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ABSTRACT

Porous metamaterial units filled with fluid have been used
in engineering systems due to their ability to achieve desired
properties (e.g., effective thermal conductvity). Designing 3D
porous metamaterial units while ensuring complete connectivity
of both solid and pore phases presents a significant challenge. In
this study, we propose a generative graph neural network-based
framework for designing the porous metamaterial units infilled
with liquid. Firstly, we propose a graph-based metamaterial unit
generation approach to generate porous metamaterial samples
with complete connectivity in both solid and pore phases.
Secondly, we establish and evaluate three distinct variational
graph autoencoder (VGAE)-based generative models to assess
their effectiveness in generating an accurate latent space
representation of metamaterial structures. By choosing the
model with the highest reconstruction accuracy, the property-
driven design search is conducted to obtain novel metamaterial
unit designs with the targeted properties. A case study on
designing liquid-filled metamaterials for thermal conductivity
properties is carried out. The effectiveness of the proposed graph
neural network-based design approach is evaluated by
comparing the performances of the obtained designs with those
of existing designs in the training database. Merits and
shortcomings of the proposed framework are also discussed.
Keywords: Porous metamaterial; Graph neural network;
Variational graph autoencoder; Design optimization; Generative
design; Connectivity.

1. INTRODUCTION

Metamaterials are artificially engineered architectured
materials that exhibit extraordinary mechanical properties, such
as stiffness-to-weight ratio [1], acoustic damping [2], vibration
damping [3-5], wave trapping [6-9], and energy absorption
properties [10-12]. These properties are derived from the
topological characteristics of the metamaterials. Although a
considerable amount of research has been devoted to
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metamaterial design, there has been relatively limited focus on
porous metamaterials that enables applications envolving fluid-
filled conditions [13-15]. In the field of fluid-filled porous
metamaterials [1-5], designs have largely relied on traditional
design approaches including parametric design and analytical
modeling, which offer limited design flexibility. Therefore, there
is a need for new methodologies that enable freeform design of
porous metamaterials. It is crucial to emphasize the fundamental
requirement of achieving complete connectivity in both the solid
and pore phases. This means ensuring there are no disconnected
materials floating in 3D space or enclosed cavities where fluid
cannot reach. Previous methods of identifying and addressing
disconnections, such as texture synthesis [16] and virtual
temperature method [17], either cannot ensure complete
connectivity or are computationally expensive.

Deep learning (DL) is promising in freeform metamaterial
design [18-26], particularly in cases where analytical gradients
of properties are unavailable. The design representation of
metamaterial units is critical in selecting appropriate deep
learning models and also determines their effectiveness in
exploring the design space. When using parametric
representation, the metamaterial units are represented by feature
vectors [27-32]. Feedforward neural networks [33] have been
used in conjunction with the parametric design representation. It
is easy to explore the low dimensional parametric design space,
but the design degree of freedom is limited. Another way of
representing metamaterial units is to use their surface geometries
[24]. Since different surfaces can be described by distinct
mathematical equations, this method allows for a more nuanced
representation of metamaterial units. However, the diversity in
surface geometry equations presents a challenge in creating a
generalized design space that can accommodate all possible
design variations. Pixel/voxel-based representation offers great
flexibility in the freeform design of metamaterial units.
Convolutional neural networks (CNNs), and neural networks
with convolutional layers (e.g., variational autoencoder,

1 © 2024 by ASME


mailto:hongyi.3.xu@uconn.edu

generative adverseral neural network, etc.), are the most used
models when dealing with pixel/voxel-based design space [34].
Pixel/voxel-based representation can capture highly complex
geometrical features with a sufficient resolution [22]. However,
this approach also demands higher computational resources and
complexity in model training and design exploration.
Metamaterial topologies can also be described using graphs,
comprising a set of nodes and edges connecting them. Graph-
based representations are well-suited for truss-lattice [35],
origami-based [36], and shell-based [24] structures. Graph
neural network (GNN) [37, 38] is an effective approach for
capturing the relationships between nodes within a graph. GNN
also demonstrate significant potential in the field of metamaterial
modeling and design. Guo et al. [39] employed GNNs to address
boundary value problems in the design of architected materials.
Dold et al. [40] introduced a differentiable graph-structured
model for designing lattice materials, which uses a GNN as the
surrogate model for structural analysis. Meyer et al. [24]
proposed a graph representation method for shell-lattices,
utilizing a GNN to establish the structure-property relationship,
thereby enabling the design of novel metamaterial structures.
The above-mentioned works only focus on lattice-based or shell-
based graph structures. Zhang et al. [41] introduced a variant
design generation method to create pixelated auxetic
metamaterials, utilizing a multiscale geometry-informed Graph
U-net capable of predicting complex nonlinear deformations.
However, this method does not ensure complete connectivity of
the solid and void phases, making it unsuitable for generalized
porous metamaterial unit design.

Previous research works on porous metamaterial unit design
either fail to ensure complete connectivity in both solid and pore
phases or restrict the design space to simple structures that can
easily verify connectivity [42-46]. To resolve this issue, the
objective of this paper is to establish a graph neural network-
based design approach for the freeform design of porous
metamaterial units, while ensuring complete connectivity in both
solid and pore/fluid phases. To achieve this, we first propose a
novel method for generating highly diverse connectivity-
guaranteed porous metamaterial samples for model training.
Then three different variational graph autoencoder (VGAE)-
based generative models are established and compared in terms
of their reconstruction accuracies. Finally, a VGAE-based design
approach is proposed for the inverse design of porous
metamaterial units infilled with liquid, which is demonstrated
through an engineering case study focusing on thermal
conductivities.

In Section 2, we propose a graph-based approach for
generating metamaterial unit samples and simulating their
thermal conductivity properties with liquid infill. In Section 3,
we propose and compare three variational graph autoencoder
(VGAE)-based generative models. In section 4, we present a
VGAE-based design approach for the inverse design of porous
metamaterial units. In Section 5, we demonstrate the application
of the proposed framework to obtain novel metamaterial unit
designs with desired thermal conductivity values. Section 6
concludes this study.

2. GENERATION OF POROUS METAMATERIAL UNITS
WITH COMPLETE CONNECTIVITY IN BOTH SOLD AND
PORE PHASES

A graph-based approach is proposed for creating complex
porous microstructures in which both the solid phase and the
pore phase are fully connected. Furthermore, a finite element
simulation model is presented to obtain the heat conductivity
properties of the microstructure samples to support the following
machine learning studies.

2.1 Generation of Porous Metamaterial Units

Graphs have previously been employed in designing
metamaterials [24, 36, 47] and microstructures [48]. The
techniques introduced in previous studies harness graph theory
to facilitate the computationally efficient creation of fully
connected structures and the detection of any disconnections or
isolated parts. The central idea of the proposed microstructure
generation approach is to construct the porous metamaterial unit
with two “interwoven” graphs, each representing a separate
phase. As shown in Figure 1, the proposed approach consists of
the following four steps.
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Figure 1: The proposed approach for generating complex porous
metamaterial unit samples with complete connectivity in both
solid and pore phases.
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Step 1: Generate the solid phase skeleton structures as graph
edges

In the first step, the goal is to create the graph that represent
the skeleton of the solid phase (“solid graph™). Nodes in the solid
graph are chosen randomly and distance-based connecting
approach is used because by considering a lattice structure as a
graph, the joints (nodes) should always be connected to other
nearby joints.

As illustrated in Figure 1 and Figure 2a, the spatial
distance between nodes is first calculated to form an edge. This
edge is established if this distance is less than the set radius and
if the nodes were not previously connected. The radius, which
starts at 1 voxel, will incrementally increase by 1 voxel until all
nodes are connected. To ensure a fully connected graph, the
remaining isolated clusters are connected with each other by
selecting and connecting a pair of nodes within each cluster
based on their distances (Figure 2b).
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Figure 2: (a) The process of increasing the radius of search from
nodes until they get connected. (b) Remaining isolated clusters
will get connected based on their distances. (c) The process of
connecting the pore phase’s nodes i and j using Manhattan
distance and rerouting: (1) Nodes i and j represent two voxels in
the pore phase skeleton, while the solid phase skeleton is
represented by black pixels. (2) The edges will be constructed
using the Manhattan method until an obstruction is reached. (3)
Exploring the 26 neighbor voxels to find the closest node to node
j based on Euclidean distance, which is not part of the solid or
existing pore phases. (4) After avoiding the intersection with the
solid phase, the Manhattan method links nodes i and j through
the node (i,)).

The nodes and edges of the graph are mapped to a voxel grid
to create the voxel skeleton of the solid phase. In order to create
edges, the basis Manhattan distance [49], which is the sum of the
absolute differences of node’s Cartesian coordinates, has been
utilized. From the start node, the pathway (edge) is incrementally
constructed, proceeding one voxel at a time along any one of the
three axes. This approach ensures that each step moves closer to
the end node in terms of the Manhattan distance, which in this
article is called the “Manhattan method”.

Step 2: Generate the pore phase skeleton structure as graph
edges

The second step is to create the graph that represents the
skeleton of the pore phase (“pore graph”). The pore phase, also
referred to as the dual phase [24], is crucial for the movement of
air and other fluids, necessitating a fully connected network to
prevent isolated holes and blind pores, the same as the solid
phase.

When creating the voxel skeleton of the pore phase,
intersections with the voxel skeleton of the solid phase should be
avoided. The path from one node to another may encounter
obstacles presented by the edge of the solid phase graph,
preventing the two nodes from connecting. A rerouting strategy
based on the Manhattan method is developed to address this issue
(Figure 2c). If the path between a pair of nodes is blocked by a
voxel in the solid skeleton, the algorithm will select an edge
voxel from the neighbor voxels that is not part of the solid
skeleton. Then it will proceed with the Manhattan method to
search the remaining voxels on the edge.

Step 3: Integrate the solid and pore skeletons

After merging the two skeletons into one voxel image, the
voxel image is mirrored along all three axes to create a
symmetric metamaterial unit structure. This mirroring operation
ensures the periodic boundary condition.

Step 4: Assign remaining voxels to each of the two phases

The remaining unlabeled voxels in the 3D image are
assigned to either the solid phase or the pore phase by the
approximate K-nearest neighbor-based clustering using K-
Dimensional tree (K-D tree) [50].

The major advantage of this approach is that both phases are
inherently fully connected. No additional post-processing is
required to eliminate “enclosed voids” or “disconnected
materials”. In this work, we represent the solid phase and the
pore phase with 15 nodes each. By randomizing the locations of
the input nodes within a 32 X 32 X 32 domain, we generate a
highly diverse metamaterial unit database with 15,000 samples,
each with a voxel size of 64 X 64 x 64 (Figure 3).

Figure 3: Diversity of the training samples: several examples of
metamaterial unit samples in the created database.
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2.2 Heat Transfer Simulation

The thermal conductivities of 3D fluid-solid metamaterial
units are simulated through a user defined steady state thermal
analysis subroutine in ABAQUS 2022. Each voxel is converted
to a cubic element, so the mesh has 64 X 64 X 64 clements.
The constant temperatures at the two opposing sides of the
sample are set as T; = 20°C and T, = 120°C. Conduction is
the sole source of heat transfer within the volume of the samples.
Heat transfer throughout each point under steady state conditions
in the sample geometry can be modeled using the Fourier
equation shown in Eq. 1:

AT
Q= -kAg: (M

where Q represents the rate of heat transfer, k represents
thermal conductivity of the material, A represents the cross-
sectional area through which heat is being transferred, AT
represents the temperature difference and Ax represents the
length of the heat transfer area. The fluid phase is water with heat

conductivity Kyyater = 0.598% , and the solid phase is
. The fluid
mK
component of the metamaterial was modeled as stationary with
zero velocity throughout the sample. Constant thermal
conductivities were defined for the water and aluminum
elements within the simulation. A temperature gradient was
modeled by defining temperature boundary conditions along the
axis of interest, with additional simulations completed for each
sample modeling heat transfer in the x, y, and z directions.
After simulating the heat transfer through the material, the
temperature and heat flux can be calculated at each node in the
material. The average conductivity K, for each sample is

calculated from the heat fluxes recorded on the surfaces using
Eq. 2.

aluminum with heat conductivity k,p; = 237

1{a a a
Kavg = —;(d_—%+f+"'+ﬁ> @
dxq dx, dxp
where n represents the number of nodes where heat flux and
temperature gradients are recorded. q; represents the heat flux
, daT .
at the i*" node. < Tepresents the temperature gradient at
L

the it" node.

The heat conduction simulations are conducted on all

15,000 samples in each cartesian direction. Histograms of all
samples properties are shown in Figure 4b.
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Figure 4: Heat transfer simulation in ABAQUS. (a) The input
porous metamaterial unit, the temperature gradient, and the heat
flus on the surfaces of the sample. (b) Histogram of the simulated
heat conductivity values k., k,, and k, from X, Y, and Z
directions of all samples.
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3. VARIATIONAL GRAPH AUTOENCODER-BASED
DEEP GENERATIVE MODELS

3.1 Variational Graph Autoencoder (VGAE)

GNNs have received increasing attention in recent years for
their capability to analyze graph-structured data. They represent
a distinct class of neural networks, distinguished by their
capability to process graph-represented data (referred to as
graphs) rather than vectorized or image data [38]. The variational
graph autoencoder (VGAE) was firstly introduced by [51],
representing a unsupervised learning framework for graph-
structured data. VGAE is effective in generating new undirected
graph samples by sampling the latent feature space. VGAE
consists two parts: an encoder that takes the adjacency matrix A
and feature matrix X as inputs and generates the latent vector
Z, and a decoder that decodes the latent vector Z to reconstruct
the original graph. The encoder (inference model) can be
expressed as:

q(zIX,A) = I}L, q(z;|X,A) 3)
q(z;|1X,A) = N(z;|p;, diag(o;?)) 4

where we define an undirected, unweighted graph G = (v, €)
with N = |v| nodes. A is the adjacency matrix of graph G,
and D is the feature matrix of G. z; represents a latent
variable, and the latent vector z is an N X F matrix. F is the
dimension of the latent vector to which each node is mapped. X
represents the node features matirx with the shape of N X D.
The edge and node attributes are input into the convolution layer,
which is based on the classical graph convolutional network
(GCN). Therefore, p = GCN,(X,A) is the matrix of mean
vectors W;, logeg = GCN,(X,A). During the covolution, for
each graph, given the node feature matrix X and the edge
feature matrix A, we then have H = A’XW, where W is the

1 1
trainable weight matrix in the VGAE, and A’ = D 2ADz. Here
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D refers to the normalized degree matrix of the graph. More
details can be found in literature [51].

The decoder (generative model), constructed with fully
connected layers, takes the latent vector z as input to
reconstruct the original graph G. When reconstructing edges, the

reconstructed adjacency matrix A is:
A = o(zz") (5)

To reconstruct the nodes’ coordinates (X), linear layer can be
used in the decoder, followd by a node-wise softmax operation
to obtain X.

The VGAE model is trained to optimize the variational
lower bound L:

KL[q(z|X, A)||p(2)] (6)

where KL[g()|lp(-)] is the Kullback-Leibler divergence
between q(-) and p(-). We use Gaussian prior p(z) =
I;p(z;) =T;N(z;|0,I). To optimize the parameters of the
Gaussian distribution, we perform mini-batch gradient descent
and leverage the reparameterization trick [52].

The VGAE architecture creates an information bottleneck
within the latent representation, retaining only essential and
meaningful information necessary for reconstructing the original
graphs. Within this latent space, graphs with similar topological
and geometrical characteristics are positioned closely together.
Graphs that are farther apart in the latent space can be smoothly
transitioned from one to another by traversing along a continuous
path in the space.

3.2 VGAE with Regressor

To predict the structure properties from latent variables, one
strategy is to integrate the regressors with the deep generative
model [7, 22, 53-57]. There are three strategies for establishing
a learning framework with a VGAE and a regressor (Figure 5):
e Parallel processes (Figure 5a), where the variational VGAE

and the regressor model are trained independently without
any interplay. This strategy offers flexibility in model
training, but one major limitation is that it does not allow
structure design optimization as the regressor is not linked to
the structure design variables (latent variables).

o Sequential integration (Figure 5b) connects the regressor to
the output of the decoder. The structure’s properties are
predicted based on the reconstructed image.

o Latent space mediated integration (Figure 5c) connects the
regressor to the latent space. The structure’s properties are
predicted from the latent variables. The VGAE and the
regressor are trained simultaneously. The regressor serves as
regularization in learning the latent space.

Literatures [54, 55] have shown that both sequential
integration and latent space mediated integration are capable of
embedding the structure property information into the latent
space, therefore leads to improved property prediction accuracy.
In this work, we adopt the sequential integration and latent space
mediated integration strategies in developing the VGAE-based
design approach.

Lygar = Eq(z|X, A) [logp(Alz)] —
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Figure 5: Three strategies of integrating a regressor with a deep

generative model: (a) Parallel processes. (b) Sequential
integration. (c) Latent space mediated integration.

3.3 VGAE-based Generative Models for Designing
Connectivity-guarateed Porous Metamaterial Units

To improve the edge prediction accuracy and to leverage the
characteristics of our generated dataset, we proposed three
VGAE-based generative models which based on the sequential
integration and latent space mediated integration strategies
(Figure 6b~d).

The graph representation G of the porous metamaterial
structure consists two parts: node coordinates X, and the
adjacency matrix A which represents the edge features. X and
A are the reconstructed node coordinates and adjacency matrix
based on the latent variables learned by the deep generative
model.

In addition to the three proposed models, a baseline VGAE
model (Figure 6a) is created. The baseline model encodes X and
A into the latent space, and both X and A are reconstructed by
the decoder. In Section 3.4, we will demonstrate that VGAE fails
to reconstruct A accurately. Therefore, in the following three
proposed models, only the node coordinates X are
reconstructed by the deep generative model, while the edges
(adjacency matrix A) are created using the Manhattan method
introduced in Section 2.

The first model, VGAE-(b), is based on the sequential
integration strategy. An input graph, which includes node
coordinates and adjacency matrix, is compressed into the latent
space by an encoder. In the reconstructed graph, the node
coordinates are generated by decoder and the edges are generated
by the Manhattan method. A feedforward neural network
regressor takes the reconstructed graph to predict the property of
interest, which is the heat conductivity of the fluid-infilled
metamaterial units in this study.

The second model, VGAE-(c), is based on the latent space
mediated integration strategy. The regressor, which is also a feed
forward neural network, is linked to the latent space. The VGAE
only reconstructs the node features, and the edges are
reconstructed by the Manhattan method.

The third model, VGAE-(d), is based on the sequential
integration strategy. This model differentiate itself from VGAE-
(b) by utilizing the reconstructed voxel image, instead of the
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reconstructed graph, to predict the properties. As the voxel image
is used in property prediction, the regressor is created with a
CNN architecture.

To ensure a fair comparison, we use identical architectures
for the encoders and decoders in the three VGAE-based
generative models, as shown in Appendix Al. The encoder
utilizes the GraphSAGE model [58], a framework that has been
proven effective in generating node embeddings. The decoder
employs dense layers and takes only the latent feature z as its
input. For the regression, the regressors in VGAE-(b) and
VGAE-(c) models utilize the GraphSAGE model, whereas the
regressor in VGAE-(d) is a CNN. The detailed architecture of
the regressors of VGAE-(b), VGAE-(c) and VGAE-(d) are
shown in Appendix Al.

When training the abovementioned models, the loss for the
VGAE model and the loss for the regressor are considered
simultaneously. Thus, the loss function is defined as:

L=Lygag + Lreg @)

(b)

GNN-
decoder

The regressor loss is measured by the mean squared error,
i=1(Y;
sample, Y; represents the predicted response of the
sample.

For model implementation, we use the PyTorch Geometric
library. The models are all trained on a Nvidia RTX8000 GPU.
The porous metamaterial dataset is divided into two sets: 13500
(90%) for training and 1500 (10%) for testing. Adam is used as
the optimizer for parameter optimization. The number of epochs
is set to 400 for all the models. We also implement an early
stopping criterion to halt training when the test loss begins to
increase, thereby preventing overfitting.

3.4 Comparison and Validation of VGAE-based
Generative Models

The baseline model and the three proposed VGAE-based
generative models are compared and validated in two aspects:

=
-
at

E}l¢

Lieg = 2 —Y,)?, where Y; represents the true response

of the ith
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Figure 6: (a) Baseline VGAE model. (b)~(d) Three VGAE-based generative models based on sequential integration or latent space
mediated integration strategy.

6 © 2024 by ASME



the reconstruction accuracy of the VGAE and the prediction
accuracy of the regressor.

The accuracies of reconstructing node features X and final
voxelated metamaterial structures are measured by the
differences between the original sample and the reconstructed
sample. The differences between original node coordinates X
and reconstructed node coordinates X measured by the
coefficient of determination (R?), which quantifies the deviation
of data from their true mean value:

2 q1_ Z0-W?
RT=1 (Y-Y,)2 (®)

where Y; represents the true response of the it* sample, Y;
represents the predicted response of the i*"® sample, and
Nsampie Tepresents the total number of sample points. Y, is the

Y Y;. A higher R?

averaged value of Yy and Y, = -
sample

value means a more accurate model. We also perform a voxel-
to-voxel comparison of the original and reconstructed voxel
structures, which are defined as:

Ayoxel = ngzl 121 1Zk 1|Ol]k ijk| (9)

where N represents the total amount of structures used, [
represents the side length of the structures in voxel, and | = 64
in this study. For the baseline model, the accuracy of
reconstructing edge A is also validated by RZ. It is to be noted
that in the three VGAE-based generative models, edge
reconstruction is carried out using the same Manhattan method
as the one used in training sample generation. Therefore, there is
no need to evaluate the accuracy of edge reconstruction. The
accuracy of heat conductivity prediction ¥ in the VGAE-based
generative models is evaluated by RZ. The validation results are
summarized in Table 1.

Table 1: Reconstruction/prediction accuracies of the baseline
model and the VGAE-based generative models. X, A and ¥
are measured by RZ.

model X A Xyoxel y

Baseline Training set | 0.999 | -7946 / /

Test set 0.999 | -8966 / /
VGAE- | Training set | 0.999 / 0.9165 | 0.235
(b) Test set 0.999 / 0.9163 | 0.206
VGAE- | Training set | 0.996 / 0.9166 | 0.078
(c) Test set 0.993 / 0.9139 | 0.056
VGAE- | Training set | 0.999 / 0.9302 | 0.995
(d) Test set 0.999 / 0.9291 | 0.974

The results indicate that VGAE fails to reconstruct A
accurately. All three VGAE-based generative models exhibit
satisfactory performance in reconstructing node features, thereby
enabling them to reconstruct voxel-based structures with small
error. However, the VGAE-(b) and VGAE-(c) cannot accurately
predict the structure-property relationship. This indicates that
relying solely on the graph representation may not fully capture

all geometric features crucial to thermal conductivity properties.
VGAE-(d) outperforms the others in terms of prediction
accuracy. VGAE-(d) utilizes the voxel image, instead of a
reduced graph representation, to predict properties.
Consequently, we select VGAE-(d) for the following task of
VGAE-based design.

4. VGAE-BASED DESIGN APPROACH

A design approach is proposed based on VGAE-(d). The
design approach utilize the pre-trained VGAE-based generative
model and perform design search in the latent space (Figure 7).
The design approach follows the following steps:

(1) Use the pretrained decoder to reconstruct node coordinates
X based on the latent variables, which are used as the
structure design variables. Then the adjacency matrix A is
reconstructed using the pre-defined Manhattan method. The
reconstructed graphs represent the skeletons of the two
phases of the metamaterial unit.

(2) Create the voxel image of the metamaterial unit following
Step 4 in Section 2, based on the skeletons. With the voxel
images, the thermal conductivity values are obtained by the
pretrained regressor model.

(3) Conduct design search approach in the latent space. The
design problem can be formulated as:

[f1(2), f,(2) ... £ ()] (10)

s.t. (<0

min

where z is the latent vector, f; (i = 1,2,..,n;) are the
objective functions, c; (G=12,..,n,) are the constraint
functions. f; and ¢; are both functions of z. The obtained
optimal design is in the format of z, and then the
corresponding metamaterial unit image is reconstructed.

target property: y* argmin ||y — y*||* e—
VA

Property
predictor

<@

Initial/update search

VGAE- | &
’ E:> decoder ‘

search in latent space

S

decoder —
A

Figure 7: VGAE-based design approach.
5. CASE STUDY: DESIGN POROUS METAMATERIAL

UNIT FOR THERMAL CONDUCTIVITY PROPERTIES
UNDER VOLUME FRACTION CONSTRAINT
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In this section, we demonstrate the capability of the
proposed VGAE-based design approach for designing porous
metamaterial units infilled with liquid for thermal conductivity
properties. The design objective is to maximize thermal
conductivity in both the x and y directions, while meeting two
design constraints: the volume fraction of the solid phase is 0.7,
within a tolerance of 0.01; and the thermal conductivity along
the z direction is half that of the x direction, within a tolerance
of 5. The design problem is formulated as follows:

Fluid phase

(b)
Solid phase
~ . L) "

Fluid phase 38

proposed design approach successfully generates designs that
satisfy the design constraints, as well as ensuring the designs’
connectivities of both solid component and component phase.
The true properties of these optimal designs are confirmed
by simulations. The predicted and actual values of both objective
functions and constraint functions are shown in Table 2. Out of
9 optimal design candidates, 6 strictly meet the design
constraints. We also find that the optimal design candidates
outperform all existing designs in the database. No design in the

(a)
Solid phase

Figure 8: Optimal design candidates obtained by (a) VGAE-based design approach, (b) cVAE-based design approach.

Table 2: Ground truth and predited objectives and constraints values of the optimal design candidates using VGAE-based design
approach. P represents the predicted values, T represents ground truth values. The design candidates satisfying all constraints are
highlighted in grey.

Design Objective Constraint
Candidates ky (W/mmK) ky, (W/mmK) k, (W/mmK) VFsolia
P T T P T P/T
1 138.418 139.990 113.009 | 113.261 69.169 62.773 0.696
2 139.563 140.822 111.785 | 110.373 70.052 69.275 0.701
3 138.144 141.095 113.075 | 113.794 69.938 73.021 0.690
4 138.240 140.502 113.150 | 105.916 70.060 65.060 0.698
5 138.871 140.917 112.587 | 113.348 69.771 71.872 0.700
6 134.751 141.274 115.023 | 116.795 70.241 65.084 0.696
7 137.568 141.048 113.557 | 113.795 70.820 71.795 0.700
8 141.353 141.826 112.863 | 113.107 71.708 71.268 0.700
9 137.841 141.352 114.025 | 113.050 71.012 71.461 0.700
max original database meets the design constraints that thermal
z ky(z) conductivity in the z direction is half that of the x direction.
max @) (11) Last but not the least, we demonstrate the .superiority qf the
z y VGAE-based approach over the convolutional variational
s.t. | VFsoia(z) — 0.7] < 0.01 autoencoder (cVAE)-based approach through a comparative

|2k, (2) — k()| < 5
min(z) < z < max(z)
Non-dominated Sorting Genetic Algorithm (NSGA-II) [59]
is applied to explore the latent space to search designs that yield
the highest thermal conductivities along the x and y directions.
Subsequently, the optimial designs in latent space are decoded to
reconstruct the corresponding metamaterial units in the form of
graphs and voxel images. As illustrated in Figure 8a, the

study using the same design objective (Eq. 11). Details of
training and validating the ¢cVAE model are provided in
Appendix A2. As shown in Figure 8b, designs produced by the
cVAE-based approach fail to ensure connectivity within the
pore/fluid phase, underscoring the VGAE-based approach
superiority in maintaining connectivity in both solid and pore
phases. The failure of cVAE is inherent in its utilization of the
voxel representation of the structures. For example, a few extra

8 © 2024 by ASME



voxels in the reconstruction may obstruct a conduit in the pore
network, resulting in the formation of a fully enclosed pore. The
ground truth and predicted objective and constraint values of the
optimal designs obtained by the cVAE-based approach are
presented in Appendix A3.

6. CONCLUSION

This paper presents a graph-based method for generating
porous metamaterial units with complete connectivity in both
solid and pore phases, as well as a VGAE-based approach for the
property-driven generative design of connectivity-guaranteed
metamaterial units. Our major conclusions are summarized as
follows:

(1) We established a novel method for generating
voxelated, connectivity-guaranteed metamaterial units
using graph data.

(2) We established and compared three VGAE-based
generative models based on sequential integration or
latent space mediated integration and identify the best
model structure for design applications.

(3) The VGAE-based design approach proves to be
effective in the generative design of porous
metamaterial units with desired properties and
guaranteed connectivity.

However, we also acknowledge some shortcomings in our

proposed design approach:

(1) Despite the VGAE-based model’s high accuracy in
reconstructing node coordinates, slight variations in
node coordinates can result in significant discrepancies
in voxelated structures.

(2) The proposed VGAE-based generative models and
VGAE-based design approach rely on the pre-defined
edge connection algorithm (the Manhattan method),
limiting their generalizability to other dataset.

For future work, we intend to further enhance the edge

reconstruction process and broaden the generalizability of our
design methodology.
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APPENDIX

A.1 Hyperparameters
generative models
Table A1: The dimensionality of each layer in the encoder,
decoder and regressor.

in the three VGAE-based

Encoder

Block Specifications

GraphSAGE-1 GraphSAGE32+ReL.U

GraphSAGE-2 GraphSAGE32+ReLU

Encoder FC 32+ReLU—>3

Mean, Variance,

Latent vector 100

Decoder

Block Specifications

Decoder FC 3+ReLU—>32+ReLU>32 23
Regressor-VGAE(b)

Block Specifications

Reg-GraphSAGE-1 | GraphSAGE32+ReLU

Reg FC 32+ReLU—>3

Regressor-VGAE(c)

Block Specifications

Reg-GraphSAGE-1 | GraphSAGE32+ReLU

Reg FC 32+ReLU—>3

Regressor-VGAE(d)

Block Specifications

Reg-Conv3d-1 (Conv32+ReLU) x3+ MaxPooling
Reg-Conv3d-2 (Conv64+RelU) x3+ MaxPooling
Reg-Conv3d-3 (Conv96+RelU) x3+ MaxPooling
Reg FC 2592+ReLU—>256+ReLU—>3

A.2 cVAE-based generative model and cVAE-based
design approach

We also established a cVAE-based generative model
(Figure Ala), which comprises an encoder and a decoder
constructed with 3D convolutional layers and a regressor. To
ensure a fair comparison with the VGAE-(d) generative model,
the cVAE-based generative model employs the sequential
integration strategy as well. We utilze the same training and test
set split and the same training process as indicates in section 3.5.

Validations of the cVAE's accuracy includes voxel-wise
comparisons between the original and reconstructed structures,
as well as assessing the regressor's performance in predicting
thermal conductivity using Eq. 9 and Eq. 8, respectively. The
accuracy of the cVAE-based generative model is presented in
Table Al. Additionally, we applied the cVAE to reconstruct the
training and test samples to evaluate its capability of capturing
the connectivity characteristics in the pore and solid phases. It is
important to note that our training and test sets only include
structure samples with complete connectivity in both solid and
pore phases. However, the reconstructions by cVAE cannot fully
maintain the connectivity characteristics. Among the
reconstructions of the training samples, 80.2% have isolated
voxel clusters in either the solid or the pore phases, while among
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the reconstructions of the test samples, 83.8% have isolated
voxel clusters in either the solid or the pore phases. This outcome
underscores a limitation of the cVAE-based generative model:
small deviations in the reconstructed structures may potentially
result in disconnections in both solid and pore phases. For
example, a few extra voxels in the reconstruction may obstruct a
conduit in the pore network, resulting in the formation of a fully
enclosed pore.

Then a cVAE-based design approach is proposed based on
the cVAE-based generative model (Figure Alb). The design
search method is the same as the one in Section 4. The difference
lies in the decoder, which directly decodes the latent space
parameters into the voxel structure, thereby combining steps (2)
and (3) from Section 4.

(a)
-, CNN- b | CNN- CNN
(b)  tergetproperty:y’ —— argmin||y —y'||’
z
\

Initial/update search

e

Property |
predictor /

CNN
egress
e

CNN-

-
’ E> decoder

search in latent space

{
-

decoder

Figure A1: (a) The proposed cVAE-based generative model. (b)
The cVAE-based design approach.

Table A2: Reconstruction accuracy of the voxelated structures
and prediction accuracy of regressor in the cVAE-based
generative models.

model Ayoxel y
Training set 0.8938 0.935
cVAE Test set 0.8760 | 0.928

A.3 Table A3: Ground truth and predited objectives and
constraints values of the optimal design candidates using cVAE-
based design framework. P represents the predicted values, T
represents ground truth values. The design candidates satisfying
all constraints are highlighted in grey.

Objective Constraint
k
ky (W/mmK) | ky, (W/mmK) W /mZmK) VF¢oiid
P T P T P T P/T
1] 131.68 | 123.33 | 142.65 | 139.45 | 66.21 | 66.57 | 0.71
2| 130.32 | 129.57 | 144.21 | 131.85 | 63.33 | 61.78 | 0.70

134.25

123.28

140.22

136.92

67.22

67.07

0.70

137.66

125.92

136.58

133.62

66.34

62.31

0.70

135.65

123.13

139.01

139.10

68.12

63.56

0.70

133.25

123.67

140.82

138.26

67.36

62.92

0.70

134.23

124.79

140.21

138.08

67.25

63.69

0.70

134.72

124.76

139.61

138.06

67.75

62.81

0.71

O (0| ||k |w

133.80

126.76

139.89

133.72

67.88

62.91

0.70
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