually, C is the set of colors assigned to £(7) but not missing at any
vertex of T.

To be specific, a coloring ™ € C¥(G — e) is called a (T, C, )-stable coloring if
the following two conditions are satisfied:
@) 7w(f)=¢(f) forany f € E incident to T with ¢(f) € $(T) U C; and
@) 7(v) =9(v) forany v € V(T).
By convention, 7(e) = ¢(e) = 0. The following lemma gives an equivalent defini-
tion of stable colorings.

Lemma 2.3 A4 coloring m € CK(G — e) is (T, C, p)-stable iff ©(f) = ©(f) for any
[ € Eincident to Twith ¢(f) € o(T)U Corn(f) e p(T)U C.

Proof Let (i’) stand for the condition specified in the “if" part. We propose to show
that (i) holds iff both (i) and (ii) hold.

Trivially, (i) implies (i). If there exists v € V(T) such that 7(v) # ®(v), then
some edge f incident to v satisfies 7(f) € p(v) because |7(v)| = [@(v)|. From (i)
we deduce that 7(f) = ¢(f) and hence p(f) € P(v), a contradiction. So (i') implies
(i) as well.

Conversely, let f € E be an arbitrary edge incident to 7 with 7(f) € p(T) U C.
We claim that ¢(f) = 7(f). Assume the contrary: p(f) # 7(f). Let v € V(T) be
an end of /. By (if), we have T(v) = ®(v). So w(v) = ¢(v) and hence there exists an
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edge g € O(v) — {f} with o(g) = 7(f). It follows that p(g) € B(T) U C. By (i), we
obtain 7(g) = ¢(g), which implies 7(f) = m(g), contradicting the hypothesis that
7 € C*(G — e). Our claim asserts that o(f) = 7(f) forany f € E incident to T with
7w(f) € (T) U C. Combining this with (i), we conclude that (i") holds. O

From the definition and Lemma 2.3 we see that the following statements hold for
a (T, C, p)-stable coloring m:

o ifT"CTandap(T")UC' Cp(T)UC,then risalso (T7,C, ¢)-stable;
e ifacolor o € B(T) is closed in T'under ¢, then it is also closed in 7 under 7; and
o ifp(T) CH(T)UC,then w(f) = p(f) for all edges fon T.

Let us derive some further properties satisfied by stable colorings.
Lemma 2.4 Being (T, C,-)-stable is an equivalence relation on C*(G — e).

Proof From Lemma 2.3 and the above condition (ii), it is clear that being (T, C, -)
-stable is reflexive, symmetric, and transitive. So it defines an equivalence relation on
CF(G —e). O

Lemma 2.5 Suppose T is closed but not strongly closed with respect to p, with |V(T)|
odd. If mis a (T, C, p)-stable coloring, then T is also closed but not strongly closed
with respect to T.

Proof Let X = V(T) and let ¢ be the size of the set [k] — $(X). By hypotheses,
|[V(T)| is odd and T is not strongly closed with respect to ¢. Thus under the coloring ¢
each color in [k] — (X)) is assigned to at least one edge in 9(7T'), and some color in
[k] — ®(X) is assigned to at least two edges in (7). It follows that |O(T")| > ¢ + 1.
Since 7 is a (T, C, )-stable coloring, from Lemma 2.3 and the above condition (if)
we deduce that 7 is closed with respect to 7 and that 7(X) = (X) (so [k] — 7T(X)
is also of size 7). As only colors in [k] — 7(X) can be assigned to edges in 9(T") under
m, some of these colors is used at least twice by the Pigeonhole Principle. Hence 7 is
not strongly closed with respect to 7. O

Let P be a path in G whose edges are colored alternately by « and 3 in ¢, with
|P| > 2, and let u and v be the ends of P with v € V(T'). We say that P is a T-exit
path with respect to  if V(T) NV (P) = {v} and p(u) N {a, 8} # 0; in this case, v
iscalleda (T, ¢, {«, 8})-exit and Pis also called a (T, p, {«, 8})-exit path. Note that
possibly p(v) N {«, B} = ; now P is a proper subpath of an («, 3)-path.

Lemma 2.6 Suppose T is closed with respect to p, and f € E(u,v) is an edge in
O(T) with v e V(T). If there exists a (T, C U {p(f)}, p)-stable coloring =, such
that T(u) NT(T) # 0, then for any a € B(v) there exists a (T, C U {o(f)}, ¢)-sta-
ble coloring o, such that vis a (T, 0,{«a, ¢(f)})-exit and that the (T, 0,{a, ©(f)})
-exit path at v contains only one edge.
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Proof Let § € 7(u) N7(T). By the definition of stable coloring, 8 € B(T'). Since
both o and 3 are closed in T under ¢, they are also closed in 7 under 7w by Lemma
2.3.Definec = /(G — T, «, ). Clearly, o isa (T, C U {o(f)}, m)-stable coloring.
By Lemma 2.4, g is also a (T, C U {¢(f)}, )-stable coloring. Since P, (v, p(f), o)
consists of a single edge f, it is a T-exit path with respect to . Hence v is a

(T7 o, {CY, @(f)})'eXiL O

2.4 Tashkinov trees

A multigraph G is called k-critical if it is critical and x'(G) = k + 1. Throughout this
paper, by a k-triple we mean a k-critical multigraph G = (V, E), where k > A(G) + 1,
together with an uncolored edge e € E and a coloring ¢ € C*(G — ¢); we denote it

by (G, e, ).
Let (G, e, ) be a k-triple. A Tashkinov tree with respect to e and ¢ is a tree-
sequence T' = (Yo, €1, Y1, - - - , €p, Yp) With respect to G and e, such that for each edge

e; with 2 < j < p, there is a vertex y; with 0 < ¢ < j satisfying ¢(e;) € B(y;).
The following theorem is due to Tashkinov (2000); its proof can also be found in
Stiebitz et al. (2012) (see Theorem 5.1 on page 116).

Theorem 2.7 Let (G, e, ¢) be a k-triple and let T be a Tashkinov tree with respect to
e and ¢. Then V(T) is elementary with respect to .

Let G = (V, E) be a k-critical multigraph G with ¥ > A(G) + 1. For each edge
e € F and each coloring ¢ € C¥(G — e), there is at least one Tashkinov tree T with
respect to e and . The Tashkinov order of G, denoted by #G), is the largest num-
ber of vertices contained in such a Tashkinov tree over all e and ¢ € C*(G — e).
Scheide (2010) (see Proposition 4.5) has established the following result, which will
be employed in our proof.

Theorem 2.8 Let G be a critical multigraph G with X' (G) > A(G) + 2. If
t(G) < 11, then G is an elementary multigraph.

Tashkinov trees have been used successfully to establish various approximate
results on Conjecture 1.1. The crux of this approach is to capture the density I'(G) by
exploring a sufficiently large Tashkinov tree (see Theorem 2.7). However, this target
may become unreachable when the upper bound on x’(G) (one wishes to derive) gets
close to x'(G), even if we allow for an unlimited number of Kempe changes; such an
example has been found by Asplund and McDonald (2016). To carry out a proof of
Conjecture 1.1, we introduce a type of extended Tashkinov trees in this paper by the
procedure described below.

Definition 2.9 Given a k-triple (G, e, ¢) and a tree-sequence T with respect to G and
e, we say that a tree-sequence (7, £, y) is obtained from 7 by a Tashkinov augmenta-
tion (TA) under ¢ if p(f) € B(T), one end x of fis contained in 7, and the other end
y of fis outside 7. A Tashkinov augmentation algorithm (TAA) consists of a sequence
of TAs under the same edge coloring. We call a tree-sequence T” a closure of T under
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o if T" arises from T by TAA and cannot grow further by TA under ¢ (equivalently,
T’ has become closed).

So a Tashkinov tree with respect to e and ( is a tree-sequence obtained from (yo, €, y1)
by TAA, where yy and y; are two ends of e. We point out that, although there might
be several ways to construct a closure of 7 under ¢, the vertex set of these closures
is unique.

In the next section we shall give a detailed description of an algorithm for con-
structing the aforementioned extended Tashkinov trees, and present the main result
of this paper, which implies Theorem 2.1. In view of Theorem 2.2, to prove Conjec-
ture 1.1, we may turn to finding a strongly closed elementary tree-sequence. Thus in
our algorithm we introduce three types of extensions from a closed elementary tree-
sequence 7 (say, a closed Tashkinov tree), which has defective edges under a color-
ing ¢ (so T is not strongly closed). Specifically, we consider the maximum defective
vertex v in the order < over all (T, C, )-stable colorings (here C contains all colors
used to construct 7 but are not missing at vertices in 7, so C' = () when T is a Tash-
kinov tree). Let f be a defective edge incident to v under o, with f € E(u,v) and
e(f) =2d.

If T U {u} is elementary under all (T, C U {d}, p)-stable colorings, we add this
edge fto T and extend the resulting tree-sequence using TAA. This first type of exten-
sions is called series extension (SE) in our algorithm.

Otherwise, we pick a color 7 in P(v); Lemma 2.6 guarantees the existence of a
stable coloring such that v is the only common vertex of a (v, §)-path P and T. We
then perform the second type of extensions, called parallel extension (PE). Each PE
is followed by a sequence of the third type of extensions, called revisiting extension
(RE) and performed whenever possible. During PE, we switch colors along P and
apply TAA to T, which is no longer closed now. During REs, we repeatedly add an
edge on some (v, §)-cycle intersecting T (the original T before the previous PE) and
apply TAA, until the vertices of all (v, §)-cycles intersecting T are contained in the
resulting tree-sequence. We may view each PE and its succeeding REs as a whole, in
which PE is the primary extension while REs are auxiliary extensions.

Applying the above three extensions to closed elementary tree-sequences recur-
sively, we shall end up with a strongly closed elementary tree-sequence, thereby
proving the Goldberg-Seymour conjecture. The elementary property of such tree-
sequences will be established in Sects. 5, 6 and 7 by further developing techniques
introduced in Chen and Jing (2019), which essentially allow us to prove that if the
elementary property of a closed tree-sequence 7 is preserved under adding a vertex
using Algorithm 3.1, then this property can be extended even further to a closure of
the resulting tree-sequence. To the best of our knowledge, no previous investigation
has ever employed these three extensions; the weaker extension used in Chen and
Jing (2019) (see Condition R1 therein) can only lead to some partial results despite
several new techniques originating from this study.

It is worthwhile pointing out that, when encountering a non-elementary tree-
sequence, almost all previous methods proceed by reducing the size of the non-ele-
mentary tree-sequence and eventually reach a contradiction by coloring the uncolored
critical edge e. However, our algorithm goes the other way around: when 7' U {u} is
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not elementary, it modifies the coloring and employs PE to construct a larger elemen-
tary tree-sequence while avoiding the edge /. Essentially our proof only requires the
edge e to be critical as potential non-critical edges like fare bypassed.

3 Extended tashkinov trees

The purpose of this section is to present extended Tashkinov trees to be used in our
proof and to give an outline of our proof strategy.

Given a k-triple (G, e, @), a Tashkinov series constructed from it is a series of
tuples (T}, ©n—1,Sn—1,Fn—-1,0n_1) for n=1,2,... output by the following
algorithm, where T;, is a closed tree-sequence with respect to ¢, —1, Sp,—1 C [K],
F,_1 C E, and ©,,_ is a label holding information on how 7, is constructed. Fur-
thermore, T;, + f, stands for the tree-sequence augmented from 7,, by adding an
edge f,, and the definition of (T, ¢, {«, 8})-exit can be found in the paragraph right
above Lemma 2.6.

To help gain a clearer picture of our algorithm, we intentionally use a descriptive
language and include Iteration 1, although it is contained in the general Iteration n.

Algorithm 3.1 Tteration 0. Let (771, ¢, So, Fo,©0) be the initial tuple, such that
wo = @, T is a closure of e under ¢ (which is a closed Tashkinov tree with respect
to e and ¢g), and Sy = Fy = ©¢ = 0.

Iteration 1. If 77 is strongly closed with respect to g, stop. Else, we construct the
tuple (T3, ¢1, 51, Fi, ©1) as follows. Set Dy = ).

e Let v; be the maximum defective vertex,! in the order < over all (T}, Dy, o)
-stable colorings, let my be a corresponding coloring, let f; be a defective edge
(of T1 with respect to mg) incident to vy, let u; be the other end of f;, and let

61 = mo(f1).

— Ifforevery (71, Do U {61}, mp)-stable coloring w,wehave T (uq) N7 (T1) = 0,
apply SE withn = 1.

— Else, let y; be an arbitrary color in 7y (v ) and let 7, be a (11, Do U {01}, 7o)
-stable coloring such that vy is a (T4, 7(, {71, d1})-exit (such 7, exists by
Lemma 2.6), apply PE with n = 1.

Iteration n. If T}, is strongly closed with respect to ¢, 1, stop. Else, we construct the
tuple (T+1, ¥n, Sny Fn, ©n) as follows. Set D,,_1 = Ui<pn—15; — @1 (Tn—1) (s0
Dy = 0).

e If there is a subscript h < n — 1 with ©;, = PFE and S}, = {0n, Y4}, such that

!For each (T1 , Do 900)—stable coloring 77, let V;; be the largest defective vertex of 7% with respect to 7
in the order <. Then vy is the largest vertex among all these vertices U in the order <. By definition,
V1 = Unyg-
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©; = RE foralliwith h + 1 < ¢ < n — 1, ifany, and that some (v, d5,)-cycle O
with respect to ¢, —; intersects both V' (1},) and V(G) — V(T,,), apply RE. (Note
that this case cannot occur when n = 1.)

e Else, let v, be the maximum defective vertex in the order < over all
(T, Dyi—1, prn—1)-stable colorings, let 7,1 be a corresponding coloring, let f,,
be a defective edge (of T}, with respect to 7,,—1) incident to v,,, let u,, be the other
end of f,, and let 0,, = 7,1 (fn).

— If for every (T,,Dp—1U{d,},m—1)-stable coloring =7, we have
T(un) NT(T,,) = 0, apply SE.

— Else, pick a color v, in 7,,—1(v,,) as follows. If v,, = v; for some 1 < i <n
with ©; = PE, let n’ be the largest such i and let 7, = d,. Other-
wise, let v, be an arbitrary color in 7T,—1(vy,). Let w/,_; be an arbitrary
(T, Dyp—1 U {0y}, mp—1)-stable coloring so that v, is a (Ty, 7, _1, {Vn,0n})
-exit (such 7/,_; exists by Lemma 2.6), apply PE.RE. Let f,, be an edge
in O N I(T,,) such that O contains a path L connecting f,, and V(T},) with
V(L) C V(T,).Let o, = ©n_1 and Ty, 1 be a closure of T}, + f,, under ¢,.
Set 0, = Iy Y = V> S = {0n,Vn}> Fn = {fn}, and ©,, = RE. We call
this extension a revisiting extension (RE), call f,, an RE connecting edge,
and call §,, and ~,, connecting colors. Let v, be the end of f,, in T,,. Note that
vy, here is neither called an extension vertex nor called a supporting vertex.

SE. Let ¢, = m,—1 and let T}, be a closure of T}, + f,, under @,,. Set S, = {0, },
F, ={f.}, and ©,, = SE. We call this extension a series extension (SE), call f,,
an SE connecting edge, call d,, a connecting color, and call v,, an extension vertex.

PE. Let On =70 _1/Po, (Yny On, T _1)- Note that
Py, (Yn,0nsmh_1) NV (Ty,) = {v,} and 6,, € B,,(vy,) is a defective color of T,,. So
T, is not closed under ¢,,. Let T}, be a closure of T}, under ¢,,. Set Sy, = {6n, Y},
F, ={f.}, and ©,, = PE. We call this extension a parallel extension (PE), call
fn a PE connecting edge, call 6,, and ~,, connecting colors, and call v,, a supporting
vertex. As f, is the first edge along P, (Vn, dn, 7,,_;) and is colored by ~y,, under ¢,,,
it is not necessarily contained in 7,4 1.

Figure 1 shows the possible choices of extensions used in the construction of a
Tashkinov series.

Definition 3.1 Let (G,e,p) be a k-triple and let
T ={(Ts, 0i-1,5i-1,F;—1,0;,_1) : 1 <i<n+1} be a Tashkinov series con-
structed from (G, e, ). A tree-sequence T is called an extended Tashkinov tree (ETT)
constructed from 7 under ¢, if T;, C T C T,,,1. We say that ¢, is the generating
coloring of T. If the Tashkinov series 7 is clear from the context, we may simply say
that 7'is an ETT under ¢,,.

We shall mainly work on an ETT 7 as defined above in the remainder of this paper.
Such T is not necessarily closed under ,,, while 7}, 11 is closed.

@ Springer



Journal of Combinatorial Optimization (2025) 50:23 Page 15 of 91 23

Fig. 1 Tashkinov series constructed by Algorithm 3.1

Throughout we reserve all symbols used for the same usage as in the algorithm. In
particular, D; = Up<; S, — %;(T;) for i > 0. To help understand the algorithm and
ETTs better, let us make a few remarks and offer some simple observations.

(3.1) In our proof we shall always restrict our attention to the case when |T},| is
odd. Suppose T;, is closed but not strongly closed with respect to ¢, —1. Then, by
Lemma 2.5, the same property holds for T}, with respect to any (T}, Dp—1, ©n—1)
-stable coloring 7. Let v, denote the largest defective vertex of 7T, with respect to
7 in the order <. Note that v,, involved in SE and PE is the largest vertex among
all these vertices v, in the order < and so it is uniquely determined by the triple
(T, Dr—1, prn—1), while f,, involved in each extension might be selected in several
ways.

(3.2) Inthe algorithm 6,, is a defective color of T}, withrespect to ¢,, when©,, = SF
or PE (as |0x, _,.5,(Tn)| > 3 when |T;,| is odd), while ~,, is a defective color of T},
with respect to ,, when ©,, = RE. Unlike PE or SE, v,, involved in RE may not be a
maximum defective vertex. Moreover, the set D,,—1 = Uj<p—15; — @,,_1(Th—1) is
used to store colors employed in the construction of 7}, but not missing at any vertex
of T,_1 under ¢,,_1.

(3.3) As described in the algorithm, after performing each PE, we grow the Tash-
kinov series by using RE, whenever possible. So revisiting extension (RE) has prior-
ity over both series and parallel extensions (SE and PE). If ©,, = RFE, then all edges
in O N9(T},) are colored with d;, and all edges in O N I(T},) are colored with ~p,,
because dy, is a color missing at vy, under @5, = p,_1 (thereby vy, is outside O), the
only edge f3, in Oy, ~, (%) (see Lemma 3.2(v) to be proved) is adjacent to vy, and T,
is closed with respect to ¢,,—1. Hence O contains at least one edge colored with v, in
G|[Ty,), at least two boundary edges of T}, colored with 5, and at least two boundary
edges of T;, colored with .

RE is illustrated by the following figure, in which O N 9(T,) contains four edges
colored with ~yp: both the top and bottom edges are good candidates for f,, but nei-
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Jn

Fig. 2 Revisiting extension (RE)

On

ther of the middle edges can serve this purpose (Fig. 2), because O contains no path
L connecting them and T}, with V(L) C V(T,,).

In all previous approaches to the Goldberg-Seymour conjecture using the method
of Tashkinov trees, the trees involved in the proofs were constructed under a fix col-
oring. In sharp contrast, Algorithm 3.1 constructs tree-sequences and edge-colorings
simultaneously as it progresses. Therefore, the structural property of an ETT embod-
ied in the extension type and the corresponding coloring might be very fragile (see
the next paragraph for details), even under stable colorings. This could cause a seri-
ous problem when we try to prove that an ETT Twith T,, C T' C T,,11 is elementary.

For example, if T is not elementary, then we would apply Kempe changes to
reduce the size of this counterexample to reach a contradiction while keeping the
coloring (T,,, D,,, ¢n,)-stable. However, if ©,, = PFE and the (v, §,,)-path starting
at v, has evolved to contain two or more vertices from 7}, during the process, then
the resulting tree-sequence may no longer be an ETT under the new coloring, because
PE requires that the (v, d,,)-path starting at v,, share exactly one vertex with 7T,
in order to get T;, 1. Moreover, if ©,, = RE and the edge f,, no longer belongs to
any (vn, 0n)-cycle during the process, then the resulting tree-sequence may not be
an ETT under the new coloring anymore, because RE requires f,, to be an edge of a
(Y, On)-cycle.

To circumvent this problem, we introduce the concept of mod coloring (see Defi-
nition 3.7) and impose a maximum property (see Definition 3.8) on ETT, and then we
can ensure that the ETT structure is preserved under stable colorings (see Theorem
3.10(vi) and Lemma 4.5). REs play an important role in the proof of Lemma 4.3
(Theorem 3.10(iv)), which in turn leads to Lemma 4.5 (Theorem 3.10(vi)). These
technical results are essential to deriving the elementary property of the ETT we
consider.

Let us look back at Algorithm 3.1. Clearly, PE is the only extension that involves
a non-stable coloring (in which one missing color at the supporting vertex has been
changed). Based on this observation, we can exhibit some basic coloring properties
(Lemmas 3.2—3.6) satisfied by ETTs. Recall that D,,_1 = Uj<pn—1 Si — @,,_1(Tn—1)
is used to store colors employed in the construction of 7}, but not missing at any ver-
tex of T),,_1 under ¢, 1.

Lemma 3.2 For n > 1, the following statements hold:
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(1) P 1(T )UD -1 C@n(T )UD C@n(TTH-l)UD"'

(ii) Foranyi <mnandv € V(T;), we have §,_,(v) = p,,(v) if v is not used as a
supporting vertex at any iteration j withi < j < nand ©; = PE.

(iii) For any edge fincident to Ty, if on—1(f) € B,,_1(Tn) U Dy —1, then
on(f) = on—1(f), unless ©,, = PE and f = f,. So on(f) € $,,(T,) U D,
provided that @, _1(f) € @,,_1(Ty) U Dp_1.

(iv) on—1({Tn) € @p_1(Tn) U Dy—1 and on(Ty) € ,(Tn) U Dy, So
on(f) = on(f) for any (T,,, Dy, ©n)-stable coloring o, and any edge fon T,,.

w) Ifo, = PE then Oy, ~, (T,) = {fn}, and edges in 0, s, (T) are all inci-
dent to V(T,,(vy,) — vy,). Furthermore, each color in <pn( n) — {0, } is closed
in T, under ¢,,.

Proof By definition, D, _; = Uign_lsi — @n—l( n— 1) So D 1(Tn) UD,_1 =
B 1 (T)UUi<n-1S; — @1 (Th=1)]. Since @,,_1 (Tr—1) € B,,_1(T%), we obtain

(1) @n—l(Tn) U Dn—l = En—l(Tn) ) (Uign—lsi)~
Similarly, we can prove that
() 2,(T,) U D, =9,(T,) U (Uiﬁnsz’)-

(i) For any a €@, ,(T,), from Algorithm 3.1 and definition of sta-
ble colorings we see that «€p,(T,), unless ©O,=PFE and
= y; in this exceptional case, o € Sy,. S0 3,,_1(Ty) C %, (1) U S, and hence
Br1(Th) U (Ui<n—15i) €@, (Th) U (Ui<nS;). It follows from (1) and (2) that
Prn—1(Tn) U Dp—1 € 3, (T) U Dy Clearly, ©,,(T) U Dy, € 3, (Tn41) U Dy,

(i1) In Algorithm 3.1 we always work with stable colorings except during PEs,
where only missing colors at supporting vertices are changed. So the desired state-
ment follows.

(iii) Letfbeanedgeincidentto T, withg,, 1 (f) € @,,_1(Tn) U Dy,_1.1f0,, = RE,
then ¢, = @,—1 by Algorithm 3.1, which implies ¢, (f) = @n—1(f). So we may
assumethat®,, # RE.Letm,_1bethe (T}, D,,_1, pn—1)-stable coloring as specified
in Algorithm 3.1. By the definition of stable colorings, we obtain 7, —1 (f) = @n—1(f).
If©,, = SE, then ¢, (f) = m,—1(f) by Algorithm 3.1. Hence ¢, (f) = @n_1(f). It
remainstoconsiderthecasewhen®,, = PFE.Letn,_,bethe (Tn, D1 U{d,}, mn-1)
-stablecoloringasspecifiedinAlgorithm3.1.ByLemma2.4,7),_,is(Ty, Dp—1, ¢n—1)
-stable. Hence 7/, _1(f) = ¢n-1(f). Since ¢, =n,_1/Py, (0n,Vn,7,_1) and
Py, (8 Yy T 1) contains only one edge f,, incident to T}, (see Algorithm 3.1), we
have o, (f) =n),_1(f), unless f = f,. It follows that ¢,,(f) = @n—1(f), unless
f = fn; in this exceptional case, ¢,—1(f) =9, and ¢, (f) = v, € Sy. Hence
on(f) € Ppo1(Tn) UDp1US, €3, (Tn)UD,US, =5,(T,) U D, by (i) and
(2), as desired.

(iv) Let us first prove the statement ¢,,_1(T},) C @,,_1(T},) U D,,_1 by induction
on n. As the statement holds trivially when n = 1, we proceed to the induction step
and assume that the statement has been established for n — 1; that is,
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(3) (pn—2<T7z,—1> g @n_Q(Tn—l) U Dn—?-

By (3) and (iii) (with n — 1 in place of n), for each edge f on 7;,,_; we have
On-1(f) €0,_1(Tn-1)UDp_1 C@,,_1(T0) U Dy_1. For  each edge
f €T, —T,—_1, from Algorithm 3.1 and TAA we see that ¢,,_1(f) € D,,_1 iffis a
connecting edge and ¢,,—1(f) € B,,_; (T},) otherwise. Combining these observations,
we obtain ¢, _1(f) € p,,_1(T,) UD,_;1. Hence v,—1(T,) C@,,_1(Tn) U Dy_1,
which together with (iii) implies ¢, (T},) C ,,(T),) U D,,.

It follows that for any edge f on T, we have ¢,(f) € @,,(T5,) U D,,. Thus
on(f) = en(f) forany (T,,, D,, p,)-stable coloring o,.

(v) From the definitions of 7,,_1, vertex v,, (maximum defective vertex) and stable
colorings, we see that edges in 0, , s, (T,) are all incident to V (T}, (v,,)), and each
color in 7,,—1(7},) is closed in T}, under m,_1. So, by the definitions of 7/, _; and
stable colorings, edges in 9,/ 5, () are all incident to V(7' (vy,)), and each color
in7,_(T),) is closed in T}, under 7/, ;. Thus the desired statements follow instantly
from the definition of ¢,, in PE. ([

The following lemma generalizes Lemma 3.2(iii) and ensures that colors on some
edges incident to a tree remain intact if we grow it by using Algorithm 3.1.

Lemma 3.3 For any 1<i<mn and any edge f incident to T, if
0i—1(f) € Bi_ 1 (Ts) U Di_y, then ;(f) = @i 1 (f) foranyjwith i < j < n, unless
f=fu € Fy, for some h with i < h < j and 0y, = PE. In particular, if fis an edge
in G[T;] with @;—((f) € B;_;(T;) U D;_q, then ©;(f) = wi—1(f) for any j with
i<j<n

Proof By Lemma 3.2(i), we have ©;_,(Th) U Dp—1 C 3, (Tht1) U Dy, for all
h > 1. So to establish the first half, it suffices to prove the statement for j = ¢, which
is exactly the same as Lemma 3.2(iii).

Note that if fis an edge in G[T;], then f ¢ O(T}) for any A with ¢ < h < j. Hence
f # fn € Fy, for any h with ¢ < h < j and ©; = PFE. Thus the second half also
holds. O

The lemma below describes some interesting properties satisfied by a sequence of
PEs with the same supporting vertex.

Lemma 3.4 Let u be a vertex of T, and let B,, be the set of all iterations j with
1 <j <mn, such that ©; = PE and v; = u. Suppose B, = {i1,1z,...,%,}, where
1 <y <ip <...< 1y < n. Then the following statements hold:

(D) Viy = 0iys Vig = Oigy vy Vip = iy
(i) B, (u) N (Ujen, S;) = 8;,(u) N (Ujen, S;) = {di, }, and
(i) P, —1 (u) = (@, (u) — {d;, }) U {7, } and

?;, (w) = (@5, 1 (u) — {7, }) U{di, }-
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Proof From the definition of B,,, we see that for any 1 < j < p — 1 and iteration £
withi; +1 < h <41 — 1,if vy, = u, then ©, = RE or SE. By Lemma 3.2(ii), we
have

(1) ?,(w) =9;, ., —1(u) for1 < j <p— 1. Similarly, p; (u) =7, (u).

According to the choice of v}, in a general iteration 4 involving PE,
(2) Vg4 =04 for1 <j<p-—1,wherev;;,, €p; ., _1(u)andd;; €p; (u)

Thus (i) follows instantly from (2). Using (1) and (2), we obtain
3) i, (w) = {05} =75, 1 () = {y;, pfor1 < j <p—1.
Since @;  (u) is obtained from p;, _; (u) by replacing ~;; with d; ,

4 D5, 1 (u) = {v,} =9, (u) = {6;;} for 1 < j < p.

Combining (3) and (4), we deduce that
(5) the 2p sets @54(“) —{vi,} and P, (u) — {0, } for 1 < j < pare all equal.
By(5),the setU?=1 {74,904, } (andhence U?zlSij )isdisjointfromallthe2psetsdisplayed
above. So , (u) N (L7, 5,) = [y, (u) — {6, 1) 1 (U2, S:,)] U {8, } = {3, ),
which together with (1) yields (ii).

Again by (5), @, _1(u) — {7} =7, (W) —{d,}. As v, €9;_1(u)
and 6, €p; (u), we get @, 4(u)= (%, (u)—{4,})U{y,} and
?;, (u) = (@;,—1(u) — {7i, }) U {d;, }. Therefore (iii) also holds. O

Lemma3.5 |D,| < n.

Proof Recall that D,, = U;<,S; — @, (T,,) (so Dy = 0). For 1 < i < n, by Algo-
rithm 3.1, we have S; = {6;} if ©;, = SE and S; = {d;,~:} otherwise.

If 0, = RE, then On = Pn—1 and Spn = Sn_1. So
D, C D,y If ©, = SE, then S,, = {0,} and ¥,(T) =@,,_1(Tn). It follows
that D,, C D,,_1 U{6,}. It remains to consider the case when ©,, = PE. Now
6n & Pp_1(T) and (@, 1 (Tn) — {7 }) U{dn} € 9, (Tn). So

Dy, = Ui<nSi — §,(Th)
C Ui<n-15 U{6n, 1} = [(@n-1(Tn) = {71n}) U {n}]
C Ui<n-15 U{m} — @n1(Th) — {m})
C [Uicn-18i = @p1(Tn)] U{m}
C Dp_1U{m}

Combining the above three cases, we obtain |D,,| < |D,_1| + 1 for n > 1. Hence
|D,| < n. O
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Lemma 3.6 Suppose O, = PE. Let 0, be a (Ty, Dy, n)-stable coloring and
let op_y = O’n/Pvn('Ymdnao'n)- If PUW,(’Yménvgn) nT,= {Un}: then op_; is
(Ty, Dy 1 U{dn}, Tn—1)-stable and hence is (Ty,, Dy— 1, n—1)-stable.

Proof Let w],_; be as specified in Algorithm 3.1. Recall that
(1) 7,4 is (T, Dp—1 U {0y}, mp—1)-stable.
By definition, ¢, = 7},_1/ Py, (Y, On, mh_1). SO

() 71 = P/ Po, (Yns On, Pn).
We propose to show that

(3) op—1is (T, Dp—1 U {0y}, 7, _)-stable.
By the definition of 0,1 and (2), we obtain

(4) o0, and 0,,_1 agree on every edge incident to T, except f,,, for which o, (f,) = Y
and 0,,—1(fn) = 0p; and

(5) ¢nandm),_, agreeonevery edgeincidentto T}, except fy,, for which @, (f) = vn

and 7,1 (fn) = On.

Since {Vn,0n} €5, (Tn)UD, and o, is (T,,D,,en)-stable, (3) follows
instantly from (4) and (5). Using (1), (3) and Lemma 2.4, we see that 0,1 is
(T, Dy U {0}, Tp—1)-stable. So o,—1 is (Tn,Dp—1,7n—1)-stable. Since
-1 18 (T, Dyp_1,@n—1)-stable, from Lemma 2.4 we conclude that o,_; is
(T, Dy—1, prn—1)-stable. O

Observe that an extended Tashkinov tree T (see Definition 3.1) has a built-in lad-
der-like structure. So we propose to call the sequence 177 C T C ... C T, C T the
ladder of T, and call n the rung number of T and denote it by (T) (so r(T+1) = n).
Moreover, we call (g, ¢1, . - ., pn) the coloring sequence of T, and call T the Tash-
kinov series corresponding to T.

In our proof we shall frequently work with stable colorings; the following concept
will be used to keep track of the structures of ETTs.

Definition 3.7 Let 7 = {(Ti,w_l,Si_l,Fi_l, 61'—1) 1<i<n+ 1} be a
Tashkinov series constructed from a k-triple (G, e, ) by using Algorithm 3.1. A
coloring o, € C*(G —e) is called ¢, mod T), if every tree-sequence T D T,
obtained from 7;, + f, (resp. 1;,) by TAA under o, when ©,, = RE or SE (resp.
when ©,, = PE) is an ETT under o,, with a corresponding Tashkinov series
T ={(T},0i-1,51-1, F;—1,0;-1) : 1 <i<n+1}, satisfying the following
conditions for all i with 1 < i < n:

T =T, and
oiisa (T, Dy, @;)-stable coloring in C* (G — e).

We call each T* an ETT corresponding to (c,,,T,) (or simply corresponding to o,
if no ambiguity arises).
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Remark Comparing T with T, we see that T}, in T* is obtained from T} = T;
by using the same connecting edge, connecting color, and extension type as 7;41
in 7 for 1 <¢<mn. However, T);,; may be different from 7}, ;. Furthermore,
TyCTyC...CT, CT* is the ladder of T* and r(T*) =n. Since o; is a
(T}, D;, @;)-stable coloring, by Lemma 3.2(iv), we have o;(f) = ¢;(f) for any edge
fonT; and 1 <7 < n; this fact will be used repeatedly in our paper.

To ensure that the structures of ETTs are preserved under taking stable colorings, we
impose some restrictions on such trees.

Definition 3.8 Let 7 be an ETT constructed from a k-triple (G, e, ) by using the
Tashkinov series T = {(T3, wi—1,Si—1, Fi—1,0,-1) : 1 <i <n+ 1}. We say that
T has the maximum property (MP) under (g, ¢1,- - ., @n) (or simply under ¢, if
no ambiguity arises), if |7} | is maximum among all Tashkinov trees 7] with respect
to an edge ¢’ € E and a coloring o) € C¥(G — ¢’), and |T}41| is maximum over all
(T}, D;, @;)-stable colorings for any i with 1 < i <n — 1; that is, |T;41]| is maxi-
mum over all tree-sequences 7}, ;, which is a closure of T; + f; (resp. T;) under a
(T3, D;, @;)-stable coloring ¢} if ©; = RE or SE (resp. if ©; = PFE), where f; is the
connecting edge in Fj.

Notice that in the above definition |T;,11]| is not required to be maximum over all
(T}, Dy, n)-stable colorings. This relaxation allows us to proceed by induction in
our proofs.

As described before, the tree-sequence structure generated by Algorithm 3.1 might
be very fragile, because RE does not allow change of coloring and PE requires the
supporting vertex to be the exit of an exit-path. At this point, it is natural to ask
whether there exists an ETT with MP and with an arbitrarily given rung number or an
arbitrarily given size. We shall demonstrate (see Corollary 3.11) that the answer is in
the affirmative. The statement below follows instantly from the above two definitions
and Lemma 2.4.

Lemma 3.9 Let T be an ETT constructed from a k-triple (G, e, ) by using the Tash-
kinov series T = {(Ti, pi—1,51-1,Fi—1,0i—1): 1 <i<n+ 1}, let o, be a
wn, mod T, coloring, and let T* be an ETT corresponding to (o, T,,) (see Defini-
tion 3.7). If T satisfies MP under ., then T* satisfies MP under o, O

Let us introduce one more notation and two more concepts before presenting our
main theorem. For each v € V(T'), we use m(v) to denote the minimum subscript
i such that v € V(T;). Let a and 3 be two colors in [k]. We say that o and 3 are
T-interchangeable under ¢, if there is at most one («, 3)-path with respect to ¢,
intersecting 7 (that is, the path and 7 have at least one vertex in common). Note that
in this situation we can easily find an («, §)-path disjoint from 7 and then switch
colors along it while keeping the resulting coloring stable. So this concept is very
helpful for deriving elementary property satisfied by an ETT. When T is closed (that
is, T = T,+1), we also say that T has the interchangeability property with respect to
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¢p, if under any (T, D,,, ¢, )-stable coloring o,, any two colors « and 3 are T-inter-
changeable, provided that 7, (T) N {a, 8} # 0 (equivalently 7, (T) N {a, B} # 0).

We aim to show, by induction on the rung number, that every ETT satisfying MP
is elementary. To carry out the induction step, we need several auxiliary results con-
cerning ETTs with MP. Thus what we are going to prove is a stronger theorem (con-
taining six statements) given below, in which the undefined symbols and notations
can all be found in Algorithm 3.1. Together with Theorem 2.2, statements (i) and
(vi) will imply Theorem 2.1. Statements (ii)-(v) will be used in the proofs of (i) and
(vi). Moreover, the proof of (iv) relies directly on MP and the design of RE, and the
proofs of (iii) and (v) are based on the fact that the supporting and extension vertices
involved in Algorithm 3.1 are maximum defective vertices over all stable colorings.

Theorem 3.10 Let T be an ETT constructed from a k-triple (G, e, p) by using the
Tashkinov series T = {(Ts, 0i—1,5i—1,Fi—1,0;—1): 1 <i<n+ 1} If T has
MP under o, then the following statements hold:

(1) V(1) is elementary with respect to .

(i1) T),41 has the interchangeability property with respect to .

(iii) For any i < n, if v; is a supporting vertex with m(v;) = j, then every
(T3, D;, @;)-stable coloring o; is (T (v;) — v;, Dj_1,;—1)-stable, so o; is
(Tj—1,Dj_1,p;—1)-stable. Furthermore, for any two distinct supporting verti-
ces v; and vj with 1,5 < n, if m(v;) = m(v;), then S; N S; = 0.

(iv) If ©,, = PE, then P, (Vn,0n,0r) contains precisely one vertex, v, from T,
Jor any (T, Dy, op,)-stable coloring o,

(v) For any (Ty,, Dy, n)-stable coloring oy, and any defective color 6 of T,
with respect to oy, if v is a vertex but not the smallest one (in the order <)
in 1[0y, 5(Ty,)], then v < v; for any supporting or extension vertex v; with
m(v) <.

(vi) Every (Ty,, Dy, on)-stable coloring oy, is a @, mod T,, coloring. (So every
ETT corresponding to (0., T),) (see Definition 3.7) satisfies MP under o, by
Lemma 3.9.)

Let us show that Theorem 2.1 can be deduced easily from statement (i) and the
following corollary (which relies on statement (vi)).

Corollary 3.11 Let T:{(Ti,goi_l,Si_I,Fi_I,@i_l):1§i§n+1}
be a Tashkinov series constructed from a k-triple
(G, e, ). Suppose Tp1; has MP under ¢,,. Then there exists a Tashkinov series
T ={(T},04—1,Si—1,Fi—1,0;—1): 1 <i<n—+ 1}, satisfying the following
conditions for 1 < i < n:

O 77 =Ty

(ii) oy is a (T}, D;, ¢;)-stable coloring in C* (G — €); and

(iii) | T3, 1 | is maximum over all (T;, D;, 0;)-stable colorings (note that Definition
3.8 only requires this fori < n — 1).
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Furthermore, if T}, ; is not strongly closed with respect to o, then there exists
a Tashkinov series {(7},04—1,8i—1,Fi—1,0;—1):1 <i<n+ 2}, such that
Th,; C Thypand T, , satisfies MP under o, ;.

Proof Let o, be a (T}, Dy, ¢, )-stable coloring such that a closure of T,, (resp. of
T, + fn)under o, denoted by T'; , , has maximum size over all (T},, D,,, ¢y, )-stable
colorings if ©,, = PFE (resp. if ©,, = RE or SE). By Lemma 2.4, every (T,,, D,,, 0,,)
-stable coloring is a (15, Dy, r,)-stable coloring. So |T};, | is also maximum over
all (T,,, D,,, 0,,)-stable colorings.

Since o, is (T, Dy, @n)-stable, it is ¢, mod T,, by Theorem 3.10(vi).
Thus Definition 3.7 guarantees the existence of a Tashkinov series
T ={(T7,0i-1,5:-1,F;—1,0;-1) : 1 <i<n+ 1} that satisfies conditions (i)
and (ii) as described above. By Lemma 3.9, |T7, ;| is maximum over all (T}, D;, 0;)
-stable colorings as well for 1 <7 <n — 1.

Suppose T, ; is not strongly closed with respect to ¢,. Then we can construct
a new tuple (77,5, 0n41,Sn41, Fnt1,0On41) by using Algorithm 3.1. Clearly,

m

Thi1 CTyyoand T, , satisfies MP under oy, 4 1. O
Proof of theorem 2.1 Let T = {(Ti,(pi_l, Si—hFi—la@i—l) 1< <n+ 1} be a
Tashkinov series constructed from a k-triple (G, e, ¢), such that

(a) T,41 satisfies MP under ¢,,;
(b) subject to (a), [Ty+1]| is maximum over all (T;,, D,,, ¢, )-stable colorings; and
(o) subject to (@) and (b), the integer n is maximum.

Since G is finite, by Corollary 3.11, such a Tashkinov series T exists. Observe that
T),+1 is strongly closed, for otherwise, Corollary 3.11 would enable us to further extend
T to a longer Tashkinov series {(T}*, 0;-1, Si—1, Fi—1,0;-1) : 1 <i < n + 2} sat-
isfying (@) and (b), contradicting (¢). By Theorem 3.10(i), V(T},+1) is elementary
with respect to ¢,,. From Theorem 2.2(i) and (iv), we thus deduce that G is an ele-
mentary multigraph. UThe proof of Theorem 3.10 will take up the entire remainder
of this paper.

4 Auxiliary results

We prove Theorem 3.10 by induction on the rung number r(7") = n. The present
section is devoted to a proof of statement (ii) in Theorem 3.10 in the base case and
proofs of statements (iii)—(vi) in the general case. A complete proof of (ii) is given in
Sect. 7.2, which is the end of this paper, and the rest of the paper is devoted to prov-
ing (i).

For n = 0, statement (i) follows from Theorem 2.7, statements (iii)-(vi) hold trivi-
ally, and statement (ii) is a corollary of the following more general lemma (because
T is also a closed Tashkinov tree with respect to e and any (77, Dy, ¢ )-stable color-
ing o).
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Lemma 4.1 Let (G, e, @) be a k-triple, let T be a closed Tashkinov tree with respect
to e and @, and let o and 3 be two colors in [k] with p(T) N{«a, B} # 0. Then there
is at most one («, B)-path with respect to ¢ intersecting T.

Proof Assume the contrary: there are at least two («, 8)-paths @1 and Qo with
respect to ¢ intersecting 7. By Theorem 2.7, V(T) is elementary with respect to ¢. So
T contains at most two vertices v with p(v) N {«, B} # 0, which in turn implies that
at least two ends of @1 and @), are outside 7. By hypothesis, T is closed with respect
to . Hence precisely one of « and (3, say «, is in §(T"). Thus we further deduce that
at least three ends of @1 and )2 are outside 7. Traversing ()1 and @) from these ends
respectively, we can find at least three (7, ¢, {a, 8})-exit paths Py, Ps, P;. We call
the tuple (¢, T, o, B, P1, P2, P3) a counterexample and use K to denote the set of all
such counterexamples.

With a slight abuse of notation, let (¢, T, o, 8, Py, P>, P3) be a counterexample in
K with the minimum |P; | 4+ |P2| 4+ | P3|. Fori = 1,2, 3, let a; and b; be the ends of P;
with b; € V(T'), and f; be the edge of P; incident to b;. Since T is closed, o € B(T),
and each f; € 9(T), we have ¢(f;) # «. It follows that o(f;) = 8 (i = 1,2, 3) and
thus b1, b, b3 are distinct. Renaming subscripts if necessary, we may assume that
by < b < bs. Lety € B(bs) and let oy = ¢/(G — T, a, ). Then Ps is a (7, §)-path
under 0. Clearly, oy € C*(G — e) and T is also a Tashkinov tree with respect to e
and o1. Furthermore, f; is colored by 5 under both ¢ and o fori = 1,2, 3.

Consider o5 = 01/ Ps. Note that 8 € 5(b3). Let T be obtained from T'(b3) by
adding f; and f5 and let 7" be a closure of T” under o5. Obviously, both 77 and T"
are Tashkinov trees with respect to e and o2. By Theorem 2.7, V(T") is elementary
with respect to 0.

Observe that none of a1,as,a3 is contained in 7", for otherwise, let
a; € V(T") for some i with 1<i<3. Since {B,7}NT2(a;)#0 and
B € T2(b3), we obtain v € Ta(a;). Hence from TAA we see that Py, P, P; are all
entirely contained in G[T"], which in turn implies v € 2(a;) for j =1,2,3. So
V(T") is not elementary with respect to o3, a contradiction. Each P; contains a
subpath I;, which is a T"-exit path with respect to os. Since f1 is not contained
in Ly, we obtain |Lq| + |L2| + | L3| < |P1| + | P2| + | P5|. Thus the existence of the
counterexample (o2, T",~, 8, L1, Lo, L3) violates the minimality assumption on
(gO,T,()L,B,Pl,PQ,Pg). O

So Theorem 3.10 is true in the base case. Suppose we have established that

(4.1) Theorem 3.10 holds for all ETTs with at most n — 1 rungs and satisfying MP,
for some n > 1.

Let us proceed to the induction step. We postpone the proof of Theorem 3.10(i)
and (ii) to Sect. 7, and present a proof of Theorem 3.10(iii)—(vi) in this section. In our
proof of the (i + 2)th statement in Theorem 3.10 for 2 < i < 4, we further assume
that

(4. 1) the jth statement in Theorem 3.10 holds for all ETTs with at most # rungs and
satisfying MP, for all j with 3 < j < i+ 1.

Note that (4.4) corresponds to (4.2), (4.3) and (4.4), respectively, for i = 2, 3 and
4. For example, when we try to prove Theorem 3.10(v) (now ¢ = 3), we assume (4.3),
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which says that both Theorem 3.10(iii) and Theorem 3.10(iv) hold for all ETTs with
at most n rungs and satisfying MP.

We break the proof of the induction step into a series of lemmas. The follow-
ing lemma derives some properties satisfied by supporting vertices and connecting
colors.

Lemma 4.2 (Assuming (4.1)) Theorem 3.10(iii) holds for all ETTs with n rungs and
satisfying MP; that is, for any i < n, if v; is a supporting vertex with m(v;) = j, then
every (T;, Dy, p;)-stable coloring o; is (T(v;) — v;, Di—1,p—1)-stable, so o; is
(Tj—1,Dj—1,pj—1)-stable. Furthermore, for any two distinct supporting vertices v;
and vj with i,j < n, if m(v;) = m(v;), then S; N S; = 0.

Proof By (4.1), Lemma 4.2 holds for all ETTs with at most n — 1 rungs and satisfy-
ing MP. So we may assume that 7'is an ETT with the corresponding Tashkinov series
T ={(Th, on-1,5n-1,Frn—1,0p-1) : 1 <h <n+ 1} and satisfies MP under ¢,,.
Furthermore, ¢ = n throughout our proof.

In the first half of this lemma, m(v,) = j and o, is a (T, Dy, ¢»)-stable col-
oring. Write T* = T'(v,) — v, (s0 T* C T}). As j <n, repeated application of
Lemma 3.2(i) yields @; (Tj)UD;1 €@, 1(Th)UDp_1 C,(Tn) U Dy In
particular, D,;_1 C @,,(T,,) U D,,. Hence o, is a (I'*, D;_1, ¢, )-stable coloring. By
Lemma 2.4, to prove that o, is (T, Dj_1, ¢,_1)-stable, it suffices to show that ¢,
is (T, D;_q, @j_l)-stable.

If j = n,then v, is the only supporting vertex contained inside 7}, but outside 7,1 .
Recall that in Algorithm 3.1 the coloring 7/, is (T, Dp—1 U {0, }, 7 —1)-stable and
n = Tp_1/Po, (Yn, 6n, 75 _1), Where Py, (Yn, 0n, T 1) N V(T5) = {vn}. So pn
isa(T*, Dy_1,m,—1)-stable coloring. By Lemma 2.4, itis also a (T, D,,_1, ¢n—1)
-stable coloring, because 7,_1 is (T}, Dp—1, pn—1)-stable. Thus we assume here-
after that j < m. As v, is the largest vertex (in the order <) in I[0r,,_, s, (T5)] (see
Algorithm 3.1), with §,, = m,,—1(f), and v,, is contained in T; C T},_4, we see that
0y, 1s a defective color of 7,1 with respect to m,,_1, and v,, is not the smallest ver-
tex (in the order <) in I[0x, _, s, (Tn—-1)]. As mp—1 is also a (Ty,—1, Dp—1, Yn—1)
-stable coloring, applying (4.1) and Theorem 3.10(v) to v = v,, and 7,,_1, we obtain
vp = vy, for any supporting vertex vy, with j <h <n — 1. Thus 3, _;(v) = 3,,(v)
for each vertex v of T by Lemma 3.2(ii). Furthermore, ¢,,(f) = ¢,_1(f) for each
edge f'incident to 7™ with ¢;_1(f) € %,;_1(T*) U D;j_1 by Lemma 3.3. Hence ¢y,
is (T, Dj_1, pj_1)-stable, as desired.

Let us proceed to the second half. Now v; is a supporting vertex with j < n and
m(v;) = m(vy,). To prove that S,, N .S; = 0, we shall actually show that

(1) there are edges f; g in G[T,,] incident to v,, with ¢, (f) = v, and ¢,,(g) = 9.

Assuming (1), it follows instantly that ~;,d; ¢ Sy, because @, (fn) = Vn,
fn € 0(Ty) (so fn & G[Ty]), and 6,, € B,,(v,,) (see Algorithm 3.1).

To justify (1), recall that in Algorithm 3.1 coloring 7y is (7}, Dj—1 U {d;}, ;1)
-stable, P = P, (v;,0;,7;_;) contains only vertex v; from 7T}, and p; = 7;_; /P.
Write Q = Py, (7j, 5, 7;_1). Since v; # vy, Pand Q are vertex-disjoint under 7;_; .
For convenience, we still use P and O to denote the corresponding paths under ¢;. By
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(4.1) and Theorem 3.10(ii), 711 has the interchangeability property with respect to
©;. So P is the unique (v, §,)-path intersecting 711 and Q is a (v;, §;)-cycle under
@;. Let 7 > j be the smallest subscript with ©,. # RE. Since ©,, = PE, we have
r < n.From RE in Algorithm 3.1 we see that Q is fully contained in G[T,.]. Repeated
application of Lemma 3.2(i) yields @;(7j+1)UD; €@, _1(T-)U D,_;. Since
Uj—1Sh € ;(T;) U Dy, we have S; €@, (T;.) U D,_1. So Q is also a (v;,9;)

-cycle containing v,, under ¢,, by Lemma 3.3 (with respect to 7). Since T, C T;,,
we establish (1). O

The following lemma asserts that parallel extensions (PEs) used in Algorithm 3.1
are preserved under taking stable colorings. Its proof is perhaps the most difficult
part of the whole paper. After reading the proof, we may fully understand why RE is
introduced in the algorithm.

Lemma 4.3 (Assuming (4.1) and (4.2)) Theorem 3.10(iv) holds for all ETTs with n
rungs and satisfying MP; that is, if ©,, = PE, then P, (Yn,0n,0n) contains pre-
cisely one vertex, vy, from T, for any (T, D,,, p,)-stable coloring o,

Proof Assume the contrary: P, (7, 0n,0y,) contains at least two vertices from 7T;,
for some (T}, D, ©n)-stable coloring o,,. Let j = m(v,,). By applying a series
of Kempe changes to o,,, we shall construct a certain (T(vy,) — vpn, Dj—1,9j-1)
-stable coloring p and a certain ETT T]” corresponding to (p,Tj—1) with ladder
Ty CT> C ... CTj—y C T}, such that either [T}'| > |T}| or V(T}') is not elemen-
tary with respect to i, which contradicts either the maximum property satisfied by 7
or the induction hypothesis (4.1) on Theorem 3.10(i). We divide the proof into five
parts; the assumption on the intersection of P, (5, 9y, 05 ) and T, will only be used
in the last part.

(I) In this part we exhibit some properties satisfied by supporting vertices a with
m(a) = j and corresponding connecting colors in T; — Tj_1, which allow us to
restore missing color sets of these vertices except v, as under ¢;_; later.

Let L be the set of all subscripts s with j < s <n, such that ©, = PE and
m(vs) < j, where v, is the supporting vertex involved in iteration s.

(1) For any s,t € L with s < t, we have v; = vs. Consequently, v, < vs and
m(vs) = jforall s € L.

To justify this, let m;—1, St = {7V, ¢}, and f; be the (T, Di_1, p¢—1)-stable col-
oring, the set of connecting colors, and the connecting edge, respectively, as speci-
fied in iteration ¢ of Algorithm 3.1, with ©, = PFE. Recall that 6; = m,_1(f;) is a
defective color of T} with respect to 7:_1, and v; is the largest vertex (in the order <)
in 1[0, , s, (T3)]. Since m(v;) < j <s <t, we have v, € V(T;) C V(Ti_1). As
me—1isa (Ty—1, D¢—1, pi—1)-stable coloring and v; is not the smallest vertex (in the
order <)in [0, , s,(Ti—1)], applying (4.1) and Theorem 3.10(v) to m;—1, T3—1, and
v = v, we obtain v; = vs. Hence (1) holds.

(2) For any s,t € L with s <t, we have &; ¢ §,_1(Ts) (so oy # ~vs). Conse-
quently, 0; & @, _,(1}) forallt € L.
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Assume the contrary: d; € p,_;(u) for some u € V(T). By Algorithm 3.1,
0s ¢ Py_1(Ts). So s < t and hence V (T%) is elementary with respect to ¢s—1 by
(4.1) and Theorem 3.10(i). Let v be an arbitrary vertex in Ts — u. Then d; ¢ B, _4(v),
so v is incident to an edge f'with ps_1(f) = ;. As described in Algorithm 3.1, T is
closed under p,_; and thus f'is contained in G[T]. Hence w11 (f) = ps—1(f) = 0;
by Lemma 3.3 (for §; € B,_;(u) C @,_1(Ts)). From Lemma 2.4 and the definitions
of my_1 and 7;_, in Algorithm 3.1, we see that 7;_; is (T}, Dy_1, ¢¢—1)-stable. By
Lemma 3.2(1), 7,1 (1) U Ds—1 € 2,1 (T3) U De—1. Somp_y (f) = e-1(f) = .
Since f'is contained in G[T%] and hence in G[T3], we have v & 1[0, | 5,(T)] for
any vertex v in Ts — w. In view of (1), vy < vs, so Ti(v¢) C Ts(vs) C Ts. There-
fore v; cannot be the supporting vertex of 7; with respect to ¢, and the connecting
color d; (as v, is the maximum defective vertex of T; with corresponding defective
color §; under 7;_, in Algorithm 3.1); this contradiction implies that §; ¢ B,_;(Ts).
Since vs € P,_;(Ts), we conclude that J; # 5. Finally, let s be the smallest sub-
script in L. Then $;_;(T};) = p5_;(T}) by Algorithm 3.1 (see Lemma 3.2(ii)). So
¢ ¢ ©;_1(T}) and hence (2) is established.

We partition L into disjoint subsets L1, Lo, . . ., L, such that two subscripts s, ¢ € L
are in the same subset iff v, = v;. For 1 <i < w, write L; = {i1,42,...,7c3)}
where i1 <2 < ... <), and let w; denote the common supporting vertex cor-
responding to L;. For each t € L, we have vy ¢ V(Tj_1) because m(v;) = j by (1).
It follows that w; ¢ V(Tj_1) for 1 < i < k. Renaming subscripts if necessary, we
may assume that wy < ws < ... < wg. By (1), we obtain

3) Vp = W1 (so n=1.1)) and
hc(h) > hc(h)—l >...>hy > le(i) > le(i)—1 > -+ - > 11 forany 1 < h <i <k,

From (2) and Lemma 3.4(i) it is clear that

(4) for any 1 < ¢ < k, the colors in Usey,, Sy are

Yiys Yie = 6i1 y Yis = 5i27 o 7’yic<i) = 61'0(1'),1 ) 5ic(i)7

which are distinct.

From (4.2), Theorem 3.10(iii), (1), and (4) we deduce that

(5) for any s,t € L with s <, the intersection Ss NSy # (0 iff s and ¢ are
two consecutive subscripts in the same L; for some 1 <1i < k; in this case,
Ss NSy = {m} = {4}

(ID) In this part we derive some properties satisfied by o,, and establish a result on
the so-called strong interchangeability property, which enable us to keep the rest of 7’;
“stable" while restoring missing color sets of supporting vertices in T; — V(T (v,,))
as under @;_;.

For each ¢ with 1 <¢ <n —1 and ©, = PE, let ¢(t) be the smallest subscript
r > tsuchthat ©, # RE.Thise(t)is well definedand e(t) < n,as©,, = PE # RE.
Given a coloring ¢ and two colors « and 3, we say that « and 3 are T}-strongly inter-
changeable (T;-S1) under ¢ if for each vertex v in T; — vy, the chain P,(«, 5, ¢)
is an (o, 8)-cycle avoiding v; and fully contained in G[T.)] (equivalently,
V(Pv (Oé, B, QO)) - V(Te(t)))

Recall that « and (3 are called T;-interchangeable under ¢ if there is at most one
(«, B)-path with respect to ¢ intersecting 7}; that is, all («, §)-chains intersecting T}
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are (v, B)-cycles, with possibly one exception. Therefore, if « and S are T;-SI under
, then they are T}-interchangeable under .
The following observations reveal some connections between colorings o, and

Pj—1-
Claim 4.1 The coloring o, satisfies the following properties:

(al)oy is (T;(vn) — vn, Dj—1, pj—1)-stable;

@2)0u(f) = @j-1(f) for all edges fin GIT;] with o;1(f) € 7;_, (T}) U D1
in particular, this equality holds for all edges on T,

(a3)7,(v) = P;_1(v) for allv € V(T}) — {w1,wa, ..., w};

(34)5»”(?1)7;) n (UtELiSt) = {5ic(1,)} and@jfl(wi) = (En(wl) - {(S’ic(q,)}) U {Fyil}
foreachi=1,2,... K,

(a5)for any t € L — {n}, the colors v and 6; are T;-SI under o,.

To justify this claim, observe that
P;1(T;)UD;1 €3, 1(T,) UDyp1 C9,(T,) U D, by Lemma 3.2(i) and that
Uter St C Ui<nSt € 3, (T5,) U D,,. Since oy, is a (T, Dy, n,)-stable coloring, it
suffices to prove (al)—(a5) for v, (instead of 7).

Clearly, (al) follows from (4.2) and Theorem 3.10(iii), and (a3) follows from
Lemma 3.2(ii).

(a2) By Lemma 3.3, we have ¢, (f) = ¢;_1(f) for all edges f € G[T};] with
¢j-1(f) €P;_1(T;) UD;—1. By Lemma 3.2(iv), each edge f on T} satisfies
©j—1(f) € P;_1(T;) U Dj_1, so the equality ¢, (f) = ¢;—1(f) holds for all edges
fonTj.

(a4) By Lemma 3.4(ii), we obtain 3, (w;) N (User;St) = {di,,, } (with w; in
place of u). Since L; consists of all subscripts ¢ with j < ¢ < n, such that v; = w;
and ©; = PE, there hold %, _;(w;) =%;, _(w;) and P, (w;) :@cm(wi) by
Lemma 3.2(ii). Furthermore, ; _(w;) = (¥, (wi) = {di.;,}) U {7} by
Lemma 3.4(iii) (with w; in place of ). So ©,_ (w;) = (@, (wi) — {di;, }) U{vi, }
forl <i <xk.

(a5) Let t € L — {n}. Then t < n. By the induction hypothesis (4.1) on Theo-
rem 3.10(ii), ¢ and J; are T;41- and hence T;-interchangeable under ¢;. So all but
at most one (7, §;)-chains intersecting T3 under p; are (v, §;)-cycles. According
to Algorithm 3.1, P, (74, ¢, ¢¢) is a path containing only one vertex v; from 7.
Hence, for each vertex v in Ty — vy, Py (72,0t @) is a (74, 0t )-cycle avoiding v.
Since RE has priority over PE and SE in Algorithm 3.1, P,(~, ¢, ¢) is fully con-
tained in G[T, ], for otherwise, we would have ©.) = RE, contradicting the
definition of €(t). It follows that ; and d; are T;-SI under ¢;. By Lemma 3.3 (with
respect to T¢(y)), we obtain @4 (f) = @, (f) for each edge fon P, (7, dt, ¢+ ), because
{’}/f,, 5t} - Uigr-lSi - @r—l(Tr—l) UD,_; C @T—l(TT‘) U D,_q1, where r = E(t).
Therefore 7, and d; are T;-SI under ,, as well. This establishes Claim 4.1.

The following technical statement will be used repeatedly in our proof.

Claim 4.2 Let t € L; for some 1 < i < k and let P be an arbitrary (s, §;)-path. If
the connecting colors vy, 0 are Ty-SI under a coloring ¢ € C(G — e) then, for any
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s € Ly, with h # i or s < t, the colors s, 05 are Ts-SI under ©* = ¢/ P, provided
that v, 05 are Ts-SI under .

To justify this, we assume that ~,,ds are T,s-SI under coloring . For each
v € V(T — vs), we propose to show that P, (vs, ds, ©*) = Py(7s, ds, ¢), which is
a (7s, ds)-cycle avoiding v, and fully contained in G[T¢(s)]. Consequently, 75, 5 are
also T-SI under coloring ¢*.

If h#4, then {v:d:}N{%,6:}=0 by (5. In this case, clearly
P, (7s, s, 9*) = Py(7s,0s,0). So we assume that h =4 and s <t Now
vs = vy = w;. Observe that P contains at most one vertex v; from T3, because ¢, d;
are T3-ST under . Furthermore, ¢(s) < ¢, because s < ¢t and O, = PE # RE. As
~s, 0s are Ts-ST under coloring ¢, the chain P,(vs, ds, ¢) is a cycle avoiding vs and
fully contained in G[T,(5y] € G[T}], so itis disjoint from P. Thus P, (s, ds, ¢) is still
a (7s,ds)-cycle avoiding v and fully contained in G[T(5)] € G[T;] under ¢* and
hence P, (7s,0s, ") = Py (7s, s, ), as desired.

(IIT) With the preparations made in the first two parts, now we can move on to the
aforementioned restoration of missing color sets at certain supporting vertices.

Write L*=L—-1,. By (3), the subscripts in L* satisfies
hc(h) > hc(h)—l >...>hy > le(i) > le(i)—1 > -+ - > 11 for any 2<h <i<k.
S0 2.(2) (resp. k1) is the largest (resp. smallest) subscripts in L*. Starting from o,
and following the decreasing order of subscripts ¢ in L*, we perform a sequence of
(7¢, 6¢)-Kemple changes at v; for all ¢t € L* and get a new coloring in C(G — e),
under which each w;, for i > 2, has the same set of missing colors as under ¢;_;. A
detailed description of the algorithm is given below.

(A) Let I =0 and o = 0,,. While I # L*, do: let ¢ be the largest member of
L* — I and set

A(t): oc=0/P,,(%,0:,0) and I=TU({t}.

Let us make some observations about this algorithm.

(6) Let I,t,0 be as specified in Algorithm (4) before performing the iteration
A(?). Then P, (v, d¢, 0) is a path containing precisely one vertex v, from T3, with
0t € o(v¢). Furthermore, let ¢’ = o/P,, (7,0t 0) and I’ = T U {t} denote the
objects generated in the iteration A(¢). Then for any s € L — {n} — I’, the colors s
and d, are T-SI under the coloring o’.

To justify this, recall that

(7) i,y € Tn(w;) for each 2 < < k by (a4) in Claim 4.1 and

(8) for any s € L — {n}, the colors 5 and d, are Ts-SI under o, by («5) in Claim
4.1.

In particular, (8) holds for ¢t = 2.3, the largest subscript in L*, which implies that
now P,, (¢, 0, 0,,) is a path containing precisely one vertex v; = wo from T}, with
0t € Tpn(vt) by (7). Keep in mind that this P,, (¢, d¢, 05, is the first path employed
in Algorithm (A).

As the algorithm proceeds in the decreasing order of subscripts in L*, using (4),
(5), (7), (8) and applying Claim 4.2 repeatedly, we see that (6) is true.
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Claim 4.3 Let o4 denote the coloring o output by Algorithm (A). Then the following
statements hold:

(bD) o1 is (Tj(vn) — vn, Dj—1,;—1)-stable;

(b2)g; (v) = Ejfl(v)for allv € V(T — vy), 0,(vn) = Tn(vn), and
01(f) = onlf) = ¢j—1(f) for all edges fon T};;

(b3)for any edge f € E(G), if 01(f) # on(f), then fis not contained in G[T};] and
{on(f),01(f)} € Urer=Se and

(b4)for any i € L1 — {n} (so v; = vy), the colors ~y; and 6; are T;-SI under 9.

To justify this claim, recall from (6) that

(9) at each iteration A(¢) of Algorithm (4), the chain P,, (74, d¢, o) is a path con-
taining precisely one vertex v; from T}, with §; € T(vy).

By (3) and the definitions of L and w;’s, we have

(10) vy, = w1 < w; for all © > 2. Besides, v, < v¢ and T C T; for each iteration
A(?) of Algorithm (4).

It follows from (9) and (10) that 7(v) = 7, (v) for each v € V(T (v,,) — v,,) and
o(f) = o, (f) for all edges fincident to Tj(v,,) — v,, during each iteration of Algo-
rithm (A). So ¢ and hence g1 is a (Tj(vy,) — vy, D;_1, 0y, )-stable coloring. By (4.2)
and Theorem 3.10(iii), oy i (T (vp) — vn, Dj_1, pj—1)-stable. From Lemma 2.4 we
deduce that g1 is (Tj(vy,) — v, Dj—1, ¢j—1)-stable. So (b1) holds.

By (a4) in Claim 4.1, we have

(D) @, _1(wi) = (@n(wi) — {6, }) U {7i, } for each vertex w; with i > 2.

Recall that S, NS, = () whenever p and q are contained in different L;’s by (5).
After executing Algorithm (4), using (4) and Lemma 3.4(iii) (more precisely, the same
argument), we obtain 9, (w;) = (05 (wi) — {04, }) U {7}, s0 01 (wi) = @1 (wi)
fori > 2by (11). Combining this with (a3) in Claim 4.1, we see that 9, (v) = @;_;(v)
forallv € V(T — vy,). By (6), the path P, (v, d;, o) involved in each iteration A4(?)
of Algorithm (A) is disjoint from v,, = wy. S0 8 (vy) = Tpn(vn) = B,,(vs). In view
of (9) and (10), we get o(f) = o,,(f) for all edges fon T at each iteration A(¢) of
Algorithm (4). Hence 01(f) = 0, (f) = ¢;—1(f) for all edges f on T}, where the
second equality follows from (a2) in Claim 4.1. Thus (62) is established.

Since the Kempe changes performed in Algorithm (4) only involve edges outside
GIT;] and colors in U;e 1+ S; by the first half of (6), we immediately get (b3). Clearly,
(b4) follows from the second half of (6). This proves Claim 4.3.

By analyzing two cases in the last two parts, we now demonstrate that the desired
coloring can indeed be obtained by making ~;, missing at a certain vertex u (to be
introduced) outside T; but inside a closure of T} (vy, ).

Consider the coloring o; € C¥(G — €) described in Claim 4.3. By (b1), o1 is
(Tj(vn) — vn, Dj_1,@j_1)-stable, so it is a (Tj_1,D;_1,¢;_1)-stable color-
ing and hence is a ¢;_1; mod Tj_; coloring by (4.1) and Theorem 3.10(vi), which
implies that every ETT corresponding to (o1, T;—1) satisfies MP. By (b2), we have
01(v) =@;_4(v) for each v € V(Tj(v,) — vp) and 01(f) = ¢;j-1(f) for any edge
Sfon T;(vy,). Thus Tj(vy,) is an ETT satisfying MP under o;. Let 77/ be a closure of
T} (vn) under g1. (We point out that the first edge added to 7} — T);(v,) by TAA is
incident to V' (T,,(v,,) — vy, ) and colored with d,, under o; by Lemma 3.2(v), (b2) and
(63), though we do not need this in our proof.) Then
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(12) Tj is an ETT satisfying MP under o;. Hence V/(77) is elementary with respect
to o1 by (4 1) and Theorem 3.10(i) (as j < n)

Depending on the intersection of g, (7} — v,) and Uier, S;, we consider two
cases.

(IV) This part is devoted to the study of the situation when the intersection is
nonempty.

Case 1. 0, (T} — vn) N (Vier, Si) # 0.

Let u be the smallest vertex (in the order <) in 7} — v, (S0 u # vy), such that
01(u) N (Vier, Si) # 0. By (12), V(T}) is elementary with respect to 1. Since
On € B, (vn) = 0, (v,) by (b2), weobtamén ¢ 01(T] — vy,);inparticular, 6, ¢ 0;(u).
Hence, by (4) and the definition of u, there exists a minimum member 7 (as an inte-
ger) of Ly, such that 7, € g;(u) N (Uier,Si). Since m(v,) = j by (1), there holds
r > j. We propose to show, by using -, that

(13)u € V(T)) - V(T)).

Indeed, if 7 =1y, then v, € B,_1(vn) = P;_;1(vn) by Algorithm 3.1. Since
V(T}) is elementary with respect to ¢;_1 by (4.1) and Theorem 3.10(i) (for j < n),
we have v, ¢ ;1 (T} — vy,). If 7 > 14, then . = d; for some ¢ € Ly by (4). Note
that 0; ¢ ;1 (1)) by (2). So we also have v, & B, _1(T; — vy). It follows from
(b2) that ~,. ¢ @1( — v,,) in either subcase. As u # v, and v, € 9;(u), we obtain
u ¢ V(T;). This proves (13).

(14) Ql(TJ/( u) = u) N (UierL, Si = {0n}) = 0.

Bytheminimalityassumptlononu,wehave 01(T(u) — {vn,u}) N (Vier, Si) = 0.
Using Lemma 3.4(ii), we obtain g,, (v, ) N (User, S;) = {n}. It follows from (52) in
Claim 4.3 that g, (v,) N (User, Si) = {0, }. Thus (14) holds.

Let r be the subscript as defined above (13). Then r = 1, for some 1 < p < ¢(1).
By (4), we have v, = 1, = d1,_, ifp > 2. Let L} = {11, 12, cooy L1t (so Ly =0
ifp=1).Since 1,_1 < 1, =r < n,wehave n ¢ Lj. Observe that

(15) 0y & Uier; Si and 01 (vs) N (Uier; Si) = 0.

Indeed, by (b2) in Claim 4.3 and Lemma 3.4(ii), we obtain g, (v,,) = @,,(v,) and
Pn(vn) N (Uier, Si) = {0n}. As n ¢ Lj, from (4) we see that 0, & Uier: Si. So
P (vn) N (Uicr: Si) = 0. Hence (15) follows

We construct a new coloring from o1 by using the following algorithm.

(B)Let I = Qand o = 1. While I # L%, do: let ¢ be the largest member of L} —
and set

B(t) : 0=0/Py,(y,0t,0) and I=TU/{t}.

Let us exhibit some properties satisfied by this algorithm.

(16) Let I,t, 0 be as specified in Algorithm (B) before performing the iteration
B(?). Then §; € 9(u), and P, (4,0, 0) is a path containing at most one vertex v,
from T3, but v, is not an end of P, (¢, d¢, ). Furthermore, let o' = o/ P, (¢, 0¢, 0)
and I’ = I U {t} denote the objects generated in the iteration B(f). Then for any
s € L1 — I, the colors 7, and 05 are Ts-SI under the coloring o’

To justify this, recall that §;,_, =7, € 9, () and

(17) for any ¢ € Ly — {n} (so v; = v,), the colors ; and 0; are T;-SI under o,
by (b4).
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In particular, (17) holds for ¢ = 1,_1, the largest subscript in L], which implies
that now P, (v, ¢, 01) is a path containing at most one vertex v,, from 7%, but v,, is
not an end of Py, (7, ¢, 01) by (15). Keep in mind that this P, (v, ¢, 01) is the first
path employed in Algorithm (B).

Since the algorithm proceeds in the decreasing order of subscripts in L7, using (4),
(5), (15), (17), and applying Claim 4.2 repeatedly, we see that (16) is true.

Claim 4.4 Let oo denote the coloring o output by Algorithm (B). Then the following
statements hold:

(c) o2 is (Tj(vn) — vpn, Dj_1,p;—1)-stable;

(€2)05(v) =0, (v) forallv € V(T; U Tj’(u) —u) and 02(f) = 01(f) for all
f € E(T; UTj(u));

(63)711 € @2(“’)

To justify this claim, recall from (16) that

(18) at each iteration B(?), the path P, (v, d, 0) contains at most one vertex v,
from T3, but v,, is not an end of P, (¢, d¢, 0).

Since T; CT;, we have ¢(v) =79,(v) for each v e V(T;(v,)—v,) and
o(f) = o1(f) for each edge fincident to T} (v,,) — v, during each iteration of Algo-
rithm (B) by (18). It follows that p and hence g2 is a (T} (vs,) — vy, D;_1, 01)-stable
coloring. By (b1) in Claim 4.3, g1 is a (T} (vy,) — vn, Dj_1, pj—1)-stable coloring.
From Lemma 2.4 we see that (c1) holds.

Similarly, from (18) we deduce that 9,(v) =7,(v) for all ve V(I})
and go(f) = 01(f) for all fe E(T;). By (14) and (15), we also have
01(Ti(u) —u) N (Uier: S;) =0. So Tj(u) does not contain the other end
of Py,(v,d:,0) at each iteration B(f), and hence p,(v) =79,(v) for each
v € V(T}(u) — u). Since T} is a closure of T}j(v,) under g1, from TAA we deduce
that 01 (7} (u) — Tj(vn)) N (Uiery Si) = 0. It follows that o(f) = o1(f) for all
edges f'in T (u) — Tj(vy) at each iteration B(¢). So 2(f) = o1(f) for all edges fin
T}(u) — Tj(vy) and hence (c2) holds.

By (16), we have §; € g(u) before each iteration B(¢). So ; becomes a missing
color at u after performing iteration B(%). It follows that v;, € 95(u) (see (4)). Hence
(¢3) and therefore Claim 4.4 is established.

By (cl) in Claim 4.4, g2 is (T}(vn) — vn, Dj_1,pj—1)-stable. So it is a
(Tj—1,D;_1,p;_1)-stable coloring and hence is a ¢,;_1 mod T;_; coloring by (4.1)
and Theorem 3.10(vi), which implies that every ETT corresponding to (02, T;-1)
satisfies MP. By (b2) and (c2), we have g2 (f) = ¢,_1(f) for each edge fon T} (v,,).
So Tj(vy) an ETT satisfying MP under g. Since 77 (u) is obtained from 7} (v;,) by
TAA under g, it can also be obtained from 7} (v,,) by TAA under g2 by (c2). Thus
T7(u) is an ETT satisfying MP under o5 as well.

In view of (b2) and (c2), we have 05(v) =, _4(v) for all v € V(T — v,),
02(vpn) = @, (vn),andga (f) = ;1 (f)forallf € E(T;).Moreover,byLemma3.4(iii)
and (c3), we obtain @;_; (vn)=21, _1(vn) € Py, (vn) U {71, }=Bp(vn) U{r,}

= 05(vn) U {71, } C02(vn) UBy(u). Therefore we can further grow Tj(u) by
adding all edges on T} but outside G[T}(u)] using TAA under go; let T} denote
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the resulting tree-sequence. Clearly, le is an ETT satisfying MP under g2 and
V(T; UTj(u)) € V(T}), which contradicts MP satisfied by 7 under ¢y, because
u ¢ V(T;) by (13).

(V) Let us give an analysis of the opposite situation, which is the last part of this
long proof.

Case 2. 0, (T} — vn) N (Uier, Si) = 0.

Recall that Ly = {11, 12,..., 1(1)}. Set S” = U, Si. Let us make some simple
observations about T]’-, T; and T,,.

(192, (T}) N S" = 21(vn) N S" = {dn}and 01 (T} — Tj(vs)) N (S — {0, }) = 0.

To justify this, note that V'(77) is elementary with respect to g1 by (12) and that
01(vn) =3,,(v,) by (b2). By Lemma 3.4(ii), we have g,,(v,) NS’ = {d,}. So
01(vn) NS" = {6,} and hence 6, ¢ 0,(Tj — vy). By the hypothesis of the present
case, we obtain g, (77) N S’ =2 (v,) NS" = {6, }. Since T7 is a closure of T};(v,)
under gy, from TAA we see that 01 (T} — T)j(v,)) N (S" — {d,}) = 0. Hence (19)
holds.

(20) Oy, 1, (Th) = {fn} and 9y, 5, (T, U T}) = 0.

To justify this, note from Lemma 3.2(v) that 0, -, (1) = {f»} and edges in
0y, .5, (Ty) are all incident to V (T}, (vy,) — vp). Since oy, is (T, Dy, p)-stable,
by (63) in Claim 4.3 and (5), we obtain 9y, o (1) = O0s,,,a(Th) = Oy, ,a(Ty) for
@ = Yp, On. In particular, 9y, ~, (T,) = {fn}. Since T} is a closure of 7} (v;,) under
01 and 8, € B, (vn) = 0y (vn) by (b2), from TAA we see that 9y, 5, (T, UT}) = 0.
Hence (20) is true.

Considerthe path P, (n, 0n, 0, specified in the present lemma. By Algorithm 3.1,
(4.1)andTheorem3.10(i),wehaved,,, v & B,,—1(Tn — vn).S00p, Y & B,,(Tr, — Un)
and hence 6y, ¢ Tn (T — vy). It follows that the other end x of P, (vn, 0n, 0p)
is outside T5,. Let P denote P, (Yn, dn, 01). Then P = P, (Yn, On,0x) by (b3) and
(5). From the hypothesis of the present case, we deduce that x is outside TJ’ — Up.
Combining these two observations, we see that x is outside 7, U TJ’ Let u be the ver-
tex of P such that the subpath P[u, x] is a (7}, U T})-exit path with respect to o1. At
the beginning of our proof, we assume that P, (Y, dn,0r) (and hence P) contains

Fig.3 The path P under o1
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at least two vertices from 7). So u # v,,. By (20), all edges in E(P) N (T, UTj)
are colored by v, under o1 and f,, is the only edge in 0,, -, (T’,). Therefore u is not
incident to f,, and furthermore

@D ue V(T]) = V(Tn).

Figure 3 gives an illustration of P under p;.

Let 8 € 7, (u). By the hypothesis of the present case, we have

22)8¢ 5.

If 8 € 0,(T; — V(Tj(vn))), let z be the smallest vertex in T; — V(T (v,,)) in the
order < such that 5 € g, (z); otherwise, let z be the largest vertex of T} in the order
=< (now Tj(z) = T)).

(23) 8 ¢ 3,(Ty(=) — ) and 8 ¢ 01(T) (=) — Ty(vn)).

By the definition of z, we have [ ¢ gl( T;(z) = V(T;(vn)) — 2). Since
B €0,(u), by (12) and (21) we obtain 3 ¢ 2, (T}(vn)). So 3 ¢ 0.(T;(z) — 2).
From (52) it follows that 8 ¢ @, _;(T}(z) — 2 — vn) and 8 ¢ 7, (v,) = B,,(v,). By

Lemma 3.4(iii), $;_1(vn) = P1,_1(va) C P (vn) U{y1,} = @, (vn) U {71, }-
Since 3 # 71, by (22), we get 3 ¢ ©;_1(vn). Hence 3 ¢ ©;_1(T;(z) — 2). As Tj(2)
is obtained from T (v, ) by TAA under p;_1, 8 ¢ ¢;—1(T;(2) — Tj(vy)). Therefore
B ¢ 01(T;(z) — Tj(vy)) by (b2). This justifies (23).

Claim 4.5 There exists a coloring 03 € C*(G — €) with the following properties:

(dD)os is (Tj(vn) — vn, Dj—1,;—1)-stable;

(42)25(v) = 2, (v) for all v € V(T;(2) UTj(u)) — {u, 2} and o5(f) = 01(f) for
all f € E(Tj(z) UT;(u)). Furthermore, 6, € 03(2) if B € 01(z); and

(d3)n1, € 03(u).

(Assuming Claim 4.5) By (d1) in Claim 4.5, g3 is a (T (vn) — v, Dj—1, 9j-1)
-stable coloring. So it is a (Tj_1,D;_1,p;—1)-stable coloring and hence is a
¢j—1 mod Tj_; coloring by (4.1) and Theorem 3.10(vi), which implies that
every ETT corresponding to (o3, T;_1) satisfies MP. By (b2) and (d2), we have
0s(f) = 01(f) = ¢j—1(f) for each edge fon T} (v,,). So Tj(vy,) is an ETT satisfying
MP under g3. Since 7} (u) is obtained from 7 (v,,) by TAA under g1, it can also be
obtained from 7} (vy,) by TAA under g3 by (d2). Thus 77/(u) is an ETT satisfying MP
under o3 as well.

In view of (b2) and (d2), we have 0;5(v) =, 4(v) for all
v e V(Tj(z) —{vn,2}), 03(vn) =P,(vn), and o3(f) =¢;-1(f) for all
f € E(Tj(z)). Moreover, by Lemma 3.4(iii) and (d3), we obtain ©, ;(v,) =
[Zhe 1(%) Pro W) Ui} =2uen)U{n}  =osn)U{n,} C
03(vn) U0s(u). Therefore we can further grow T7j(u) by adding all edges on 7} (z)
but outside G/[T7(u)] using TAA under g3; let T denote the resulting tree-sequence.
Clearly, Tj2 is an ETT satisfying MP. So V(Tf) is elementary with respect to o3

by (4.1) and Theorem 3.10(i). If z is the largest vertex of T} in the order <, then
V(T; UTj(u)) = V(Tj(z) UTj(u)) C V(T7), which contradicts MP satisfied by T,

@ Springer



Journal of Combinatorial Optimization (2025) 50:23 Page 35 of 91 23

as u ¢ V(Ij) by (21); otherwise, 6, € 03(2) N 03(vy,) by (d2) and (19), which con-
tradicts the elementary property satisfied by V' (777) under os.

To prove Claim 4.5, we consider the coloring 0o = 01/(G — Tj, 3,9y). Since T}
is closed with respect to 01 and {vy,,u} C V(T}), no boundary edge of 77 is col-
ored by 3 or ¢, under g1 (see (19)). So go is (7}, Dj-1, 01)-stable and hence is
(Tj(vn) — vp, Dj_1, 01)-stable. Clearly, P,(vn, 5, 00) = Pu(Vn,0n,01). Thus u is
the only vertex shared by P, (v, 3, o) and T, U T7. Define po = 00/ Pu(¥n, 5, 00)-

Claim 4.6 The coloring g satisfies the following properties:

(el)po is a (Tj(vyn) — v, Dj_1,p;—1)-stable coloring;
(ig(v) = 2, (v) for all v € V(Ty(2) UT!(u)) — {u, 2} and po(f) = o1(f) for
all f € E(Tj(z) UTj(u)). Furthermore, é,, € Jio(2) if B € 01(2);
(63)7” = 51c(1)—1 € ﬁO(u) and B ¢ ﬁO(u);
(ed)for any t € Ly — {n}, the colors ¢ and 6; are Ty-SI under po; and
(e)i(Tj —u) NS =Ty (v,) NS" = {5, } and
oT! = Ty(02)) 01 (5" — {6,}) = 0.

To justify this, recall that o1 is (T);(vy,) — vn, Dj_1, @;—1)-stable by (b1). By the
definitions of g9 and pg, the transformation from g; to po only changes colors on
some edges disjoint from V(T (v,,)). So (el) holds. Statement (e3) follows instantly
from the definition of ji9. Note that d,,, 8 & User, —{n} St by (4), (5) and (22), and
that T,y C T, for each t € Ly — {n}. Furthermore, P,(Vn, 3, 0o) is disjoint from
V(T}.). So (e4) can be deduced from (b4) immediately. Using (19) and the definitions
of gy and pp, we obtain (e5).

It remains to prove (e2). Recall from (23) that 8¢ 5,(T;(z) —2) and
B¢ 01(Tj(z) — Tj(vn)). By (2), we obtain 6, ¢ P; 1(7;) and hence
On & ©j—1(Tj(2) — T;(vy,)) by TAA. From (b2) we deduce that §,, & 5, (T;(2) — vn)
and d,, ¢ 01(T;(z) — Tj(vy,)). From the definition of gy and po, we see that (e2)
holds. So Claim 4.6 is established.

Let LT = Ly — {n}. We construct a new coloring from pg by using the following
algorithm.

(C) Let I =0 and p = po. While I # L3, do: let ¢ be the largest member in
L7 — I and set

C(t): p=p/Pu(ve,6t,0) and I =TU{t}

Let o3 denote the coloring o output by Algorithm (C). We aim to show that g3 is as
described in Claim 4.5; our proof is based on the following statement.

(24) Let 1,t, u be as specified in Algorithm (C) before performing the iteration
C(#). Then 6; € f(u), and P, (7, d¢, p) is a path containing at most one vertex vy,
from T}, but v,, is not an end of P, (7, ¢, ). Furthermore, let ' = u/ Py (e, 0¢, 1)
and I’ = I U {t} denote the objects generated in the iteration C(f). Then for any
s € L1 — I, the colors 7, and 05 are Ts-SI under the coloring .

To justify this, observe that

(25) Tig(vn) M (Uier: Si) = 0 by (4), (5) and (e5).

Furthermore,
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(26) for any s € L7, the colors s and d, are Ts-SI under pig by (e4).

In particular, (26) holds for ¢ = 1.(1)_1, the largest subscript in L7, which implies
that now P, (v, ¢, 110) is a path containing at most one vertex vy = v, from T3, but
vy, is not an end of Py, (¢, ¢, o) by (25). In view of (e3), we have d; € fiy(u). Keep
in mind that this P, (7, d¢, t10) is the first path employed in Algorithm (C).

As the algorithm proceeds in the decreasing order of subscripts in L7, using (4),
(5), (25), (26) and applying Claim 4.2 repeatedly, we see that (24) is true.

To justify Claim 4.5, recall from (24) that

(27) at each iteration C(¢), the path P, (7,0, ) contains at most one vertex
v, = vy from T}, but v, is not an end of Py, (¢, d¢, it).

Since T; C T, we have f(v) =Tip(v) for each v € V(T(v,) —vy,) and
w(f) = po(f) for each edge fincident to 7} (v,,) — v, during each iteration of Algo-
rithm (C) by (27). It follows that 1 and hence oz isa (Tj(vy) — v, Dj_1, po)-stable
coloring. By (el) in Claim 4.6, po is a (T (vp) — vn, Dj_1, ¢j—1)-stable coloring.
From Lemma 2.4 we see that (d1) holds.

Since Tj(z) C Ty, from (e2) and (27) we deduce that 05(v) = fy(v) for all
v e V(Tj(z) — z) and p3(f) = po(f) for all f € E(T;(2)). By (e5), we have
EO(TJ/ —u) NS =THy(v,) NS = {0, } and .UO<TJ{ = Tj(va)) N (S = {dn}) = 0.
By (4) and (5), we obtain §,, ¢ U+ S;. So ateach iteration C(¢) the path P, (7, 6t 1)
neither contains any edge from 77 (u) nor terminate at a vertex in 77 (u) — w. It fol-
lows that 93(v) = Ty (v) for all v € V/(T}(u) — u) and 03(f) = po(f) for all edges
Sfin T7(u) — Tj(vy). Hence g3(v) = i ( ) for all v € V(T)(2) UTj(u)) — {u, 2}
and o3(f) = po(f) forall f € E(T;(2) UT}(u)). Combmmg this with (e2), we see
that (d2) holds.

By (24), we have 0; € Ti(u) before each iteration C(f). So v; becomes a missing
color at u after performing iteration C(7). It follows that v1, € 5(u) (see (4)). There-
fore (d3) is established. This completes the proof of Claim 4.5 and hence of Lemma
4.3. O

The following lemma asserts that supporting and extension vertices are subject to
some order.

Lemma 4.4 (Assuming (4.1) and (4.3)) Theorem 3.10(v) holds for all ETTs with n
rungs and satisfying MP; that is, for any (T, Dy, ©r)-stable coloring o, and any
defective color § of T, with respect to o,,, if v is a vertex but not the smallest one (in
the order <) in 110y, s(Ty)], then v < v; for any supporting or extension vertex v;
with m(v) < 4.

Proof By the hypothesis of Theorem 3.10, 7'is an ETT with the corresponding Tash-
kinov series 7 = {(T}, pi—1,Si—1, Fi—1,©;—1) : 1 <i <n+1}, and T satisfies
MP under ¢,,. Dependmg on the extension type ©,,, we consider two cases.

Case 1. ©,, = PE. In this case, 0, -, (I) = {f»} by Lemma 3.2(v). Since o,
is (T, Dy, pn)-stable and 7, € S, € @, (T},) U Dy, we have 0, ’Yn( n) = {fn}

S0 § # .
By Theorem 3.10(iv), Py, (YnyOny0n) N Ty = {vp}. Define

Op—1 = Un/Pvn (’Yna 5n70'n)' Then
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(1) o1 is (Tn,Dp—1,¢n—1)-stable by Lemma 3.6 and hence it is also
(Th—1, Dp—1, ¢n—1)-stable. Furthermore, 0, 5(T) C 05, ,.5(1n) (because
0 # v, and possibly § = d,,).

If i = n, then v < v, by (1), as v,, is the maximum defective vertex over all
(T, D1, prn—1)-stable colorings. So we assume thati < n. Thenv € T,,_; because
m(v) < ¢ < n. Since v is not the smallest vertex in 1[0, 5(T,,)] and v € T;,_1, from
(1) it can be seen that § is a defective color of T}, with respect to 0,1, and v is
not the smallest vertex in I[0y,,_, 5(Tn—1)]. Applying (4.3) and Theorem 3.10(v) to
T,—1 and 0,,_1 (see (1)), we obtain v < v;.

Case2.0,, = RE orSE.Inthiscase, ,, is (T},, Dy—1, pn—1)-stable (see Algorithm
3.1). Since o, is (T, Dy, p)-stable and @,,_1(T3,) U D,,—1 €35, (T,) U D,, by
Lemma 3.2(i), o, is (T}, Dy—1, on—1)-stable and hence is also (T,,—1, Dp—1, ©n—1)
-stable. If ¢ = n, then v < v,,, because v,, the maximum defective vertex over all
(T, Dr—1, prn—1)-stable colorings. So we assume that i < n. Then m(v) <1i < n.
Since v € T),_1 and v is not the smallest vertex in 1[0, 5(T,)], 0 is a defective color
of T,,_1 with respect to o,,, and v is not the smallest vertex in I[0,,, 5(T,,—1)]. Since
on i (Ty—1,Dp—_1,¢n—_1)-stable, from (4.3) and Theorem 3.10(v) we conclude that
v =X ;. O

By Definition 3.7, every ¢,, mod T,, coloring is a (T},, D, ¢, )-stable coloring.
The lemma below says that the converse also holds when MP is satisfied, so these two
concepts are equivalent in this case.

Lemma 4.5 (Assuming (4.1) and (4.4)) Theorem 3.10(vi) holds for all ETTs with
n rungs and satisfying MP; that is, every (T, Dy, py)-stable coloring o, is a
o mod T, coloring. (Thus every ETT corresponding to (o, Ty) satisfies MP
under o, by Lemma 3.9.)

Proof By the hypothesis of Theorem 3.10, 7'is an ETT with the corresponding Tash-
kinov series 7 = {(T}, pi—1,Si—1, Fi—1,©0;—1) : 1 <i <n+1}, and T satisfies
MP under ¢,,. Clearly, every tree-sequence T obtained from T, (resp. T,, + fn) by
TAA under 0., if ©,, = PFE (resp. if ©,, = RE or SE) is a sub-sequence of some clo-
sure of T}, (resp. T}, + f) under o,,. So to prove that o,, is ¢, mod T,,, it suffices to
show that, for an arbitrary closure T}, , | of T, (resp. T, + f) under o, there exists
a Tashkinov series 7* = {(T},0i-1,Si-1, Fi—1,0;-1) : 1 <i < n+ 1}, satisfy-
ing the following conditions for all ; with 1 < ¢ < n:

(1) T = T, and
(2) o;isa (T}, D;, ;)-stable coloring in C*(G — e).

For this purpose, we shall define a coloring o, based on ¢,,, such that
(3) on—1is (Ty, Dy—1, pn—1)-stable and hence is also (T},—1, Dy—1, ©n—1)-stable.
By Lemma 3.2(iv), we have ¢,—1(T},) C @,,_1(T%) U D,,_1, which together with

(3) implies that o, —1 (f) = @n—1(f) forevery edge fon T,, and 5,,—1 (v) = B,,_1 (v)
for every vertex v in T,. Hence T,, can be obtained by TAA from 7,,_; (resp.
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Tp_1+ fn_1)under o,_; if ©,_1 = PE (resp. if ©,,_; = RE or SE) in the same
way as it under ¢,,_1. Moreover, since T, is closed under ¢, _1, it is also a closure of
T,—1 (resp. T,—1 + frn—1) under o,,_1 if ©,,_1 = PFE (resp. if ©,,_1 = RE or SE).
By (3), (4.1) and Theorem 3.10(vi), 05,1 is a T),—_1 mod ¢, _1 coloring. Therefore

(4) thereexistsaTashkinovseries 7' = {(T/*, 051, Si—1, Fi—1,0;-1) : 1 < i <n},
which together with o, satisfies (1) and (2) for 1 < i < n.

We shall then show, using Algorithm 3.1, that the desired Tashkinov series 7* can be
built from 7" by adding the tuple (T};, 1, 0pn, Sn, Fn,On).

Let us now give detailed descriptions. Depending on the extension type, we dis-
tinguish between two cases.

Case 1. ©,, = RE. In this case, define o,,_; = 0,,. Since oy, is a (T},, Dy, ©n)
-stable coloring, so is o,_1. Recall that ¢,, = ¢,—1 by RE in Algorithm 3.1 and
that B, (T,) U Dy—1 € %,(T) U D,, by Lemma 3.2(i). So 0,1 satisfies (3) and
hence (4) holds.

According to Algorithm 3.1, there is a subscript h < n — 1 with ©, = PE and
Sp = {0n,7vn}, such that ©; = RE for all i with h + 1 < i < n — 1, if any, and that
some (7yp, 0p, )-cycle O with respect to ¢,, 1 contains a sub-path L with V(L) C V(T},)
connecting the edge f,, and V(T},). Note that ¢, = pp11 = ... = 1. Since vy, is
an end of the exit-path Py, (Ya, On, ¢n) = Pu,, (Yh, On, n—1), it is outside O. Take w
in V(L) NV (Ty). Then w # vp,. As 0p—1 18 (Tyi—1, Dnn—1, pr—1)-stable by (3) and
{6n, 7} C Ui<n-15: C@,_1(Th-1) U Dy_1, every edge of L is colored the same
under o,,—1 as under ,,_1.

Let o* be the (Vh, On )-chain containing L under
on_1. Then O* intersects T,. By (4), T’ is a Tashkinov series,
O, = PE, and ©; = RE for all i with h+ 1 <i¢ <n — 1. From Algorithm 3.1 it
follows that o, = 0,,_1, 0p, € Eh(vh), and P, (’yh, On, th) n V(T}L) = {U}L}. Hence
On € Tn-1(vn), Pu, (YhsOn,0n—1) = Py, (Vn,0n,0n), and O* is disjoint from the
(Yh, On)-path Py, (Yh, 0, 0n—1) (because w € V(L) C V(O*)). Applying (4.1) and
Theorem 3.10(ii) to T}, under o,,_1, we see that there is at most one (7, d5, )-path
intersecting T),. So O* must be a (3, d5)-cycle containing L as a sub-path under
opn—1. Therefore f,, can be chosen as an RE connecting edge for 7;, under o,,_1, and
T* can thus be built from 7 by adding the tuple (7};,,0n, Sn, Fr,©,) using RE
of Algorithm 3.1.

Case 2. ©,, = SE or PE. In this case, define 0,1 =0, if ©,, = SE and
On—1 = 0n/Py, (VYn,On,0p) if ©, = PE. By (4.4) and Theorem 3.10(iv), we have

(5) Py, (n,0n,0n) NV(T,) = {v,} when ©,, = PE, because oy, is (11, Dn, ¢©n)
-stable.

According to Algorithm 3.1, 7,,_1 is a (T}, Dyu—1, n—1)-stable coloring whose larg-
est defective vertex v, is maximum over all (T},, D,,_1, ¢, —1)-stable colorings, and

fn 1s colored by 4,, under 7,,_;. Observe that

(6) on—1is (Ty, Dy—1 U{0,},mn—1)-stable and hence is (T},, Dy—1, pn—1)-stable.
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Indeed, if ©,, = SFE, then ¢,, = m,—1 by SE in Algorithm 3.1. Since 0,1 = 0, is
(T, Dy, p)-stable and 6,, € S, C 5, (T,) U D, the desired statement (6) holds.
If ©,, = PE, then (6) follows instantly from (5) and Lemma 3.6.

From (6) we see that both (3) and (4) hold true. Furthermore,

(7 ao'nflaén (Tn) = aﬂ'n—lyén (Tn)-

By (7), we obtain o,—1(fn) = Tn-1(fn) = dn. By (6) and Lemma 2.4, every
(T, Dy—1,0n—1)-stable coloring is also (7}, Dy—1,pn—1)-stable. So o,_1 is a
(T, Dy—1,0n—1)-stable coloring whose largest defective vertex v, is maximum
overall (T}, D,,_1, 0,,—1)-stable colorings.

Again by (6) and Lemma 2.4, a coloring is (T}, Dy,—1 U {6, }, mn—1)-stable iff
itis (T}, Dp—1 U {8, }, 0,_1)-stable. So the equality (u,,) N7 (T},) = 0 holds for
every (Ty,, Dyy—1 U {6, }, 0, —1)-stable coloring o iff the equality 7 (u,,) N7(T},) = 0
holds for every (T},, D,,—1 U {0, }, m,—1)-stable colorings 7, where w,, is the end
of f,, outside T,, (see Algorithm 3.1). Moreover, if ©,, = PFE, then v, is also a
(T, 0n—1, {¥n, 0n })-exit by the definition of o,,_; and (5). From Algorithm 3.1 we
thus deduce that if RE does not apply to the coloring ¢,,—1, then we can construct
T* from 7" (see (4)) by adding the tuple (T}; |, 0y, Sy, Fyr, ©y) under o, using the
same extension type, SE or PE, as specified in ©,,.

It remains to verify that indeed RE does not apply to the coloring o, 1. (Recall
that RE has priority over both SE and PE in the construction of a Tashkinov series
using Algorithm 3.1 (see (3.3)). That is why we need to check this.)

Assume the contrary: under o,_i, there exist an edge f € Oy, , ~,(Thn)
and a (vp,0p)-cycle O containing a sub-path L with V(L) C V(T,,) connect-
ing the edge f and V(T}), where ©, = PE, S, = {0n,v4}, and ©; = RE for
all i with h+1<i¢<n—1. Then ¢, =¢p41=...=¢y-1 by (4). Since
ShC®,_1(Th—1)U D,_1, from (5) we see that o,,_1(f) = ¢n_1(f) and that
every edge of L is colored the same under o,,_1 as under ¢,,_1 = pp,.

Let O* be the (4, 05, )-chain containing L under ¢,,_1. By an argument parallel to
that used for Case 1 (see the paragraph right above Case 2), we can ensure that O*
is a (7p, 0n)-cycle under ,,_1 containing the sub-path L connecting the edge f'and
V(Ty). Therefore ©,, = RE with respect to ¢,,—1 (see Algorithm 3.1), contradicting
the hypothesis of the present case. O

5 Good hierarchies

It is well known that Kempe changes play a fundamental role in edge-coloring theory.
To ensure that an ETT under a coloring remains to be an ETT under a new coloring
arising from Kempe changes, in this section we develop an effective control mecha-
nism over such operations, the so-called good hierarchy of an ETT, which will serve
as a powerful tool in the proof of Theorem 3.10(i). As stated before, a prototype of
this mechanism can be found in Chen and Jing (2019) (see Condition R2 therein).
Throughout this section, we assume that
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(5.1) Theorem 3.10(i) and (ii) hold for all ETTs with at most n — 1 rungs and
satisfying MP, and Theorem 3.10(iii)-(vi) hold for all ETTs with at most # rungs and
satisfying MP.

In the case of ©,, = PE, let J,, be a closure of T}, (v,,) under a (T, D,,, @y, )-sta-
ble coloring o,,. By Algorithm 3.1, 6,, € B,,(v,,) and |0y, s, (T)] > 2 (see (3.2)).
By Lemma 3.2(v), edges in 0, s, (T,) are all incident to V (T}, (v,) — v,,). Since
n(vn) =B, (vn) and 05, 5, (T1) = Oy, 5, (In), there holds V(J,,) — V(T},) # 0.
We use T, V J,, to denote the tree-sequence obtained from 7, by adding all vertices
in V(J,) — V(T,) to T,, one by one, following the linear order < in J,,, and using
edges in J,.

Lemma5.1 (Assuming (5.1)) Let T be an ETT constructed from a k-triple (G, e, ) by
using the Tashkinov series T = {(Ts, 0i—1,5i—1,Fi—1,0;—1): 1 <i<n+1}.
Suppose ©,, = PE and T satisfies MP under p,,. If J,, is a closure of T, (v,) under a
(T, Dy, @n)-stable coloring o, then V(T \V J,) is elementary with respect to o,.

Proof Clearly, 1, is an ETT with corresponding Tashkinov series
T={(T;,0i-1,Si-1,F;—1,0;-1) : 1 <i<n} and satisfies MP under
©n—1. Since r(T,) =n — 1, by (5.1) and Theorem 3.10(i), V(T},) is elementary
with respect to ¢, 1. Let m,_1 and 7,_; be as specified in Algorithm 3.1. Since
Tn—118a (Ty, Dp—1, pn—1)-stable coloring and 7, isa (T},, Dp—1 U {0n}, Tn—1)
-stable coloring, by definition V (T},) is also elementary with respect to 7/, ;. As
on =m0 _1/ Py, (6nsYn, m_1) and 6, & 7, _(T},), we further obtain

(1) V(T,,) is elementary with respect to ,, and hence elementary with respect to o,.

Since 0y, isa (T, Dy, @ )-stable coloring, it follows from (5.1) and Theorem 3.10(iii)
that o, is (T (vpn) — vn, Dj_1, pj—1)-stable and hence is (T;_1, Dj_1, pj—1)-stable,
where j = m(v,,). By Theorem 3.10(vi), 0, is a ¢;_1 mod Tj_; coloring, so every
ETT corresponding to (o, T;_1) satisfies MP. Using Lemma 3.2(iv) and Lemma
3.3, we obtain o, (f) = ¢, (f) = @;—1(f) for each edge fon T};. Hence J,, is a clo-
sure of T}, (vy,) = T (v,) under o,,. Consequently, J,, is an ETT corresponding to
(0m,T;—1) and satisfies MP. Since 7(J,,) = j —1 <n—1,

(2) V(J,) is elementary and closed with respect to o,, by (5.1) and Theorem 3.10(1).

Suppose on the contrary that V (T, V J,,) is not elementary with respect to o,,. Then
T, V J,, contains two distinct vertices u and vsuch that 7, (u) N &, (v) # 0. By (1) and
(2), we may assume that u € V(T},) — V(J,,) and v € V(J,) — V(T},). So v # vp,.
Leta € 5, (u) N7, (v). Then a # 6, by (2), because d,, € B,,(vy,) = Ty (vy,). More-
over, since v, € @,,_1(vn) and V(T3,) is elementary with respect to ¢,,—1, from PE
of Algorithm 3.1 and the definition of stable colorings, we deduce that v,, ¢ @,,(T},)
and hence v, ¢ 7,,(T,). So @ # v,. Consequently,

(3) a ¢ Sy.
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Since v,, is a maximum defective vertex according to Algorithm 3.1, T, (v,,) contains
a vertex w # v,,. Note that w is contained in both T, and J,,. Let 8 € 7, (w). Since
On € Tn(vy) and v, ¢ 7,(T},), by (2) we obtain

(4) B ¢ S, and the other end of P, («, 3, 0y,) is w.

From (3), (4), and Algorithm 3.1, we see that 9(7T},) contains no edge colored by « or
B under ¢,, and hence under o,,, because o, is (T},, Dy, ¢, )-stable. Combining this
with (1), we conclude that the other end of P, («, 8, 0,,) is also w. Thus Py, («, 8, 04,)
terminates at both  and v, a contradiction. O

Let 7 be an ETT as specified in Theorem 3.10; that is, 7 is con-
structed from a k-triple (G,e,o) by wusing the Tashkinov series
T ={(Ti,0i-1,5:_1,F;_1,0;_1) : 1 <i < n+ 1}. To prove that V(T) is elemen-
tary with respect to ¢,,, we shall turn to considering a restricted ETT T with lad-
derTyCcThaC...CT, CT' and V(T") = V(T,,41), and then show that V(T”) is
elementary with respect to ¢,,. For convenience, we may simply view 7" as Ty, 11.

In the remainder of this paper, we reserve the symbol R,, for a fixed closure of
T, (vy,) under ¢, if ©, = PE. Let T,, V R, be the tree-sequence as defined above
Lemma 5.1. We assume hereafter that

(5.2) T}, 41 is a closure of T}, V R,, under ¢,,, which is a special closure of 7},
under ¢,, (see PE in Algorithm 3.1), when ©,, = PE.

By Lemma 5.1, V(T,, V R,,) is elementary with respect to ,,, so we may further
assume that

(B5.3)T # 1T,V R, if ©,, = PE, which together with (5.2) implies that T}, V R,
is not closed with respect to ¢,,.

(5.4) If ©,, = PE, then each color in 3,,(T,,) N p,,(Ry,) is closed in T,, V R,
with respect to ,,. So |T), V R, | is odd.

To justify this, note that each color in g, (R,,) is closed in R,, under ¢,, because
R, is a closure. By Lemma 3.2(v), each color in @,,(T},) — {0, } is closed in T},
under ,,. Hence each color in g, (T,,) N @,,(Ry) — {6, } is closed in T,, V R,, with
respect to ¢,,. Lemma 3.2(v) also asserts that edges in 9y, s, (T,,) are all incident
to V(T (v,) — vy). So 4, is closed in T, V R,, as well, because it is closed in R,,.
Hence (5.4) follows.

To prove Theorem 3.10(i), we shall appeal to a hierarchy of T of the form

(5.5 T, = n,0 C Tn,l Cc...C Tn,q - Tn,,q+1 =T, such that T), V R,, C Tn,l
if ©,, = PE and that T,, ; = T'(a;) for 1 <i < g, where a1 < az < ... < a, are
some vertices in T' — V(T,,), called dividers of T. (So T has ¢ dividers in total )

As introduced before, D,, = Up<, Sy, — @,,(T,), where S, = {05} if ©, = SE
and Sy, = {0n,vn} otherwise. By Lemma 3.5, we have

(5.6) |Dn| < .

Write D,, = {n1,72, ..., 7 }. In Definition 5.2 given below and the remainder
of this paper,

o Tho=T,VR,ifO©, = PEade"‘0 = T, otherwise,and T}, ; =T, ;ifj > 1;

L4 Dn,j = Uhgnsh @n( ) for 0 < J<gq (SO Dn] - Dn)
o v, forn, € Dy, is deﬁned to be the first vertex u of T in the order < with
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Mh € Py, (U), if
any, and defined to be the last vertex of 7 in the order < otherwise;

o T, ,(vy,)="T,,ifv,, isoutside T}, ; for 1 < j < gandny € D,; and
o IV =U,ep,, I} for0<j<q.

Let H be a subgraph of G and let C be a subset of [k]. We say that H is C-closed with
respect to ¢, if O, o(H) =0 for any « € C, and say that H is C'~-closed with
respect to , ifitis (,,(H) — C)-closed with respect to ¢,,.

Definition 5.2 Hierarchy (5.5) of T'is called good with respect to (,, if for any j with
0 <j < gand any 7, € D, , there exists a 2-color subset I'} = {yfn,fyibz} C [¥],
such that

() F(})L C Pn(Th) — on(Thn1(vy,) — T:,o) and
I C@,(Th,j) — en(Thj+1(vy,) — Tp,j) for 1 < j < g (so neither color in T}
can be used by edges on T}, j11 — T, ; until after 7, becomes missing at the
vertex vy, inT, ;11 for 0 < j < q);

(ii) 7 N Ty, = () whenever 1, and 1, are two distinct colors in Dy, ;;

(iii) for any j with 1 < j < g, there exists precisely one color 7, € D, ;, such
that T4 C B, (Th,; — V() ;1)) (so T4 NTJ~L = () and T}, =T} " for all
nh € Dy j — {ng};

(iv)if ©,, = PE, then T}, V R, is not (I'°) ~-closed with respect to ,, and, subject
to this, [, (7,,) NG, (Ry) — T°| > 4; and

(V) Tyjis (Up,ep, F{;l)’-closed with respect to ¢, for all j with 1 < j < gq.

The sets I‘% are referred to as I'-sets of the hierarchy (or of T) under ¢,,.

At first glance, the concept of good hierarchies is very complicated. After reading the
constructive proof of Theorem 5.4 shortly, one may realize that it is, nevertheless,
fairly easy to understand. The following remarks may foster a better grasp of this
concept.

(5.7)For 0 < j < gandn, € D,, ;, we have Ffl C @n(T;’j) by Condition (i). So
IY N D, ; =0 and hence T N D,, ; = 0.

(5.8) Condition (iv) implies that T}, ; # T, V R,, if ©,, = PE.

(5.9) When ©,, = RE or SE, the first edge added to T3, 1 — T}, 0 is fp (see (5.5)
and Algorithm 3.1). For 1 < j < ¢, by definitions, D,, ; € D,, j_1, so Ff;l is well
defined for any 7, € Dy, ; and Uy, ep, | )" C 9~ In view of Condition (v),
the first edge added to T}, ;41 — T}, ; is colored by a color v in I'/~! for some g
with 7y € D,, ;. From Condition (i) we see that o ¢ I'J. So I'} # I'/~*. According
to Condition (iii), now I'} consists of two colors in %, (15, ; — V(T7 ;_,)). Thus
[9=1'NTJ = () and hence a ¢ IV,

@ Springer



Journal of Combinatorial Optimization (2025) 50:23 Page 43 of 91 23

n

a & TV~ by Condition (i), and hence « is closed in T}, ; with respect to @, by
Condition (v). This simple observation will be used repeatedly in subsequent proofs.

(5.11) Note that not every ETT admits a good hierarchy. Suppose T does have such
a hierarchy. To prove that V(7) is elementary with respect to ,,, as usual, we shall
perform a sequence of Kempe changes to reduce a minimum counterexample to an
even smaller one, thereby reaching a contradiction. (The adjectives minimum and
smaller used here are not meant with respect to the number of vertices. The rigorous
definition of a minimum counterexample will be given in the next section; see (6.2)—
(6.5).) Since interchanging with a color in D,, ; by a Kempe change often results in a

(5.10) If a color a € ,,(Ty,,; — V(T; ;1)) for some j with 1 <j < g, then

coloring which is not stable, in our proof we shall use colors in F{L as stepping stones
to interchange with the color 7y, in D,, ; while maintaining stable colorings in subse-
quent proofs (such an interchange property indeed holds, as we shall see). So we may
think of F;L as a color set exclusively reserved for 7, (see Condition (ii)) and think
of a good hierarchy as a control mechanism over Kempe changes. We point out that

Condition (i) can be used to preserve colors on edges of T3, ;(vy, ) — T,y ;_; under

Kempe changes for 7, and a color in Fi. Condition (v) ensures that the aforemen-
tioned interchange property is satisfied by colors closed in T, ;. Moreover, extending
T by TAA while keeping condition (i) for j = ¢ leads to Condition (v). Unless 7 is
already closed, Condition (iii) allows us to further extend 7 by TAA while keeping
the good hierarchy property, provided that Condition (v) holds for T' = T, 441.

We break the proof of Theorem 3.10(i) into the following two theorems. Although
the first theorem appears to be weaker than Theorem 3.10(i), the second one implies
that they are actually equivalent. We only present a proof of the second theorem in
this section, and will give a proof of the first one in the next two sections.

Theorem 5.3 (Assuming (5.1)) Let Tbe an ETT constructed from a k-triple (G, e, ©) by
using the Tashkinov series T = {(Ts, 0i—1,5i—1,Fi—1,60;—1): 1 <i<n+1}.
Suppose T admits a good hierarchy and satisfies MP with respect to p,,. Then V(T) is
elementary with respect to @,

Theorem 5.4 (Assuming (5.1)) Let Tbe an ETT constructed from a k-triple (G, e, ©) by
using the Tashkinov series T = {(Ts, 0i—1,Si—1, Fi—1,0;—1) : 1 <i<n+ 1} 1If
T satisfies MP under ¢, then there exists a closed ETT T’ corresponding to @y, Ty)
with V(T') = V(Tp+1), such that T’ admits a good hierarchy and satisfies MP
with respect to ¢.,.

Remark Our proof of Theorem 5.4 is based on Theorem 5.3, while the proof of theo-
rem 5.3 is completely independent of Theorem 5.4.

Proof of theorem 5.4 By (5.1) and Theorem 3.10(i), V(T;) is elementary and
closed with respect to ¢;_1 for 1 <i <mn. So each |T;| is an odd number. Thus
|T;| — |Ti—1| > 2 for each 1 < i < n. By Theorem 2.8, if |T7| < 10, then G is an
elementary multigraph, thereby proving Theorem 2.1 in this case. So we may assume
that |T7| > 11. Hence
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(1) |Ty] > 2i+9for1 <i<n.

We shall actually construct an ETT 7’ from T, by using the same connecting edge,
connecting color, and extension type as 7, which has a good hierarchy:

Q) Tpy=Tpo CTp1 C...CTyger =T suchthatT, VR, C T,,if®, = PE
and such that V/(T") = V(T,,41).

Since V(T,) is elementary with respect to ¢,—1, by (1) we have
[@,_1(Tw)| > 2n+ 11 (as e is uncolored). From Algorithm 3.1 we see that

[Pn—1(Tn)| = [@,(Tn)l. So

3) [8,(Th)| > 2n + 11. Moreover, |D,, 9| < |D,,| < n by (5.6).

(4) If©,, = PE, then we can find a 2-color set I') = {~)) ,~;.} C 3, (T,) for each
M € Dpo = Un<nSh — @, (T V Ry,), such that Fg N I‘% = () whenever 74 and
nn, are two distinct colors in Dy, o, and such that T}, V R,, is not (I'°) ~-closed

with respect to ¢,,, where I'’ = Uy, cp, ,I').

To justify this, let « be a color in 3, (T, V Ry,) that is not closed in T}, V R,, under

©n; such a color exists by (5.3). In view of (3), %,,(T,,) — {«} contains at least

2n + 10 colors. So (4) follows if we pick all colors in T'° from ,,(T5,) — {a}.

(5) If ©, = PE, then there exists a 2-color set '), = {~)) ,~)_} € @,,(T) for each
nn € Dy, o as described in (4), such that |5, (T,,) N3, (R,) — I'°| > 4.

To justify this, let « be as specified in the proof of (4). Then v ¢ 3, (T},) N B, (R,,) by
(5.4). Since v,, isamaximum defective vertex and v,, € T, N R,,, the ends of the uncol-
ored edge e are contained in both T}, and R,,. So |[,,(T) N B,,(Ry)| > 4. If we pick
allcolorsin 'Y from ,, (T5,) — {}, with priority givento those in,,(T,) — 3,,(R»),
then |3,,(T,) N®,,(R,) — I'°| > 4 by (3), thereby establishing (5).
Thus Definition 5.2(iv) is satisfied by these sets I'). Using (3), we can similarly
get the following statement.
(6) If ©,, # PE, then we can find a 2-color set ', = {7}, ,~j,_} € @,,(T) for each
Ny € Dpo = Dy, such that Fg N 1"2 = () whenever g and 7y, are two distinct
colors in Dy, .

So Definition 5.2(ii) is also satisfied by these sets I'). Let us construct 7” by the fol-
lowing Algorithms 5.5 and 5.6. Recall that v,;, is defined to be the first vertex of 7"
in the order <’ for which 7, € B,,(vy, ), if any, and defined to be the last vertex of
T" in the order <’ otherwise; and T, j11(vy, ) = T j+1 if vy, is not contained in
Thj+1for0<j<gq.

Given {F?L : Mp, € Dy o}, let us construct T}, 1 using the following procedure.

Algorithm 5.5 Step 0. Set T, =T}, V R, if ©,, = PE and T}, , = T, + f, oth-
erwise, where f,, is the connecting edge used in Algorithm 3.1, depending on ©,,.
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Step 1. While there exists f € 0(T,1) with ¢o,(f) € %,(Th1), do: set
Tn1 =T, + f if the resulting T, ; satisfies I') N ¢y, (Ty, 1 (v, ) — Tro) = 0 for
allnp, € Dy o, where T, o =T, V R,, if ©,, = PE and T}, ; = T}, otherwise.

Step 2. Return 7T}, ;.

Note thatif ©,, = PFE, then T, V R, is not (I'’) ~-closed with respect to ¢,, by (4)
and (5). So Step 1 is applicable to T}, V R,,,and hence T}, 1 # T, V R,,.1f©,, = RE
or SE, then T}, 1 # 1), by the algorithm. For each 7, € D, o, it follows from (5),
(6), and Step 1 that T, C @,,(T,,) — on(Tn,1(vy,) — Tjr o). So Definition 5.2(i) is
satisfied. Moreover, T, 1 is (U, e Dn,lF%)’—closed with respect to ¢y, as stated in
Definition 5.2(v). To justify this, assume the contrary: there exists f € 9(T),,1) with
@n(f) € En(Tnl) - (UnhEDn,lF(I)L)'Theneither(pn(f) € @n(Tn,l) - (UnheDn,OF%)
or o, (f) € F% for some 7, € D,, o butny, ¢ D, 1; in the latter case, 7, has become
a missing color at the vertex vy, in 15, 1. Thus we can further grow T, ; by using f
and Step 1 in either case, a contradiction. Since Definition 5.2(iii) starts with 7 = 1,
{F% : Mn € Dy} and T, 1 satisfy all the conditions specified in Definition 5.2.

Suppose we have constructed {Fz_1 :Mp € Dy -1} and To,; for all i with
1 <4 < 7, which are as described in Definition 5.2. If T;, ; is closed with respect to
¢, (equivalently V(T,, ;) = V(Th41)), set TV = T,, ;. Otherwise, we proceed to the
construction of {I'} : n, € D, ;} and T}, ;11 using the following procedure.

Algorithm 5.6 Step 0. Set T, = '}~ for each 7y, € D,, ;.

Step 1. Let f be an edge in 9(T}, ;) with ¢, (f) € F{;l for some 7, € D, j,
let Ty, jy1 = Tnj + f, and let {7} 7 } be a 2-subset of B, (T ; — V(T ;_1)).
Replace Ffl by {fyfj;1 , %2}_

Step 2. While there exists feoTn 1) with
on(f) € D,(Th,j+1), do: set Ty, j41 = Ty j+1 + f if the resulting 75, ;41 satisfies
T 0 on(Tjy1(vg,) — Tpy) = O forallmy, € D, ;.

Step 3. Return {T} : 7y, € Dy, ;} and T, 1.

Let us make some observations about this algorithm and its output.
As T, ; is not closed with respect to ¢, V (T}, ;) is a proper subset of V(T},11).
By Definition 5.2(v), T, ; is (Uy, e Dn’jF{;l)’-closed with respect to ,,. So there

exists a color 8 € UnheDWF{;l, such that 0., 3(T5, ;) # 0. Hence the edge f'speci-
fied in Step 1 is available.

For 1<i<j, we ‘have [§,(T.:)|>%,(Tn)>2n+11 and
|Dp.i| < |Dno| < |Dp| <nby (3). 803, (Th,i) — (Un,ep, L5 ") # 0; letabe a
color in this set. By Theorem 5.3 (see the remark right above the proof of this theorem),
V(T,,;) is elementary with respect to ¢, which implies that |T}, ;| is odd, because
o is closed in 715, ; under ¢,, by Definition 5.2(v). By the definition of T}, and (5.4),
IT5; ol is also odd. It follows that [T, ;| — |T5; ;1| > 2. So @, (T3, — V(T}; ;1))
contains at least two distinct colors, and hence the 2-subset {v,j, o Wf;z} involved in

@ Springer



23 Page 46 of 91 Journal of Combinatorial Optimization (2025) 50:23

Step 1 exists. Thus Definition 5.2(iii) is satisfied. Since T}, ; is elementary by Theo-
rem 5.3 and Definition 5.2(ii) is satisfied by T}, j_1, from Step 0 and Step 1 we see
that Definition 5.2(ii) holds for T3, ;.

Note that each color in 3,,(T5, j+1) — (UmLeDWHF{;) is closed in T, ;11 with
respect to @y, for otherwise, T}, ;41 can be augmented further using Step 2 (see the
paragraph succeeding Algorithm 5.5 for a proof). Thus 75, ;11 is (Uy,ep,, ; +1Fi)*

-closed with respect to ¢,,, and hence Definition 5.2(v) holds. From the algorithm it
follows that I', C B(T}.5) — @n(Tn j+1(vy,) — Ty ;) for all m, € Dy, 5, so Defini-

tion 5.2(i) holds. Thus {F{L :mp € Dy} and T, j41 satisfy all the conditions in
Definition 5.2 and hence are as desired.

Repeating the process, we can eventually get a closed ETT 7', with
V(T") = V(Th+1), that admits a good hierarchy with respect to ¢,,. Clearly, 7" also
satisfies MP under ¢,,. O

Consider the case when ©,, = PE. By the definition of hierarchy (see (5.5)),
T, V R, is fully contained in T}, ;. To maintain the structure of T, V R,, under
Kempe changes, we need the following concept in subsequent proofs. A color-
ing 0 € C*(G —e) is called a (T}, ® R, D, py,)-stable coloring if it is both
(T, Dy, or)-stable and (R, 0, o, )-stable; that is, the following conditions are
satisfied:

o(f) = on(f) for any edge fincident to T,, with ., (f) € B,,(T,) U Dy;
f) = @n(f) for any edge fincident to R,, with ¢,,(f) € ,,(R,); and
7(v) =, (v) forany v € V(T,, U R,).

(5.12) If ¢ is a (T, ® Ry, Dy, ¢n)-stable coloring, then o(f) = ¢, (f) for any
edge fon T, U R,,, and R, is also a closure of T, (v,,) under o. To justify this, note
that, for any edge f on T, this equality holds by Lemma 3.2(iv). For any edge f in
R, — T,, we have ¢,(f) € g,,(R,) by the definition of R,, and TAA. It follows
from the above definition that o(f) = ¢, (f). Since o is (R, 0, @, )-stable, R,, is a
closure of T;,(v,,) under o as well.

From Lemma 2.4 it is clear that being (T, ® Ry, Dy, -)-stable is also an equiva-
lence relation on C*(G — e). Moreover, every (T}, V R, D, ¢, )-stable coloring is
(T, ® Ry, Dy, ¢y, )-stable, but the converse need not hold.

Observe that, in the case of 0, = PE, even when
T, =Th0CThy1 C... CThy CTyge1 =T is ahierarchy of T (see (5.5)) under
©n, and Tremains an ETT under a (7,,, D,,, ¢, )-stable coloring o, there is no guar-
antee that T, = T, 0 C 1,1 C ... C Ty g C T}y g1 = T is a hierarchy of T under
on, because R, may not be a closure of 7}, (v,,) under ,,. Nonetheless, we can estab-
lish the following statement.

Lemma5.7 Let Thean ETT constructedfromak-triple (G, e, ) by using the Tashkinov
series T ={(Ti,0i—1,5—1,Fi—1,0;—1): 1 <i<n+ 1} Suppose 6, =PE
and T satisfies MP under @,,. Let Ty, = Ty, 90 C T C...C Ty g C Thgr1 =T
be a hierarchy of T under p,,, and let o, be a (T, ® R,,, Dy, oy )-stable coloring. If
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T can be built from T,, by TAA under o, then T is also an ETT satisfying MP with
respect to oy, and Ty, = Ty g C Ty 1 C ... C Ty g C Ty g1 = T remains to be
a hierarchy of T under o,

Proof By hypothesis, o,, is a (T, ® R, D,,, pn)-stable coloring. So o(f) = ¢n(f)
for any edge fon T,, V R,, and R, is also a closure of T}, (v,,) under o, by (5.12).
Furthermore, o, is a (T},, Dy, ¢, )-stable coloring and hence is a ¢,, mod T;, color-
ing by (5.1) and Theorem 3.10(vi). As T can be built from 7}, by TAA under o,
it is an ETT corresponding to o,, and satisfies MP under o,, by Theorem 3.10(vi).
In view of the hierarchy of T under ¢,, we obtain 1,V R, C T ;. Hence
T, =Th0CTh1 C... CTyy C T, 4t1 = T remains to be a hierarchy of T'under
Onp. O

From the above lemma we see that if ©,, = PE, o, is a (T,, ® Ry, Dy, ¢n)-sta-
ble coloring, and T is also an ETT under o,,, then each hierarchy of T under ¢, is
also a hierarchy under o,,. Thus, to check whether a good hierarchy of T remains
good under a (T}, ® R, D,,, @, )-stable coloring in subsequent proofs, we shall only
check whether it satisfies Definition 5.2, without even stating that it is a hierarchy by
Lemma 5.7.

We define one more term before proceeding. Let 7 be a tree-sequence with respect
to G and e. A coloring ™ € C*(G — e) is called (T, @, )-invariant if 7(f) = pn(f)
for any f € E(T —¢) and 7(v) = ,,(v) for any v € V(T). Clearly, being (T, -)
-invariant is also an equivalence relation on C*(G — e). Note that for any sub-
set C of [k], a (T,C,p,)-stable coloring 7 is also (T, ¢, )-invariant, provided
that 7(T) C ,,(T)UC. Thus, if a coloring o, is both (T, ¢, )-invariant and
(T, ® Ry, Dy, @ )-stable, then each hierarchy of T under ¢,, is also a hierarchy
under o,,.

Lemma5.8 (Assuming (5.1)) Let T be an ETT constructed from a k-triple (G, e, ) by
using the Tashkinov series T = {(Ts, 0i—1,5i—1,Fi—1,60;—1): 1 <i<n+1}.
Suppose T satisfies MP under p,,. Let o, be obtained from p,, by recoloring some
(«, B)-chains fully contained in G — V(T). Then the following statements hold:

(1) onis (T, Dy, @n)-stable. In particular, o, is (T, @y, )-invariant. Furthermore, if
©, =PFEand T,V R,, CT, then oy, is (T,, ® Ry, D, ¢n)-stable.

(i) Tis an ETT satisfying MP with respect to o,.

(1i1) If T admits a good hierarchy T, =Ty, 0 C Ty 1 C ... C Ty g1 = T under
©n, then this hierarchy of T remains good under o.,,, with the same I'-sets (see
Definition 5.2). Furthermore, if T is (Uy, ep,, .., I'}.) ~-closed with respect to
©n, then Tis also (Uy, ep,, .., I'}.)~-closed with respect to oy,.

Proof Since the recolored (v, 3)-chains are fully contained in G — V(T'), we have
(1) o (f) = ©n(f) for each edge fincident to V(T) and B,,(v) = 7, (v) for each

veV(T).
Our proof relies heavily on this observation.
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(i) From (1) and definitions, it is clear that o,, is a (T, D,,, ., )-stable. In particu-
lar, o, is (T, ¢, )-invariant. Furthermore, if ©,, = PE and T,, V R,, C T, then o,, is
(T, V R, D,,, @, )-stable, which implies that o, is (T}, ® Ry, Dy, 5, )-stable.

(i1) In view of (1), T can also be obtained by TAA from T, (resp. T,, + f5) under
o, when ©,, = PF (resp. ©,= RE or SE). Besides, 0., is a (T},, D,,, ¢, )-stable col-
oring. Hence, by Theorem 3.10(vi), T remains to be an ETT and satisfies MP under
On-

(i) By (i), T is also an ETT wunder o,. By hypothesis,
Tn =Tno CTh1 C...CTyq+1 =T is agood hierarchy of T under ,,. Consider
the I"-sets specified in Definition 5.2 with respect to ¢,,. Using (1) it is routine to check
that these I"-sets satisfy all the conditions in Definition 5.2 with respect to o,,. So the
given hierarchy of T remains good under o,,, with the same I'-sets. Furthermore, if
Tis (Uy,ep, ... T}) " -closed with respect to ¢, then T'is also (Up,ep,, .. L5)~
-closed with respect to o,. O

In subsequent proofs, if we say that a hierarchy of an ETT under one coloring
remains good under another coloring without giving the I'-sets, we mean that it is a
good hierarchy with the same I'-sets.

6 Basic properties

As we have seen, Theorem 3.10(i) follows from Theorems 5.3 and 5.4. In the pre-
ceding section we have proved Theorem 5.4. The remainder of this paper is devoted
to a proof of Theorem 5.3. In this section we make some technical preparations;
the reader is referred to Chen and Jing (2019) for prototypes of some lemmas to be
established herein.

Let T  be an ETT  that  admits a good  hierarchy
Th=Tno CTh1 C... CThq CThger1 =T and satisfies MP with respect to
the generating coloring ¢,,. To prove Theorem 5.3 (that is, V(7) is elementary with
respect to ¢, ), we apply induction on ¢g; the induction base is Theorem 3.10(i) for 7,.
For convenience, we view T, ¢ as an ETT with —1 divider and 7 rungs in the follow-
ing assumption. Throughout this section we assume that

(6.1) In addition to (5.1), Theorem 5.3 holds for every ETT that admits a good
hierarchy and satisfies MP, with » rungs and at most ¢ — 1 dividers, where ¢ > 0.

Let us first prove two technical lemmas that will be used in the proof of Theorem
5.3.

Lemma6.1 (Assuming (5.1)) Let T be an ETT constructed from a k-triple (G, e, ) by
using the Tashkinov series T = {(Ts, 0i—1,5i—1,Fi—1,0;—1): 1 <i<n+1}.
Suppose ©,, = PE and T satisfies MP under . Let oy, be a (T, ® Ry, Dy, pn)
-stable coloring and let o and 8 be two colors in [k]. Then the following statements
hold:

(1) « and B are R, -interchangeable under o, if & € 7, (Ry,);

(ii) « and 8 are Ty,-interchangeable under o, if o € 7, (T3,);
(iii) & and B are T,, V Ry,-interchangeable under o, if & € 7,,(T,, V Ry,) is closed
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inT,, V R,, under o,,; and
(iv) a and 8 are T, V R,,-interchangeable under o, if o« € 7,(T},) and
B € Tn(Rn).

Proof Since ., is a (T,, ® Ry, Dy, ©n)-stable coloring, it is (T},, Dy, ©x )-stable by
definition. Let j = m(v,,). It follows from (5.1) and Theorem 3.10(iii) that o,, is a
(T;(vp) — vp, Dj_1, @j_1)-stable coloring. So oy, is (Tj—1, Dj_1, pj—1)-stable and
hence, by (5.1) and Theorem 3.10(vi), it is a ¢;_1 mod T} _; coloring, and every
ETT corresponding to (o, Tj_1) satisfies MP. Furthermore, o(f) = ¢, (f) for any
edge finT,, UR,, by (5.12) and 7,,(v) = @,,(v) forallv € V(T,, U R,,).

(i) Since R, is a closure of T},(v,,) under ¢, and o, is (R,,, D, ¢, )-stable, R, is
also a closure of T}, (v,,) under o,,. Since oy, is ;1 mod T;_1, Ry, is an ETT corre-
sponding to (o, T;_1) and satisfies MP under o,,. Let o and 3 be as specified in the
lemma. As r(R,) = j — 1 < n, by (5.1) and Theorem 3.10(ii), there is at most one
(«, B)-path with respect to o, intersecting R,,. Hence « and /3 are R, -interchange-
able under o,,.

Let us make some observations before proving statements (ii) and (iii). By (5.4),
each colorin g, (T;,) N, (R,) is closed in T}, V R,, with respect to ¢,,. Since o, is
a (T, ® Ry, D,,, p,)-stable coloring, by definition we obtain

(1) each color in &, (T,,) N7, (R,) is closed in T}, V R, under o,,.
(2) « and 3 are T),-interchangeable under o, if a € 7,(T,), @ # 0y, and B # 6.

To justify (2), note that o # ~,,, because v, & B,,(Tn) = 7,(Ty). So a ¢ S,,. Nev-
ertheless, the case 5 = ~,, may occur.

Let us first consider the case when (8 # ,. Since o, is (Ty, Dy, @n)-sta-
ble, P, (Yn,0n,0n)NTy, ={v,} by (5.1) and Theorem 3.10(iv). Define
o, = on/ Py, (Vn,0n,0n). By Lemma 3.6, o, is (T}, Dy—1, pn—1)-stable. From
(5.1) and Theorem 3.10(ii) we deduce that o and 3 are T, -interchangeable under o7,.
So they are T, -interchangeable under ., because {«, 3} N S,, = 0.

It remains to consider the case when 8 = ~,. In this case, f, is the only edge in
0o,y yn (Th) = Oy, . (T,) by Lemma 3.2(v). Since V' (77, ) is elementary with respect
to ¢y, it is also elementary with respect to o,,. Together with 0, (T},) = 0, we see
that there is at most one («, 7, )-path with respect to o,, intersecting 7,,. So « and 3
are T),-interchangeable under o,,. Thus (2) is established.

By (1), 6, is closed in T}, V R,, with respect to o,. So statement (ii) follows
instantly from (2) and statement (iii).

(iii) Assume the contrary: there are at least two («, 3)-paths P, and P, with respect
to o, intersecting 15, V R,,. We may assume that

B) a €7, (T,) NT,(Ry).
To justify this, let 4 be the set of four ends of P; and P». Then at least two vertices

from A are outside T,, V R,, because, by Lemma 5.1, V(T,, V R,,) is elementary
with respect to o,,. Thus P; U P> contains two vertex-disjoint subpaths @)1 and Qo,
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which are two T, V R,,-exit paths with respect to o,,. Let u € V(T,,) N V(R,,), let
n € o, (u), and let 0], = 0, /(G — T;, V Ry, i, m). By (1), n is closed in T, V R,
with respect to o,,; so is « by hypothesis. Hence o), is a (T}, ® Ry, Dy, on)-sta-
ble coloring, and )1 and Q3 are two T}, V R,,-exit paths with respect to o/,. Since
P,(n, 3,0}, contains at most one of 1 and @2, replacing o,, and « by o}, and 7,
respectively, we obtain (3).

Let v be a vertex in V(T,,) N V(R,,) with « € 7,,(v). Clearly, we may assume
that P, = P,(«, 8,0,). By (i), we may further assume that P is disjoint from R,,.
So P intersects 7;,. Therefore o and 3 are not T},-interchangeable under o,,. Since
Y & D, (Tn) = 7, (T), we have a # 7,,. By (2), we may assume that « = §,, or
B =10,

Suppose 3 = d,,. By Lemma 3.2(v) and the definition of stable colorings, edges
in 05, s, (Ty) are all incident to V(T,,) NV (R,,). Thus both P, and P, intersect
V(T,) NV (R,), contradicting statement (i).

Suppose o = d,,. By (1), d,, is closed in T}, V R,, under o,,. Since v,, is a maximum
defective vertex, V(T},) N V (R, ) contains both ends of the uncolored edge e, so there
exists a color 0 € 7,(T,,) NTp(Ry) — {n}. Let o)) =0, /(G — T, V Ry, 6p, 0).
Then o/ is also (T}, @ R,,, Dy, ¢n)-stable. From the existence of P; and Pa, we see
that 0 and $3 are not 7,, V R, -interchangeable under o}/, contradicting our observa-
tion (2) above the case when « # 4., and 8 # 9,,.

(iv) Assume the contrary: there are at least two («, 3)-paths P; and P with respect
to oy, intersecting T;, V R,,. Let u be a vertex in T,, with « € 7,,(u) and let v be a
vertex in R,, with 8 € 7, (v). By (ii) (resp. (1)), Py («, 8, 0,) (resp. Py(«, 5,04,)) is
the only («, 8)-path with respect to o,, intersecting T,, (resp. R,,). Hence we may
assume that P, = P,(«, 8,04,), P> = P,(«, 8, 0, ) (rename subscripts if necessary),
and P,(«, B8,0,) # Py(«, B8, 0,). Moreover, neither P, («, 8,0,,) nor Py,(a, 8,0,)
has an end in V(T},) N V(R,), which in turn implies that

@) u e V(T,) — V(R,) and v € V(R,) — V(T},).

By (4) and statement (ii), P, (v, §, 04, ) is disjoint from T;,. Let o), = 0,/ Py («, 5, 04).
By Lemma 5.8, o), is a (T, Dy, ¢y, )-stable coloring. By Lemma 5.1, V(T}, V R;,)
is elementary with respect to o,,. Since & € 7, (u) and 5 € 7, (v), from TAA we see
that no edge in R, (v) — T,,(vy,) is colored by « or 3 under both ¢,, and o,,. Thus
edges in R,,(v) — Ty, (vy,) are colored exactly the same under o), as under o,, and
on(z) =7, (x) forany z € V(R,,(v) — v)) UV (T},,). Let R,, be a closure of T}, (vy,)
under o),. Then v € V(R)). In view of Lemma 5.1, V(T,, V R),) is elementary with
respect to o7,. However, a € 7,,(u) N7, (v), a contradiction. O

Lemma 6.2 (Assuming (6.1)) Let T be an ETT satisfying MP con-
structed  from a k-triple (G,e,) by using the Tashkinov series
T={(Ti,pi1,5—1,Fi—1,60i—1): 1 <i<n+ 1}. Suppose T has a good hier-
archy Ty, = Ty, 0 C Ty C...C Ty g C Thgr1 = T. Let p be a subscript with
1<p<gq andlet a € 5,(Tyy) and § € [k] — {a}. If ais closed in T, , under
©n, then o and B are T, ,-interchangeable under @,
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Proof Assume the contrary: Let p be the smallest index such that there exist two
(o, B)-paths Q1 and Q2 with respect to ¢,, intersecting T), ,. Let us make some
simple observations about 73, , before proceeding. Since T, ;, satisfies MP under ¢,
andp < g,

(1) V(T,,p) is elementary with respect to ¢,, by (6.1) and Theorem 5.3.

By hypthesis, o € 3,,(T5, ) is closed in T}, ,, with respect to ¢,,, which together with
(1) yields

(2) |T,p| is odd.

AsT, =T,0CTh1 C... CTyhq CThygt1 =T is agood hierarchy,
(3) Thpis (Uy,c Dn,prl_l)_—closed with respect to ¢,, by Definition 5.2(v).

Depending on whether £ is contained in @, (T}, ), we consider two cases.

Casel. 5 €5, (T ).

In this case, by (1) and (2), |0,,,,.3(Tn.p)| is even. From the existence of ()1 and
@2, we see that G contains two vertex-disjoint (T}, p, ¢n, {c, B})-exit paths P; and
P,. For i = 1,2, let a; and b; be the ends of P; with b, € V (T}, ;,). Renaming sub-
scripts if necessary, we may assume that by < by. We distinguish between two sub-
cases according to the location of bs.

Subcase 1.1. by € V(T,, ,) — V (T}

Since the edge on P, incident to by ?épa t1>2)undary edge of T}, ;, and is colored by 3,
we have § € Fﬁ_l for some £ with i, € D, ;, by (3), which together with Definition
5.2(i) implies that 8 € ®(T5, p—1). Let v € 3,,(b2). By the assumption of the present
subcase and Definition 5.2(i), we have v ¢ I'?~1. Hence + is closed with respect to
vn in Ty, p by (3) (see (5.10) for details). So

(4) both « and 7y are closed in T, ;, under @,,.

Let p1 = /(G — Ty p, @, 7y). By Lemma 5.8,

(5) the given hierarchy of T}, j, remains good under ji1, with the same I'-sets as those
under ¢,, (see Definition 5.2). Furthermore, T}, ;, is (Uy, e Dn’pf’g_l)_—closed
under p1 and 8 € [y (T, p—1)-

Note that P; and P, are two (T}, p, ft1, {7, B})-exit paths. Let o = p1/FPp, (77, B, ph1).

Since Py, (v, 5, 1) N Ty p = {b2}, all edges incident to V (T}, ,(b2) — bs) are col-

ored the same under p2 as under p1. So 8 € iy (T}, p—1). By (5) and Lemma 5.8,

T, =Th0CTh1C...CThp—1 CTyp(be) — by is a good hierarchy of the ETT

T,.p(b2) — bs (satisfying MP) under po, with the same I'-sets as T;, ,, under ¢,,. So

©6) T, =Th0CTph1 C...CTyp_1 CTpp(be) is a good hierarchy of the ETT
T, »(b2) (satisfying MP) under p2, with the same I'-sets as T}, , under ¢,,.
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Thus from (6) and (6.1) on Theorem 5.3, we conclude that V (T}, ,,(b2)) is elementary
with respect to p2. However, 8 € iy (T, p—1) N Ty (b2), a contradiction.

Subcase 1.2. b, € V(T}; ,_4).

We propose to show that

(7) there exists a color 0 € 3,,(T5,) that is closed in both T}y ; and T}, ; under ¢,, if
p =1, and a color 0§ € B,,(T}, ,—1) that is closed in both T}, ,,_; and T}, ,, under
on ifp > 2.

Our proof'is based on the following simple observation (see (3) in the proof of Theo-
rem 5.4).

®) [8,(Th)| > 2n+1land |D,, ;| < |D,| <nfor0 <i<gq.

Let us first assume that p=1. When ©, # PE, let 8§ be a color in
?,(T) — (Un,ep,.,I'%); such a color exists by (8). From Algorithm 3.1 we see
that T, is closed under ¢,,. By (3), Ty, 1 is (UnheDMF?L)’-closed under ¢,,. So 6
is as desired. When ©,, = PE, we have |, (T},) N$,,(R,) — T'°| > 4 by Defini-
tion 5.2(iv). Let 0 € §,,(T3,) N p,,(R,) — T'° — {8, }. It follows from (5.4) that  is
closed in T}, V R,, under ¢,,. Since T}, ; is (UnheDn’IF?L)_-closed with respect to

©n, 0 also closed in 7T}, 1 under ¢,, as desired.
Next we assume that p > 2. By (8), we have |3, (T, p—2)| > |8,,(T0)| > 2n + 11
and  |[Dyp-1| <|Dp|<n. So there  exists a color 6 in

@n(T’ﬂ,P*Q) - (Unh,eDn,p—l]‘—‘fLiz)' Since @n(Tn,pr) c @n(Tn,pfl)a we get
0€b,(Thp-1)— (Un,LeDnyple’;LQ). By Definition 5.2(v), € is closed in T, ,—1
under ¢,,. From the definition of # and Definition 5.2(iii), it follows that 6 ¢ TP~
S00 €%, (Thp) — TP C3,(Tnyp) — (Unsen, T2 ). By (3), 0 is closed in T,
under ¢,,. Hence (7) is established.

Let pi3 = 0 /(G — Ty p, @0, 0). Since both « and 6 are closed in T, ,, with respect
to ¢p, by Lemma 5.8, T}, ;, admits a good hierarchy and satisfies MP with respect
to 3. Thus T}, ,—1 also admits a good hierarchy and satisfies MP with respect to
ps if p > 2. By (7), 0 is closed in T}  if p = 1 and closed in T}, ;1 if p > 2 under
p3. Note that both Py and P, are (T}; ,_1, j13, {0, B})-exit paths. So ¢ and 3 are not
T}, o-interchangeable under 3 if p = 1 and not 75, ;,—; -interchangeable under p if
p > 2, which contradicts Lemma 6.1(iii) or the interchangeability property of T},
when p = 1, and the minimality assumption on p when p > 2.

Case 2. 6 é @n(Tn,I))'

In this case, |0y, 5(Th.p)| is odd and at least three by (1) and (2). From the exis-
tence of 1 and Q2, we see that G contains at least three (T, ,, n, {a, 5})-exit paths
Py, P, P;. Fori =1,2,3, let a; and b; be the ends of P; with b; € V/(T,, ), and f;
be the edge of P; incident to b;. Renaming subscripts if necessary, we may assume
that by < by < b3.

Subcase 2.1. b3 € V(T}, ,) — V(T}; ,_1).

For convenience, we call the tuple (¢, Ty, p, @, B, P1, P2, P3) a counterexample
and use /C to denote the set of all such counterexamples. With a slight abuse of nota-
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tion, we still use (n, Ty, p, @, 5, P1, P, P3) to denote a counterexample in I with
the minimum |P;| + |P2| + | Ps|. Let v € %(bs). By the hypothesis of the present
subcase and Definition 5.2(i), we have v ¢ I'?~!. So v is closed in T}, ;, under ¢,, by
(3). Note that v might be some 7, € D,,.

Let pty = ¢ /(G — Ty p, @, 7y). By Lemma 5.8, T, ,, admits a good hierarchy and
satisfies MP under 114. Note that Py, Py, Ps are three (T}, p, pt4, {7, 5})-exit paths.

Consider s = pa/ Poy (7, B, pa). Clearly, B € fi5(b3) and
B ¢ I'P~1. Since Py, (v, B, pta) N Ty, p = {bs}, it is easy to see that all edges incident
to V (T, »(bs) — b3) are colored the same under 5 as under pg. By Lemma 5.8,
T, =Ty0CTh1C...CT,p—1 CTpp(bs) — b3 is a good hierarchy of the ETT
T, p(bs) — bs satisfying MP under p5, with the same I'-sets as T, ,, under ¢,,. So

O T,=T,oCTh1 C...CThp—1 CT,p(bs) is a good hierarchy of T;, ,,(bs)
under yi5, with the same I'-sets as 715, ,, under ,,.

Let H be obtained from 7T}, ,,(b3) by adding f; and f». Since 3 ¢ I'P~1, it can be seen
from (9) that

(10) Ty =Tno CTh1 C... CTyp—1 C Hisagood hierarchy of H under ps,
with the same I'-sets as 75, ,, under ¢,,.

By (5.1) and Theorem 3.10(vi), H satisfies MP under 5. Set T’ = H. Let us grow 17"

by using the following algorithm:

(11)While there exists f € O(T") with us(f) € 1i5(T"), do: set T" = T" + f if the
resulting 7" satisfies Ffl_l N ps(T" (vy,) — Tnp—1) = 0 forall n, € Dy, 1.

Note that this algorithm is exactly the same as Step 2 in Algorithm 5.6. From (11)
we see that

(12) T s (UnheD;L,PFfl_l)_—closed with respect to s, where

D’In,p = UhSnSh - ES(T/) (SO Dy, < Dn,p—l)-

n,p —

In view of (10) and (11), we conclude that

(13) T,=T,0CTh1 C...CT,p—1 CT isagood hierarchy of 7" under ps,
with the same I'-sets as 75, ,, under ;.

Clearly, T" satisfies MP under p5. By (13), (6.1), and Theorem 5.3, V(T”) is elemen-
tary with respect to us. Observe that none of a1, as, az is contained in 7", for oth-
erwise, let a; € V(T3) for some i with 1 <7 < 3. Since {8,~v} NTi5(a;) # 0 and
B € Ti5(b3), we obtain v € P, (a;). Recall that 3,y ¢ TP~1. Hence from (11) we see
that P;, P, Ps are all entirely contained in G[T”], which in turn implies v € @, (a,)
for j = 1,2,3. So V(T") is not elementary with respect to u5, a contradiction. There-
fore, each P; contains a subpath L;, which is a T’-exit path with respect to u5. Since
f1 is not contained in L1, we obtain |L1| + |Lo| + |L3| < |P1| + |P| + | Ps|. Thus,
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in view of (12), the existence of the counterexample (us,T”,, 8, L1, L2, L3) vio-
lates the minimality assumption on (¢n, Tnp,, B, P, Pa, P3).

Subcase 2.2. b3 € V(T}; ,_4).

The proof in this subcase is essentially the same as that in Subcase 1.2. Let 6 be
a color as described in (7). Consider 3 = ¢, /(G — T}, p, v, 0). Then we can verify
that ¢ and (3 are not T, j-interchangeable under p3 if p =1 and not 75, ;1 -inter-
changeable under pg if p > 2, which contradicts Lemma 6.1(iii) or the minimality
assumption on p; for the omitted details, see the proof in Subcase 1.2. O

Let us make some further preparations before proving Theorem 5.3. Let
T =Tno CTh1 C... CThgt1 =T be a good hierarchy of T (see (5.5) and
Definition 5.2). Recall that T;f,o =T,VR, if ©, =PFE and T;io =T, oth-
erwise, T o C T, 1 by (5.5), and T};, =T, if i > 1. Let T be constructed
from T3, , using TAA by recursively adding edges ei,ez,...,e, and vertices
Y1,Y2, - - - » Yp, Where y; is the end of e; outside T'(y;—1) fori > 1, with T'(yo) = T}y ,
Write T' =T, U {e1,y1,€2,...,€p,yp}. The path number of T, denoted by p(T)
is defined to be the smallest subscript ¢ € {1,2,...,p} such that the sequence
(Yis €i41, -, €p, Yp) corresponds to a path in G, where e; is between y;_; and y; for
i+ 1 < j < p. Note that p(T") = p if this path contains the vertex y,, only.

A coloring o, € C*(G — e) is called a (T}; o, Dy, o )-weakly stable coloring if it
isa (T, ® Rn, Dy, ¢n)-stable coloring when ©,, = PE and is a (T},, Dy, ., )-sta-
ble coloring when ©,, # PE. By Lemma 3.2(iv) and (5.12), every (T o, Dy, ©n)
-weakly stable coloring is (7} o, n )-invariant. '

A coloring oy, € C*(G —e) is called a (T} ;, Dy, on)-weakly stable coloring,
with 1 <4 < g, ifitisbotha (T3, o, Dy, <pn)-weakly stable and a (T} ;, yn, )-invariant

coloring. By Lemma 3.2(iv), every (T2, D,,, pn)-stable coloring is (T ., Dy, on)

n,i’ n,t?

-weakly stable. From Theorem 3.10(vi) it is also clear that, under a (T ., Dy, ¢n)

71’L7

-weakly stable coloring o, T}, ; is an ETT satisfying MP (this statement will fre-
quently be used directly in subsequent proofs without even citing Theorem 3.10(vi)).

As stated before, our proof of Theorem 5.3 proceeds by induction on ¢ (see (6.1)).
The induction step will be carried out by contradiction. Throughout the remainder
of this section and Subsection 7.1, (T, ¢, ) stands for a minimum counterexample to
Theorem 5.3; that is,

6.2) T s an ETT  that admits a  good  hierarchy
T, =ThoCTh1C...CThq CThgt1

= T and satisfies MP with respect to the generating coloring ¢, ;

(6.3) subject to (6.2), ¥(7T) is not elementary with respect to ¢,,;

(6.4) subject to (6.2) and (6.3), p(7) is minimum; and

(6.5) subject to (6.2)—(6.4), |T| — |T},. 4| is minimum.

Our objective is to find another counterexample (77, 0,,) to Theorem 5.3, which
violates the minimality assumption (6.4) or (6.5) on (T, ).

The following fact will be used frequently in subsequent proof.

(6.6) V(T'(yp—1)) is elementary with respect to ,,.

Let us exhibit some basic properties satisfied by the minimum counterexample
(T, ¢n) as specified above.

Lemma 6.3 For 0 < i < p— 1, the inequality
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20(T (i) = @u(Tr0 = V(Tn)) = on(T(yi) = Ty ) = 20411
holds, where T(yo) = Ty . Furthermore, if
[2n(T(yi)) = 2n(Th0 = V(Th)) = on(T(yi) — Ty g) — (17U D g)| <4,

then there exist 7 distinct colors ny, € Dy o N, (T (y:)) such that
(L U{nn}) Npn(T(yi) — Ty ) = 0, where I’ and T} are introduced in Defini-
tion 5.2.

Proof By (6.6), T'(

Yp—1) is elementary with respect to ¢,,. Since the number of ver-
tices in T'(y;) — V(T ,) i
v

is 7, and the number of edges in T'(y;) — T}, , is also i, we

obtain @, (T'(y;) — (Ti,q))\zlwn@(w) T3 ;)| Hence
[@n(T(y:)) = 2n(Tr0 — V(Tn)) — (T (ys) — Ty o)l
2 @u(T (i)l — 20 (T0 = V(L)) = lon(T (yi) — T )|
> [2n(T(yi)| = [@n(Tr0 = V(L) = [8n(T(yi) — V(T3 0))
= 2. (Th )| — [@n(T5 0 — V(T0))|
> @u(T50)] — [20(Th0) — Pu(Th)]
= |2,(T0)l
> 2n + 11,

where the last inequality can be found in the proof of Theorem 5.4 (see (3) therein).
So the first inequality is established.

Suppose the second inequality also holds. Then these two inequali-
ties guarantee the existence of at least 2n + 7 colors in the intersection C of
@n(T(y’L)) - ¢7L(T:,O - V(Tn)) — ¥n <T(y2) - T':Z,q> and TU Dn»Q' By (56)’
we have |D, 4| <|D,| <n and |I'Y <2|D,,| <2n. So [I'"UD,,| <3n.
Since |C] < [T?7U D,, 4], it follows that 2n + 7 < 3n, which implies n > 7. Note
that C = Uy,cp, ,(ChU{p}) NC and [T U {})NC| <3 for any 7, in
D,, 4. Since |C| > 2n+ 7 and n > 7, by the Pigeonhole Principle, there exist at
least 7 distinct colors 7, in Dy, 4, such that [(I'] U {nn}) N C| = 3, or equivalently,
Ty U{n} CC. For each of these 7y, clearly n, € D, g N%,(T(y:)) and
(TF U{nn}) Non(T(ys) — Ty ,) = 0 by the definition of C. O

Let v be a vertex of T and T/ C T. By T < v we mean that v < v for any
u € V(T"). Given a color « € [k], we use v, to denote the first vertex u of T in the
order < for which o € B, (u), if any, and defined to be the last vertex of T in the
order < otherwise.

Lemma 6.4 Suppose ¢>1 and o €@, (T, ). If there exists a subscript

i with 0 <1i<gq, such that « is closed in T, ; with respect to ¢, then
a ¢ ©u(Tnq— Ty ), whereris the largest such i. If there is no such subscript i,
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then a € Up,ep, T~ C I~ for 1 <j < q, 6, = PE, v, € V(T,) — V(Ry),
and o ¢ @ (Th.g— Tn).

Proof Recall that T has a good hierarchy by (6.2). Let us first assume the existence
of a subscript i with 0 < ¢ < g, such that « is closed in T3, ; with respect to ¢,,. By
definition, r is the largest such i. As the statement holds trivially when r = ¢, we
may assume that 7 < ¢. Let s be an arbitrary index with » +1 < s < ¢g. From the
definition of », we see that « is not closed in T,  with respect to ¢,,. It follows
from Definition 5.2(v) that « € 1"271 for some 1y, € Dy, s C D,, s_1. By definition,

Dn,s - UhgnSh - @n(Tn,s)a SO Th ¢ ¢n(Tn,s) and hence Tn,s(vnh) - Tn,s (See
paragraphs above Definition 5.2 forthenotation 7}, (v, ). Sincecv € I'; ™ ! Definition
5.2(i) (with j = s — 1) implies o ¢ @ (T s(vn,) — T o—1) = PnlTns — T o 1)-
As this property holds for all s with r +1 < s < g, we geta & 0, (T g — T}y ).

Next we assume that there exists no subscript i with 0 < i < ¢, such that « is
closed in T}y ; with respect to ¢,,. Since a € B,,(T, 4), it follows from (5.10) that
a € 9, (T} o). By Definition 5.2(v), we obtain

(1) ae UnheDn,jF%ﬁl CTV1forl < 71 <q.

Hence o €IV for all 0 < j < ¢— 1. From the definition of T, we see that
vo € V(T,). If ©, # PE, then a would be closed in T}, = T}; ; under ¢y, a con-
tradiction. So ©,, = PE. Moreover, since « is not closed in T3, , by (5.4), we have
v € V(T),) — V(R,,). Since R, is a closure of T}, (v, ) under ,,, using (6.6) and
TAA we obtain

) «a ¢ @n(Rn - V(Tn)) and o ¢ ‘Pn<Rn - Tn>-

() a¢ 8077,<Tn,q - T;Z,O>~

Let s be an arbitrary index with 1 <s<gq. By (1), we have o € Fi_l for
some 1y, € Dy s CDpgo1. As Dy s =Up<nSp— @, (Th,s), there holds
h & @, (Th,s). So Ty s(vy,) = T,,s. From Definition 5.2(i) (with j = s — 1), we
deduce that a & 0, (Th s(vy,,) — Tpy —1) = @n(Tn,s — Tps s_1). Since this property
is valid for all s with 1 < s < ¢, we establish (3).

Combining (2) and (3), we conclude that o & ¢, (T}, — Tn). O
Our proof of Theorem 5.3 relies heavily on the following two technical lemmas.

Lemma 6.5 Let « and [ be two colors in @, (T(yp—1)). Suppose both

Vo <vg and o & pn(T(vs) — Ty ) hold if {a,B} =, (T, ) #0. Then
Py, (o, B,0n) = Py, (a, B,0n) if one of the following cases occurs:

() ¢>Landae€p,(T,,) or{a,f} N D, 4 =10

(i) ¢ =0, and a € g, (T},) or {c, B} N D,, = 0, and

(i) € 9, (T}; ,) and is closed in T}; , with respect to @y,

Furthermore, in Case (iii), Py, (a, 3, ¢n) = Py, (o, B,¢,) is the only (a, 3)-path
with respect to ¢y, intersecting T .
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Proof Let a = v, and b = vg. We distinguish among three cases according to the
locations of a and b.

Case 1. {a,b} C V(T ).

By (6.6), V(T;; ,) is elementary with respect to ¢,,. So a (resp. b) is the only vertex
inT};  missing a (resp. ). If both o and 3 are closed in T}, , with respect to ¢y, then
no boundary edge of T}y  is colored by a or 3. Hence Py («, B, ¢n) = Py, B, pn)
is the only path intersecting 7}, .. So we may assume that « or 3 is not closed in T},
with respect to ¢,,. It follows that if ¢ = 0, then ©,, = PFE, for otherwise, Algorithm
3.1 would imply that both o and j3 are closed in 7', = T7; , a contradiction. Therefore

() Ty =T,V Ry ifq=0.

Let us first assume that precisely one of « and £ is closed in 1), , with respect to
n. In this subcase, by Lemma 6.2 if ¢ > 1 and by (1) and Lemma 6.1(iii) if ¢ = 0,
colors o and 3 are T}y -interchangeable under ¢y, so Pu(c, B, ¢n) = Py, B, pn)
is the only path intersecting 77, .

Next we assume that neither « mnor [ is closed in 7  with
respect to ,. In this subcase, we only need to show that
P, B, ¢n) = Py(a, B, ¢n). Symmetry allows us to assume that a < b. Let r be the
subscript with 8 € @, (Ty;,. — V(T 1)), where 0 <7 < g and T,; _, = (). Then

a,be V(T ,). By (6.2), T, =Ty o CTh1 C... CTh g CThgr1 =T is a good
hierarchy of T. If r > 1, then 3 is closed in T, , with respect to ¢,, by Definition
5.2 (see (5.10)). From the above discussion about T3 . (with  in place of ¢), we
similarly deduce that P, («, 8, ¢n) = Py(a, 8, ¢n). So we may assume that r = 0.
If ©,, # PE, then both « and g are closed in T}, with respect to ¢,, (see Algorithm
3.1), so P,(a, B,0n) = Py, B, 04) by (6.6). If ©,, = PE, then it follows from
Lemma 6.1(i), (ii) and (iv) that P, (v, 8, ¢n) = Po(a, 5, pn).

Case 2. {a,b} NV (T} ) = 0.

By the hypotheses of the present case and the present lemma, we have
{a,8} N D,y =0ifg>1and {o, 8} N D,, =0 if g =0.So

), 8¢ D qUp, (T ,)ifg>1and o, 8 ¢ D, UD, (T, ,)ifqg=0.

By the definitions of D,, and D,, 4, we have D,, U®,,(T},) € Dy g UP, (T} ). By
Lemma 3.2(iv) and Algorithm 3.1, we obtain ¢,,(T(a)) C D,, U, (T(a) — a) and
on(T'(b)) € D, UP,(T(b) —b).Since T;; , < a < band a & ¢, (T(b) — T} ,) (by
the hypotheses of the present case and the present lemma), from (2) we see that

) a, B & en(T'(D)).

Suppose on the contrary that P,(«a,f,¢n) # Py(a, B,¢,). Consider
on = ¢n/Po(c, B,n). By (2), on is a (T} ;, Dn, ¢n)-stable coloring, so it is
also a (T ;, Dn, pn)-weakly stable coloring. Thus, by (3) and (6.6), every edge
of T(b) is colored under o, the same as under ¢,. So 7(b) is still an ETT satis-
fying MP with respect to o,,. Moreover, from (2), (3), and (6.6), we deduce that
T, =T,0CTh1 C...CT,q CT(b) is still a good hierarchy of 7(b) under o,
with the same I'-sets as T under ,, (see Definition 5.2). As « € 7, (a) NG, (D), the
pair (T'(b), 0,,) is a counterexample to Theorem 5.3, which contradicts the minimal-
ity assumption (6.5) on (T, ¢y, ).

Case3.a c V(T )andb ¢ V(T ).

n,q
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By the hypotheses of the present case and the present lemma, (6.6) and TAA, we
obtain

4 a ¢ o (T'(b) =Ty ,) and 3 ¢ B, (T'(b) — b). So 3 is not used by any edge in
T(b) — T ,» except possibly e; when ¢ = 0 and Ty , = T, (now e; = f,, in Algo-
rithm 3.1 and 8 € D,,).

Let us first assume that « is closed in T3, | with respect to ¢,,. By Lemma 6.2
if ¢ > 1 and by Lemma 6.1(iii) or Theorem 3.10(ii) (see (5.1)) if ¢ = 0, colors «
and 3 are T);  -interchangeable under ¢,. So P,(a, 3, ¢y) is the only («, 3)-path
intersecting 7}, .. Suppose on the contrary that P, («, B, ¢n) # Py(a, B, ¢n). Then
Py(a, B, ) is vertex-disjoint from 7, , and hence contains no edge incident to 7} .

Consider 0, = ¢y, /Py(cv, B, ¢n). It is routine to check that o, isa (T3, ;, Dn, )
-weakly stable coloring, and 7(b) is an ETT satisfying MP with respect to o,,. More-
over, T,, =T, 0 CTp1 C...CT,, CT(b) is a good hierarchy of 7(b) under
on, With the same T'-sets as T under ¢, by (4). As o € 7,,(a) N7, (b), the pair
(T'(b),0n) is a counterexample to Theorem 5.3, which contradicts the minimality
assumption (6.5) on (T, ).

So we assume hereafter that

(5) avis not closed in T}, | with respect to @y,

Hence our objective is to show that P, («, 3, ) = Py(«, 5, ©n). Assume the con-
trary: P,(«, 8, ¢n) # Po(a, 8, p,). We distinguish between two subcases according
to the value of g.

Subcase 3.1. ¢ = 0.

By the hypothesis of the present lemma, o € p,,(7},) or {a, 8} N D, = 0. So
a ¢ D,,. From (5) and Algorithm 3.1 we deduce that 7}; ; # T},. Hence

(6) ©,, = PE, which together with (5) and (5.4) yields a ¢ V(T,,) N V(R,,).

Consider o, = ¢,/ Py(v, 8, pr ). We claim that

(7) onisa (T} g, Dn, pn)-weakly stable coloring.

To justify this, note that ifa € V(T,,) — V(R,,), then «, 8 ¢ B, (R,,) by (6.6) and
the hypothesis of the present case. By definition, o, is (R, 0, ¢, )-stable. In view of
Lemma 6.1(ii), Py(«, 3, ¢y ) is disjoint from T}, and hence contains no edge incident
to T),. So o, is (T}, Dy, ©n)-stable. Hence (7) holds. Suppose a € V(R,,) — V(T,,).
By the hypothesis of the present lemma, {a, 8} N D,, = (). By (6.6), we also have
o, 8¢9, (T,). Thus o, 8 ¢ 5, (T,) U D,. By definition, o, is (T}, D,,, ©n )-stable.
Using Lemma 6.1(1), Py(a, 8, ¢y,) is disjoint from R,, and hence contains no edge
incident to R,,. By definition, o, is (R,, 0, ,, )-stable. Therefore (7) is true.

From (4), (7) and (6.6) we see that o, (f) = ¢, (f) for each f € E(T(b)) and
Tn(u) =P, (u) for each u € V(T'(b) — b) (recall that every (T}; o, Dn, ¢n)-weakly
stable coloring is (7}; o, pn)-invariant). Furthermore, 7(b) is an ETT satisfying MP
with respect to o, and T, = T}, 0 C T'(b) is a good hierarchy of 7(b) under oy,
with the same I'-sets as 7 under ¢,,. As & € 7,,(a) N T, (), the pair (T'(b), 0,,) is a
counterexample to Theorem 5.3, which contradicts the minimality assumption (6.5)
on (T, ¢y).

Subcase 3.2. ¢ > 1.

Let us first assume that « is closed in 7}; ; with respect to ¢, for some i with
0 < i < q. Let r be the largest subscript i with this property. Then » < g — 1 by (5).
Note that o € 3,,(T; ,.) since « is closed in T7; . and |T}; | is odd (because it is

n,r n,r
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elementary and closed for colors in @, (7}; . — V(T}; .4
a ¢ on(Tnq — T ), which together with (4) yields

(8) a ¢ ¢ (T(b) — T::,r>'

By Lemma 6.2 if » > 1 and by Theorem 3.10(ii) or Lemma 6.1(iii) if r = 0, col-
ors o and 3 are T, -interchangeable under ¢,,. So Py (a, 3, y) is the only (a, 3)
-path with respect to ,, intersecting 7}; .. Hence P, (v, 3, ¢n) is vertex-disjoint from
T, . and therefore contains no edge incident to 7} .. Let 0, = ¢,/ Po(cv, 3, ¢1). By
Lemma 5.8, 0, is a (T}; ., Dy, ¢on)-weakly stable coloring, and 75, . is an ETT hav-
ing a good hierarchy and satisfying MP with respect to o,,. By (4) and TAA, /3 is not
used by any edge in T'(b) — T ,., except possibly e; whenr = 0and T}; ; = T}, (now
e1 = fn in Algorithm 3.1 and 8 € D,,). Since oy, is (T, Dy, pn )-stable, it follows
from (8) and (6.6) that o,,(f) = @, (f) for each f € E(T(b)) and 7, (u) = ,,(u)
for each u € V(T'(b) — b). So T(b) is an ETT satisfying MP with respect to o,.
Moreover,

DT, =ThoCTh1 C...CT,q4 CT(b)isagood hierarchy of 7(b) under o,
with the same I'-sets as 7 under ,,.

Since 0, (f) = ¢n(f) for each f € E(T(b)) and 7,(u) =5, (u) for each

u € V(T'(b) —b), to justify (9), it suffices to verify that Definition 5.2(v) is satisfied
with respect to o,; that is, T, ; is (Up,ep,, 1)~ -closed with respect to o, for

))). By Lemma 6.4, we have

1 < j < q. As the statement holds trivially if Py(c, 3, ,) is vertex-disjoint from
T,.;, we may assume that P, (a, 3, ¢,,) intersects T}, ;. Thus 7 + 1 < j < ¢. Observe
thata € Uy, ep,, ; Ff;l, for otherwise, « is closed in T, ; with respect to ¢, by Defi-
nition 5.2(v), contradicting the definition of . By (6.6), we also obtain 3 ¢ %, (T}, ;).
Consequently, T, ; is (Uy, ep,, ; F{fl)’-closed with respect to o,,. (Note that o may
become closed in 75, ; with respect to o,. Yet, even in this situation the desired state-
ment is true.) This proves (9).

As a € 7,(a) NT,(b), the existence of (T'(b),0,) contradicts the minimality
assumption (6.5) on (T, ).

Next we assume that « is not closed in T, with respect to ¢,, for any i with
0 < i < ¢. By the hypothesis of the present subcase, ¢ > 1. In view of Lemma 6.4,
we obtain

(10)a € Uy, ep, , T3 CT9 " forl < j < ¢,0, = PE,a € V(T,) — V(Ry),

and a ¢ ©n, (T g — Th).

It follows from (4), (10) and TAA that

(D) a ¢ 9, (T(b) —Ty,) and B ¢ 0, (T'(b) — T}, o)-

Since R, is a closure of T}, (v, ) under ¢, using (10), (6.6) and TAA we obtain

(12) o, 8¢ @, (Ry,) and 8 ¢ p, (R, — Ty).

By Lemma 6.1(ii), colors o and [ are T, -interchangeable under ¢,. So
P.(«, B, ¢n) is the only (a,3)-path with respect to ¢, intersecting 7). Hence
Py(a, B, ¢n) is vertex-disjoint from 7T;, and therefore contains no edge incident to T,.
Consider o,, = ¢,/ Py(c, 8, py). By Lemma 5.8, oy, is a (T, Dy, oy )-stable color-
ing, and T, is an ETT satisfying MP with respect to o,,. From (11) and (12) we further
deduce that oy, is a (T}, g, Dn, ¢n)-weakly stable coloring, 0,,(f) = ¢, (f) for each
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f e E(T®D)), and 7,(u) =3, (u) for each u € V(T(b) —b). So T(b) is an ETT
satisfying MP with respect to o,,. Moreover, T, = T, 0 C Tp1 C ... C T}, o C T'()
is a good hierarchy of 7(b) under o,,, with the same I"-sets as 7 under ,, (see (10)
and the proof of (9) for omitted details). As « € 7,,(a) N7, (), the existence of
(T'(b), oy,) contradicts the minimality assumption (6.5) on (T, p,,). O

Lemma 6.6 Let o and 3 be two colors in ©,(T(y,—1)), let Q be an (o, §)-chain
with respect to @, and let o, = @,/ Q. Suppose one of the following cases occurs:

) 4 10 €5, (L) and Qs an (a, )-path disoint from P, (0 6. 01);

2) q=0,a€3,(T,) oracp,(T;,) witha, ¢ Dy, and Q is an (a, )-path
disjoint from P,_(«, 3, ¢n), and

8) T < o < 105 0,0 ¢ Dy 0 & 0 (T05) — Tlvc)), and Qs an arbitrary
(a, B)-chain.

Then the following statements hold:

() onisa (T, ,, Dn,pn)-weakly stable coloring;

(i) T3, , is an ETT satisfying MP with respect to oy; and

Gi)ifg > 1, then T, =T}, 0 C Ty, 1 C ... C T}, 4 is a good hierarchy of T, ,
under o, with the same I'-sets (see Definition 5.2) as T under @, and T, 4 is

(Unpepn  T7 ! )~ -closed with respect to o,,.

Furthermore, in Case 3, T is also an ETT satisfying MP with respect to o, and
Tp="ThoC Ty C...CTyeC Ty e+s = T remains to be a good hierarchy of
Tunder o,,, with the same I"-sets (see Definition 5.2) as T under ¢,,.

Remark 1nthe proof of Theorem 5.3, frequently we need to check whether a “smaller”
counterexample T” with T}, , C T" has a good hierarchy with the same I'-sets under
oy, as T under ¢,. Lemma 6.6 is established to fulfill such needs: We shall use the
above Statement (iii) to ensure that Definition 5.2(1)—(v) are satisfied by 7}, , and that
Definition 5.2(v) is satisfied by 7”. Since the I'-sets used under o, are the same as
those under ,,, Definition 5.2(ii)—(iv) are automatically satisfied by 7”. One techni-
cal question remains unanswered: How can we verify that Definition 5.2(i) is satis-
fied by T'? It is only a straightforward matter, as we shall see.

Proof of Lemma 6.6 Write a = v, and b = vg. Let us consider the three cases
described in the lemma separately.

Casel.q>1,a € %,(T,q), and O is an («, B)-path disjoint from P, (e, 3, ¢r,).

We distinguish between two subcases according to the location of b.

Subcase 1.1. b € V(T;, ).

Let us first assume that there exists a subscript i with 0 < ¢ < ¢, such that « or 8
is closed in T7; ; with respect to .. Let r be the largest such i. By (5.10) and Lemma
6.4, we have

(1) {CL, b} g V(T:,'r) and a’ﬂ ¢ ‘Pn<Tn,q - T;‘;,r>'
(2) aand 3 are Ty; , -interchangeable under ¢,,. So P (v, 8, ¢n) = Py(a, B, ¢n).
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To justify this, note that if 7 > 1, then (2) holds by Lemma 6.2. So we assume that
r = 0. Then « or j is closed in T}, ; with respect to ¢,,. Hence, by Lemma 6.1(iii)
if ©,, = PE and by (5.1) and Theorem 3.10(ii) otherwise, a and j3 are T7; (-inter-
changeable under (,,. This proves (2).

It follows from (2) that Q is vertex-disjoint from 7}; . and hence contains no edge
incidentto 7}, .. By Lemma 5.8, 0, = ,,/Qisa (T}, ., Dn, ¢n)-weakly stable color-
ing, and 77, ,. is an ETT satisfying MP with respect to o,,. By (1) and (6.6), we obtain
on(f) = @n(f) for each edge fof T}, ; and 7, (u) = B,,(u) for each vertex u of T, .
Therefore oy, is a (T4, D, n )-weakly stable coloring. By the definition of #, for
anyr+1<j<gand@ € {a, S}, wehave 0, o(T, ;) # 0,500 € UnpeD Ff;l
by Definition 5.2(v). It is then routine to check that T, =T, 0 CT;,1 C ... C Ty 4
is a good hierarchy of T, , under o,,, with the same I'-sets as 7 under 0,2 and Th.q

is (Unhepn’qf“,ﬁ_l)_—closed with respect to o,,.

Next we assume that there exists no subscript i with 0 < ¢ < ¢, such that « or 5 is
closed in T}y ; with respect to ¢;,. By Lemma 6.4, we have

(3) aaﬁ c UnhGDn,jrgLil - Tj’lforl S] < Qa@n = PE,a,b € V(Tn) - V(Rn)’
and «, ﬂ ¢ Q0n<zrn,q - Tn>

Since R, is a closure of T}, (v,,) under ¢,,, using (6.6) and TAA we obtain

By Lemma 6.1(ii), colors  and (3 are T, -interchangeable under ¢,,. So P, («, 5, ¢rn)
is the only («v, 8)-path with respect to ¢, intersecting 7T),. Hence Q is vertex-disjoint
from T, and therefore contains no edge incident to T;,. By Lemma 5.8, 0;, = ¢,,/Q
isa (T, Dy, pn)-stable coloring, and T, is an ETT satisfying MP with respect to o,.
By (3), (4) and (6.6), we further deduce that o, is a (T, o, Dy, n)-stable coloring,
on(f) = @n(f) for each edge f of T}, 4, and 7, (u) = B, (u) for each vertex u of
T, 4. It is then routine to check that the desired statements hold.

Subcase 1.2. b ¢ V(T;, ).

Let us first assume that there exists a subscript { with 0 < ¢ < g, such that « is
closed in 7T}; ; with respect to ¢;,. Let r be the largest such i. By (5.10), Lemma 6.4
and TAA, we have

(5) a CV(T;;,) and o ¢ ¢, (T} 4 — T;; ). Furthermore, no edge in T}, , — T} ,. is

n,r n,r
colored by f3, except possibly e; when 7 =0 and T}; o =T}, (now e; = f,, in
Algorithm 3.1 and 8 € D,,).

Using the same argument as that of (2), we obtain

(6) avand j3 are T}, -interchangeable under (,,.

2See the justification of (9) in the proof of Lemma 6.5 for omitted details. Note that cv or 3 may become
closed in Tn’ 4 with respect to 0, for some j with 1 +1< j < q. Yet, even in this situation Definition
5.2(v) remains valid with respect to 07, .
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It follows from (6) that Q is vertex-disjoint from 77, and hence contains no

edge incident to T,; .. By Lemma 5.8, 0, = ¢,,/Q is a (T} s D, on)-weakly
stable coloring, and 7;;, is an ETT satisfying MP with respect to o,. Using
(5), we obtain o, (f) = ¢, (f) for each edge f of T, , and 7, (u) =@, (u) for
each vertex u of T, 4. Therefore o, is a (T}, 4, Dy, pn)-weakly stable coloring,
T, =T,0CTy1 C...CT,41isagood hierarchy of T}, , under o,,, with the same
I-sets as T under ¢y, and T5, 4 is (Uy, ¢ Dn’ql"‘{l)_—closed with respect to o, (see
the justification of (9) in the proof of Lemma 6.5 for omitted details).

Next we assume that there exists no subscript i with 0 < ¢ < g, such that « is
closed in T}; ; with respect to ¢;,. By Lemma 6.4, we have

(7) a €Uyep, T4 CT971 for 1<j<gq, ©,=PE, acV(T,) - V(Rn),
and a ¢ ©n (T q — Thn).

It follows that (4) also holds. By Lemma 6.1(ii), colors « and § are T, -interchange-
able under ¢,,. So P,(«, 3, py,) is the only (a, 8)-path with respect to ,, intersect-
ing T,,. Hence Q is vertex-disjoint from 7;, and therefore contains no edge incident
to T,,. By Lemma 5.8, o, = ¢,,/Q is a (T}, Dy, 1 )-stable coloring, and T;, is an
ETT satisfying MP with respect to o,. Since b ¢ V (T, 4), no edge in T, ; — T}y 5 is
colored by 3 by TAA, because T}, o = T}, V R;, by (7). Using (4) and (7), it is routine
to check that the desired statements hold.

Case 2. q= Oa o€ @n(Tn)? orac @n(T':,O) with «, B ¢ D”» and Q is an (a? 5)
-path disjoint from P,_ (v, 3, ¢n).

Letus firstassume that o or is closed in T}, ; with respect to ¢;,. By Lemma 6.1(iii)
or Theorem 3.10(ii) (see (5.1)), colors a and 3 are T}, ,-interchangeable under ¢,,. So
Py(a, B, ¢y) is the only («, 3)-path intersecting T} ,, and hence Q is vertex-disjoint
from T7; . It is then routine to check that oy, = ¢, /Q is a (T} 5, Dn, ¢n)-weakly
stable coloring, and T},  is an ETT satisfying MP with respect to o,, by Theorem
3.10(vi). So we assume hereafter that

(8) neither o nor 3 is closed in T7; , with respect to ¢y,

By the hypothesis of the present case, a € p,,(T},) or {a, 5} N D, =0.So a ¢ D,,.
From (8) and Algorithm 3.1 we deduce that T}; , # T},. Hence

(9) ©,, = PE, which together with (5.4) yields a,b ¢ V(T,,) N V(R,).

Let us show that

(10) on = pn/Qisa (T} o, Dn,pn)-weakly stable coloring.

To justify this, note that if one of @ and b is contained in V(T},) — V(R,,) and the
other is contained in V(R,,) — V(T},), then a and /3 are T; j-interchangeable under
¢n, by Lemma 6.1(iv). So Q is vertex-disjoint from 7}; ; and hence (10) holds. In

view of (9), we may assume that

(1Difa,b € V(T}; ), then either a,b € V(T,,) — V(R,) ora,b € V(R,,) — V(T5).
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Let us first assume that a € V(T,,) — V(R,,). Then « ¢ ,,(R,) by (6.6) and
be V(T,) - V(R,) if be V(T ) by (11). So a and 3 are T),-interchangeable
under ¢,, by Lemma 6.1(ii) and 8 ¢ 3, (R,) by (6.6). It follows that Q is ver-
tex-disjoint from T,, and that o, (f) = @, (f) for any edge f incident to R,, with
on(f) € 2,,(R,). Hence (10) holds.

Next we assume that a € V(R,) — V(T,). Then « ¢ p,,(T,) by (6.6) and
beV(R,) —V(T,) if b€ V(T} ;) by (11). So a and 3 are R,-interchangeable
under ,, by Lemma 6.1(i) and 5 ¢ ,,(T,,) by (6.6). It follows that Q is vertex-
disjoint from R,. By the hypothesis of the present case, {a, 3} N D, = 0. So
a, B ¢ %, (T,) U D, and hence (10) holds.

From (10) we deduce that T}; ; is an ETT satisfying MP with respect to o,.

Case3. T, < vy <vg,a,8 ¢ Dy g,a ¢ 0 (T(vs) — T(va)),and Qis an arbi-
trary («v, 3)-chain.

By (6.6), V(T (yp-1)) is elementary with respect to .. So a, 8 ¢ @, (T} ;). By
hypothesis, «, 5 ¢ D,, ,. Hence

(12) 0576 §é @n(T;,q) U DTMI'

By the definitions of D,, and D,, 4, we have D, U%, (T,,) € Dy , U, (T} ,). So
o, B ¢ %, (T,) U D,. From Lemma 3.2(iv), TAA and the hypothesis of the present
case, we further deduce that

(13) B ¢ en(T(b)).

In view of Lemma 6.5, we obtain

(14) P.(a, 8,¢) = Py, B, ). (Possibly Q is this path.)

Since T)F . < a < b, using (12)-(14), it is straightforward to verify that o,, = ¢,,/Q

n,

isa (T,,*;’q,an7 ¢n)-stable coloring, so o, is also (T}; ,, Dn, n)-weakly stable.
From (12) and (13) we also see that 7(b) can be obtained from 7}; , by using TAA,
no matter whether Q = P,(«, 3, ). Thus T'is an ETT corresponding to (o, T},). As
neither « nor 3 is contained in any I'-set, it is clear that T also satisfies MP under o,
and T, =T, 0 CTh1 C ... C Ty g C Ty g1 =T remains to be a good hierarchy

of T under o, with the same I'-sets as 7 under ¢,,. O

7 Elementariness and interchangeability

In Sect. 5 we have developed a control mechanism over Kempe changes; that is,
a good hierarchy of an ETT. In Sect. 6 we have derived some properties satisfied
by such hierarchies. Now we are ready to present a proof of Theorem 5.3 by using
Kempe changes based on these hierarchies, whose origin can be traced back to Tash-
kinov’s proof of Theorem 2.7 (Tashkinov 2000) (see Stiebitz et al. 2012 for an Eng-
lish version).
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7.1 Proof of theorem 5.3

By hypothesis, T is an ETT constructed from a k-triple (G, e, ) by using the Tash-
kinov series T = {(T;, vi— 1,81_1,Fi_1,@i_1) : 1 <4 <n+1}. Furthermore, T
admits a good hlerarchy Th=Th0CTh1 C... CThq+1 =T and satisfies MP
with respect to ¢,,. Our objective is to show that V(7) is elementary with respect to
Pn.

As introduced in the preceding section, 7' = T, , U {e1, yl, 62, .s €p, Yp }, Where
yi is the end of e; outside T'(y;—1) for i > 1, with T'(yo) = T;; ,. Suppose on the
contrary that V(7) is not elementary with respect to ,,. Then

For ease of reference, recall that (see (3) in the proof of Theorem 5.4)

(7.2) [¢,(T,)| > 2n+11and |D,, ;| < |D,| <nfor0 <j <gq.

In our proof, by AN B = () we mean 4 and B are vertex-disjoint, provided that 4
is a path and B is a tree. We shall frequently make use of a coloring o,, € C*(G — e)
with properties (i)-(iii) as described in Lemma 6.6; that is,

(7.3) o is a (T}; 4, Dy, pn)-weakly stable coloring, and 7}y , is an ETT satisfy-
ing MP with respect to o,,. Furthermore, if ¢ > 1, then T}, ; admits a good hierarchy
Th =Tno CThi1 C...CTy,qunder oy, with the same I'-sets (see Definition 5.2)
as T under ¢, and T, ; is (Unhepwl"z_l)_—closed with respect to o, (see the

remark succeeding Lemma 6.6).

Claim7.1 p > 2.

Assume the contrary: p = 1; thatis, ' =T}; /U {e1,y1}. Then

(1) there exists a color ain @, (T}y ) NP, (y1) by (7.1).

We consider two cases according to the value of g.

Case 1. ¢ = 0. In this case, from (1) and Algorithm 3.1 we see that ©,, # SE.
Let us first assume that ©,, = RFE. Let §,,,, be as specified in RE of Algorithm
3.1. Since «, §,, € ,,(T},), both of them are closed in T,, with respect to ¢,,. Hence
P, (e, dp, <pn) is vertex-disjoint from T,,. Let o, = ¢,/Py, (a, 6y, ¢,). Then
On € Tn(Tn) NTpr(y1). By Lemma 5.8, o, is a (T, Dy, ¢ )-stable coloring and
hence, by Theorem 3.10(vi), it is a ¢, mod T}, coloring. In view of Definition 3.7,
fn = eq is still an RE connecting edge under o,,. From Algorithm 3.1 we see that
g > 1 and ey is contained in a (d,,, v, )-cycle under o,,, which is impossible because
5n S En(yl)-

So we may assume that ©,, = PE. Let 8 = p,(e1). From TAA we see that
B €@, (T, o) Let 0 €,(T,) NP, (R,). Then 0 is closed in T}; ; under ¢, by
(5.4). By Lemma 6.1(iii), P, (c,0,¢y) is the only (a,0)-path intersecting T} .
Thus Py, (o, 0,0,) N Ty o = 0. Let 0, = /Py, (, 0, ¢p). Then 6 is also closed
in T}y, with respect to on, and o, is a (T 5, Dy, n)-weakly stable coloring by
Lemma 5.8. In view of Lemma 6. 1(iii), 8 and 0 are T}, o-interchangeable under o,

P, (0,8,0,)NT; o # 0and 0,8 € 5,(T; ), there are at least two (6, 3)-paths
with respect to o, intersecting 77¢ ,, a contradiction.

n,0°

Case 2. ¢ > 1. In this case, by Definition 5.2(v), we have
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(2) T4 is (U,,heDnquZ_l)_—closed with respect to ¢,

So e; is colored by some color v in Uy, ¢ Dn,qf“ffl. By Definition 5.2(i) and (5.9),
we have v ¢ . Let 0 € 5,,(Th.q) — @, (L5 ,1)- Then 6 € 97! (so 0 # ) by
Definition 5.2(i). Furthermore, 6 is closed in 7}, 4 under ¢,, by (2). In view of Lemma
6.2, a and 6 are T, 4-interchangeable under ¢,,. So Py, (o, 0, ¢,) = Py, (o, 0, ¢n)
is the unique («,6)-path intersecting 7T), ,. Hence P, (a0, ¢,) NT, 4 = 0. Let
on = on/ Py, (a,0,0,). Then o, satisfies all the properties described in (7.3) by
Lemma 6.6. Since e; is still colored by v € T'9~! under o, and v ¢ I'?, we can
obtain 7 from T}, ; by TAA under 0y, so T'is an ETT satisfying MP under o,,. More-
over, T, =Ty, 0 CTy1 C ... C Ty g+1 = T remains to be a good hierarchy of T
under o,,, with the same I'-sets as those under ¢,,. Hence (T, 0,,) is also a minimum
counterexample to Theorem 5.3 (see (6.2)—(6.5)). As Py, (0,7,0,) N Ty 4 # 0 and
0,7 € 5, (Ty,q), there are at least two (6, v)-paths with respect to o,, intersecting
T,,.q, contradicting Lemma 6.5(iii) (with o,, in place of ¢,,), because 8,y € 7, (T}, 4)
and @ is also closed in T, 4 under o, by (2). Hence Claim 7.1 is justified.

Recall that the path number p(7) of T is the smallest subscript i € {1,2, ..., p},
such that the sequence (v;, €41, ..., €p, Yp) corresponds to a path in G, where p > 2
by Claim 7.1. Depending on the value of p(7T), we distinguish among three situations,
labeled as Situations 7.1, 7.2, and 7.3.

Situation 7.1 p(7') = 1. Now T'— V/(T}; ) is a path obtained by using TAA under
Pn-

Claim7.2 We may assume that @,,(y;) N @, (yp) # 0 for some iwith 1 <i<p— 1.

To justify this, let o € §,,(T(yp—1)) NP, (yp) (see (7.1)). If o € D, (y:) N Py, (yp)
for some i with 1 < ¢ < p — 1, we are done. So we assume that

() acp,(T; ) NG,(yp) and o ¢ B, (ys) forall 1 <i <p—1.
(2) If ©,, = PE and ¢ = 0, then we may further assume that o € p,,(T},).

Let us justify (2). By (1), we have a € 3,,(T}; ). Suppose a € @, (R, — V(T},)).
Then « & T by Definition 5.2(i). In view of (7.2), we have |@,,(T},)| > 11 + 2n
and |I°| < 2|D,, 0| < 2n. So there exists 3 € p,(T,,) — I'°. By Lemma 6.1(iv),
and 3 are T}; 5-interchangeable under ,,. Thus P, (c, 8, ¢n) = Py, (a, B, ¢n) and
P, (a, B, ¢n) is disjoint from T}; . Let 0, = 5,/ Py, (@, B, ¢n). By Lemma 6.6 (the
second case), 0y, is a (T} g, Dn, pn)-weakly stable coloring, and T7;  is an ETT
satisfying MP with respect to o,,. Note that 7" can also be obtained from 77 ; by
TAA under o, because o, 3 € (T}, o). Hence T is an ETT satisfying MP under
on as well. Since o, ¢ T° and a,8 ¢ B, (T(yp—1) — V(T})), the hierarchy
Ty = Tn,o C Ty,1 =T remains to be good under o,,, with the same I'-sets as those
under ¢,,. Therefore (7', 0,,) is also a minimum counterexample to Theorem 5.3 (see
(6.2)(6.5)). As 8 € 7, (T,) N7 (yp), replacing ¢, by o, and a by 3 if necessary,
we see that (2) holds.

Depending on whether « is used by edges in 7' — T}, we consider two cases.
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Case 1. o ¢ ¢, (T'—1T;,). In this case, let 8 €, (yp—1). Then § is

not used by any edge in7qT — 1T, . except possibly e; when ¢=0 and
Tyo=T, (now e; = f, in Algorithm 3.1 and ¢, (e;) = 3 € D,). By (1) and
(2), we have a € 3,(Ty,q) if ¢>1 and a € 3,,(T},) if ¢ =0. It follows from
Lemma 6.5 that P, («, 8, 0n) = Py,_, (o, B,,). So P, (c, B, ¢n) is disjoint from
P, (o, B,¢n). Let 0y, = ©n/P, (v, B,¢n). By Lemma 6.6, o, satisfies all the
properties described in (7.3). In particular, if e; = f,, and ¢, (e1) = 8 € D,,, then
on(e1) = @n(e1), which implies that ey is outside Py, (v, 5, 0n). So on(f) = ©n(f)
for each f € E(T) and 7, (u) = %,,(u) for each u € V(T'(yp—1)). Thus T can be
obtained from 77 , + e; by TAA and is an ETT satisfying MP under . Furthermore,
T, =Tn0CTh1 C...CThy CTy4t1 = T remains to be a good hierarchy of T'
under o,,, with the same I'-sets as those under ,,. Therefore, (T, 0,,) is also a mini-
mum counterexample to Theorem 5.3 (see (6.2)—(6.5)). As 8 € T (Yp—1) NT0n(Yp),
replacing ¢,, by o, if necessary, we see that Claim 7.2 is true.

Case 2. a € ¢, (T —T}; ). In this case, let e; be the edge with the smallest
subscript in T'— T}y . such that ¢(e;) = o. We distinguish between two subcases
according to the value of .

Subcase 2.1. j > 2. In this subcase, let 5 € @, (y;—1). Then B is not
used by any edge in T'(y;) — 1T, , except possibly e; when ¢=0 and
Ty o =T, (mowey = f,inAlgorithm 3.1 and ¢, (e1) = 8 € D,). By (1) and (2), we
havea € 3,,(T}, 4) ifg > land o € B, (T5,) if ¢ = 0. It follows from Lemma 6.5 that
P, (0, B,n) = Py,_, (. 5. 0n). So Py, (a, 5. ¢) is disjoint from P, (cv, 5, o).
Let oy, = @n /Py, (v, B, 0n). By Lemma 6.6, 0, satisfies all the properties described
in (7.3). In particular, if e; = f,, and ¢,(e1) = 8 € D, then o,(e1) = pnler),
which implies that e; is outside P, (e, 3, ¢r). So T can be obtained from T, ,te
by TAA under o, and hence is an ETT satisfying MP under o,.

Note that (¢ T? by Definition 5.2(G) and that 7,(u)=7,(u)
for each weV(T(yp—1)) by (66). If «a¢l'? then clearly
T, =Ty0CTh1 C...CThyCThyt1 =T is a good hierarchy of T under
on, with the same I'-sets as those under ¢,. If a € 'Y, say o € F;’L for some
Ny, € Dy, 4, then Definition 5.2(i) implies that i, € %,,(w) for some w < y,_1. Since
only edges outside 7(w) may change colors between « and 5 as we transform ¢,
into oy, it follows that T, =15, 0 C Ty1 C ... C Ty, C Ty g+1 =T remains to
be a good hierarchy of T under o,,, with the same I'-sets as those under ¢,,. Hence
(T, 0,) is also a minimum counterexample to Theorem 5.3 (see (6.2)—(6.5)). Since
B € Fn(yj—1) NTn(yp), replacing ¢, by o, if necessary, we see that Claim 7.2
holds.

Subcase 2.2. j = 1. In this subcase, & = p(e1). Note that « ¢ I'? by Definition
5.2(i) and (5.9). We propose to show that

(3) there exists a color 7 in @, (T),,4) — 7 if ¢ > 1 and in 3,,(T;,) — % if ¢ = 0,

such that v is closed in T}, | with respect to ¢p,.

Let us first assume that ¢ > 1. By (7.2), we obtain |@,,(Ty.q)| > @, (Tn)| > 2n+ 11
and [T9=1| < 2D, o_1| < 2n. So |,,(Ty.q) — [9~1| > 11. By Definition 5.2(iii),
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we have [I'7 —T77 ! = 2. So [3,,(T},) — (TP UTY)| > 9. Let v be a color in
Bn(Tnq) — (D971 UT?). By Definition 5.2(v), v is closed in 75, , with respect to ¢y,

Next we assume that ¢ = 0. Again, by (7.2), we have |,,(T5,)| > 2n + 11 and
1% < 2|D,, 0| < 2|D,| < 2n. Let 7y be a color in g,,(T,,) — I'° if ©,, # PE and a
colorin,,(T,,) NP, (R,) — I'°if©, = PE (see Definition 5.2(iv)). By Algorithm
3.1 and (5.4), v is closed in T7; , with respect to ¢,,. So (3) holds.

By (3) and Lemma 6.5, P, (o, 7, ®n) = Py (a,7,¢,) is the only (a,v)-path
intersecting T}y .. So P, (a7, ¢n) is disjoint from 7} , and hence it does not con-
tain e;. Let 0y, = ¢ /Py, (o, 7, ¥n). Then o, satisfies all the properties described
in (7.3) by Lemma 6.6. Moreover, 7, (v) = %,,(u) for all u € V(T'(y,—1)) by (6.6).
Since a,v € ,,(T}; ,), we have a,v € 7,(T}; ,). Hence we can obtain 7 from
T, , + €1 by using TAA under oy, so T is an ETT satisfying MP under o,,. Since
a,y ¢ I, the hierarchy T, =T, 0 C Tp1 C ... C Ty g C Ty g+1 = T remains to
be good under o,,, with the same I'-sets as those under ,,. Therefore, (T, 0, ) is also
a minimum counterexample to Theorem 5.3 (see (6.2)—(6.5)). Since e; is outside
P, (a,7,¢n), we have 0,(e1) = a. As v € 7 (yp) N Ty (v) for some v € V(T), 4)
and a # 1, the present subcase reduces to Case 1 if v ¢ 0,,(T' — T}; ) or to Subcase
2.1ify € 0, (T =T, ). This proves Claim 7.2.

Claim 7.3 We may assume that @,,(yp—1) N6, (yp) # 0.

To justify this, let X be the set of all minimum counterexamples (7', ,,) to Theo-
rem 5.3 (see (6.2)—(6.5)), and let i be the largest subscript with 1 < ¢ < p — 1, such
that there exists a member (7', u,,) of K with %, (i) N &, (yp) # 0; this i exists by
Claim 7.2. We aim to show that ¢ = p — 1. Thus Claim 7.3 follows by replacing ¢,
with p,, if necessary.

With a slight abuse of notation, we assume that 3, (v;) N %,,(y,) # 0 and assume,
on the contrary, that: < p — 2. Let o € 3,,(y;) N @, (yp). Using (6.6) and TAA, we
obtain

(1) a ¢ 3, (T(yi-1)), where T'(yo) = T,; ,. So « is not used by any edge in
T(yit1) — T}y ,» except possibly e; when ¢ =0 and T} o = T;, (now ey = f,, in
Algorithm 3.1 and @, (e1) = a € D).

Recall that Definition 5.2 involves I'f = {~} ,~/ } for each n, € D,, ;. Nev-

ertheless, the proof of this claim only involves one 1, € D, ,. For simplicity, we
abbreviate its corresponding 7;’” to ; for j = 1,2. By Definition 5.2(i) and (5.9),

we have

(2)v; €9,(Ty,q) if¢>1and vy; € g, (T,) if ¢ = 0. Moreover, if n, € @, (y:)
for some ¢ > 1, then v; & w0 (T'(y:) — T, ,) for j =1,2.

Depending on whether a € D,, 4, we consider two cases.

Case 1. o ¢ D, ,. In this case, let § € B, (y;+1). From TAA and (6.6) it follows
that

(3)0 ¢ ©,,(T'(yi)), so 0 is not used by any edge in T'(y;1.1) — T}y ,, except possibly
e1wheng = 0and 7}, = T, (now ey = f, inAlgorithm 3.1 and ¢,,(e1) = 0 € Dy,).

If 0 ¢ D, 4, then {o,0} N D,, , = 0. By the definitions of D,, and D,, 4, we
have ©,,(T,,) U Dy, € 3,,(T}; ,) U Dy, g, which together with (1) and (3) implies
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{a,0} N D, =0. Hence Py (o, 0,¢,) =P, (0,0, by Lemma 6.5. Let
on = Pn/Py,(a,0,p,). Since both y; and y; 1 are contained in 7" — V/(T}; ) and
(1) holds, by Lemma 6.6 (the third case), o,, satisfies all the properties described
in (7.3). Furthermore, T is also an ETT satisfying MP with respect to o,, and
T, =Tn0CThy1 C...CThy4 CT,gt1 = T remains to be a good hierarchy of T'
under o,,, with the same I'-sets as those under ,,. Hence (T, o},) is also a minimum
counterexample to Theorem 5.3 (see (6.2)—(6.5)). Since § € 7, (yp) N Ty (Yit1), We
reach a contradiction to the maximality assumption on i.

Sowemayassumethat® € D, ,.Letd =n), € D, 4. Inviewof(2)and Lemma6.5,
we obtain P, (a, 71, %n) = Py, (@, 71, ¢n), which is disjoint from P, (cv, v1, ¥n).
Let o, = ¢n /Py, (, 71, ¢n). By Lemma 6.6, 0, satisfies all the properties described
in(7.3). Inparticular, ife; = f,, and v, (e1) = a € D,,,theno,(e1) = p,(e1), which
implies that ey is outside P, (v, 71, ¥ ). By (6.6), (1) and (2), wehave 7, (u) = 3,, ()
for each v € V(T'(yp—1)) and o, (f) = ¢, (f) for each edge fin T'(y;41). So T can
be obtained from 7}; , + €1 by TAA under o, and hence is an ETT satisfying MP
under o,. Furthermore, T,, = T,,0 C Ty1 C ... C Ty g C T g41 = T remains to
be a good hierarchy of T under o,,, with the same I'-sets as those under ¢,,. Hence
(T, 0,) is also a minimum counterexample to Theorem 5.3 (see (6.2)—(6.5)), with
Y1 € Tn(yp) NTn(Th,q)-

Using (2) and Lemma 6.5, we obtain Py, (14,71, 0n) = Py, ., (Mh, 71, 0n), Which
is disjoint from P, (np,v1,0,). Let o, = 0,/ Py, (n,71,05). By Lemma 6.6, o},
satisfies all the properties described in (7.3) (with o}, in place of 0,,). In particular, if
e1 = fnandoy(e1) = ny € Dy, thenol,(e1) = o, (e1), whichimpliesthate; isoutside
Py (Mh,71,0n).By(6.6),(2)and(3),wehaved), (u) = &, (u)foreachu € V(T (y,—1))
and o7,(f) = oy, (f) for each edge fin T'(y;+1). So T can be obtained from 7},  + ey
by TAA under o/,, and hence is an ETT satisfying MP under o/,. Furthermore,
since 1y, € T, (Yit+1), the hierarchy T), =Ty, 0 CTp1 C ... C Ty g CTpge1 =T
remains to be good under o,, with the same I'-sets as those under (,,. Therefore
(T, o}, is also a minimum counterexample to Theorem 5.3 (see (6.2)—(6.5)). Since
Ny € T (Yp) N7, (yi+1), we reach a contradiction to the maximality assumption on
i

Case 2. a € D, 4. In this case, let « =), € D,, 4. Then '} = {71,792} (see
the paragraph above (2)). Renaming subscript if necessary, we may assume that
©n(€ixr1) # 71. By (1) and (2), we have

@) 1 ¢ en(T(Yiy1) — T, ,) and 7y, is not used by any edge in T'(y;+1) — T},
except possibly e; when ¢ = 0 and T}, = T}, (now e; = f, in Algorithm 3.1 and
‘Pn(el) =np € Dy € Dy).

By (4) and Lemma 6.5, we obtain P, (1,71, ¢n) = Py, (4,71, n), Which
is disjoint from the path P, (n4,71,%n). Let 0, = ©n/Py, (Mh,71,¢n). By
Lemma 6.6, o,, satisfies all the properties described in (7.3). In particular, if e; = f,
and @, (e1) =nn € Dy, then o,(e1) = p,(e1), which implies that e; is outside
Py, (0n,71, ¢n). By (6.6) and (4), we have 7, (u) = @,,(u) foreachu € V(T'(yp—1))
and 0, (f) = ¢n(f) for each edge fin T'(y;+1). So T can be obtained from 7}y  + ey
by TAA under o,, and hence is an ETT satisfying MP under o,. Furthermore,
T, =Tn0CTh1 C...CThy CTygt1 = T remains to be a good hierarchy of T’
under o,,, with the same I'-sets as those under ,,. Therefore, (T, 0,,) is also a mini-
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mum counterexample to Theorem 5.3 (see (6.2)—(6.5)), withy1 € T, (yp) NTn(Th,q)-
Let 0 € 5,,(y;+1). From TAA we see that

(5) 0 is not used by any edge in T'(y;+1) — T, , under o, except possibly e; when
q=0and T} o =T, (now e; = f, in Algorithm 3.1 and o, (e1) = 0 € D,,).

By (6.6), we have 6 # ;. Using (4) and Lemma 6.5, we get
P, (0,71,00) = Py, ., (0,71,00). Leto), = 0,/ P, (0,71,0,). By Lemma 6.6, o,
satisfies all the properties described in (7.3) (with o}, in place of ¢,,). In particular,
if ey = f, and 0, (e1) =0 € D, then o/,(e1) = o, (e1), which implies that e; is
outside P, (6,71,0y). From (6.6) and (4) we deduce that &;,(u) = 7, (u) for each
u € V(T (yp-1)), and o), (f) = o, (f) for each edge f'in T'(y;+1). So T can also be
obtained from 7}; , + e1 by TAA under o7, and hence is an ETT satisfying MP under
o,,. Furthermore, T, =T}, 0 C T,1 C ... C T}, g C T g+1 = T remains to be a
good hierarchy of those under o/,, with the same I'-sets as those under ¢,,. Therefore,
(T, o}, is also a minimum counterexample to Theorem 5.3 (see (6.2)—(6.5)). Since
0 € 7, (yp) N7, (yi+1), we reach a contradiction to the maximality assumption on i.
Hence Claim 7.3 is established.

By Claim 7.1, p>2. By Claim 7.3, %,(yp—1)N®,(yp) #0. Let
a €, (Yp—1) NP, (yp) and B = @, (ep,). Let o,, be obtained from ¢,, by recol-
oring e, with « and let 7" = T'(y,—1). Then S € 7, (yp—1) N Fn (T’ (yp—2)) and
T,=T,0CTh1 C...CT,q CT isagoodhierarchy of T’ under o,,. So (I, 0,,)
is a counterexample to Theorem 5.3 (see (6.2)—(6.4)), which violates the minimality
assumption (6.5) on (T, ,, ). This completes our discussion about Situation 7.1.

Situation 7.2 p(T") = p. Now e, is not incident to y,_1.

By (7.1), there exists a color o € 3,,(T(yp—1)) NP, (yp). We divide this situa-
tion into 3 cases and further into 6 subcases (see Figure 4), depending on whether
Vo = Yp—1 OF & € Dy, 4. Our proof of Subcase 1.1 is self-contained. Yet, in our dis-
cussion Subcase 1.2 may be redirected to Subcase 1.1 and Subcase 2.1, and Subcase
2.1 may be redirected to Subcase 1.1, etc. Figure 4 illustrates such redirections (note
that no cycling occurs).

Throughout this situation we reserve the symbol 6 for ¢, (e,). Clearly, 6 # a.

Casel.a €5,(yp) NG, (yp—1) anda € D, 4.

Let o = ny, € Dy, 4. For simplicity, we abbreviate the two colors v, and v, in
I'?, (see Definition 5.2) to 1 and 2, respectively. Since 7, € B,,(Yp) NGy (Yp—1),
from TAA and Definition 5.2(i) we see that

() 71,72 & en{T(yp-1) — T,y ,) and 7, is not used by any edge in 7' — T, ,
except possibly e; when ¢ = 0 and T}, = T}, (now e = f, in Algorithm 3.1 and
‘Pn(el) = Nm € Dp,q € Dyp).

By (1) and Lemma 6.5 (with respect to (T, ¢,,)), we have

(2) PUA,J- (Umﬁj, Qan) = Py;>—1(77m77j; Qon) fOI'j = ]-7 2.

Let us consider two subcases according to whether § € @, (y,—1).

Subcase 1.1. 0 ¢ B, (yp—1).

In our discussion about this subcase, we shall appeal to the following two
tree-sequences:
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Subcase 1.2

0

Subcase 1.1 . Subcase 2.2 '
Subcase 3.2

Fig. 4 Redirections

o T™ = (T;7q7elay1,€27"~7ep727yp727ep7yp> and

* *
o T = (Tn 7613y1762a"'7yp—27epaypaep—17yp—1)~
»q

Note that 7'~ is obtained from 7 by deleting ¥,_; and T™ arises from 7 by inter-
changing the order of (e,—1,¥p—1) and (ep, yp). We propose to show that both 7'~
and T are ETTs corresponding to ¢,,. By the hypothesis of the present subcase,
enlep) =0 & 0, (yp—1). Thus if T'(yp—2) # Ty, then @ (€p—1) and ¢y (ep) are in
@, (T (yp—2)), and therefore both T~ and T* can be obtained from T'(y,—_2) by using
TAA under ¢,,. So we assume that T'(y,—2) = T,. If ©,, = RE or SE, we must have
that e, is incident to 7T}, and therefore 6 € 3, (yp—1), because T;, is closed under
¢p. Thus we deduce that ©,, = PE because 0 ¢ %, (y,—1). Hence ¢, (e,—1) and
©n(ep) are in g, (T,) following Algorithm 3.1, and therefore both T~ and T™* can
be obtained from 7'(y,—2) by using TAA under ¢,, as well. Therefore both T~ and
T* are ETTs corresponding to ¢,,. In view of the maximum property enjoyed by T,
we further conclude that both T~ and T are ETTs satisfying MP with respect to ¢,,.

Let us first assume that 6 ¢ T9 Now it is easy to see that
Th =Tno CTh1 C... CTyq CT™ isagood hierarchy of 7~ under ¢,,, with the
same I'-sets (see Definition 5.2) as 7. (If @ € I'?,say § € '} ,and ), € @, (yp—1), then
T~ no longer satisfies Definition 5.2(i).) Observe that v1 ¢ %, (y,), for otherwise,
~1 is missing at two vertices in T~ Thus (7', p,,) is a counterexample to Theorem
5.3 (see (6.2) and (6.3)), which violates the minimality assumption (6.4) or (6.5) on
(T, ¢n). Let us turn to considering T*. Since 6 ¢ B, (yp—1) and 6 ¢ I'?, it is clear
that T, = T, 0 C Ty,1 C ... C Ty ,q C T is a good hierarchy of T under ¢,,, with
the same I'-sets as 7. Moreover, by (1), we have 1 ¢ ¢, (T*(y,) — T, ). It follows
from Lemma 6.5 (withrespectto (7, . )) that P, (m, 71, 0n) = Py, (Mm, 71, ),
contradicting (2).

Next we assume that @ € T'9. Then 6 € I’} forsome ny, € Dy, . Ifn & B, (Yp—1),
then ny, € @, (T (yp—2)) by Definition 5.2(i). So we can still ensure that both 7~ and
T* have good hierarchies under ¢,,. Thus, using the same argument as employed in
the preceding paragraph, we can reach a contradiction. Hence we may assume that
Nh € @n(yp—l)'

Clearly, 6 # 1 or 2. Renaming subscripts if necessary, we may assume that

(3) 0 # 2.
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Since Py, (Mm, 72, ¥n) = Py,_, (n, Y2, ¢n) by (2), this path is disjoint from
Py (Nm>2,0n). Let py = on/Py (Mm, 72, ¢n). By Lemma 6.6, u; satisfies all
the properties described in (7.3) (with py in place of ¢,,). In particular, if e; = f;,
and @, (e1) = Nm € Dy, then pi(e1) = pn(er), which implies that ey is outside
Py (Nm>72,n). By (1) and (3), we have p1(f) = ¢n(f) for each f € E(T') and
iy (u) = B, (u) for each u € V(T(yp-1)). So we can obtain 7 from T}; , + e; by
using TAA under p1; thereby 7 is an ETT satisfying MP under p. Furthermore,
T, =Tn0CTh1 C...CThgCTyyt1 =T remains to be a good hierarchy of
T under pq, with the same I'-sets as those under ¢,,. Therefore, (T, 1) is also a
minimum counterexample to Theorem 5.3 (see (6.2)—(6.5)), in which ~y» is missing
at two vertices.

By Lemma 63, we have [7y(T(yy-2)) — iy (Tho — V(T0))
—pi{T(yp—2) — Tpy ;)| = 2n + 11, where T(yo) =Ty, It follows
that [, (T(yy-2) =0 (Thg = V(L) — (T =T} > 2049, As
[T < 2|D,, 4| < 2|D,,| < 2n by Lemma 3.5, using (6.6) we obtain

(4thereexistsacolor Sinfiy (T'(yp—2)) — 11 (T o — V(1)) — (T = T;; ) — T

By Lemma 6.5 (with 2 in place of a), P, (83,72, 1) = Py (8,72, 1), so it
is disjoint from P, (83,72, p1). Let pa = p1 /Py (8,72, 1). By Lemma 6.6, jiz
satisfies all the properties described in (7.3) (with uo in place of 0,,). By (1), (3)
and (4), we have 6,7 ¢ 1 (T(yp) — Ty.,). S0 pa(f) = ua(f) for each f € E(T)
and Tiy(u) =iy (u) for each w e V(T(y,—1)). Hence we can obtain 7' from
1), , + €1 by using TAA under pio; thereby T satisfies MP under p. Furthermore,
T, =Tn0CTh1 C...CThy CTy4+1 = T remains to be a good hierarchy of T’
under po, with the same I'-sets as those under 1. Therefore, (7', u2) is also a mini-
mum counterexample to Theorem 5.3 (see (6.2)—(6.5)), in which S is missing at two
vertices. Since 0 € T'} and n, € @, (yp—1) = H1 (Yp—1) = Ha(Yp—1), We obtain

(5) 0 ¢ /’L2<T(yl)—1) - T’:,q>'

By (4), we also have

©) B ¢ pa(T — Ty,

It follows from (5) and Lemma 6.5 (with 6 in place of «) that
P, (3,0, 12) = Py, (8,0, p2), so it is disjoint from P, (3,0, uz). Finally, set
ps = w2/ Py, (8,0, p2). By Lemma 6.6, pi3 satisfies all the properties described in
(7.3) (with pg3 in place of ;). From (5) and (6) we see that 7 can be obtained from
1), , + €1 by using TAA under p3. Hence T'is an ETT satisfying MP under p3. Note
that 15(f) = () for cach f € E(T(yy-1)), pia(ey) = 3, and iy (u) = iy (u) for
each v € V(T (yp—1)). Moreover, 3 ¢ T'Y by (4). It is a routine matter to check that
T, =Ty0CTh1 C...CTh4gCTyyt1 =T remains to be a good hierarchy of
T under p3, with the same I'-sets as those under po. Since ps(e,) = 8 ¢ I'? and
vg < Yp—1, we see that 7'~ has a good hierarchy and is an ETT satisfying MP with
respect to 3. As 6 is missing at two vertices in 7, we conclude that (7, u3) is a
counterexample to Theorem 5.3 (see (6.2) and (6.3)), which contradicts the minimal-
ity assumption (6.4) or (6.5) on (T, ©y,).

Subcase 1.2. 0 € B, (yp—1).

In this subcase, from (6.6) and TAA we see that
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(760 ¢ B,,(T(yp—2)), so 8 ¢ I'Y and hence § # 71, v2. Furthermore, 6 is not used
by any edge in T'(y,-1) — T}, ,, except possibly e; when ¢ = 0 and T}; = T, (now
e1 = fn in Algorithm 3.1 and ¢,,(e1) = 6 € D,,).

Since Py (Mm, V1, 0n) = Py, (ms71,0n) by (2), this path is disjoint
from Py, (m,71,¢n). Let p1 = @n/Py (Mm,71,¢n). By Lemma 6.6, p; satis-
fies all the properties described in (7.3) (with p; in place of ¢,,). In particular, if
e1 = fn and @n(e1) = nm € Dy, then py(e1) = @n(e1), which implies that e
is outside P, (7m,71,%n). By (1) and (6.6), we have p1(f) = ¢, (f) for each
f e E(T) and i, (v) = 3, (u) for each u € V(T'(yp—1)). So we can obtain 7 from
T, , + €1 by using TAA under 111, and hence 7 satisfies MP under p;. Furthermore,
T, =Tn0CTh1 C...CThy CTy4t1 = T remains to be a good hierarchy of T'
under (11, with the same I'-sets as those under (,,. Therefore, (T, 111) is also a mini-
mum counterexample to Theorem 5.3 (see (6.2)—(6.5)), in which ; is missing at two
vertices.

From (1) and the definition of y1, we see that

(8) At ¢ H1 <T - T:L(,q>'

From (8) and Lemma 6.5 (with ~; in place of «), we deduce that
Py, (0,71, p1) = Py,_, (0,71, 1), which is disjoint from P, (6,71,u1). Let
po = p1/ Py, (0,71, p1). By Lemma 6.6, 115 satisfies all the properties described in
(7.3) (with po in place of 0,,). In particular, if e; = f,, and pq(e;) = 6 € D, then
p2(e1) = pi(er), which implies that e; is outside P, (6,71, p1). In view of (7),
(8) and (6.6), we have po(f) = pi(f) for each f € E(T(yp—1)), pa(ep) =71, and
o (u) = Ty (u) for each u € V(T'(yp—1)). Moreover, 6 ¢ I'Y. So T can be obtained
from T7; , + e1 by using TAA under pi2, and hence is an ETT satisfying MP under po.
It is a routine matter to check that T, =T, 0 C 1,1 C ... C Ty g CTh g1 =T
remains to be a good hierarchy of 7 under uo, with the same I'-sets as those under
1. Therefore, (T, u2) is also a minimum counterexample to Theorem 5.3 (see (6.2)—
(6.5)). Since 0 € Ty (yp) N Ho(yp—1) and pa(ep) = v1 ¢ Ha(yp—1), the present sub-
case reduces to Subcase 1.1 if @ € D,, , and reduces to Subcase 2.1 (to be discussed
below) if 0 ¢ D,, 4.

Case2.a € @n(yp) N En(yp—l) and « ¢ Dn,q-

By the definitions of D,, and D, 4, we have 3,,(T5,) U D,, €@, (T ;) U Dy .
Using (6.6) and this set inclusion, we obtain

) a¢?,(T(yp—2)) and a & Dy,. So a ¢ ¢, (T =T, ,) by TAA (see, for
instance, (1)).

Recall that T'(yo) = T}; , and 0 = ¢, (e,). We consider two subcases according to
whether 0 € B, (yp—1).

Subcase 2.1. 0 ¢ B, (yp—1).

In our discussion about this subcase, we shall also appeal to the following two
tree-sequences:

— *
o T™ = (Tn’q7617y17€27"'76p72ayp72vepayp) and

* *
o T = (Tn 7617y1762a"'7yp—27epaypaep—l7yp—1)'
»q

@ Springer



Journal of Combinatorial Optimization (2025) 50:23 Page 73 of 91 23

As stated in Subcase 1.1, T~ is obtained from 7 by deleting y,,—; and T arises from
T by interchanging the order of (e,—1, yp—1) and (e,, yp). Furthermore, both 7~ and
T* are ETTs satisfying MP with respect to ¢,,. Observe that

(10) T, =T50 CTh1 C ... CTyg CTh g1 =T7 is a good hierarchy of T
under ¢,,, unless § € I'} for some 1, € D,, 4 such that n, € B, (yp—1).

Let us first assume that the exceptional case in (10) does not occur; that is, there
exists no n, € Dy, 4 such that n, € @, (yp—1) and @ € T'}. It is easy to see that now
Th=Tno CTh1 C... CTyq CT™ isagood hierarchy of T~ under ¢,,.

By Lemma 63, we have [5,(T(y,-2)—7,(Tro— V(T0))
—1(T'(yp—2) — T}y )| = 2n + 11 holds, where T'(yo) = T}y ,. Since |D,| < n by
Lemma 3.5, using (6.6) we obtain

(11) there exists a color B8 in
Pn(T(yp—2)) = @n(T5 0 = V(T0)) — (T = T} ) — Dn.

Note that 5 ¢ 3, (yp), for otherwise, (T'~, ¢,,) would be a counterexample to
Theorem 5.3 (see (6.2) and (6.3)), which violates the minimality assumption (6.4) or
(6.5)on (T',0,).Since o, B ¢ @ (T — T}y ) and o, B ¢ D,, by (9) and (11), applying
Lemma 6.5 (with «, 8 switched in the lemma) to (7, ¢,,) and (T, ¢, ), respectively,
we obtain P, (a, 3, 0n) = Py,_ (o, 8,¢,) and Py, (o, 8,0,) = Py, (o, B, ¢n), a
contradiction.

So we assume that the exceptional case in (10) occurs; that is, there exists
Ny, € D,, 4 such that n, € 3,,(yp—1) and 6 € FZ. For simplicity, we abbreviate the
two colors 7 and ;. in T’} (see Definition 5.2) to 71 and 72, respectively. Renam-
ing subscripts if necessary, we may assume that § = ~,. By Definition 5.2(i) and
TAA, we have

(12) v2 ¢ n(T' =T ,) and 7, is not used by any edge in T'—T}; , except
possibly e; when ¢=10 and T, ="1T, (now e; = f, in Algorithm 3.1 and
‘Pn(el) =np € Dypg € Dy).

By (12) and Lemma 6.5 (with « in place of (), we obtain
P, (a,72,n) = Py, _, (@,72,¢n), which is disjoint from P, (a,72,¢n). Let
p1 = ¢n/Py, (a,v2,¢n). By Lemma 6.6, i, satisfies all the properties described in
(7.3) (with py inplace of o,). Since v, ¥2 & @n(T'(yp) — T}y ;) by (9)and (12), we have
p1(f) = on(f) for each f € E(T) and 71, (u) = B, (u) for each u € V(T (yp—1)).
So we can obtain 7 from T}, | + e by using TAA under (11, and hence T'is an ETT sat-
isfying MP under p;. Furthermore, T, =15, 0 C T, 1 C ... C Ty g CTh g1 =T
remains to be a good hierarchy of 7 under p1, with the same I'-sets as those under
©n. Therefore, (T, p11) is also a minimum counterexample to Theorem 5.3 (see (6.2)—
(6.5)), in which -y, is missing at two vertices.

If  mn€ny(yp), then  my €y (yp) N1 (Yp—1);  Mn € Dnyg,  and
pi(ep) =71 ¢ @, (yp—1). Thus the present subcase reduces to Subcase 1.1. So we
may assume that 7, ¢ I, (y,). By (12) and the definition of 14, we have

(13) 72 ¢ p(T' = T; ;) and 7y is not used by any edge in 7' — T}y , under p,
except possibly e when ¢ = 0 and T}, = T}, (now e = f, in Algorithm 3.1 and
pi(er) = npn € Dy).

By (13) and Lemma 6.5 (with 2 in place of «), we obtain
Py, (Mn,v25 1) = Py, _, (n, 72, 1), which is disjoint from P, (np, 72, p1). Let
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p2 = p1/ Py, (Nn, vz, p1). By Lemma 6.6, uio satisfies all the properties described in
(7.3) (with po in place of ¢,). In particular, if e; = f,, and py(ey) = np € Dy, then
p2(e1) = p1(e1), which implies that e; is outside Py, (9, vz, pt1). By (13), we have
pa(f) = pa(f) foreach f € E(T) and iy (w) = fi; (u) foreachu € V(T (yp—1)). So
we can obtain 7 from 7},  + e1 by using TAA under po, and hence 7'is an ETT sat-
isfying MP under po. Furthermore, T, =T, 0 C T, 1 C ... C Ty g CTh g1 =T
remains to be a good hierarchy of 7 under uo, with the same I'-sets as those under
1. Therefore, (T, p2) is also a minimum counterexample to Theorem 5.3 (see (6.2)—
(6.5)), in which np, € T (yp) N 2 (Yp—1), Mh € D g, and pa(ep) = 71 ¢ T (Yp—1)-
Thus the present subcase reduces to Subcase 1.1.

Subcase 2.2. 0 € B, (yp—1).

Let us first assume that § € D, 4; that is, § = n,,, for some n,, € D,, 4. For sim-
plicity, we use €1 and €3 to denote the two colors vy, and v, in '], (see Definition
5.2), respectively. By Definition 5.2(i) and TAA, we have

(14) e1,e2 ¢ pn(T — T,y ;) and 7y, is not used by any edge in T'(y,—1) — T;; ,»
except possibly e when ¢ = 0 and T}, = T}, (now e; = f, in Algorithm 3.1 and
‘Pn(el) =Mm € Dn)

By (14) and Lemma 6.5, we obtain P, (a,e1,0n) = Py, _ (a,€1,¢,), which is
disjoint from P, (a,e1,¢n). Let p1 = ¢, /Py, (o, €1, ¢,). By Lemma 6.6, ju; satis-
fies all the properties described in (7.3) (with w7 in place of ¢,,). By (9) and (14), we
have

(15) a,e1 ¢ (T — T}y ;) and 7y, is not used by any edge in T'(y,—1) — Ty ,
under pi1, except possibly e; when ¢ = 0 and T}, , = T}, (now e; = f, in Algorithm
3.1and pi(er) = nm € D).

Sop (f) = @n(f)foreachf € E(T)andfi; (u) = B,,(u)foreachu € V(T (yp—1)).
Thus T'canbe obtained from T}, | + e1 by using TAAunder 1, and henceisan ETT sat-
isfying MP under p;. Furthermore, T, =15, 0 C 1,1 C ... C Ty g CTh g1 =T
remains to be a good hierarchy of 7 under p1, with the same I'-sets as those under
©n. Therefore, (T, p11) is also a minimum counterexample to Theorem 5.3 (see (6.2)—
(6.5)), in which € is missing at two vertices.

By (15) and Lemma 6.5 (with e; in place of «), we obtain
P, (Mmse1, 1) = Py, (M, €1, p1), which is disjoint from P, (1,1, p1). Let
p2 = p1/ Py, (m, €1, p1). By Lemma 6.6, 115 satisfies all the properties described in
(7.3) (with ug in place of 0,). In particular, if e; = f,, and u1(e1) =, € Dy, then
p2(e1) = p1(e1),whichimpliesthate; isoutside Py, (1), €1, 11). Inviewof(15),wehave
2(f) = mi(f) for cach f € B(T(y,—1)), pa(ep) = 21, and iy () = 7, () for cach
u € V(T'(yp—1)).SoTcanbeobtainedfromT;; , + e1 byusingTAAunder ji2,andhence
satisfies MP under pio. Furthermore, T, = T3, 0 C 11 C ... CTpq CThgy1 =T
remains to be a good hierarchy of 7 under uo, with the same I'-sets as those under
1. Therefore, (T, p2) is also a minimum counterexample to Theorem 5.3 (see (6.2)—
(6.5)), in which 1, € T13(yp) N H2(Yp—1), Mm € Di g, and pa(ep) = €1 & Mo (Yp—1).
Thus the present subcase reduces to Subcase 1.1.

Next we assume that € ¢ D,, 4. Set T'(yo) = T}; ,. We propose to show that

(16)  there exists a color B€P,(T(yp-2)) —Pn(Tyo—VI(Th))
—on(T' =Ty ) — Drn g, such that either S¢T? or SeT] for some

h S Dn,q N @n(T(yp_Q))
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Tojustifythis,notethatif@n(T(yp_g))—¢n(T,’;0 —V(T)—en{T (Yp—2) — Ty )

n,q
_(Fq U Dn,q)‘ 2 59 then |¢n(T(yp—2))_¢n(T’:,O - V(Tn))_<p7b<T - T':,q>
—(T?7U D, 4)| > 3, because T' — T'(y,—2) contains precisely two edges. Thus there
exists a color 3 € @, (T(yp—2))—?, (T o — V(Tn))—pn(T =T} ;) — Dn g, such
that 5 ¢ T'9.

So we assume that |¢n(T(yp—2))_¢n(T':,O - V(Tn))_§0n<T(yp—2) - T':,q>
—(T'7U D, 4)| < 4.ByLemma6.3,thereexist7distinctcolorsny, € Dy, q NG, (T (yYp—2))
such that (I} U {nn}) Nn(T(yp—2) — Ty ,) = 0. Let 3 be an arbitrary color

in such a I'}. From Definition 5.2, we see that T'} € 3, (T .)€ @, (T (yp—2)),

L Ng,(Tro—V(Th)=0,and '} N Dy, 4 =0 (see (5..7)). So B €, (T(yp—2))
—u(Tr o~ V(Tw)) — @alT(gp-2) — Tg) — Dug. Since T —T(yp2) con-
tains precisely two edges, there exists 8 € @, (T(yp—2))—Pn (Lo — V(Th)) — ¢n
(T =Ty ) — Dn,g, such that g € I'} for some 75, € Dy g N %,,(T(yp—2)). Hence
(16) is established.

By the definitions of D,, and D, 4, we have 3,,(T5,) U D,, €@, (T ;) U Dy g
By (16), B & ,,(T7; o — V(T)) U Dy, 4. Tt follows from these two observations that

(17)ifq > 1,then 3 € ,,(T}; ,) or B ¢ Dy;ifq = 0,then 3 € 3, (1) or B ¢ D,,.

By (9), (16), (17) and Lemma 6.5, we obtain P, (a, 3, ¢n) = Py,_, (o, B, ¢n),
which is disjoint from P, («, 8, ¢,). Let us = on /P, (o, 3, ¢y). By Lemma 6.6,
w3 satisfies all the properties described in (7.3) (with 3 in place of ¢,,). By (9) and
(16), we have o, 8 ¢ (T — Ty ,). So

(18) o, B ¢ (T — T,),

us(f) = on(f)foreach f € E(T),andfiz(u) = @, (u) foreachu € V(T (yp—1)).
Thus we can obtain T'from7};  + e1 by using TAAunder yi3,and hence T'is an ETT sat-
isfying MP under p3. Furthermore, T, = 15,0 CT1y,1 C ... C Ty g CTh g1 =T
remains to be a good hierarchy of 7 under u3, with the same I'-sets as those under
©n. Therefore, (T, p3) is also a minimum counterexample to Theorem 5.3 (see (6.2)—
(6.5)), in which [ is missing at two vertices.

Since 6 € B,,(yp—1), it follows from (6.6) that 6 ¢ B, (T}; ). By assumption,
0 ¢ Dy g As D, (Tn) U D, C,(T; ) U Dy g, we obtain

(19) 0 ¢ Dy, and hence 0 ¢ p3(T'(yp—1) — T;; ,) by TAA.

By (17)-(19) and Lemma 6.5, we obtain P, (0, 8, u3) = P,,_, (0, 3, 13), which is
disjoint from P, (0, 3, u13). Let py = p3/ Py, (6, 3, 113). By Lemma 6.6, 114 satisfies
all the properties described in (7.3) (with 4 in place of o,,). By (18) and (19), we have
1a(f) = s (f)foreach f € E(T(y—1))andi, (u) = iy (u)foreachu € V(T(y,-1)).
So we can obtain 7from T}, | + e1 by using TAAunder 114, and hence T'is an ETT satis-
fying MPunder /14. Since either 8 ¢ T'?or 3 € '} forsomeny, € Dy, g N 7is(T(yp—2))
by (16), it follows that T}, = Ty, 0 C Ty, 1 C ... C Ty g C T}y g1 = T remains to be
a good hierarchy of T under p4, with the same I'-sets as those under 3. Therefore,
(T, p4) is also a minimum counterexample to Theorem 5.3 (see (6.2)—(6.5)), in which
0 € Ty (yp) N0 (Yp—1), 8 & D q, and pa(ep) = B & fi4(yp—1). Thus the present
subcase reduces to Subcase 2.1.

Case3.a € 3,,(yp) NP, (v) for some vertex v < yp_1.

Set T'(yo) = T, ,- Let us first impose some restrictions on c.
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(20) We may assume that a € 3,,(T(y,—2)) — ¢n (T =T ,), such that either
agéanUI‘q if¢g>1landa ¢ D, UT%ifq =0, oralssomenh € D, 4 satisfy-
ing '} N (T =Ty ) = 0.

To justify this, note that if [3,(T(yp—2))%, (T;;O V(T ) — ¥n
(T(yy-2) — T ) —(T1 U D, )| = 5, then [, (T(yp-2))~ 5 (T — V(To))
—<pn<T—T;f,> (T9U Dy 4)| >3, because T — T(yp 2 contams precisely
two edges. Thus there exists a color €9, (T(yp—2))—%, (T o —V(Th))
(T~ T ,) — ([0 D,,). Cleatly, 3 €3, (T(yy2))—pn(T —Ts,) and
B¢ D, qUFq if g>1 and 8¢ D, UT? if ¢ =0 (note that B¢ D, because
6 % gpn( n,0 V(Tﬂ)) U Dn,O)-

If 2, (T(Yp—2)) =8 (T 0 — V(T0)) =0T (Yp—2) — Ty o) —(T7U Dy g)| < 4,
then, by Lemma 6.3, there exist 7 distinct colors 7y, € D, N %, (T(yp—2)) such
that (T} U {nn )N (T(yp—2) — Ty ,) = 0. Since T —T(y,—2) contains
precisely two edges, there exists one of these 7, denoted by [, such that
(Th U{nn}) Non(T =Ty ) = 0.

v\_/\/\_/

Combining the above observations, we conclude that

(21) there exists (€@, (T(yp—2)) — pn(T =T ,), such that either
B¢ D,,UTlifg>1and B¢ D, UT" if ¢ =0, or 38 is some ny, € D,, , satisfy-
ing '} N (T =T ) = 0.

If 8 € %,,(yp), then (20) holds by replacing a with 3 (recall the hypothesis of the
present case). So we assume hereafter that 5 ¢ @, (). Let Q = P, (a, 3, ¢y) and
let o, = ¢, /Q. We propose to show that one of the following statements (a) and (b)
holds:

(@) o, isa (T ;, Dn, n)-weakly stable coloring, T is also an ETT satisfying MP
with respect to o, and T}, = Ty, 0 C Ty 1 C ... C Ty g C Ty g41 = T remains
to be a hierarchy of 7' under o,,, with the same I'-sets (see Definition 5.2) as those
under ,,. Moreover, (20) holds with respect to (T, oy, ).

(b) There exists an ETT T’ satisfying MP with respect to (,, such that
T,=Th0CTh1 C...CT,4 CT isagood hierarchy of 7" under ¢,,, with
the same I'-sets as 7 under ¢,,. Moreover, V (T”) is not elementary with respect
to ¢, and p(T") < p(T).

Note that if (b) holds, then (77, ,,) would be a counterexample to Theorem 5.3 (see
(6.2) and (6.3)), which violates the minimality assumption (6.4) on (7', ©y,).

Let us first assume that Q is vertex-disjoint from T'(y,—1). By Lemma 5.8, oy,
is both (T'(yp—1), Dn, n)-stable and (T (y,—1), ¢n )-invariant. If ©,, = PE, then
oy, is also (T, ® Ry, D, ¢y,)-stable. Furthermore, T'(y,—1) is an ETT satisfying
MP with respect to oy, and T, =T}, 0 C T,1 C ... C Tp g € T(yp—1) is a good
hierarchy of T'(y,—1), with the same I'-sets as T under o,,. By definition, o,, is a
(T 4> Dns pn)-weakly stable coloring. By the hypothesis of Case 3 and assumption
on 3, we have ¢, (e,) # a, . Thus it is clear that (a) is true, and (20) follows if we
replace ¢, by o, and « by 5.
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Next we assume that O and T'(y,—1) have vertices in common. Let u be
the first vertex of Q contained in T'(y,—1) as we traverse Q from y,. Define
T =T(yp—1) UQu,yp] if u=yp_1 and T =T (yp—2) U Q[u,y,] otherwise.
By the hypothesis of Case 3 and (21), we have o, 8 € B, (T(yp—2)). So T’ can be
obtained from T'(y,—2) by using TAA under ¢,,, with p(T’) < p(T). It follows that
T’ is an ETT satisfying MP with respect to ,,.

By Definition 5.2, we have D,, , N T'? = () (see (5.7)). Thus

(22) B ¢ T by (21).

Let us proceed by considering three possibilities for a.

e o ¢ T'. Since both o and 3 are outside I'? (see (22)), it is easy to see that
T,=T,0CTh1C...CT,q CT isagood hierarchy of T’ under ¢,,, with the
same I'-sets as 7 under ¢,,. Hence (b) holds.

o acTing,(T-T;,). Let «ac r{ for some mn, € D,, Since
o(ep) # a,wehave a € 0, (T'(yp-1) — T); ,)- Hence ny, € 3, (T (yp—2)) by Defini-
tion 5.2(i). Furthermore, 8 € 3,,(T(yp—2)) and 8 ¢ T'? by (21) and (22). Therefore,
T,=T,0CTh1C...CT,q CT isa good hierarchy of T’ under ¢,,, with the
same I'-sets as 7 under ¢,,. Hence (b) holds.

e acl'"—y,(T—T,;,). By the definition of I'?, we have a € 3,,(T, )
if ¢>1 and a€p,(T,) if ¢g=0. It follows from Lemma 6.5 that
P, (o, B,0n) = Pyy(a, B,0,), which is disjoint from Q. By Lemma 6.6,
on = pn/Q satisfies all the properties described in (7.3). Since o, B & w0, (T — T} )
by the assumption on «, (21) and (6.6), we have o,,(f) = p,(f) for each f € E(T)
and 7, (u) = @, (u) for each u € V(T (y,-1)). So we can obtain 7 from T}, , + ey
by using TAA under o, and hence T'is an ETT satisfying MP under o,,. Furthermore,
T, =Tn0CThy1 C...CThy4 CT,4t1 = T remains to be a good hierarchy of T’
under o,,, with the same I'-sets as those under ,,. Therefore, (T, 0,,) is also a mini-
mum counterexample to Theorem 5.3 (see (6.2)—(6.5)), in which S is missing at two
vertices. So (a) holds and therefore (20) is established by replacing ¢,, with o,, and
£ with a.

Let « be a color as specified in (20). Recall that 8 = ¢, (e,). We consider two
subcases according to whether 6 € @, (yp—1).

Subcase 3.1. 0 ¢ B, (yp—1).

Consider the tree-sequence T~ = (T} ,,€1,Y1,€2,-,€p—2,Yp—2,€p,Yp). AS

stated in Subcase 1.1, T~ arises from T by deleting y,,—1, and T~ is an ETT satisfy-
ing MP with respect to ¢,,. Observe that

23T, =Tho CTh1 C...CTyq CT™ is agood hierarchy of 7~ under ¢y,
unless 6 € I'?, for some 7,,, € D, 4 such that 1, € B, (yYp—1)-

It follows that the exceptional case stated in (23) must occur, for otherwise,
(T, ,) would be a counterexample to Theorem 5.3 (see (6.2) and (6.3)), which
violates the minimality assumption (6.4) or (6.5) on (7', ¢,,). So 0 € T'?, for some
Tm € Dy, 4 such that 7, € B, (Yp—1).

Since a € B, (T (yp—2)), we have o # 1, by (6.6). From Definition 5.2(i), we
see that

(24) 0 % Pn <T(yl)—1) - T':,q>'
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By the definition of I'Y, we have 6 € 3, (T, 4) if ¢ > 1 and 0 € 3, (T},) if ¢ = 0.
Thus, by (20), (24) and Lemma 6.5, we obtain P,,_ (v, 0, ¢,) = Py, (e, 0, ¢y, ), which
is disjoint from P, (o, 0, ¢y ). Let py = pn /P, (o, 0, ¢,). By Lemma 6.6, ju; satis-
fies all the properties described in (7.3) (with w4 in place of 0,). Using (20) and (24),
we get

(25) Q, g ¢ H1 <T(yl)—1) - T’:,q>>

11(f) = palf) for cach [ € E(T(yp 1)), pule,) = a ¢ T (see (20)), and
iy (u) = B, (u) for each u € V(T(y,-1)). So we can obtain 7 from T}; , + e; by
using TAA under pq and hence 7 is an ETT satisfying MP under p;. Furthermore,
T, =Tn0CTh1 C...CThy CT,gt1 = T remains to be a good hierarchy of T’
under (11, with the same I'-sets as those under (,,. Therefore, (T, 111) is also a mini-
mum counterexample to Theorem 5.3 (see (6.2)—(6.5)), in which 6 is missing at two
vertices.

By (25) and Lemma 6.5, we obtain P, (1), 0, p11) = Py,_, (hm, 0, p1), which is
disjoint from Py (1), 0, u1). Let po = p1/ Py, (m, 0, p11). By Lemma 6.6, po sat-
isfies all the properties described in (7.3) (with uo in place of 0,,). Note that 1, is
not used by any edge in 7' — T , under p, except possibly e; when ¢ = 0 and
T, o =T, (now ey = f, in Algorithm 3.1 and ui(e1) = nm € Dy). So ey is out-
side Py, (1)m, 0, u1). Hence po(f) = pi(f) for each f € E(T), and fiy(u) = 71y (u)
for each u € V(T(yp—1)). It follows that T can be obtained from 7, + ey
by using TAA and hence is an ETT satisfying MP under po. Furthermore,
T, =Tn0CTh1 C...CThy CTy4+1 = T remains to be a good hierarchy of T’
under 112, with the same I'-sets as those under 1. Therefore, (7, p2) is also aminimum
counterexample to Theorem 5.3 (see (6.2)—(6.5)). Since 7., € To(Yp) N Ha(Yp—1),
Mm € Dy, g, and pa(e,) = o & o (yp—1), the present subcase reduces to Subcase 1.1.

Subcase 3.2. 0 € B, (yp—1).

We first assume that 0 € D,, . Let 0 = 7, € D,, 4. For simplicity, we abbreviate
the two colors 71, and ~;,, in '], (see Definition 5.2) to 1 and 72, respectively. By

m

(20) and Definition 5.2(i), we have

(26) {a, 71,72} Npn(T =T} ;) = 0.

By (26) and Lemma 6.5, we obtain P, (o, v1,¢n) = Py, (@, 71, 9n), which is
disjoint from P, (a,v1, ¢n). Let p1 = 05 /Py, (o, 71, ¢n). By Lemma 6.6, ju; satis-
fies all the properties described in (7.3) (with p; inplace of o,). Since 1 (f) = @n(f)
for each f € E(T), and i, (v) = @, (u) for each v € V(T'(y,—1)), we can obtain T
from 7}; . + e1 by using TAA under y; and hence 7 is an ETT satisfying MP under
p1. Furthermore, T3, =T, 0 C Ty,1 C ... C Ty g C Ty g+1 =1 remains to be a
good hierarchy of 7 under w7, with the same I'-sets as those under p1. Therefore,
(T, 1) is also a minimum counterexample to Theorem 5.3 (see (6.2)—(6.5)), in which
71 is missing at two vertices. In view of (26) and Definition 5.2(i), we get

Q7 {a,y1,72} N (T = T,; ) = 0, and 0y, is not used by any edge in 7' — T} ,
under pi1, except possibly e; when ¢ = 0 and T}, , = T}, (now e; = f, in Algorithm
3.1and p1(e1) = M € Dy g € D).

By (27) and Lemma 6.5, we obtain P, (Y1, %m, 1) = Py,_, (71, m., f11), which
is disjoint from P, (71, %m, pt1). Let po = i1/ Py, (71, Mm, p11). By Lemma 6.6, pz
satisfies all the properties described in (7.3) (with uo in place of ). In particular,
ife; = f, and pi(e1) = N € Dy, then pso(er) = pi(er), which implies that e; is
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outside Py, (V1,Mm,p1). Since po(f) = p1(f) for each f e E(T(y,—1)) by (27),
and fiy(u) = iy (u) for each u € V(T'(y,—1)), we can obtain T from 7}y , + e; by
using TAA under po and hence 7 is an ETT satisfying MP under p5. Furthermore,
T, =Tn0CTh1 C...CThy CT,4t1 = T remains to be a good hierarchy of T'
under 112, with the same I'-sets as those under 1. Therefore, (7, p2) is also aminimum
counterexample to Theorem 5.3 (see (6.2)—(6.5)). Since 7., € To(Yp) N Ha(Yp—1),
Nm € Dy, g, and po(ep) = v1 ¢ Ha(yp—1), the present subcase reduces to Subcase
1.1.

Next we assume that § ¢ D, ,. By (6.6) and the hypothesis of the present subcase,
we have 0 ¢ 3,,(T}; ;). So 0 & ,,(T}; ,) U D, 4, which implies 6 ¢ @, (T,,) U D,.
In particular,

(28)0 ¢ D, ,UT'%ifg > 1and 0 ¢ D,, UTY if ¢ = 0. Furthermore, 6 is not used
by any edge in T'(y,—1) — T}y , by TAA (see, for instance, (1)).

We proceed by considering two possibilities for «.

o «¢ D, , Now it follows from (20) that

29 o ¢ D, ,UT?ifg>1and a ¢ D, UTif g = 0.

By (20) and Lemma 6.5, we obtain P, («,0,¢,) = P, _, (o, 0,¢y), which is
disjoint from P, (v, 0,y ). Leto, = ¢,/ P, (a,0,¢,). By Lemma 6.6, 0,, satisfies
all the properties described in (7.3). Since 0, (f) = ¢, (f) for each f € E(T(yp—1))
by (20) and (28), and 7, (u) = %,,(u) for each v € V(T'(y,—1)), we can obtain T
from 7}; . + e1 by using TAA under o,, and hence T is an ETT satisfying MP under
op. Inview of (28) and (29), 15, = T, 0 C 11 C ... C Ty ,q C Th g+1 = T remains
to be a good hierarchy of 7 under o,,, with the same I'-sets as those under ¢,,. There-
fore, (T, 0,) is also a minimum counterexample to Theorem 5.3 (see (6.2)—(6.5)).
Since 8 € 7, (yp) NTn(Yp—1), 6 & Dy 4, and o, (ep) = @ ¢ 7, (yp—1), the present
subcase reduces to Subcase 2.1.

e acD,, Let =1y, € D, 4. For simplicity, we use 1 and €2 to denote the
two colors v;. and ;. in T} (see Definition 5.2), respectively. By (20), we have
(30) {Oé, €1, 62} N @7,,<T — T:7q> = @

By (30) and Lemma 6.5, we obtain P, (&1, %) = Py, (@,€1,%y,), which is
disjoint from P, (a,e1,¢n). Let p1 = ¢, /Py, (o, €1, ¢, ). By Lemma 6.6, ju; satis-
fies all the properties described in (7.3) (with p; inplace of o,). Since u1 (f) = @n(f)
for each f € E(T) by (30), and 7i; (u) = @, (u) for each u € V(T'(yp—1)), we can
obtain 7 from 77; | + €1 by using TAA under y; and hence T'is an ETT satisfying MP
under p;. Furthermore, T, =T, 0 CT,1 C ... C Ty q C Ty g1 = T remains to
be a good hierarchy of T'under p1, with the same I'-sets as those under ,,. Therefore,
(T, 1) is also a minimum counterexample to Theorem 5.3 (see (6.2)—(6.5)), in which
€1 is missing at two vertices. From (30) and Definition 5.2(i) we see that

Bl)er ¢ (T — ;).

By (31) and Lemma 6.5, we obtain P, (0,e1, 1) = Py, _, (6,1, 1), which
is disjoint from P, (6,e1,p1). Let po = pui /Py (0,1, 01). By Lemma 6.6,
po satisfies all the properties described in (7.3) (with us in place of o,). In
view of (28) and (31), we have po(f) = p1(f) for each f € E(T(y,—1)) and
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iy (u) = P, (u) for each u € V(T'(yp—1)). So T can be obtained from T},  +e;
by using TAA and hence is an ETT satisfying MP under po. Furthermore,
Th =Tno CTh1 C... CTy,q CTygr1 =T remains to be a good hierarchy of T
under po, with the same I'-sets as those under p1. Therefore, (T, p2) is also a mini-
mum counterexample to Theorem 5.3 (see (6.2)—(6.5)). Since 6 € Ti5(yp) N o (Yp—1),
0 ¢ D,, 4, and ps(e,) = €1 ¢ fy(yp—1), the present subcase reduces to Subcase 2.1.
This completes our discussion about Situation 7.2.

Situation7.3 2 < p(T) <p-— 1.

Recall that T'= T}y U {e1,y1, €2, ., €y, Yp }, and the path number p(7) of T is the
smallest subscript t € {1,2,...,p} such that the sequence (yi, €141, ..., €p, Yp) COI-
respondstoapathinG.Set I, ={1<t<p-—1:3,(yp) NB,(y:) # 0}. We use
max(I,, ) to denote the maximum element of I, if I, # (). For convenience, set
max(l,, ) = —1if I, =0.

If max(I,, ) > p(T), then we may assume that max(l,, ) = p — 1 (the proof is
exactly the same as that of Claim 7.3). Let & € @, (yp—1) N B, (yp) and 8 = pp(ep).
Let 0,, be obtained from ¢,, by recoloring e, with  and let 7" = T'(y,—1). Then
B€Tu(yp—1) NTn(T")and T,, =T}, 0 C Tp1 C ... C Ty, C T' is a good hierar-
chy of T” under o,,. So (T”,0,,) is a counterexample to Theorem 5.3 (see (6.2) and
(6.3)), which violates the minimality assumption (6.4) or (6.5) on (T, ¢,,).

So we may assume hereafter that max ([, ) < p(T). Let i = max([,, ) if
I, #0,andlet j = p(T). Then e; is not incident to y;_1. In our proof we reserve
Yo for the maximum vertex (in the order <) in 73, .

Claim 7.4 We may assume that there exists o € ©,(yp) NG, (T (yj—2)), such
that either o ¢ I'"Up, (T ) — V(Ty)) or a € I}, for some 1y, € Dy, g with
U = Yj—2-

To establish this statement, we consider two cases, depending on whether I, is
empty.

Case 1.1, # 0.

By assumption, max ([, ) < p(T). Soi < j — 1. Let o € $,,(yp) N B, (v:). By
(6.6), we obtain

(1) « ¢ @n(T;‘;,q)' Soa % I U@n(T’rt,O - V(Tn))

If i <j—2, then o € 3,,(T(yj—2)), as desired. Thus we may assume that
1=7—1

) There exists a color RS @n(T(yj_g))En(T;;O —V(T,))
—pn{T(yj-1) — ,’{7,1) —(I7U D, 4) or a color § € I'?, for some n,, € D, , with
UV]m j yj—2 and (an U {T]m}) N <pn<T(y]_1) - T7T,q> = @

Tojustifythis,notethatif|¢" (T(yj—Q))_¢n (T:,O - V(Tn))_gpn <T(yj—2) - T':,q>
—('9U Dy, 4)| = 5, then there exists a color 3 in @, (T(y;-2)) =@, (T o — V(Tn))
—n(T(yj—1) — Ty ,)—(T7U D, 4), because T'(y;—1) — T(yj—2) contains only
one edge.

I f

[Pn(T(y5-2)) = @u(Tio = V(Tn)) = on(T(yj—2) = T5 ) = (TTUDpg)| <4,
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then, by Lemma 6.3, there exist 7 distinct colors n, € Dy, o N %, (T(y;—2)) such
that (T} U{nn}) N@n(T(yj—2) — Ty ,) =0. Since T(yj—1) —T(y;—2) con-
tains only one edge, there exists at least one of these 7n, say 7., such that
(Td, U{nm}) Nen(T(yj-1) — T;; ,) = 0. So (2) is true.

Depending on whether a is contained in D, ,, we distinguish between two
subcases.

Subcase 1.1. a € D,, ;. In this subcase, let o =71, € D,, 4. For simplicity, we
abbreviate the two colors ) and +}_ in T’} (see Definition 5.2) to 71 and 72, respec-
tively. Since 05, € ©,,(y;—1), by Definition 5.2(i) and TAA, we have

31,72 & en(T(yj—1) — Ty ,),andny isnotused by anyedgein T'(y; 1) — Ty
except possibly e; when ¢ = 0 and T}, = T}, (now e = f, in Algorithm 3.1 and
‘Pn(el) =np € Dy € Dy).

By (3) and Lemma 6.5, we obtain P, (71,Mh, ¥n) = Py;_, (71, Mn; n), Which is
disjoint from P, (71, 7n, ¥n).Let 1 = ©n /Py (71, Mh, ¥n). By Lemma 6.6, 1, satis-
fies all the properties described in (7.3) (with w1 inplace of o,). Inparticular, ife; = f,
and @, (e1) = nn € Dy, then uy(e1) = ¢n(e1), which implies that e; is outside
Py, (71,7n, ¢n). Using(3) and (6.6), we get 11 (f) = on(f) foreach f € E(T(y;-1))
and 7i; (u) = @,,(u) foreach u € V(T'(y,—1)). So we can obtain T from 7}; | + e1 by
using TAA under 1, and hence T is an ETT satisfying MP under p,. Furthermore,
since 1y, € 14 (y;—1), the hierarchy T;, =T, 0 C T, 1 C ... C T g C Ty g1 =T
remains to be good under pq, with the same I'-sets as those under pq. Therefore,
(T, 1) is also a minimum counterexample to Theorem 5.3 (see (6.2)—(6.5)), in which
71 is missing at two vertices.

From (3) we see that

@ v1,72 & (T (yj—1) — Ty ,)»and np, isnotused by any edge in T'(y;—1) — T}y ,
under p1, except possibly e; when ¢ = 0 and 7}, , = T}, (now e; = f, in Algorithm
3.1and p1(e1) = nn € Dy g C Dy).

Let 3 be a color as specified in (2). Note that

(5) B ¢ M1<T(yj—1) - T;,q>s /8 ¢ Dn,qs and 5 7é Nh = Q.

Sinceyy € fiy (T q)ifqg > landy; € fiy (T),) if ¢ = 0, from (4) and Lemma 6.5 we
deduce that P, (71,3, 1) = Pus (71, 8, 1), which is disjoint from P, (v1, 3, p1).
Let po = 1/ Py, (71,8, p1). By Lemma 6.6, p17 satisfies all the properties described
in (7.3) (with uo in place of o,). By (4), (5) and (6.6), we have ua(f) = pi(f)
for each f € E(T(y;-1)), and fiy(v) = [, (u) for each w € V(T'(y,—1)). So we can
obtain 7 from 7} , + €1 by using TAA under 2 and hence T is an ETT satisfying
MP under po. If 8 ¢ T, then clearly T, = Ty, 0 C 15,1 C ... C Ty g CTpge1 =T
remains to be a good hierarchy of 7 under uo, with the same I'-sets as those under
f1. So we assume that 8 € I'Y. By (2), we have 3 € I'Y, for some 7, € D), 4
with v, < y;jo and (T4, U{nm}) Non(T(y;-1) — T, ,) = 0. It follows that
Th=Tno CTh1 C...CThq CT,ger1 = Tisstillagoodhierarchy of Tunder ji,
with the same I'-sets as those under yi1. Therefore, (T, ii2) is also a minimum counter-
example to Theorem 5.3 (see (6.2)—(6.5)), in which 8 € Ty (yp) N Ho (T (y;—2)). From
(2) and the definitions of 11 and ji2, we see that either 3 ¢ T U3, (1) o — V(T%))

or € I'?, for some n,, € D, g withv,, = = y;_o. Thus Claim 7.4 holds by replacing

m

®n with L2 and o with ﬂ
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Subcase 1.2. a ¢ D, 4. In this subcase, using (1) and the set inclusion
Pn(Tn) U D, C @n(T:,q) U Dy q, we get

(6) @ ¢ Dy,. So avis not used by any edge in T'(y;—1) — Ty , by TAA.

Let 3 be a color as specified in (2). Then there are two possibilities for 5.

B €5, (T(yj-2) = Bu(Tig — V(T0) — n(Tly;—1) — T p) — (T1U D,y ).
Now it follows from Lemma 6.5 that P,, (o, 8, ¢n) = P,,_, (o, 8, ¢y ), so this path
is disjoint from P, (o, 3, ¢,). Let 0, = pn/P, (o, B3,¢y). By Lemma 6.6, o,
satisfies all the properties described in (7.3). By (6), the assumption on 3 and
(6.6), we have o,,(f) = @, (f) for each f € E(T(y;-1)), and 7, (u) = %, (u) for
each u € V(T(yp-1)). So we can obtain 7 from T  + ey by using TAA under
o, and hence T satisfies MP under o,,. Since a, 3 ¢ I'? (see (1)), the hierarchy
Th =Tno CTh1 C... CThq CThgr1 =T remains to be good under o, with
the same I'-sets as those under ¢,,. Therefore, (T, 0;,) is also a minimum counterex-
ample to Theorem 5.3 (see (6.2)—(6.5)), in which 5 € 7, (y,) N Tn (T (y;—2)). Thus
Claim 7.4 holds by replacing ¢,, with o,, and @ with (.

° geld for some NMm € Dn g with Up,n = Yj—2 and
(T4, U {nm}) N on(T(yj-1) — Ty ,) = 0. Note that 7,,, € ,,(T'(y;—2)) and hence
@ # 1, by (6.6). In view of Lemma 6.5, we obtain P, (a, 3, vn) = Py, (v, B, n),
which is disjoint from P, (o, 3, ¢n). Let 0, = /P, (o, 3, ¢y). By Lemma 6.6,
oy, satisfies all the properties described in (7.3). By (6), the assumption on [ and
(6.6), we have 0,,(f) = @, (f) for each f € E(T(y;-1)), and 7, (u) = %, (u) for
each u € V(T(yp-1)). So we can obtain 7 from T  + ey by using TAA under
o, and hence T is an ETT satisfying MP under o,,. Since o ¢ T'? (see (1)) and
Nm € B, (T (yj-2)), the hierarchy T,, =T, 0 CTp1C ... CTp g CThgr1 =T
remains to be good under o,,, with the same I'-sets as those under ,,. Therefore,
(T,o,) is also a minimum counterexample to Theorem 5.3 (see (6.2)—(6.5)), in
which 8 € 7, (yp) N7, (T (y;j—2)). Thus Claim 7.4 holds by replacing ¢,, with o,
and o with f3.

Case2.1, = 0.

Let a € 3, (yp) NP, (T (yp—1)). By the hypothesis of the present case, we have
a€p,(Ty,) fagliuy,(Ty,—V(T,)), we are done. So we assume that
a € T1UB,(Tho — V().

Subcase 2.1. a € 3,,(T}; o — V(7)) — I'Y. Let us first show that

(7) there exists a color 3 € 3,,(T5; ;) — @, (T o — V(Th)) — T2

n,q
Indeed, since V(7}; ;) is elementary with respect to ¢,, we have |@,(T} ,)
_¢n (T:,O - V(Tn)) _Fq| > |¢n (T;:,O) _¢H (T;:,O - V(Tn)) - 1_‘q|

=|%,(T,) —T9. In view of (7.2), we obtain |g,(T,)] >2n+ 11 and
09 < 2Dyl <20 So [7,(Th,) — 70T — V(T,)) — 7 > 11, which
implies (7).

By (7) and Lemma 6.5, we obtain P,_(«, 3, 0n) = Py, (a, 8, ¢,), which is dis-
joint from P («, 3, n). Leto, = ¢n /P, (o, B, ¢y). By Lemma 6.6, 0, satisfies all
the properties described in (7.3). Since o, 3 € %,,(T}; ,), we have 0, (f) = @, (f) for
each f € E(T}; ), and 7, (u) = 3,,(u) for each u € V(T'(y,-1)). So we can obtain
Tfrom T}, , + €1 by using TAA under 0, and hence T'is an ETT satisfying MP under
On. As a,B ¢T9, the hierarchy T, =T, 0 CTp1C...CTp g CThgr1 =T
remains to be good under o,,, with the same I'-sets as those under (,,. Therefore,

@ Springer



Journal of Combinatorial Optimization (2025) 50:23 Page 83 of 91 23

(T,0,) is also a minimum counterexample to Theorem 5.3 (see (6.2)—(6.5)), in
which 8 € 7, (yp) N7, (T (y;j—2)). Thus Claim 7.4 holds by replacing ¢,, with o,
and o with f3.

Subcase 2.2. o € I'Y. Let a € I'Y, for some 7,, € D,, 4. Depending on whether
T, is contained in @, (T (yp—1)), we consider two possibilities.

® i & 7, (T(yp—1)). By Definition 5.2(i), we have o ¢ ¢, (T — T ). Let 3
be a color in %, (yp—1). By Lemma 6.5, we obtain P,_(«, 8, 0n) = Py, (a, 8, n),
which is disjoint from P, (o, 3, ¢n). Let 0, = /P, (o, 3, ¢y). By Lemma 6.6,
oy, satisfies all the properties described in (7.3). Since 5 € B,,(yp—1), we see that
B # pn(ep) as e, is incident with y,_1. Because T'(y,—1) is elementary (see
(6.6)), by the construction of 7, 5 was not used by any edge on 7' — T} . under
¢n, except possibly e; when ¢ =0 and 17, =T, (now e; = f, in Algorithm
3.1 and ¢p(e1) =B € Dy g C D,). In particular, in the case that e; = f,, and
on(e1) =B € D, Lemma 6.6 guarantees o,(e1) = p,(e1). Moreover, since
ad o (T =Ty ,) and a,B € P, (T (yp—2)), we have 0, (f) = pn(f) for each
f e E(T),and 7, (u) =%, (u) for each u € V(T'(yp—1)). So we can obtain T from
T}, , + €1 by using TAA under 0,, and hence T is an ETT satisfying MP under o,.
Furthermore, the hierarchy 1;, =T}, 0 C T 1 C ... C Ty q C Ty g+1 = T remains
to be good under o, with the same I'-sets as those under (,,. Therefore, (T, 0,,)
is also a minimum counterexample to Theorem 5.3 (see (6.2)—(6.5)), in which
B € Tnlyp) NTn(y@ — 1)). However, by recoloring e, with 3, we have reached a
smaller counterexample than 7, which violates the minimality assumption (6.4) or
(6.5) on (T, pn,).

® N €9,(T(yp-1)). Note that n,, ¢ 3, (T, ,) because 7, € Dy 4. So
Nm € P, (y) for some 1 <t <p—1.If t <j—2, then Claim 7.4 holds. Thus
we may assume that ¢ > j — 1. Since 7, € %, (y:), it is not used by any edge
in T'(y;) — T, ,» except possibly e; when ¢ =0 and T}; ; = T}, (now e; = f, in
Algorithm 3.1 and ¢, (e1) = m € Dy g € Dy,). Since a € 'Y, by Definition
5.2(i), o is not used by any edge in T'(y;) — T, . It follows from Lemma 6.5 that
P, (o, 0m»©n) = Py, (0, m, ¢n), which is disjoint from P, (o, nm,n). Let
On = ©n/ Py, (a,Nm, ©n). By Lemma 6.6, 0, satisfies all the properties described in
(7.3). In particular, ife; = f,, and ¢, (e1) = 1 € Dy, theno,(e1) = ¢n(e1), which
impliesthate; isoutside P, (e, 1), ¢n). Since o, (f) = @n(f)foreach f € E(T(y))
and 7, (u) =@, (u) for each u € V(T(y,-1)), we can obtain T from T  + ey
by using TAA under o,,, so T is an ETT satisfying MP under o,,. Furthermore, As
o, N, € T (T(ye)), the hierarchy T, =T, 0 CTp1 C ... C Ty CThgr1 =T
remains to be good under o,,, with the same I'-sets as those under ,,. Therefore,
(T,0,) is also a minimum counterexample to Theorem 5.3 (see (6.2)—(6.5)), in
which 7., € G, (yp) NTn(y:). Thus the present subcase reduces to the case when
max (I, ) > p(T)if j < t (see the paragraphs above Claim 7.4), and reduces to Case
1 (where I, # 0) ift = j — 1. This proves Claim 7.4.

Let «o be a color as specified in Claim 7.4; that is,
@ €9,(yp) NP, (T(yj—2)), such that either a ¢ 17U, (T —V(T,)) or
aeT? for some 7, € D, , with v, =<y,;_2. Since T(y;) —T(yj—2) con-
tains precisely two edges, Lemma 6.3 guarantees the existence of a color 8 in

Du(T(yi—2)) = Pn(Tio = V(Tn)) = enlT(y;) = T3 4) — (07U Dpg) or a color
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B=mn € DngN$,(T(yj—2)) such that (T} U{nn}) Nen(T(y;) =Ty ,) = 0.
Note that

®) B ¢ pn(T'(y;) — T’:,q> uIe.

Let Q = P, (o, 3,,). We consider two cases, depending on whether Q inter-
sects T'(y;—1).

Case 1. O and T'(y;_1) have vertices in common. Let u be the first vertex of O
contained in T'(y;_1) as we traverse Q from y,. Define T/ = T'(y;-1) U Q[u, yp]
if u=y;_1 and T =T (y;—2) U Q[u,y,| otherwise. By the choices of « and
B, we have o, € %,(T(yj—2)). So T’ can be obtained from T(y;_2) by
using TAA under ,,. It follows that 7" is an ETT satisfying MP with respect to
©n, wWith p(T") < p(T). If « ¢ T'?, then both « and S are outside I'? (see (8)), so
T,=T,0CTh1C...CT,q CT is a good hierarchy of 7" under ¢,,, with
the same I'-sets as T under ¢,,. If o € I'?, then a € I'}, for some 7,, € D,, , with

m
Uy,, = Yj—2 by Claim 7.4. Since o, 0, € B,,(T(y;j—2)) and 5 ¢ 'Y, it is clear that
T,=T,0CTh1C...CT,q CT isalso a good hierarchy of 7" under ,,, with
the same I'-sets as T under ,,. So (T”, ¢,,) is a counterexample to Theorem 5.3 (see
(6.2) and (6.3)), which violates the minimality assumption (6.4) on (7', ©y,).

Case 2. Q is vertex-disjoint from T'(y;_1). Let 0, = ¢,,/Q. By Lemma 5.8, o, is
(T(yj—1), Dn, n)-stable. In particular, o, is (T'(y,;—1), ¢n)-invariant. If ©,, = PE,
then o, is also (T}, ® Ry, D,,, ¢,,)-stable. Furthermore, T'(y;_1) is an ETT satisfy-
ing MP with respect to o, and T;, = T},0 C Tp,0 C ... C Tp, o C T'(y;—1) isa good
hierarchy of T'(y,_1) under o,,, with the same I'-sets as Tunder ¢,,. By definition, o,,
isa (T ,, Dn,¢n)-weakly stable coloring. If o € T'?, then both v and /3 are outside
I'? (see (8)),s0 Ty, = Ty0 CTp1 C ... C Ty ,q C T is agood hierarchy of T under
o, with the same I'-sets as Tunder ¢,,. If & € I'?, then a € I'¢, for some 1,,, € D), 4
with v, < y,_2 by Claim 7.4. Since «, n,, € @,,(T(yj—2)) and 8 ¢ T'9, it is clear
that T, = Ty,0 C Ty C ... C Ty q CT is also a good hierarchy of 7 under o,
with the same I'-sets as T under ¢,,. So (7, 0,,) is a counterexample to Theorem 5.3,
in which [ is missing at two vertices.

From the choice of 5 above (8) and the definition of o,,, we see that

(9)  either B E T (T, o~ V(Th)Uon(T(y;) =T, ) UT9U D, ) or

8= € Dyg N (T(y;—2)), such that (T U {mn}) N o (T (y;) — T ) = 0.

Let 6 € 3,,(y;). Then 6 ¢ I'Y. We proceed by considering two subcases.

Subcase 2.1. 6 ¢ D,, ,. In this subcase, using (6.6) and the set inclusion
Pn(T0) U Dy, €3, (T ) U Dy g, we obtain

(10)0 ¢ 5,(T(y;-1))and @ ¢ D,,.Sofisnotassignedtoanyedgein T (y;) — T}y ,
by TAA.

As described in (9), there are two possibilities for 5.

o B¢ou(To—V(Th)Uon(T(y;) — Ty ,)U(T?UD,,). Observe that
B ¢ Dy, if ¢ = 0. By Lemma 6.5, we obtain P, (f3,0,0,) = P, (83,0, 0,), which
is disjoint from P, (83,0,0,). Let 1 = 0,/P, (5,0,0,). By Lemma 6.6, 1
satisfies all the properties described in (7.3). By (10), the assumption on 5 and
(6.6), we have p1(f) =0, (f) for each f € E(T(y;)) and iy (u) =7, (u) for
each u € V(T (yp-1)). So we can obtain 7 from T,  + ey by using TAA under

p1 and hence T is an ETT satisfying MP under p1. As 3,0 ¢ I'?, the hierarchy
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Th =Tno CTh1 C... CTh,q CThgr1 =T remains to be good under 17, with
the same T'-sets as those under o,,. Therefore, (T, 1) is also a minimum counter-
example to Theorem 5.3 (see (6.2)—(6.5)), in which 6 € [, (y,) N, (y;). Thus the
present subcase reduces to the case when max(1,,) > p(T) (see the paragraphs
above Claim 7.4).

e =1 € Dyg N 7a(T(y;—2)),suchthat (18 U {1 }) N 0 (T(y;) — T,) = 0.
For simplicity, we abbreviate the two colors ) and /! in T’} (see Definition 5.2) to
71 and 72, respectively. By Lemma 6.5, we obtain P, (3,71,0,) = P, (By71,0n),
which is disjoint from P, (83,71,0,). Let o = 04,/ P, (5,71, 0,). By Lemma 6.6,
Lo satisfies all the properties described in (7.3). By the assumption on 3, neither 5 nor
71 is used by any edge in T'(y;) — T}y ,. So p2(f) = o, (f) for each f € E(T(y;)).
By (6.6), we get fip(u) = T, (u) for each u € V(T'(yp—1)). It follows that 7 can be
obtained from 7}; . + e; by using TAA under 12 and hence T'is an ETT satisfying MP
under po. Furthermore, the hierarchy T, = T,,0 C T5,1 C ... C Ty g CThge1 =T
remains to be good under p5, with the same I'-sets as those under o,,. Therefore,
(T, u2) is also a minimum counterexample to Theorem 5.3 (see (6.2)—(6.5)), in which
<1 is missing at both y,, and v, .

From the assumption on S and the definition of s, we deduce that (11)
B =1 € Dy g"in(T(y;—2)). such that (T U {m )Mo (T(y;) — Ty g) = 0.

By (11) and Lemma 6.5, we obtain P, (0,71, 12) = Py, (0,71, p2), which is dis-
joint from P, (6,71, p2). Let p3 = po/P, (0,71, 12). By Lemma 6.6, p13 satisfies
all the properties described in (7.3). By (10), (11) and (6.6), we have us(f) = pa(f)
for each f € E(T(y;)) and fi5(u) = fiy(u) for each u € V(T'(yp—1)). So we can
obtain 7 from T}, , + €1 by using TAA under 3 and hence T is ETT satisfying MP
under p3. Furthermore, the hierarchy T, = T,,0 C Ty 1 C ... C Ty g CTh g1 =T
remains to be good under p3, with the same I'-sets as those under po. Therefore,
(T, p3) is also a minimum counterexample to Theorem 5.3 (see (6.2)—(6.5)), in which
6 is missing at both y,, and y;. Thus the present subcase reduces to the case when
max(1,,) > p(T) (see the paragraphs above Claim 7.4).

Subcase 2.2. 0 € D,, ;. Let 0 =, € D,, ,. For simplicity, we use £, and &> to
denote the two colors 7 and 7{ in T'{ (see Definition 5.2), respectively. Then

(12) 1,62 ¢ 0, (T'(y;) — T}y ,) and 7, is not used by any edge in T'(y;) — T}y ,
under o, except possibly e; when ¢ = 0 and T}; ; = T), (now e; = f,, in Algorithm
3.1and o, (e1) =m € Dy g C Dy).

By (12) and Lemma 6.5 (with e; in place of «), we obtain
Py, (e1,8,00) = Pyy(e1,B,0,), which is disjoint from P, (e1,83,0,). Let
pa = 0n/ Py, (€1,5,0,). By Lemma 6.6, juy satisfies all the properties described
in (7.3). By (9), we have 3 ¢ 0,(T'(y;) — T, ,), which together with (12) and
(6.6) implies pa(f) = 0, (f) for each f € E(T(y;)) and fiy(u) = 7, (u) for each
u € V(T'(yp—1)). So we can obtain T from T, , + e; by using TAA under p4 and
hence T is an ETT satisfying MP under 4. Since 8 ¢ I'? by (9) and n; € iy, (y;), the
hierarchy T;, =T}, 0 C T 1 C ... C Ty q C Ty g+1 = T remains to be good under
{4, with the same T'-sets as those under o,,. Therefore, (7, pu4) is also a minimum
counterexample to Theorem 5.3 (see (6.2)—(6.5)), in which ¢; is missing at both ¥,
and v, .
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From (12) and (6.6) it can be seen that

(13) e1,e2 & pa(T(y;) — Tyy o) and my & 154(T'(yj-1)). So 7¢ is not used by any
edge in T'(y;) — T,y , under p4, except possibly e; when ¢ = 0 and 7}; ; = T}, (now
e1 = f in Algorithm 3.1 and p4(e1) = € Dy g C Dy).

By (13)and Lemma 6.5, we obtain P, (€1, fta) = Py; (€1, M4, j14), which is dis-
joint from P, (e1, 7, p14). Let ps = pa/ Py, (1,74, p14). By Lemma 6.6, ju5 satisfies
all the properties described in (7.3). In particular, if e; = f,, and p4(e1) = n¢ € Dy,
then yi5(e1) = pa(e1), which implies that e; is outside P, (1,7, jt4). By (13) and
(6.6), we have pus(f) = pa(f) for each f € E(T(y;)) and fi5(u) = fy(w) for each
u € V(T'(yp—1)). So we can obtain T from T , + e; by using TAA under p5 and
hence T is an ETT satisfying MP under ps. Since 1, e1 € 7i5(T'(y;)), the hierarchy
Th =Tno CTh1 C... CThq CThgr1 =T remains to be good under ps, with
the same TI'-sets as those under p4. Therefore, (T, ui5) is also a minimum counterex-
ample to Theorem 5.3 (see (6.2)—(6.5)), in which 6 = n, is missing at both y,, and
y;. Thus the present subcase reduces to the case when max([,;) > p(T) (see the
paragraphs above Claim 7.4).

This completes our discussion about Situation 7.3 and hence our proof of Theorem
5.3. (Il

7.2 Proof of theorem 3.10(ii)

In the preceding subsection we have proved Theorem 5.3 and hence Theorem 3.10(1).
To complete the proof of Theorem 3.10, we still need to establish the interchange-
ability property as described in Theorem 3.10(i1).

Lemma 7.1 Suppose Theorem 3.10(i), (iv), and (vi) hold for all ETTs with n rungs
and satisfying MP, and suppose Theorem 3.10(ii) holds for all ETTs with n — 1 rungs
and satisfying MP. Then Theorem 3.10(ii) holds for all ETTs with n rungs and satisfy-
ing MP; that is, Ty has the interchangeability property with respect to ¢,

Proof Let T =T, 11, let o, be a (T, D,,, v,)-stable coloring, and let « and 3 be
two colors in [k] with « € 7,,(T") (equivalently « € B,,(T)). We aim to prove that
« and 8 are T-interchangeable under o,,. Assume the contrary: there are at least
two («, 8)-paths @ and Q2 with respect to o, intersecting 7. By Theorem 3.10(i),
V(T) is elementary with respect to ¢y, so it is also elementary with respect to o,.
Since T' = T, 41 is closed with respect to ¢, it is also closed with respect to o,. As
a € a,(T), it follows that |/(T)| is odd and 8 ¢ 7, (T'). From the existence of Q4
and @2, we see that G contains at least three (7', 0, {«, })-exit paths Py, Ps, Ps.

We call the tuple (0,,7T,a,(8,P1, P2, P3) a counterexample and use K
to denote the set of all such counterexamples. With a slight abuse of nota-
tion, let (o, T, , 8, Pi, Py, P3) be a counterexample in K with the minimum
|P1| + | P2| + | P3|. For i = 1,2, 3, let a; and b; be the ends of P; with b; € V(T),
and f; be the edge of P; incident to b;. Renaming subscripts if necessary, we may
assume that by < bs < bs. We propose to show that

(1) b & V(T,)
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Otherwise, b € V(T,,). Let v be a color in 7,(T},) — {0,} if ©, = PE and a
color in &, (7T},) otherwise. Since T = T}, is closed with respect to o,,, both « and
~ are closed in T with respect to 0,,. Let 4y = 0, /(G — T, o, v). Then Py and P; are
two (T}, 11, {7, B})-exit paths. By Lemma 5.8, 1 is a (T, D,,, 0,,)-stable coloring,
so it is also (T, Dy, ¢y, )-stable. As T,, C T, uy is a (T, Dy, o )-stable coloring.

If ©,=SFE or RE then, by Algorithm 3.1 and Lemma 3.2(i), pu; is
(T, Dy—1, prn—1)-stable and hence is (T,,—1, Dn—1,@n—1)-stable. By Theo-
rem 3.10(vi) and TAA, T, is an ETT corresponding to x4 (see Definition 3.7) and
satisfies MP under 11, with n — 1 rungs. Since P and Py are two (T, 11, {7, 5})
-exit paths and v € 7, (T},) = @, (T,), there are at least two (7, §)-paths with respect
to w1 intersecting 7),. Hence v and § are not 7;,-interchangeable under p,, contra-
dicting Theorem 3.10(ii) because 7, has n — 1 rungs.

So we assume that ©, = PE. Since T,, is an ETT under ¢,_1, V(T},)
is elementary under ¢,_; by Theorem 3.10(i), and hence 4, € 5, (T,) and
Yn & ©,,(Ty) by Algorithm 3.1. Since o, is (T, D,,, pn)-stable, @,,(T,,) = 7, (T})
and Oy, 4, (Th) = 0oy (Tn). As vy €T, (Th) —0On, 6y €7,(T), and
Y, B ¢ Tn(Ty), we have v € {v,,0,} and 8 # d,. In view of Lemma 3.2(v), we
obtain |0y, ~, (Tn)| = 1. So |0, ~,(Tn)| =1, which implies 3 # 7,, because
{f1, f2} € 05, 5(Ty) (as by € V(T},)). Therefore {B,v} N {yn,dn} =0. Since
w1 8 (T, Dy, op)-stable, P, (vn,0n, 1) N Ty, = {v,} by Theorem 3.10(iv). Let
p2 = p1/ Py, (Yns On, p1). Then po is (T, Dp—1, @n—1)-stable by Lemma 3.6. As
18,7} N {¥n,dn} = 0, we see that Py and P, are two (T, p2, {v, 8})-exit paths and
~ € Ti5(T},). So there are at least two (v, 3)-paths with respect to po intersecting 7,.
Thus v and 3 are not T;,-interchangeable under 2, contradicting Theorem 3.10(i1)
because T, has n — 1 rungs. Therefore (1) is established.

Lety € 7,(bs) and let us = 0, /(G — T, v, v). By Lemma 5.8, ug3 is (T, Dy, )
-stable and hence is (7},, D,,, ¢, )-stable. By Theorem 3.10(vi), T is an ETT corre-
sponding to u3 and satisfies MP under p3. Furthermore, f; is colored by 8 under both
w3 and o, fori = 1,2,3, and Ps = Py, (5,7, p3).

Consider ta = 3/ Poy (8,7, 13). Clearly, B € Tiy(bs). Since
P (8,7, p3) NT = {bs}, by Lemma 5.8, uy is (T (b3) — b3, Dy, s, )-stable and
T(b3) — bz is an ETT corresponding to 14 and satisfies MP under p4. Since be < bs,
it is contained in T'(b3) — b3. So (1) implies that b3 is not the first vertex added to T;,
in the construction of 7. According to Algorithm 3.1, b3 is added to T'(b3) — b3 by
TAA under ¢,,. Since colors on the edges of T'(b3) are not affected under this Kempe
change and ps3 is (T, D,,, ¢, )-stable, bz can still be added to T'(b3) — b3 by TAA
under 114. Hence T'(b3) is still an ETT satisfying MP under p4 by Theorem 3.10(vi).
Let T" be a closure of T'(b3) under p4. Then T" is an ETT satisfying MP under 4.
Since both f; and f5 are colored by 8 under 4 and 8 € 71, (b3), the ends of f; and
f2 are all contained in 7”. By Theorem 3.10(i), V(T") is elementary with respect to
I44, because T has n rungs.

Observe that none of a1, as, ag is contained in 7", for otherwise, let a; € V(T")
for some i with 1 < < 3. Since {8,v} N7y (a;) # 0 and 3 € 11,(b3), we obtain
~ € fiy(a;). Hence from TAA we see that Py, Py, P3 are all entirely contained in
G[T"], which in turn implies v € fiy(a;) for j = 1,2,3. So V(I") is not elementary
with respect to 114, a contradiction. Thus each P; contains a subpath L;, which is a T”
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-exit path with respect to 4. Since both ends of f; are contained in T”, f7 is outside
L. 1t follows that |L1| 4 |Lo| + |L3| < |P1| + | P2| + | P3|. Therefore the existence
of the counterexample (4,77, 8, L1, L2, L3) violates the minimality assumption
on (o, T, «, 8, P1, Py, P3). This completes our proof of Lemma 7.1 and hence the
whole proof of Theorem 3.10. O

Subject index

(«, B)-chain, 6
(«, B)-path, 6
C-closed subgraph with respect to ¢,,, 37
C~ -closed subgraph with respect to ,,, 37
chromatic index, 2
closed set, 7
color class, 6
coloring sequence 18
connecting color, 13
connecting edge, 13
critical multigraph, 3
defective color, 7
defective edge, 7
defective vertex, 7
density, 2
edge-coloring problem (ECP), 2
elementary multigraph, 7
elementary set, 7
ETT corresponding to (o, T,,) or to o, 18
extended Tashkinov tree (ETT), 13
extension vertex, 13
fractional chromatic index, 2
fractional edge-coloring problem (FECP), 2
I'-set, 38
generating coloring, 13
Goldberg-Seymour conjecture, 2
good hierarchy, 37
hierarchy, 37
interchangeability property, 19
Kempe change, 7
k-critical multigraph, 10
k-edge coloring, 6
k-triple, 10
ladder, 18
maximum defective vertex, 12
maximum property (MP), 18
missing color, 7
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parallel extension (PE), 13

path number, 47

revisiting extension (RE), 12

rung number, 18

segment of tree-sequence, 6

series extension (SE), 13

strongly closed set, 7

supporting vertex, 13

Tashkinov’s augmentation algorithm (TAA), 10
Tashkinov tree, 10

tree-sequence, 6

T-exit path, 9

T-interchangeability, 19

(T, C, ¢)-stable coloring, 8
(T, ¢n,)-invariant coloring, 42
(T <p {a, f})-exit, 9

(T, ¢, {a, B})-exit path, 9
(T, ® Ry, Dy, @ )-stable coloring, 41
(Tn 0 Dﬂ , n )-weakly stable coloring, 47
(T} ;> Dn, pn)-weakly stable coloring, 48
On mod T, -coloring, 18
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