
 1 © 2024 by ASME 

 
Proceedings of the ASME 2024 

International Design Engineering Technical Conferences and 
Computers and Information in Engineering Conference   

IDETC/CIE 2024 
 August 25-28, 2024, Washington, DC 

 
 

IDETC2024- 143234 

GENERATING POROUS METAMATERIAL DESIGNS USING VARIATIONAL GRAPH 
AUTOENCODER AND LARGE LANGUAGE MODEL 

 
Kiarash Naghavi Khanghah, Zihan Wang, Hongyi Xu* 

 
School of Mechanical, Aerospace, and Manufacturing Engineering 

University of Connecticut, Storrs, CT 06269 
* Email: hongyi.3.xu@uconn.edu  

 
ABSTRACT 

In this paper, we propose and compare two novel deep 
generative model-based approaches for the design 
representation, reconstruction, and generation of porous 
metamaterials characterized by complex and fully connected 
solid and pore networks. A highly diverse porous metamaterial 
database is curated, with each sample represented by solid and 
pore phase graphs and a voxel image. All metamaterial samples 
adhere to the requirement of complete connectivity in both pore 
and solid phases. The first approach employs a Dual Decoder 
Variational Graph Autoencoder to generate both solid phase and 
pore phase graphs. The second approach employs a Variational 
Graph Autoencoder for reconstructing/generating the nodes in 
the solid phase and pore phase graphs and a Transformer-based 
Large Language Model (LLM) for reconstructing/generating the 
connections, i.e., the edges among the nodes. A comparative 
study was conducted, and we found that both approaches 
achieved high accuracy in reconstructing node features, while 
the LLM exhibited superior performance in reconstructing edge 
features. Reconstruction accuracy is also validated by voxel-to-
voxel comparison between the reconstructions and the original 
images in the test set. Additionally, discussions on the 
advantages and limitations of using LLMs in metamaterial 
design generation, along with the rationale behind their 
utilization, are provided. 
Keywords: Porous Metamaterial; Graph Representation; Graph 
Neural Network; Large Language Model; Variational Graph 
Autoencoder. 

1. INTRODUCTION 
Various metamaterials have been developed to achieve 

exceptional mechanical properties, catering to diverse 
application needs [1-12]. Their extraordinary mechanical 
characteristics are attributed to their distinctive topological 
features. The design of porous metamaterials suitable for 
applications involving fluid-filled conditions [13-15] has been 

relatively overlooked despite a substantial body of research in 
the field of metamaterial research. The use of conventional 
techniques like parametric design and analytical modeling 
typically restricts the design freedom of metamaterials with 
fluid-filled porous structures [1-5]. Therefore, new approaches 
enabling the freeform design of porous metamaterials, which 
satisfy the criterion of complete connectivity in both pore and 
solid phases [16], must be established. “Complete connectivity” 
means that there are no isolated solid parts or pores within the 
structure. However, detecting and repairing such disconnection 
is challenging, and methods such as texture synthesis [16] and 
the virtual temperature method [17] either, in some cases, cannot 
guarantee complete connectivity or are computationally 
expensive.  Moreover, earlier studies on the design of porous 
metamaterial units either restrict design possibilities to simple 
structures like lattices, simplifying connectivity verification, or 
fail to ensure complete connectivity in both solid and pore 
components [18-22].  
A promising solution to this challenge is to employ graph 
representation for designing metamaterials [23-25] and 
microstructures [26]. Derived from graph theory, the graph 
representation-based methods are computationally efficient in 
detecting disconnections and isolated parts and creating fully 
connected structures. Graph-based methods have been widely 
employed in materials science [23, 26, 27], chemistry [28], and 
structure design for mechanical properties [29-33]. In our 
previous work [34], we showcased the effectiveness of graph-
based representation in creating porous metamaterial structures 
with complete connectivity in both pore and solid phases. The 
graph representation of porous metamaterials introduced in that 
study serves as the basis for the study in this paper. 

Graph representation enables the application of graph neural 
networks (GNNs)[23, 27, 35-37] and large language models 
(LLMs), which require structured data—a feature inherently 
provided by graph structures. Each graph contains nodal end 
connection information 𝑮 = (𝑽, 𝑬) , and the design and 
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fabrication of porous metamaterials can be achieved by 
configuring these nodes and their connections (edges) [23]. A 
major challenge associated with GNN is to predict the edges for 
a given set of nodes accurately. Zhang [38] categorized the edge 
prediction approaches into two main categories: subgraph-based 
methods and node-based methods. The subgraph-based methods, 
such as learning from Subgraphs, Embeddings, and Attributes 
for Link prediction (SEAL) frameworks [39], necessitate a 
partially connected graph as the starting point to generate 
connections among the remaining nodes. On the other hand, the 
node-based methods, such as the Variational Graph 
Autoencoders (VGAE) [40, 41], learn the underlying 
distribution of graphs from a given dataset and generate new 
graphs following the same distribution. However, VGAE face 
challenges in capturing complex and high-dimensional graph 
structures due to the information loss in the latent space, 
Additionally, they may struggle to capture long-range 
dependencies or global structural features within the graph due 
to their inability to account for the relative positions and 
associations between them [38]. 

In contrast, Transformer-based LLMs are powerful in 
predicting edges in graphs because they can comprehend long-
range dependencies and consider various relationships before 
establishing connections [42, 43]. LLMs have been utilized in 
various graph-based problems [44-49]. However, despite their 
promising abilities, such as detecting the relation between 
dataset and zero-shot learning [50-52], their successful 
application in structural design, including the design of 
metamaterial structures, is still lacking. It is important to note 
that LLMs work best for cases where the data can be represented 
in a sequential or structured format (such as graphs and natural 
languages) [53]. Hence, we propose to leverage LLM in 
designing graph-represented microstructures in this study.   

Despite these differences GNN and LLM can be used 
entangled with each other. LLM can be used as an enhancer of 
GNN[42, 44] by capturing node embeddings containing long-
range relations with other nodes; GNN can create graph 
embeddings as fine-tuning inputs for LMM to improve LLM 
efficiency [42, 44, 53, 54]. Additionally, these two models can 
operate in parallel [42, 44]. This highlights the potential of LLMs 
in engineering design problems where structured graph data is 
involved.   

The remainder of this paper is organized as follows. Section 
2 introduces the proposed methodologies based on VGAE and 
LLM, for design representation, reconstruction, and generation 
of porous metamaterials. Section 3 presents a case study to 
quantitatively assess the effectiveness of the proposed 
methodologies. Section 4 discusses the advantages of employing 
LLM in the porous metamaterial design problems. Section 5 
concludes this work. 

 
2. METHODOLOGY: GENERATIVE MODEL-BASED 
APPROACHES FOR GENERATING POROUS 
METAMATERIAL STRUCTURES 

Two new approaches are proposed for design representation, 
reconstruction, and generation of porous metamaterials. As 
discussed in Section 2.4, porous metamaterial samples have been 
generated based on a solid phase graph and a pore phase graph 
in order to guarantee complete connectivity in both phases. The 
first approach, presented in Sections 2.1 and 2.2, employs a Dual 
Decoder Variational Graph Autoencoder (DVGAE) for 
predicting both nodes and edges of the graphs that represent the 
solid and pore phases in the porous structure. The second 
approach, presented in Section 2.3, uses VGAE as the node 
generator and a fine-tuned LLM as the edge generator. A 
comparative study of the two approaches will be presented in 
Section 3. Section 2.4 introduces the approach for graph-based 
representation and generation of diverse training samples, which 
are porous metamaterial units with complete connectivity in both 
pore and solid phases. 

 

Figure 1: Proposed approaches for generating complex porous 
metamaterial designs. (a) Dual Decoder Variational Graph 
Autoencoder (DVGAE) for generating both nodes and edges, and 
(b) A hybrid approach that integrates VGAE and LLM (LLM model 
architecture presented by Vaswani et al. [43]). 

2.1 Dual Decoder Variational Graph Autoencoder 
(DVGAE) for Both Node and Edge Feature Learning 

Graph autoencoder (GAE) and its variations (e.g., VGAE 
[55], adversarial regularized graph autoencoder [56], deep 
attention embedding graph autoencoder [57], etc.) learn latent 
representations of graphs using an autoencoder framework has 
been widely used to generate new graphs. DVGAE [58] is 
employed in this work to generate node attributes and graph 
structures (edges) simultaneously. Furthermore, by employing a 
variational framework, our aim is to more accurately capture the 
inherent distribution of graph data, thereby improving the 
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model’s capacity to generate novel graphs. A DVGAE comprises 
the following four major components: 
(1) Graph Convolutional Encoder, 𝑞(𝐳|𝐗, 𝐀) , which can be 
expressed as: 

𝑞(𝐳|𝐗, 𝐀) = Π𝑖=1
𝑁 𝑞(𝐳𝑖|𝐗, 𝐀)                 (1) 

𝑞(𝐳𝑖|𝐗, 𝐀) = ℕ(𝐳𝑖|𝝁𝑖 , diag(𝝈𝑖
2))             (2) 

where we define an undirected, unweighted graph 𝐺 = (𝑣, 𝜀) 
with 𝑁 = |𝑣| nodes. 𝐗 is the node features matrix of graph 𝐺, 
𝐀 is the adjacency matrix of graph 𝐺, and 𝐃 is the normalized 
degree matrix of 𝐺 . 𝐳𝑖  represents a latent variable, and the 
latent vector 𝐳 is an 𝑁 × 𝐹 matrix, where 𝐹 is the dimension 
of the latent vectors to which each node is mapped. 𝐗 represents 
the node features matrix with a dimension of 𝑁 × 𝐷 . ℕ(∙) 
stands for the normal distribution. The mean (𝝁𝑖) and variance 
(𝝈𝑖

2) of the latent variables for each node are computed using 
two GCN layers: one for the means ( 𝛍 = GCN𝝁(𝐗, 𝐀) ) and 
another for the log variance (log𝛔 = GCN𝝈(𝐗, 𝐀)). During the 
GCN operation, for each graph, given the node feature matrix 𝐗 
and the edge feature matrix 𝐀, we then have 𝐇 = 𝐀′𝐗𝐖, where 
𝐖 is the trainable weight matrix, and 𝐀′ = 𝐃−

1

2𝐀𝐃
1

2.  
(2) Inner Product Decoder, which is constructed with fully 
connected layers, takes the latent vector 𝐙  as input to 
reconstruct the original graph 𝐺. The underlying assumption of 
this decoding strategy is that if two nodes are similar in the latent 
space (i.e., their latent vectors are close to each other), they are 
more likely to be connected in the graph. The reconstructed 
adjacency matrix 𝐀̃ is reconstructed as:  

𝐀̃ = 𝜎(𝐙𝐙𝐓)                   (3) 

where 𝜎(∙) is the logistic sigmoid function, which ensures that 
the output values are in the range (0,1), interpretable as 
probabilities. 

(3) Graph Convolutional Decoder, which consists of graph 
convolutional layer followed by a node-wise softmax operation 
to reconstruct node features 𝐗̃. The graph convolutional decoder 
is defined as: 

𝐗̃ = 𝑓(𝐙, 𝐀) = 𝐀 𝑅𝑒𝐿𝑈(𝐀𝐙𝐖(0))𝐖(1)       (4) 

where 𝐀  is the adjacency matrix. 𝐙 represents the latent 
representation obtained from encoder. ReLU(∙) = (0; ∙)   is a 
nonlinear activation function. 𝐖  represents the trainable 
weight matrix. The structure of the node and edge features is 
utilized through the entire encoding-decoding process, owing to 
the usage of the graph convolutional layers in both encoder and 
decoder. 

(4) Loss Function, which consists of two parts: the 
reconstruction loss and the Kullback-Leibler divergence loss. 
The reconstruction loss comes from both the inner product 
decoder and the graph convolutional decoder. The inner product 
decoder reconstructs the adjacency matrix, and the associated 
loss function is defined as: 

ℒ𝑎𝑑𝑗 = E𝑞(𝐙|𝐗, 𝐀)[log 𝑝(𝐀|𝐙)]          (5) 

where 𝑞(𝐙|𝐗, 𝐀)  is the posterior inference, which can be 
recognized as performing posterior inference over all the data 
points in the dataset, where: 

𝑝(𝐀|𝐙) = Π𝑖=1
𝑁 Π𝑗=1

𝑁 𝑝(A𝑖𝑗|𝐳𝑖 , 𝐳𝑗)          (6) 
𝑝(A𝑖𝑗 = 1|𝐳𝑖 , 𝐳𝑗) = 𝝈(𝐳𝑖

T𝐳𝑗)           (7) 

The graph convolutional decoder reconstructs the node 
feature matrix, and the associated loss function is defined as: 

ℒ𝑋 =
1

2
||𝐗 − 𝐗̃||

2

               (8) 

The VGAE model is trained to optimize the variational 
lower bound 𝐿 , which is the sum of reconstruction loss for 
adjacency matrix (Eq.5), reconstruction loss for node features 
(Eq.8) and the Kullback-Leibler divergence between 𝑞(∙) and 
𝑝(∙): 

ℒ𝑉𝐺𝐴𝐸 = 𝜆1ℒ𝑎𝑑𝑗 + 𝜆2ℒ𝑋 + 𝜆3ℒ𝐾𝐿 =

𝜆1E𝑞(𝐳|𝐗, 𝐀)[log 𝑝(𝐀|𝐳)] + 𝜆2
1

2
||𝐗 − 𝐗̃||

2

−

𝜆3KL[𝑞(𝐳|𝐗, 𝐀)||𝑝(𝐳)]                 (9) 

We use Gaussian prior 𝑝(𝐳) = Π𝑖𝑝(𝐳𝑖) = Π𝑖𝑁(𝐳𝑖|0, 𝐈) . To 
optimize the parameters of the Gaussian distribution, we perform 
mini-batch gradient descent and leverage the reparameterization 
trick [59]. 𝜆1, 𝜆2 and 𝜆3 are coefficients to balance different 
loss terms to achieve better accuracy. In this work, we use 𝜆1 =
𝜆2 = 𝜆3 = 1  for simplicity. Although we experimented with 
other combinations of 𝜆1 , 𝜆2  and 𝜆3  for hyperparameter 
tuning, we did not observe significant improvements by varying 
these values. 
2.2 DGVAE Model Training 

For the metamaterial samples in our dataset, both solid and 
pore phases are represented by a 15-node graph. The node 
feature matrix 𝐗 contains the coordinates (𝐗𝑥, 𝐗𝑦, 𝐗𝑧) of each 
node, and the edge feature matrix 𝐀  representing the 
connection between nodes. For model training, we use the 
PyTorch Geometric library. The models are trained on Nvidia 
RTX8000. The porous metamaterial dataset (see Section 2.4) is 
divided into two sets, 222,937 for training and 3,000 for testing. 
Adam is used as the optimizer for parameter optimization. 
2.3 Hybrid approach: VGAE for node generation and 

LLM for edge generation. 
The proposed hybrid approach utilizes VGAE to generate 

the node features of the graph and establishes connections among 
the nodes using LLM. The VGAE for node generation follows 
the same methodology as presented in Section 2.1. 

The remarkable capabilities of LLMs in processing 
structured data have inspired the utilization of LLMs in graph-
based problems [44]. As described in our previous work [34] and 
Section 2.4, the porous structure is represented by two graphs, 
one for the solid phase and the other for the pore phase. In each 
graph, the nodes represent the joints in the solid/pore networks, 
and the edges represent the conduits/connections between 
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neighbor joints. The reasoning behind employing LLM lies in 
the conceptualization of the solid phase and pore phase graphs 
as sequential data, where node connections are determined by 
distances. Therefore, sequence-to-sequence (seq2seq) learning 
[60, 61] is employed to get nodes’ positional information as input 
and predict the nodes’ connections as the output. 

In this paper, the Byt5-base from the hugging face library 
has been utilized for edge prediction [62]. ByT5 is a pre-trained 
LLM, which offers better generalizability compared to task-
specific transformer models, enabling fine-tuning with a smaller 
number of graph data [63]. ByT5, similar to other variants of the 
Text-to-Text Transfer Transformer (T5) model, has an Encoder-
Decoder architecture [64]. The encoder-decoder framework is 
well-suited for seq2seq tasks due to its capability to maintain 
effective attention on both source and target sequences [65]. By 
having an attention mechanism [43] in both decoder and encoder, 
it can detect hard-to-detect dependencies, which, given the fact 
that the connection of a graph could be a difficult task, makes it 
crucial.  

Furthermore, Wang et al. [50] demonstrated that models 
employing an encoder-decoder structure, when fine-tuned on 
multiple tasks, exhibit the highest zero-shot capabilities. This 
implies that while the database has been created with a fixed 
number of nodes, the LLM model possesses the flexibility to 
accept an arbitrary number of nodes as input and generate their 
connections, a capability often termed as zero-shot learning [48, 
66].  
 

 
Figure 2: The approach for fine-tuning the byt5-base model for 
the task of predicting node connections in graphs that represent 
the solid and pore phases in porous metamaterials. (The Hugging 
Face logo is provided by the Hugging Face: 
https://huggingface.co/brand) 

Among the different variations of T5, ByT5 stands out as a 
byte-level transformer model, also known as a token-free model. 
This approach interprets sequences as UTF-8 bytes, and 
according to Xue et al. [67], it performs particularly well in tasks 
involving numerical reasoning and those at the byte level. This 
model could be advantageous for training on graph data 

containing positional information, as it necessitates numerical 
reasoning to establish node connections. For byt5 to be able to 
do accurate predictions, it needs to be trained on graph data as 
the downstream task. In this study, 222,937 porous metamaterial 
samples in graph representation are used to fine-tune the byt5 
model. The remaining 3,000 data are used for validation. In the 
proposed approach, as depicted in Figure 2, the following steps 
are undertaken. 

In the first step of finetuning the LLM model, the graph data 
as a downstream task will be imported. Since the LLM requires 
text input data, using a standard process the graph will be turned 
into text where compression can be applied to enhance 
performance while reducing memory and computational 
complexity[62]. This compression is necessary to increase 
performance when leveraging attention mechanisms, which 
typically have a complexity of 𝑂(𝑛2) [43, 62, 68]. 

 The compressed data will be turned into tokens via the byt5 
special tokenizer in which each byte of compressed data will be 
turned into a token. These tokens after getting converted into 
tensors of the same length via collator, undergo fine-tuning in the 
byt5-base model using the seq2seq trainer from the hugging face 
library [62]. During this process, all model parameters are 
retrained on the new graph data (in this study, they are the 
metamaterial structures in graph representation introduced in 
Section 2.4).  

The objective of the fine-tuned model is to predict node 
connectivity by feeding nodal information to the large language 
model, facilitating the creation of fully connected complex 
porous materials. The remarkable aspect of this model is its 
capability to predict edge connections without prior knowledge 
of a partially connected graph. Only node features are needed as 
the input for edge generation. Figure 3 presents a comparison 
between the graph predicted by a LLM, illustrated in green, and 
the original graph derived from the test dataset, illustrated in 
blue, with respect to the connections among the nodes. This 
comparison reveals a high accuracy in edge prediction when 
utilizing the LLM. 

 

 
Figure 3: Demonstrating Graph Prediction: (a) A ground truth 
graph from the test set and (b) the predicted graph by LLM (graph 
is inverted). 
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One inherent capability of LLMs is zero-shot learning, 
allowing the model to make accurate predictions even without 
prior exposure to a dataset [50-52]. This capability offers two 
advantages in porous metamaterial modeling. Firstly, although 
trained on solid phase graphs, the model can accurately predict 
pore phase graphs, which are generated following the same logic 
as the solid phase graph. Secondly, while the training dataset 
comprises a fixed number of nodes, the LLM model can predict 
outputs even with an arbitrary number of input nodes. The 
resulting connections adhere to the same logic as those generated 
in Section 2.4, enhancing the flexibility in design generation by 
adding different number of nodes during the design. 
Consequently, an LLM-based generative model can be employed 
for metamaterial structure generation. 

2.4. TRAINING DATASET: POROUS METAMATERIAL 
SAMPLES WITH COMPLETE CONNECTIVITY IN BOTH 
SOLD AND PORE PHASES 

We proposed a graph-based approach for generating 
complex porous microstructures with complete connectivity in 
both solid and pore phases (refer to [34] for details). This 
approach involves constructing the porous metamaterial unit 
from two “interwoven” graphs that represent the solid phase and 
the pore phase, respectively. As shown in Figure 4, this approach 
consists of the following four steps. 

 
Figure 4: The proposed approach for generating complex porous 
metamaterial unit samples with complete connectivity in both 
solid and pore phases-demonstrating using one of the most 
complex samples. 

In the first step, a graph representing the skeleton of the solid 
phase is created ("solid phase graph"). The nodes of the solid 
graph are randomly selected, and then connected based on a 
distance-based logic. This logic connects neighboring nodes 
within a specific distance until all nodes are interconnected, in 
case of isolated node cluster, long range connections will be 
established to achieve a single connected graph. The nodes and 
edges of the graph are then mapped to a voxel grid to create the 
voxel skeleton of the solid phase.  

The second step is to create the “pore phase graph” in a 
similar way. When creating the voxel skeleton of the pore phase, 
if the path between a pair of nodes is blocked by a voxel in the 
solid skeleton, a rerouting strategy based on the Manhattan 
method [69] is conducted to bypass the blocking voxel.   

Thirdly, the remaining unlabeled voxels in the 3D image are 
assigned to either the solid phase or the pore phase by the 
approximate K-nearest neighbor-based clustering using a K-
Dimensional tree (K-D tree) [70], after merging the two 
skeletons into one voxel image and mirroring along all three axes 
to create a symmetric metamaterial unit structure.  

Both solid and pore phases in the created metamaterial 
design are inherently fully connected, which is a major advantage 
of this approach. It is not required to perform any additional post-
processing to remove “enclosed voids” or “disconnected 
materials”. By randomizing the locations of the input nodes, a 
highly diverse metamaterial unit database with 225,937 samples 
is generated (Figure 5). 

 
Figure 5: Diversity of the training samples: several examples of 
metamaterial units, the voxel image and the graph representation 
of 1/8 of the cube, in the created database. 

3. RESULTS OF COMPARATIVE STUDIES 

3.1 Reconstruction Accuracy of the DGVAE Model 
The accuracy of the DVGAE model is evaluated based on 

two criteria: the accuracy of the reconstructed node features map 
and the accuracy of the reconstructed adjacency matrix. The 
accuracies of reconstructing node features map 𝐗̃  and 
adjacency matrix 𝐀̃ are evaluated by calculating the coefficient 
of determination ( R2 ) values, which measure the degree of 
agreement between the original and reconstructed samples: 

R2 = 1 −
∑(𝐘𝑖−𝐘̃𝑖)

2

∑(𝐘𝑖−𝐘𝑖̅)2               (10) 

where 𝐘𝑖  represents the true response of the 𝑖𝑡ℎ  sample, 𝐘̃𝑖 
represents the predicted response of the 𝑖𝑡ℎ  sample, and 
𝑛𝑠𝑎𝑚𝑝𝑙𝑒 represents the total number of sample points. 𝐘𝑖̅ is the 
averaged value of 𝐘𝑖(𝑡𝑟𝑢𝑒) and 𝐘𝑖̅ =

1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒
∑ 𝐘𝑖. The accuracy 

of edge prediction is measured by assessing each possible pair of 
nodes within the graph and determining if there is a link (edge) 
between them.  
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The accuracy of link predictions is then measured as the 
percentage of pairs that model predicted correctly which matches 
the actual presence of an edge in the graph from test dataset. The 
reconstruction accuracies of both solid phase and pore phase 
graphs are shown in Table 1. 

The results reveal that DVGAE successfully reconstructs 𝐗̃, 
but fails to reconstruct 𝐀̃  accurately. The failure of 
reconstruction of 𝐀̃ could be attributed to the DVGAE's limited 
ability to fully comprehend the complex structure of the graph. 

 The objective of the inner product decoder for edge 
reconstruction is to establish connections between nodes while 
adhering to the logic used in generating the training data. The 
logic does not solely depend on neighbor distance to link nodes. 
As we discussed in Section 2.4, long-range connections are also 
established between isolated node clusters. Thus, DVGAE 
struggles to capture these intricate rules, resulting in low link 
prediction accuracy. 

 
Table 1: Reconstruction accuracies of both solid phase and 
pore phase. R2 quantifies the reconstruction accuracy of 𝐗̃ 
and 𝐀̃. Link prediction accuracy is measured as the percentage 
of correctly predicted edge pairs matching the test dataset. 
 

Phase  𝐗̃ 𝐀̃ 

Link 
Prediction 
Accuracy 

Solid  Training  0.999 -1.520 10.23% 
Test  0.999 -6.801 5.05% 

Pore  Training  0.999 -1.424 10.86% 
Test  0.999 -6.491 5.12% 

 
3.2 Reconstruction accuracy of the LLM Model 

Since node-based techniques like DGVAE have poor 
accuracy when it comes to edge prediction, we tested edge 
creation using the proposed LLM model. The edge prediction 
accuracies of both solid and pore phase graphs are shown in 
Table 2. 

In this method, the average accuracy of 3,000 test samples 
for solid phase is 95.19%, and for the pore phase is 94.41 %. 
Figure 6 shows the prediction accuracy for all 3,000 samples 
from the test dataset for dual phases. Here, each point represents 
the accuracy of edge predictions for each graph sample, which 
encompasses multiple nodes and edges. 

 
Table 2: Link Prediction accuracy using LLM on the test set. 
Link prediction accuracy is measured as the percentage of 
correctly predicted edge pairs matching the test dataset. 

Phase Link Prediction Accuracy 

Solid Phase 95.19 % 

Pore Phase 94.41 % 

 

 
Figure 6: The prediction accuracy for 3,000 test samples (a) 
Solid phase (b) Pore phase. 

As depicted in Figure 6, some of the reconstructions 
exhibit low accuracy, which can be attributable to the inherent 
non-determinism of the LLM model [71]. This non-determinism 
occasionally results in suboptimal outcomes. This issue can be 
mitigated by adjusting the temperature, a hyperparameter in 
charge of the randomness of prediction, or implementing the 
synthesizer [72, 73] to validate predictions against problem 
requirements and detect discrepancies. 

 This scenario is illustrated in Figure 7, where the LLM 
model generates three different predictions for a given set of 
nodes, each yielding varying accuracies. Certain predictions, like 
Prediction 1 in Figure 7 (next page), might not fulfill the 
connectivity requirement. Therefore, a synthesizer can evaluate 
the problem’s requirements and selectively accept predictions 
that meet these requirements. Nevertheless, even with a 
synthesizer, the model’s prediction can have different accuracy, 
as seen in Predictions 2 and 3. 
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3.3 Generation of metamaterial designs in voxel format 
By integrating the VGAE as node generator, the LLM as 

edge predictor, and voxel labeling by the approximate K-nearest 
neighbor-based clustering (Step 4 in Figure 4), we showcase the 
capability of generating voxel images of porous metamaterial 
samples in the training and testing dataset.  

Figure 8: Reconstruction results of the proposed generative 
model for generating voxel images of porous metamaterials: (a) 
original samples in the training dataset and (b) reconstructions. 

The accuracy of reconstructing voxel images of porous 
structures is validated by comparing the reconstructions with the 

original image in the test set. The voxel-to-voxel generative 
accuracy measured by the coefficient of determination (𝑅2) is 
0.89. 
4. DISCUSSION 

The graph-based representation of porous metamaterials 
facilitates the utilization of both GNNs and LLMs in design 
generation. As demonstrated by the results of the computational 
experiments, GNNs such as VGAEs excel in reconstructing node 
features but may struggle to capture the underlying logic 
governing connections between nodes. On the other hand, 
Transformer-based LLMs excel in comprehending long-range 
dependencies [74] and diverse relationships, making them well-
suited for tasks such as edge prediction in graph-based problems. 
Additionally, because of their multi-head attention mechanism 
[43], LLMs have the capability of parallel processing in linking 
nodes, as opposed to sequential processes like Long short-term 
memory (LSTM) and recurrent neural network (RNN), making 
LMM models much faster and more efficient in capturing longer-
range dependencies [75, 76]. Despite their effectiveness in 
detecting relationships and ability to do zero-shot learning [50-
52], the application of LLMs in structural design, including 
metamaterials, remains limited mainly due to their “black box” 
[77] and non-deterministic[71] nature. Nevertheless, the 
integration of LLMs and GNNs presented a promising method 
in metamaterial structural design [42, 44]. 

 
Figure 7: Illustration of LLM model’s non-determinism: three realizations in predicting node connection with same set of nodes 

Prediction 1
Edge prediction accuracy: 87.5%

Prediction 2
Edge prediction accuracy: 81.25%

Prediction 3
Edge prediction accuracy: 90.6%

Ground truth
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5. CONCLUSION 
Based on the graph representation of porous metamaterial 

designs, two new approaches are proposed for the representation, 
reconstruction, and generation of porous metamaterials. The first 
approach utilizes a DVGAE for predicting both nodes and edges 
of the graphs representing the solid and pore phases in the porous 
structure. The second approach employs a VGAE as the node 
generator and a fine-tuned LLM as the edge generator. In the 
comparative study, we observe that LLM demonstrates 
significant strength in reconstructing the edges in graphs without 
prior knowledge of the existing connection rules. This indicates 
that the LLM can predict graph connections even when the 
connection rule is unknown, by extracting and training on 
skeleton graphs. Additionally, we showcase the generation of 
novel metamaterial samples using the proposed models. 

In future works, we intend to enhance the model by utilizing 
strategies like Low-rank adaptation[78] and parameter-efficient 
fine-tuning [79, 80]. These methods aim to boost the model’s 
accuracy and enable the use of a more complex and 
comprehensive model than byt5-base. We will also establish a 
porous metamaterial design framework based on the deep 
generative models proposed in this work. 
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