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ABSTRACT 

Porous metamaterial units filled with fluid have been used 
in engineering systems due to their ability to achieve desired 
properties (e.g., effective thermal conductvity). Designing 3D 
porous metamaterial units while ensuring complete connectivity 
of both solid and pore phases presents a significant challenge. In 
this study, we propose a generative graph neural network-based 
framework for designing the porous metamaterial units infilled 
with liquid. Firstly, we propose a graph-based metamaterial unit 
generation approach to generate porous metamaterial samples 
with complete connectivity in both solid and pore phases. 
Secondly, we establish and evaluate three distinct variational 
graph autoencoder (VGAE)-based generative models to assess 
their effectiveness in generating an accurate latent space 
representation of metamaterial structures. By choosing the 
model with the highest reconstruction accuracy, the property-
driven design search is conducted to obtain novel metamaterial 
unit designs with the targeted properties. A case study on 
designing liquid-filled metamaterials for thermal conductivity 
properties is carried out. The effectiveness of the proposed graph 
neural network-based design approach is evaluated by 
comparing the performances of the obtained designs with those 
of existing designs in the training database. Merits and 
shortcomings of the proposed framework are also discussed. 
Keywords: Porous metamaterial; Graph neural network; 
Variational graph autoencoder; Design optimization; Generative 
design; Connectivity. 
 
1. INTRODUCTION 

Metamaterials are artificially engineered architectured 
materials that exhibit extraordinary mechanical properties, such 
as stiffness-to-weight ratio [1], acoustic damping [2], vibration 
damping [3-5], wave trapping [6-9], and energy absorption 
properties [10-12]. These properties are derived from the 
topological characteristics of the metamaterials. Although a 
considerable amount of research has been devoted to 

metamaterial design, there has been relatively limited focus on 
porous metamaterials that enables applications envolving fluid-
filled conditions [13-15]. In the field of fluid-filled porous 
metamaterials [1-5], designs have largely relied on traditional 
design approaches including parametric design and analytical 
modeling, which offer limited design flexibility. Therefore, there 
is a need for new methodologies that enable freeform design of 
porous metamaterials. It is crucial to emphasize the fundamental 
requirement of achieving complete connectivity in both the solid 
and pore phases. This means ensuring there are no disconnected 
materials floating in 3D space or enclosed cavities where fluid 
cannot reach. Previous methods of identifying and addressing  
disconnections, such as texture synthesis [16] and virtual 
temperature method [17], either cannot ensure complete 
connectivity or are computationally expensive. 

Deep learning (DL) is promising in freeform metamaterial 
design [18-26], particularly in cases where analytical gradients 
of properties are unavailable. The design representation of 
metamaterial units is critical in selecting appropriate deep 
learning models and also determines their effectiveness in 
exploring the design space. When using parametric 
representation, the metamaterial units are represented by feature 
vectors [27-32]. Feedforward neural networks [33] have been 
used in conjunction with the parametric design representation. It 
is easy to explore the low dimensional parametric design space, 
but the design degree of freedom is limited. Another way of 
representing metamaterial units is to use their surface geometries 
[24]. Since different surfaces can be described by distinct 
mathematical equations, this method allows for a more nuanced 
representation of metamaterial units. However, the diversity in 
surface geometry equations presents a challenge in creating a 
generalized design space that can accommodate all possible 
design variations. Pixel/voxel-based representation offers great 
flexibility in the freeform design of metamaterial units. 
Convolutional neural networks (CNNs), and neural networks 
with convolutional layers (e.g., variational autoencoder, 
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generative adverseral neural network, etc.), are the most used 
models when dealing with pixel/voxel-based design space [34]. 
Pixel/voxel-based representation can capture highly complex 
geometrical features with a sufficient resolution [22]. However, 
this approach also demands higher computational resources and 
complexity in model training and design exploration. 
Metamaterial topologies can also be described using graphs, 
comprising a set of nodes and edges connecting them. Graph-
based representations are well-suited for truss-lattice [35], 
origami-based [36], and shell-based [24] structures. Graph 
neural network (GNN) [37, 38] is an effective approach for 
capturing the relationships between nodes within a graph. GNN 
also demonstrate significant potential in the field of metamaterial 
modeling and design. Guo et al. [39] employed GNNs to address 
boundary value problems in the design of architected materials. 
Dold et al. [40] introduced a differentiable graph-structured 
model for designing lattice materials, which uses a GNN as the 
surrogate model for structural analysis. Meyer et al. [24] 
proposed a graph representation method for shell-lattices, 
utilizing a GNN to establish the structure-property relationship, 
thereby enabling the design of novel metamaterial structures. 
The above-mentioned works only focus on lattice-based or shell-
based graph structures. Zhang et al. [41] introduced a variant 
design generation method to create pixelated auxetic 
metamaterials, utilizing a multiscale geometry-informed Graph 
U-net capable of predicting complex nonlinear deformations. 
However, this method does not ensure complete connectivity of 
the solid and void phases, making it unsuitable for generalized 
porous metamaterial unit design. 

Previous research works on porous metamaterial unit design 
either fail to ensure complete connectivity in both solid and pore 
phases or restrict the design space to simple structures that can 
easily verify connectivity [42-46]. To resolve this issue, the 
objective of this paper is to establish a graph neural network-
based design approach for the freeform design of porous 
metamaterial units, while ensuring complete connectivity in both 
solid and pore/fluid phases. To achieve this, we first propose a 
novel method for generating highly diverse connectivity-
guaranteed porous metamaterial samples for model training. 
Then three different variational graph autoencoder (VGAE)-
based generative models are established and compared in terms 
of their reconstruction accuracies. Finally, a VGAE-based design 
approach is proposed for the inverse design of porous 
metamaterial units infilled with liquid, which is demonstrated 
through an engineering case study focusing on thermal 
conductivities. 

In Section 2, we propose a graph-based approach for 
generating metamaterial unit samples and simulating their 
thermal conductivity properties with liquid infill. In Section 3, 
we propose and compare three variational graph autoencoder 
(VGAE)-based generative models. In section 4, we present a 
VGAE-based design approach for the inverse design of porous 
metamaterial units. In Section 5, we demonstrate the application 
of the proposed framework to obtain novel metamaterial unit 
designs with desired thermal conductivity values. Section 6 
concludes this study. 

2. GENERATION OF POROUS METAMATERIAL UNITS 
WITH COMPLETE CONNECTIVITY IN BOTH SOLD AND 
PORE PHASES 

A graph-based approach is proposed for creating complex 
porous microstructures in which both the solid phase and the 
pore phase are fully connected. Furthermore, a finite element 
simulation model is presented to obtain the heat conductivity 
properties of the microstructure samples to support the following 
machine learning studies. 

2.1 Generation of Porous Metamaterial Units 
Graphs have previously been employed in designing 

metamaterials [24, 36, 47] and microstructures [48]. The 
techniques introduced in previous studies harness graph theory 
to facilitate the computationally efficient creation of fully 
connected structures and the detection of any disconnections or 
isolated parts. The central idea of the proposed microstructure 
generation approach is to construct the porous metamaterial unit 
with two “interwoven” graphs, each representing a separate 
phase. As shown in Figure 1, the proposed approach consists of 
the following four steps. 

 
Figure 1: The proposed approach for generating complex porous 
metamaterial unit samples with complete connectivity in both 
solid and pore phases. 
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Step 1: Generate the solid phase skeleton structures as graph 
edges 

In the first step, the goal is to create the graph that represent 
the skeleton of the solid phase (“solid graph”). Nodes in the solid 
graph are chosen randomly and distance-based connecting 
approach is used because by considering a lattice structure as a 
graph, the joints (nodes) should always be connected to other 
nearby joints. 

As illustrated in Figure 1 and Figure 2a,  the spatial 
distance between nodes is first calculated to form an edge. This 
edge is established if this distance is less than the set radius and 
if the nodes were not previously connected. The radius, which 
starts at 1 voxel, will incrementally increase by 1 voxel until all 
nodes are connected. To ensure a fully connected graph, the 
remaining isolated clusters are connected with each other by 
selecting and connecting a pair of nodes within each cluster 
based on their distances (Figure 2b). 

 
Figure 2: (a) The process of increasing the radius of search from 
nodes until they get connected. (b) Remaining isolated clusters 
will get connected based on their distances. (c) The process of 
connecting the pore phase’s nodes i and j using Manhattan 
distance and rerouting: (1) Nodes i and j represent two voxels in 
the pore phase skeleton, while the solid phase skeleton is 
represented by black pixels. (2) The edges will be constructed 
using the Manhattan method until an obstruction is reached. (3) 
Exploring the 26 neighbor voxels to find the closest node to node 
j based on Euclidean distance, which is not part of the solid or 
existing pore phases. (4) After avoiding the intersection with the 
solid phase, the Manhattan method links nodes i and j through 
the node (i,j). 

 
The nodes and edges of the graph are mapped to a voxel grid 

to create the voxel skeleton of the solid phase. In order to create 
edges, the basis Manhattan distance [49], which is the sum of the 
absolute differences of node’s Cartesian coordinates, has been 
utilized. From the start node, the pathway (edge) is incrementally 
constructed, proceeding one voxel at a time along any one of the 
three axes. This approach ensures that each step moves closer to 
the end node in terms of the Manhattan distance, which in this 
article is called the “Manhattan method”. 

 
Step 2: Generate the pore phase skeleton structure as graph 
edges 

The second step is to create the graph that represents the 
skeleton of the pore phase (“pore graph”). The pore phase, also 
referred to as the dual phase [24], is crucial for the movement of 
air and other fluids, necessitating a fully connected network to 
prevent isolated holes and blind pores, the same as the solid 
phase.  

When creating the voxel skeleton of the pore phase, 
intersections with the voxel skeleton of the solid phase should be 
avoided. The path from one node to another may encounter 
obstacles presented by the edge of the solid phase graph, 
preventing the two nodes from connecting. A rerouting strategy 
based on the Manhattan method is developed to address this issue 
(Figure 2c). If the path between a pair of nodes is blocked by a 
voxel in the solid skeleton, the algorithm will select an edge 
voxel from the neighbor voxels that is not part of the solid 
skeleton. Then it will proceed with the Manhattan method to 
search the remaining voxels on the edge.  
 
Step 3: Integrate the solid and pore skeletons  

After merging the two skeletons into one voxel image, the 
voxel image is mirrored along all three axes to create a 
symmetric metamaterial unit structure. This mirroring operation 
ensures the periodic boundary condition.  
 
Step 4: Assign remaining voxels to each of the two phases 

The remaining unlabeled voxels in the 3D image are 
assigned to either the solid phase or the pore phase by the 
approximate K-nearest neighbor-based clustering using K-
Dimensional tree (K-D tree) [50].  

The major advantage of this approach is that both phases are 
inherently fully connected. No additional post-processing is 
required to eliminate “enclosed voids” or “disconnected 
materials”. In this work, we represent the solid phase and the 
pore phase with 15 nodes each. By randomizing the locations of 
the input nodes within a 32 × 32 × 32 domain, we generate a 
highly diverse metamaterial unit database with 15,000 samples, 
each with a voxel size of 64 × 64 × 64 (Figure 3). 

 
Figure 3: Diversity of the training samples: several examples of 
metamaterial unit samples in the created database. 
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2.2 Heat Transfer Simulation 
The thermal conductivities of 3D fluid-solid metamaterial 

units are simulated through a user defined steady state thermal 
analysis subroutine in ABAQUS 2022. Each voxel is converted 
to a cubic element, so the mesh has 64 × 64 × 64  elements. 
The constant temperatures at the two opposing sides of the 
sample are set as T1 = 20°C  and T2 = 120°C . Conduction is 
the sole source of heat transfer within the volume of the samples. 
Heat transfer throughout each point under steady state conditions 
in the sample geometry can be modeled using the Fourier 
equation shown in Eq. 1:  

Q =  −kA
ΔT

Δx
                   (1) 

where Q  represents the rate of heat transfer, k  represents 
thermal conductivity of the material, A  represents the cross-
sectional area through which heat is being transferred, ΔT 
represents the temperature difference and Δx  represents the 
length of the heat transfer area. The fluid phase is water with heat 
conductivity kwater = 0.598

W

𝑚𝐾
 , and the solid phase is 

aluminum with heat conductivity kAl = 237
W

𝑚𝐾
 . The fluid 

component of the metamaterial was modeled as stationary with 
zero velocity throughout the sample. Constant thermal 
conductivities were defined for the water and aluminum 
elements within the simulation. A temperature gradient was 
modeled by defining temperature boundary conditions along the 
axis of interest, with additional simulations completed for each 
sample modeling heat transfer in the x, y, and z directions.  

After simulating the heat transfer through the material, the 
temperature and heat flux can be calculated at each node in the 
material. The average conductivity kavg  for each sample is 
calculated from the heat fluxes recorded on the surfaces using 
Eq. 2.  

kavg =  −
1

n
(

q1
dT

dx1

+
q2
dT

dx2

+ ⋯ +
qn
dT

dxn

)         (2) 

where n represents the number of nodes where heat flux and 
temperature gradients are recorded. q𝑖 represents the heat flux 
at the 𝑖𝑡ℎ node. dT

dx𝑖
 represents the temperature gradient at 

the 𝑖𝑡ℎ node.  
The heat conduction simulations are conducted on all 

15,000 samples in each cartesian direction. Histograms of all 
samples properties are shown in Figure 4b.  

 
Figure 4: Heat transfer simulation in ABAQUS. (a) The input 
porous metamaterial unit, the temperature gradient, and the heat 
flus on the surfaces of the sample. (b) Histogram of the simulated 
heat conductivity values kx , ky , and kz  from X, Y, and Z 
directions of all samples. 

 
3. VARIATIONAL GRAPH AUTOENCODER-BASED 
DEEP GENERATIVE MODELS 
3.1 Variational Graph Autoencoder (VGAE) 

GNNs have received increasing attention in recent years for 
their capability to analyze graph-structured data. They represent 
a distinct class of neural networks, distinguished by their 
capability to process graph-represented data (referred to as 
graphs) rather than vectorized or image data [38]. The variational 
graph autoencoder (VGAE) was firstly introduced by [51], 
representing a unsupervised learning framework for graph-
structured data. VGAE is effective in generating new undirected 
graph samples by sampling the latent feature space. VGAE 
consists two parts: an encoder that takes the adjacency matrix 𝐀 
and feature matrix 𝐗 as inputs and generates the latent vector 
𝐙, and a decoder that decodes the latent vector 𝐙 to reconstruct 
the original graph. The encoder (inference model) can be 
expressed as: 

𝑞(𝐳|𝐗, 𝐀) = Π𝑖=1
𝑁 𝑞(𝐳𝑖|𝐗, 𝐀)          (3) 

𝑞(𝐳𝑖|𝐗, 𝐀) = 𝑁(𝐳𝑖|𝝁𝑖 , diag(𝝈𝑖
2))       (4) 

where we define an undirected, unweighted graph 𝐺 = (𝑣, 𝜀) 
with 𝑁 = |𝑣|  nodes. 𝐀  is the adjacency matrix of graph 𝐺 , 
and 𝐃  is the feature matrix of 𝐺 . 𝐳𝑖  represents a latent 
variable, and the latent vector 𝐳 is an 𝑁 × 𝐹 matrix. 𝐹 is the 
dimension of the latent vector to which each node is mapped. 𝐗 
represents the node features matirx with the shape of 𝑁 × 𝐷 . 
The edge and node attributes are input into the convolution layer, 
which is based on the classical graph convolutional network 
(GCN). Therefore, 𝝁 = GCN𝝁(𝐗, 𝐀)  is the matrix of mean 
vectors 𝝁𝑖 , log𝝈 = GCN𝝈(𝐗, 𝐀) . During the covolution, for 
each graph, given the node feature matrix 𝐗  and the edge 
feature matrix 𝐀 , we then have 𝐇 = 𝐀′𝐗𝐖 , where 𝐖  is the 
trainable weight matrix in the VGAE, and 𝐀′ = 𝐃−

1

2𝐀𝐃
1

2. Here 
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𝐃  refers to the normalized degree matrix of the graph. More 
details can be found in literature [51]. 

The decoder (generative model), constructed with fully 
connected layers, takes the latent vector 𝐳  as input to 
reconstruct the original graph 𝐺. When reconstructing edges, the 
reconstructed adjacency matrix 𝐀̃ is:  

𝐀̃ = 𝝈(𝐳𝐳𝐓)                  (5) 

To reconstruct the nodes’ coordinates (𝐗̃ ), linear layer can be 
used in the decoder, followd by a node-wise softmax operation 
to obtain 𝐗̃. 

The VGAE model is trained to optimize the variational 
lower bound ℒ: 

ℒ𝑉𝐺𝐴𝐸 = E𝑞(𝐳|𝐗, 𝐀)[log 𝑝(𝐀|𝐳)] − KL[𝑞(𝐳|𝐗, 𝐀)||𝑝(𝐳)] (6) 

where KL[𝑞(∙)||𝑝(∙)]  is the Kullback-Leibler divergence 
between 𝑞(∙)  and 𝑝(∙) . We use Gaussian prior 𝑝(𝐳) =
Π𝑖𝑝(𝐳𝑖) = Π𝑖𝑁(𝐳𝑖|0, 𝐈) . To optimize the parameters of the 
Gaussian distribution, we perform mini-batch gradient descent 
and leverage the reparameterization trick [52]. 

The VGAE architecture creates an information bottleneck 
within the latent representation, retaining only essential and 
meaningful information necessary for reconstructing the original 
graphs. Within this latent space, graphs with similar topological 
and geometrical characteristics are positioned closely together. 
Graphs that are farther apart in the latent space can be smoothly 
transitioned from one to another by traversing along a continuous 
path in the space. 
3.2 VGAE with Regressor 

To predict the structure properties from latent variables, one 
strategy is to integrate the regressors with the deep generative 
model [7, 22, 53-57]. There are three strategies for establishing 
a learning framework with a VGAE and a regressor (Figure 5): 
 Parallel processes (Figure 5a), where the variational VGAE 

and the regressor model are trained independently without 
any interplay. This strategy offers flexibility in model 
training, but one major limitation is that it does not allow 
structure design optimization as the regressor is not linked to 
the structure design variables (latent variables).  

 Sequential integration (Figure 5b) connects the regressor to 
the output of the decoder. The structure’s properties are 
predicted based on the reconstructed image. 

 Latent space mediated integration (Figure 5c) connects the 
regressor to the latent space. The structure’s properties are 
predicted from the latent variables. The VGAE and the 
regressor are trained simultaneously. The regressor serves as 
regularization in learning the latent space.  
Literatures [54, 55] have shown that both sequential 

integration and latent space mediated integration are capable of 
embedding the structure property information into the latent 
space, therefore leads to improved property prediction accuracy. 
In this work, we adopt the sequential integration and latent space 
mediated integration strategies in developing the VGAE-based 
design approach. 

 
Figure 5: Three strategies of integrating a regressor with a deep 
generative model: (a) Parallel processes. (b) Sequential 
integration. (c) Latent space mediated integration. 

3.3 VGAE-based Generative Models for Designing 
Connectivity-guarateed Porous Metamaterial Units 

To improve the edge prediction accuracy and to leverage the 
characteristics of our generated dataset, we proposed three 
VGAE-based generative models which based on the sequential 
integration and latent space mediated integration strategies 
(Figure 6b~d).  

The graph representation 𝐺  of the porous metamaterial 
structure consists two parts: node coordinates 𝐗,  and the 
adjacency matrix 𝐀 which represents the edge features. 𝐗̃ and 
𝐀̃ are the reconstructed node coordinates and adjacency matrix 
based on the latent variables learned by the deep generative 
model.  

In addition to the three proposed models, a baseline VGAE 
model (Figure 6a) is created. The baseline model encodes 𝐗 and 
𝐀 into the latent space, and both 𝐗̃ and 𝐀̃ are reconstructed by 
the decoder. In Section 3.4, we will demonstrate that VGAE fails 
to reconstruct 𝐀̃  accurately. Therefore, in the following three 
proposed models, only the node coordinates 𝐗̃  are 
reconstructed by the deep generative model, while the edges 
(adjacency matrix 𝐀̃) are created using the Manhattan method 
introduced in Section 2.  

 The first model, VGAE-(b), is based on the sequential 
integration strategy. An input graph, which includes node 
coordinates and adjacency matrix, is compressed into the latent 
space by an encoder. In the reconstructed graph, the node 
coordinates are generated by decoder and the edges are generated 
by the Manhattan method. A feedforward neural network 
regressor takes the reconstructed graph to predict the property of 
interest, which is the heat conductivity of the fluid-infilled 
metamaterial units in this study.  

The second model, VGAE-(c), is based on the latent space 
mediated integration strategy. The regressor, which is also a feed 
forward neural network, is linked to the latent space. The VGAE 
only reconstructs the node features, and the edges are 
reconstructed by the Manhattan method.  

The third model, VGAE-(d), is based on the sequential 
integration strategy. This model differentiate itself from VGAE-
(b) by utilizing the reconstructed voxel image, instead of the 
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reconstructed graph, to predict the properties. As the voxel image 
is used in property prediction, the regressor is created with a 
CNN architecture. 

To ensure a fair comparison, we use identical architectures 
for the encoders and decoders in the three VGAE-based 
generative models, as shown in Appendix A1. The encoder 
utilizes the GraphSAGE model [58], a framework that has been 
proven effective in generating node embeddings. The decoder 
employs dense layers and takes only the latent feature 𝐳 as its 
input. For the regression, the regressors in VGAE-(b) and 
VGAE-(c) models utilize the GraphSAGE model, whereas the 
regressor in VGAE-(d) is a CNN. The detailed architecture of 
the regressors of VGAE-(b), VGAE-(c) and VGAE-(d) are 
shown in Appendix A1. 

When training the abovementioned models, the loss for the 
VGAE model and the loss for the regressor are considered 
simultaneously. Thus, the loss function is defined as: 

ℒ = ℒ𝑉𝐺𝐴𝐸 + ℒ𝑟𝑒𝑔               (7) 

The regressor loss is measured by the mean squared error, 
ℒ𝑟𝑒𝑔 =

1

𝑛
∑ (𝐘𝑖 − 𝐘̃𝑖)

2𝑛
𝑖=1 , where 𝐘𝑖 represents the true response 

of the 𝑖𝑡ℎ sample, 𝐘̃𝑖 represents the predicted response of the 
𝑖𝑡ℎ sample. 

For model implementation, we use the PyTorch Geometric 
library. The models are all trained on a Nvidia RTX8000 GPU. 
The porous metamaterial dataset is divided into two sets: 13500 
(90%) for training and 1500 (10%) for testing. Adam is used as 
the optimizer for parameter optimization. The number of epochs 
is set to 400 for all the models. We also implement an early 
stopping criterion to halt training when the test loss begins to 
increase, thereby preventing overfitting. 
3.4 Comparison and Validation of VGAE-based 
Generative Models 

The baseline model and the three proposed VGAE-based 
generative models are compared and validated in two aspects: 

 
Figure 6: (a) Baseline VGAE model. (b)~(d) Three VGAE-based generative models based on sequential integration or latent space 

mediated integration strategy. 
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the reconstruction accuracy of the VGAE and the prediction 
accuracy of the regressor. 

The accuracies of reconstructing node features 𝐗̃ and final 
voxelated metamaterial structures are measured by the 
differences between the original sample and the reconstructed 
sample. The differences between original node coordinates 𝐗 
and reconstructed node coordinates 𝐗̃  measured by the 
coefficient of determination (R2), which quantifies the deviation 
of data from their true mean value: 

R2 = 1 − 
∑(𝐘𝑖−𝐘𝑖)2

∑(𝐘𝑖−𝐘𝑖̅)2                   (8) 

where 𝐘𝑖  represents the true response of the 𝑖𝑡ℎ  sample, 𝐘̃𝑖 
represents the predicted response of the 𝑖𝑡ℎ  sample, and 
𝑛𝑠𝑎𝑚𝑝𝑙𝑒 represents the total number of sample points. 𝐘𝑖̅ is the 
averaged value of 𝐘𝑖(𝑡𝑟𝑢𝑒) and 𝐘𝑖̅ =

1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒
∑ 𝐘𝑖. A higher R2 

value means a more accurate model. We also perform a voxel-
to-voxel comparison of the original and reconstructed voxel 
structures, which are defined as: 

𝛼voxel = 1 −
1

N

1

𝑙3
∑ ∑ ∑ |O𝑖𝑗𝑘 − R𝑖𝑗𝑘|𝑙

𝑘=1
𝑙
𝑗=1

𝑙
𝑖=1      (9) 

where N  represents the total amount of structures used, 𝑙 
represents the side length of the structures in voxel, and 𝑙 = 64 
in this study. For the baseline model, the accuracy of 
reconstructing edge 𝐀̃ is also validated by R2. It is to be noted 
that in the three VGAE-based generative models, edge 
reconstruction is carried out using the same Manhattan method 
as the one used in training sample generation. Therefore, there is 
no need to evaluate the accuracy of edge reconstruction. The 
accuracy of heat conductivity prediction 𝒚̃ in the VGAE-based 
generative models is evaluated by R2. The validation results are 
summarized in Table 1. 
 
Table 1: Reconstruction/prediction accuracies of the baseline 
model and the VGAE-based generative models. 𝐗̃ , 𝐀̃  and 𝒚̃ 
are measured by R2. 

model  𝐗̃ 𝐀̃ 𝛼voxel 𝒚̃ 

Baseline Training set 0.999 -7946 / / 
Test set 0.999 -8966 / / 

VGAE-
(b) 

Training set 0.999 / 0.9165 0.235 
Test set 0.999 / 0.9163 0.206 

VGAE-
(c) 

Training set 0.996 / 0.9166 0.078 
Test set 0.993 / 0.9139 0.056 

VGAE-
(d) 

Training set 0.999 / 0.9302 0.995 
Test set 0.999 / 0.9291 0.974 

 
The results indicate that VGAE fails to reconstruct 𝐀̃ 

accurately. All three VGAE-based generative models exhibit 
satisfactory performance in reconstructing node features, thereby 
enabling them to reconstruct voxel-based structures with small 
error. However, the VGAE-(b) and VGAE-(c) cannot accurately 
predict the structure-property relationship. This indicates that 
relying solely on the graph representation may not fully capture 

all geometric features crucial to thermal conductivity properties. 
VGAE-(d) outperforms the others in terms of prediction 
accuracy. VGAE-(d) utilizes the voxel image, instead of a 
reduced graph representation, to predict properties. 
Consequently, we select VGAE-(d) for the following task of 
VGAE-based design. 
 
4. VGAE-BASED DESIGN APPROACH 

A design approach is proposed based on VGAE-(d). The 
design approach utilize the pre-trained VGAE-based generative 
model and perform design search in the latent space (Figure 7). 
The design approach follows the following steps: 
(1) Use the pretrained decoder to reconstruct node coordinates 

𝐗̃  based on the latent variables, which are used as the 
structure design variables. Then the adjacency matrix 𝐀̃ is 
reconstructed using the pre-defined Manhattan method. The 
reconstructed graphs represent the skeletons of the two 
phases of the metamaterial unit. 

(2) Create the voxel image of the metamaterial unit following 
Step 4 in Section 2, based on the skeletons. With the voxel 
images, the thermal conductivity values are obtained by the 
pretrained regressor model. 

(3) Conduct design search approach in the latent space. The 
design problem can be formulated as: 

 
min

𝐳
   [f1(𝐳), f2(𝐳) … , fnf

(𝐳)]    (10)                      
s. t.          cj(𝐳) ≤ 0 

where 𝐳  is the latent vector, fi (i = 1,2, … , nf)  are the 
objective functions, cj (j = 1,2, … , nc)  are the constraint 
functions. fi and cj are both functions of 𝐳. The obtained 
optimal design is in the format of 𝐳 , and then the 
corresponding metamaterial unit image is reconstructed. 

 

 
Figure 7: VGAE-based design approach. 

 
5. CASE STUDY: DESIGN POROUS METAMATERIAL 
UNIT FOR THERMAL CONDUCTIVITY PROPERTIES 
UNDER VOLUME FRACTION CONSTRAINT 
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In this section, we demonstrate the capability of the 
proposed VGAE-based design approach for designing porous 
metamaterial units infilled with liquid for thermal conductivity 
properties. The design objective is to maximize thermal 
conductivity in both the x and y directions, while meeting two 
design constraints: the volume fraction of the solid phase is 0.7, 
within a tolerance of 0.01; and the thermal conductivity along 
the z direction is half that of the x direction, within a tolerance 
of 5. The design problem is formulated as follows: 

{
 
max

𝐳
   kx(𝐳)

 
max

𝐳
   ky(𝐳)

               (11) 

s. t.         | VFsolid(𝐳) − 0.7| ≤ 0.01 
                |2kz(𝐳) − kx(𝐳)| ≤ 5 
                 min(𝐳) ≤ 𝐳 ≤ max(𝐳) 
Non-dominated Sorting Genetic Algorithm (NSGA-II) [59] 

is applied to explore the latent space to search designs that yield 
the highest thermal conductivities along the x and y directions.  
Subsequently, the optimial designs in latent space are decoded to 
reconstruct the corresponding metamaterial units in the form of 
graphs and voxel images. As illustrated in Figure 8a, the 

proposed design approach successfully generates designs that 
satisfy the design constraints, as well as ensuring the designs’ 
connectivities of both solid component and component phase. 

The true properties of these optimal designs are confirmed 
by simulations. The predicted and actual values of both objective 
functions and constraint functions are shown in Table 2. Out of 
9 optimal design candidates, 6 strictly meet the design 
constraints. We also find that the optimal design candidates 
outperform all existing designs in the database. No design in the 

original database meets the design constraints that thermal 
conductivity in the z direction is half that of the x direction. 

Last but not the least, we demonstrate the superiority of the 
VGAE-based approach over the convolutional variational 
autoencoder (cVAE)-based approach through a comparative 
study using the same design objective (Eq. 11). Details of 
training and validating the cVAE model are provided in 
Appendix A2. As shown in Figure 8b, designs produced by the 
cVAE-based approach fail to ensure connectivity within the 
pore/fluid phase, underscoring the VGAE-based approach 
superiority in maintaining connectivity in both solid and pore 
phases. The failure of cVAE is inherent in its utilization of the 
voxel representation of the structures. For example, a few extra 

 
Figure 8: Optimal design candidates obtained by (a) VGAE-based design approach, (b) cVAE-based design approach. 

 
Table 2: Ground truth and predited objectives and constraints values of the optimal design candidates using VGAE-based design 

approach. P represents the predicted values, T represents ground truth values. The design candidates satisfying all constraints are 
highlighted in grey. 

Design 
Candidates 

Objective Constraint 
kx (W/mmK) ky (W/mmK) kz (W/mmK) VFsolid 

 P T P T P T P/T 
1 138.418 139.990 113.009 113.261 69.169 62.773 0.696 
2 139.563 140.822 111.785 110.373 70.052 69.275 0.701 
3 138.144 141.095 113.075 113.794 69.938 73.021 0.690 
4 138.240 140.502 113.150 105.916 70.060 65.060 0.698 
5 138.871 140.917 112.587 113.348 69.771 71.872 0.700 
6 134.751 141.274 115.023 116.795 70.241 65.084 0.696 
7 137.568 141.048 113.557 113.795 70.820 71.795 0.700 
8 141.353 141.826 112.863 113.107 71.708 71.268 0.700 
9 137.841 141.352 114.025 113.050 71.012 71.461 0.700 

 

(a)

(b)

Solid phase

Fluid phase

Solid phase

Fluid phase
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voxels in the reconstruction may obstruct a conduit in the pore 
network, resulting in the formation of a fully enclosed pore. The 
ground truth and predicted objective and constraint values of the 
optimal designs obtained by the cVAE-based approach are 
presented in Appendix A3. 
 
6. CONCLUSION 

This paper presents a graph-based method for generating 
porous metamaterial units with complete connectivity in both 
solid and pore phases, as well as a VGAE-based approach for the 
property-driven generative design of connectivity-guaranteed 
metamaterial units. Our major conclusions are summarized as 
follows: 

(1) We established a novel method for generating 
voxelated, connectivity-guaranteed metamaterial units 
using graph data. 

(2) We established and compared three VGAE-based 
generative models based on sequential integration or 
latent space mediated integration and identify the best 
model structure for design applications. 

(3) The VGAE-based design approach proves to be 
effective in the generative design of porous 
metamaterial units with desired properties and 
guaranteed connectivity. 

However, we also acknowledge some shortcomings in our 
proposed design approach: 

(1) Despite the VGAE-based model’s high accuracy in 
reconstructing node coordinates, slight variations in 
node coordinates can result in significant discrepancies 
in voxelated structures. 

(2) The proposed VGAE-based generative models and 
VGAE-based design approach rely on the pre-defined 
edge connection algorithm (the Manhattan method), 
limiting their generalizability to other dataset. 

For future work, we intend to further enhance the edge 
reconstruction process and broaden the generalizability of our 
design methodology. 
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APPENDIX 
A.1 Hyperparameters in the three VGAE-based 
generative models  
Table A1: The dimensionality of each layer in the encoder, 
decoder and regressor. 

Encoder 
Block Specifications 
GraphSAGE-1 GraphSAGE32+ReLU 
GraphSAGE-2 GraphSAGE32+ReLU 
Encoder FC 32+ReLU3 
Mean, Variance, 
Latent vector 100 
Decoder 
Block Specifications 
Decoder FC 3+ReLU32+ReLU32 3 
Regressor-VGAE(b) 
Block Specifications 
Reg-GraphSAGE-1 GraphSAGE32+ReLU 
Reg FC 32+ReLU3 
Regressor-VGAE(c) 
Block Specifications 
Reg-GraphSAGE-1 GraphSAGE32+ReLU 
Reg FC 32+ReLU3 
Regressor-VGAE(d) 
Block Specifications 
Reg-Conv3d-1 (Conv32+ReLU) ×3+ MaxPooling 
Reg-Conv3d-2 (Conv64+ReLU) ×3+ MaxPooling 
Reg-Conv3d-3 (Conv96+ReLU) ×3+ MaxPooling 
Reg FC 2592+ReLU256+ReLU3 
 
A.2 cVAE-based generative model and cVAE-based 
design approach 

We also established a cVAE-based generative model 
(Figure A1a), which comprises an encoder and a decoder 
constructed with 3D convolutional layers and a regressor. To 
ensure a fair comparison with the VGAE-(d) generative model, 
the cVAE-based generative model employs the sequential 
integration strategy as well. We utilze the same training and test 
set split and the same training process as indicates in section 3.5.  

Validations of the cVAE's accuracy includes voxel-wise 
comparisons between the original and reconstructed structures, 
as well as assessing the regressor's performance in predicting 
thermal conductivity using Eq. 9 and Eq. 8, respectively. The 
accuracy of the cVAE-based generative model is presented in 
Table A1. Additionally, we applied the cVAE to reconstruct the 
training and test samples to evaluate its capability of capturing 
the connectivity characteristics in the pore and solid phases. It is 
important to note that our training and test sets only include 
structure samples with complete connectivity in both solid and 
pore phases. However, the reconstructions by cVAE cannot fully 
maintain the connectivity characteristics. Among the 
reconstructions of the training samples, 80.2% have isolated 
voxel clusters in either the solid or the pore phases, while among 
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the reconstructions of the test samples, 83.8% have isolated 
voxel clusters in either the solid or the pore phases. This outcome 
underscores a limitation of the cVAE-based generative model: 
small deviations in the reconstructed structures may potentially 
result in disconnections in both solid and pore phases. For 
example, a few extra voxels in the reconstruction may obstruct a 
conduit in the pore network, resulting in the formation of a fully 
enclosed pore. 

Then a cVAE-based design approach is proposed based on 
the cVAE-based generative model (Figure A1b). The design 
search method is the same as the one in Section 4. The difference 
lies in the decoder, which directly decodes the latent space 
parameters into the voxel structure, thereby combining steps (2) 
and (3) from Section 4. 
 

 
Figure A1: (a) The proposed cVAE-based generative model. (b) 

The cVAE-based design approach. 
 
Table A2: Reconstruction accuracy of the voxelated structures 
and prediction accuracy of regressor in the cVAE-based 
generative models. 

model  𝛼voxel 𝒚̃ 

cVAE Training set 0.8938 0.935 
Test set 0.8760 0.928 

 
A.3 Table A3: Ground truth and predited objectives and 
constraints values of the optimal design candidates using cVAE-
based design framework. P represents the predicted values, T 
represents ground truth values. The design candidates satisfying 
all constraints are highlighted in grey. 
 

 
Objective Constraint 

kx (W/mmK) ky (W/mmK) kz 
(W/mmK) VFsolid 

 P T P T P T P/T 
1 131.68 123.33 142.65 139.45 66.21 66.57 0.71 
2 130.32 129.57 144.21 131.85 63.33 61.78 0.70 

3 134.25 123.28 140.22 136.92 67.22 67.07 0.70 
4 137.66 125.92 136.58 133.62 66.34 62.31 0.70 
5 135.65 123.13 139.01 139.10 68.12 63.56 0.70 
6 133.25 123.67 140.82 138.26 67.36 62.92 0.70 
7 134.23 124.79 140.21 138.08 67.25 63.69 0.70 
8 134.72 124.76 139.61 138.06 67.75 62.81 0.71 
9 133.80 126.76 139.89 133.72 67.88 62.91 0.70 
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