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ABSTRACT

In this paper, we propose and compare two novel deep
generative  model-based approaches for the design
representation, reconstruction, and generation of porous
metamaterials characterized by complex and fully connected
solid and pore networks. A highly diverse porous metamaterial
database is curated, with each sample represented by solid and
pore phase graphs and a voxel image. All metamaterial samples
adhere to the requirement of complete connectivity in both pore
and solid phases. The first approach employs a Dual Decoder
Variational Graph Autoencoder to generate both solid phase and
pore phase graphs. The second approach employs a Variational
Graph Autoencoder for reconstructing/generating the nodes in
the solid phase and pore phase graphs and a Transformer-based
Large Language Model (LLM) for reconstructing/generating the
connections, i.e., the edges among the nodes. A comparative
study was conducted, and we found that both approaches
achieved high accuracy in reconstructing node features, while
the LLM exhibited superior performance in reconstructing edge
features. Reconstruction accuracy is also validated by voxel-to-
voxel comparison between the reconstructions and the original
images in the test set. Additionally, discussions on the
advantages and limitations of using LLMs in metamaterial
design generation, along with the rationale behind their
utilization, are provided.
Keywords: Porous Metamaterial; Graph Representation; Graph
Neural Network; Large Language Model; Variational Graph
Autoencoder.

1. INTRODUCTION

Various metamaterials have been developed to achieve
exceptional mechanical properties, catering to diverse
application needs [1-12]. Their extraordinary mechanical
characteristics are attributed to their distinctive topological
features. The design of porous metamaterials suitable for
applications involving fluid-filled conditions [13-15] has been

relatively overlooked despite a substantial body of research in
the field of metamaterial research. The use of conventional
techniques like parametric design and analytical modeling
typically restricts the design freedom of metamaterials with
fluid-filled porous structures [1-5]. Therefore, new approaches
enabling the freeform design of porous metamaterials, which
satisfy the criterion of complete connectivity in both pore and
solid phases [16], must be established. “Complete connectivity”
means that there are no isolated solid parts or pores within the
structure. However, detecting and repairing such disconnection
is challenging, and methods such as texture synthesis [16] and
the virtual temperature method [17] either, in some cases, cannot
guarantee complete connectivity or are computationally
expensive. Moreover, earlier studies on the design of porous
metamaterial units either restrict design possibilities to simple
structures like lattices, simplifying connectivity verification, or
fail to ensure complete connectivity in both solid and pore
components [18-22].

A promising solution to this challenge is to employ graph
representation for designing metamaterials [23-25] and
microstructures [26]. Derived from graph theory, the graph
representation-based methods are computationally efficient in
detecting disconnections and isolated parts and creating fully
connected structures. Graph-based methods have been widely
employed in materials science [23, 26, 27], chemistry [28], and
structure design for mechanical properties [29-33]. In our
previous work [34], we showcased the effectiveness of graph-
based representation in creating porous metamaterial structures
with complete connectivity in both pore and solid phases. The
graph representation of porous metamaterials introduced in that
study serves as the basis for the study in this paper.

Graph representation enables the application of graph neural
networks (GNNs)[23, 27, 35-37] and large language models
(LLMSs), which require structured data—a feature inherently
provided by graph structures. Each graph contains nodal end
connection information G = (V,E) , and the design and

1 © 2024 by ASME


mailto:hongyi.3.xu@uconn.edu

fabrication of porous metamaterials can be achieved by
configuring these nodes and their connections (edges) [23]. A
major challenge associated with GNN is to predict the edges for
a given set of nodes accurately. Zhang [38] categorized the edge
prediction approaches into two main categories: subgraph-based
methods and node-based methods. The subgraph-based methods,
such as learning from Subgraphs, Embeddings, and Attributes
for Link prediction (SEAL) frameworks [39], necessitate a
partially connected graph as the starting point to generate
connections among the remaining nodes. On the other hand, the
node-based methods, such as the Variational Graph
Autoencoders (VGAE) [40, 41], learn the underlying
distribution of graphs from a given dataset and generate new
graphs following the same distribution. However, VGAE face
challenges in capturing complex and high-dimensional graph
structures due to the information loss in the latent space,
Additionally, they may struggle to capture long-range
dependencies or global structural features within the graph due
to their inability to account for the relative positions and
associations between them [38].

In contrast, Transformer-based LLMs are powerful in
predicting edges in graphs because they can comprehend long-
range dependencies and consider various relationships before
establishing connections [42, 43]. LLMs have been utilized in
various graph-based problems [44-49]. However, despite their
promising abilities, such as detecting the relation between
dataset and zero-shot learning [50-52], their successful
application in structural design, including the design of
metamaterial structures, is still lacking. It is important to note
that LLMs work best for cases where the data can be represented
in a sequential or structured format (such as graphs and natural
languages) [53]. Hence, we propose to leverage LLM in
designing graph-represented microstructures in this study.

Despite these differences GNN and LLM can be used
entangled with each other. LLM can be used as an enhancer of
GNNJ[42, 44] by capturing node embeddings containing long-
range relations with other nodes; GNN can create graph
embeddings as fine-tuning inputs for LMM to improve LLM
efficiency [42, 44, 53, 54]. Additionally, these two models can
operate in parallel [42, 44]. This highlights the potential of LLMs
in engineering design problems where structured graph data is
involved.

The remainder of this paper is organized as follows. Section
2 introduces the proposed methodologies based on VGAE and
LLM, for design representation, reconstruction, and generation
of porous metamaterials. Section 3 presents a case study to
quantitatively assess the effectiveness of the proposed
methodologies. Section 4 discusses the advantages of employing
LLM in the porous metamaterial design problems. Section 5
concludes this work.

2. METHODOLOGY: GENERATIVE MODEL-BASED
APPROACHES FOR  GENERATING POROUS
METAMATERIAL STRUCTURES

Two new approaches are proposed for design representation,
reconstruction, and generation of porous metamaterials. As
discussed in Section 2.4, porous metamaterial samples have been
generated based on a solid phase graph and a pore phase graph
in order to guarantee complete connectivity in both phases. The
first approach, presented in Sections 2.1 and 2.2, employs a Dual
Decoder Variational Graph Autoencoder (DVGAE) for
predicting both nodes and edges of the graphs that represent the
solid and pore phases in the porous structure. The second
approach, presented in Section 2.3, uses VGAE as the node
generator and a fine-tuned LLM as the edge generator. A
comparative study of the two approaches will be presented in
Section 3. Section 2.4 introduces the approach for graph-based
representation and generation of diverse training samples, which
are porous metamaterial units with complete connectivity in both
pore and solid phases.
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Figure 1: Proposed approaches for generating complex porous
metamaterial designs. (a) Dual Decoder Variational Graph
Autoencoder (DVGAE) for generating both nodes and edges, and
(b) A hybrid approach that integrates VGAE and LLM (LLM model
architecture presented by Vaswani et al. [43]).

2.1 Dual Decoder Variational Graph Autoencoder
(DVGAE) for Both Node and Edge Feature Learning

Graph autoencoder (GAE) and its variations (e.g., VGAE
[55], adversarial regularized graph autoencoder [56], deep
attention embedding graph autoencoder [57], etc.) learn latent
representations of graphs using an autoencoder framework has
been widely used to generate new graphs. DVGAE [58] is
employed in this work to generate node attributes and graph
structures (edges) simultaneously. Furthermore, by employing a
variational framework, our aim is to more accurately capture the
inherent distribution of graph data, thereby improving the
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model’s capacity to generate novel graphs. A DVGAE comprises
the following four major components:

(1) Graph Convolutional Encoder, q(z|X,A), which can be
expressed as:

q(z|X,A) = L q(z;]X, A) (1)
q(ziX, A) = N(z;|p;, diag(a;)) @)

where we define an undirected, unweighted graph G = (v, ¢)
with N = |v| nodes. X is the node features matrix of graph G,
A is the adjacency matrix of graph G, and D is the normalized
degree matrix of G. z; represents a latent variable, and the
latent vector z isan N X F matrix, where F is the dimension
of the latent vectors to which each node is mapped. X represents
the node features matrix with a dimension of N X D. N(V)
stands for the normal distribution. The mean (u;) and variance
(0;2) of the latent variables for each node are computed using
two GCN layers: one for the means (n = GCN,(X,A)) and
another for the log variance (logo = GCN,4(X,A)). During the
GCN operation, for each graph, given the node feature matrix X
and the edge feature matrix A, we then have H = A’XW, where

1 1
W is the trainable weight matrix, and A’ = D 2ADz.

(2) Inner Product Decoder, which is constructed with fully
connected layers, takes the latent vector Z as input to
reconstruct the original graph G. The underlying assumption of
this decoding strategy is that if two nodes are similar in the latent
space (i.e., their latent vectors are close to each other), they are
more likely to be connected in the graph. The reconstructed

adjacency matrix A is reconstructed as:

A=0(ZZ") (3)

where a(-) is the logistic sigmoid function, which ensures that
the output values are in the range (0,1), interpretable as
probabilities.

(3) Graph Convolutional Decoder, which consists of graph
convolutional layer followed by a node-wise softmax operation
to reconstruct node features X. The graph convolutional decoder
is defined as:

X =f(Z,A) = A ReLU(AZW©@)W® 4)

where A is the adjacency matrix. Z represents the latent
representation obtained from encoder. ReLU(-) = (0; ) is a
nonlinear activation function. W represents the trainable
weight matrix. The structure of the node and edge features is
utilized through the entire encoding-decoding process, owing to
the usage of the graph convolutional layers in both encoder and
decoder.

(4) Loss Function, which consists of two parts: the
reconstruction loss and the Kullback-Leibler divergence loss.
The reconstruction loss comes from both the inner product
decoder and the graph convolutional decoder. The inner product
decoder reconstructs the adjacency matrix, and the associated
loss function is defined as:

Laaj = Eqzjx, A)[log p(A|Z)] (5)

where ¢q(Z|X,A) is the posterior inference, which can be
recognized as performing posterior inference over all the data
points in the dataset, where:

p(AIZ) = I}, L p(A| 2, 7)) (©)
p(Al] = 1|Zi, Z]) = O'(ZiTZj) (7)

The graph convolutional decoder reconstructs the node
feature matrix, and the associated loss function is defined as:

,r:X=§||x—X||2 ®)

The VGAE model is trained to optimize the variational
lower bound L, which is the sum of reconstruction loss for
adjacency matrix (Eq.5), reconstruction loss for node features
(Eq.8) and the Kullback-Leibler divergence between q(-) and
p():

Lygag = MLaaj + A2 Lx + A3Lyy, =

.12
MEq(zjx, A)llogp(AID)] + 25 | X - x|| -
A3KL[q(zIX, A)||p(2)] ©9)

We use Gaussian prior p(z) = II;p(z;) = ;N(z;|0,I) . To
optimize the parameters of the Gaussian distribution, we perform
mini-batch gradient descent and leverage the reparameterization
trick [59]. 4;, 1, and A; are coefficients to balance different
loss terms to achieve better accuracy. In this work, we use 1; =
Ay = A3 =1 for simplicity. Although we experimented with
other combinations of 4;, A, and A3 for hyperparameter
tuning, we did not observe significant improvements by varying
these values.

2.2 DGVAE Model Training

For the metamaterial samples in our dataset, both solid and
pore phases are represented by a 15-node graph. The node
feature matrix X contains the coordinates (X, X,, X,) of each
node, and the edge feature matrix A representing the
connection between nodes. For model training, we use the
PyTorch Geometric library. The models are trained on Nvidia
RTX8000. The porous metamaterial dataset (see Section 2.4) is
divided into two sets, 222,937 for training and 3,000 for testing.
Adam is used as the optimizer for parameter optimization.

2.3 Hybrid approach: VGAE for node generation and
LLM for edge generation.

The proposed hybrid approach utilizes VGAE to generate
the node features of the graph and establishes connections among
the nodes using LLM. The VGAE for node generation follows
the same methodology as presented in Section 2.1.

The remarkable capabilities of LLMs in processing
structured data have inspired the utilization of LLMs in graph-
based problems [44]. As described in our previous work [34] and
Section 2.4, the porous structure is represented by two graphs,
one for the solid phase and the other for the pore phase. In each
graph, the nodes represent the joints in the solid/pore networks,
and the edges represent the conduits/connections between
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neighbor joints. The reasoning behind employing LLM lies in
the conceptualization of the solid phase and pore phase graphs
as sequential data, where node connections are determined by
distances. Therefore, sequence-to-sequence (seq2seq) learning
[60, 61] is employed to get nodes’ positional information as input
and predict the nodes’ connections as the output.

In this paper, the Byt5-base from the hugging face library
has been utilized for edge prediction [62]. ByT5 is a pre-trained
LLM, which offers better generalizability compared to task-
specific transformer models, enabling fine-tuning with a smaller
number of graph data [63]. ByT5, similar to other variants of the
Text-to-Text Transfer Transformer (T5) model, has an Encoder-
Decoder architecture [64]. The encoder-decoder framework is
well-suited for seq2seq tasks due to its capability to maintain
effective attention on both source and target sequences [65]. By
having an attention mechanism [43] in both decoder and encoder,
it can detect hard-to-detect dependencies, which, given the fact
that the connection of a graph could be a difficult task, makes it
crucial.

Furthermore, Wang et al. [50] demonstrated that models
employing an encoder-decoder structure, when fine-tuned on
multiple tasks, exhibit the highest zero-shot capabilities. This
implies that while the database has been created with a fixed
number of nodes, the LLM model possesses the flexibility to
accept an arbitrary number of nodes as input and generate their
connections, a capability often termed as zero-shot learning [48,
66].

Importing Graph
Data The Original Nodes : ['(29, 0, 18)','(19, 0, 4}, ...]
P The Original Edges : [(*(29, 0, 18)', (19, 0, 4)'), ('(29, 0, 18)', (20, 4, 31)"), ...]

Tokenizer

‘Node-token-ids": tensor([[53, 60,

,51,62,52,59,62,62,52,..]1)
‘Edge-token-ids": tensor([[53, 60,
62, 57,62, 52,59, 41, 52, 60, 62,
51, 62, 55, 62, 62, 53, 60,62, 51,
62,52, 59,41, 53, 51, 62, 55,...]])

Padding the token IDs
into tensor with the
same length

Collator

Compressed Nodes:
29.0,18;:19;0;4;;...
Compressed Edges:

A4
...................... Fine Tuning byt5
(19,0, 4) T (29,0, 18) by

ﬁm), (JV ~ | Hugging Face

Figure 2: The approach for fine-tuning the byt5-base model for
the task of predicting node connections in graphs that represent
the solid and pore phases in porous metamaterials. (The Hugging
Face logo is provided by the Hugging Face:
https://huggingface.co/brand)

Among the different variations of T5, ByT5 stands out as a
byte-level transformer model, also known as a token-free model.
This approach interprets sequences as UTF-8 bytes, and
according to Xue et al. [67], it performs particularly well in tasks
involving numerical reasoning and those at the byte level. This
model could be advantageous for training on graph data

containing positional information, as it necessitates numerical
reasoning to establish node connections. For byt5 to be able to
do accurate predictions, it needs to be trained on graph data as
the downstream task. In this study, 222,937 porous metamaterial
samples in graph representation are used to fine-tune the byt5
model. The remaining 3,000 data are used for validation. In the
proposed approach, as depicted in Figure 2, the following steps
are undertaken.

In the first step of finetuning the LLM model, the graph data
as a downstream task will be imported. Since the LLM requires
text input data, using a standard process the graph will be turned
into text where compression can be applied to enhance
performance while reducing memory and computational
complexity[62]. This compression is necessary to increase
performance when leveraging attention mechanisms, which
typically have a complexity of 0(n?) [43, 62, 68].

The compressed data will be turned into tokens via the byt5
special tokenizer in which each byte of compressed data will be
turned into a token. These tokens after getting converted into
tensors of the same length via collator, undergo fine-tuning in the
byt5-base model using the seq2seq trainer from the hugging face
library [62]. During this process, all model parameters are
retrained on the new graph data (in this study, they are the
metamaterial structures in graph representation introduced in
Section 2.4).

The objective of the fine-tuned model is to predict node
connectivity by feeding nodal information to the large language
model, facilitating the creation of fully connected complex
porous materials. The remarkable aspect of this model is its
capability to predict edge connections without prior knowledge
of a partially connected graph. Only node features are needed as
the input for edge generation. Figure 3 presents a comparison
between the graph predicted by a LLM, illustrated in green, and
the original graph derived from the test dataset, illustrated in
blue, with respect to the connections among the nodes. This
comparison reveals a high accuracy in edge prediction when
utilizing the LLM.
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Figure 3: Demonstrating Graph Prediction: (a) A ground truth
graph from the test set and (b) the predicted graph by LLM (graph
is inverted).
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One inherent capability of LLMs is zero-shot learning,
allowing the model to make accurate predictions even without
prior exposure to a dataset [S0-52]. This capability offers two
advantages in porous metamaterial modeling. Firstly, although
trained on solid phase graphs, the model can accurately predict
pore phase graphs, which are generated following the same logic
as the solid phase graph. Secondly, while the training dataset
comprises a fixed number of nodes, the LLM model can predict
outputs even with an arbitrary number of input nodes. The
resulting connections adhere to the same logic as those generated
in Section 2.4, enhancing the flexibility in design generation by
adding different number of nodes during the design.
Consequently, an LLM-based generative model can be employed
for metamaterial structure generation.

2.4. TRAINING DATASET: POROUS METAMATERIAL
SAMPLES WITH COMPLETE CONNECTIVITY IN BOTH
SOLD AND PORE PHASES

We proposed a graph-based approach for generating
complex porous microstructures with complete connectivity in
both solid and pore phases (refer to [34] for details). This
approach involves constructing the porous metamaterial unit
from two “interwoven” graphs that represent the solid phase and
the pore phase, respectively. As shown in Figure 4, this approach
consists of the following four steps.

Step 1

Step 2

Generating Solid Graph and
converting it into a 3D Skeleton
structure

Generating Pore Graph and
converting it into a 3D Skeleton
structure

Step 4

Step 3 l

Generate Dual phase structure
by approximate K-nearest

Merge two skeletons and Mirror
around 3 axes

P
- -

- Pore
I soid

Figure 4: The proposed approach for generating complex porous
metamaterial unit samples with complete connectivity in both
solid and pore phases-demonstrating using one of the most
complex samples.

In the first step, a graph representing the skeleton of the solid
phase is created ("solid phase graph"). The nodes of the solid
graph are randomly selected, and then connected based on a
distance-based logic. This logic connects neighboring nodes
within a specific distance until all nodes are interconnected, in
case of isolated node cluster, long range connections will be
established to achieve a single connected graph. The nodes and
edges of the graph are then mapped to a voxel grid to create the
voxel skeleton of the solid phase.

The second step is to create the “pore phase graph” in a
similar way. When creating the voxel skeleton of the pore phase,
if the path between a pair of nodes is blocked by a voxel in the
solid skeleton, a rerouting strategy based on the Manhattan
method [69] is conducted to bypass the blocking voxel.

Thirdly, the remaining unlabeled voxels in the 3D image are
assigned to either the solid phase or the pore phase by the
approximate K-nearest neighbor-based clustering using a K-
Dimensional tree (K-D tree) [70], after merging the two
skeletons into one voxel image and mirroring along all three axes
to create a symmetric metamaterial unit structure.

Both solid and pore phases in the created metamaterial
design are inherently fully connected, which is a major advantage
of'this approach. It is not required to perform any additional post-
processing to remove “enclosed voids” or “disconnected
materials”. By randomizing the locations of the input nodes, a
highly diverse metamaterial unit database with 225,937 samples
is generated (Figure 5).
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Figure 5: Diversity of the training samples: several examples of
metamaterial units, the voxel image and the graph representation
of 1/8 of the cube, in the created database.
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3. RESULTS OF COMPARATIVE STUDIES

3.1 Reconstruction Accuracy of the DGVAE Model

The accuracy of the DVGAE model is evaluated based on
two criteria: the accuracy of the reconstructed node features map
and the accuracy of the reconstructed adjacency matrix. The
accuracies of reconstructing node features map X and
adjacency matrix A are evaluated by calculating the coefficient
of determination (R?) values, which measure the degree of
agreement between the original and reconstructed samples:

2(v-%)*
X(Y;-¥)?

RZ=1- (10)
where Y; represents the true response of the it" sample, Y;
represents the predicted response of the it" sample, and

Nsampie Tepresents the total number of sample points. Y, is the
1

averaged value of Yy and Y, = 2. Y;. The accuracy

Nsample

of edge prediction is measured by assessing each possible pair of
nodes within the graph and determining if there is a link (edge)
between them.
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The accuracy of link predictions is then measured as the
percentage of pairs that model predicted correctly which matches
the actual presence of an edge in the graph from test dataset. The
reconstruction accuracies of both solid phase and pore phase
graphs are shown in Table 1.

The results reveal that DVGAE successfully reconstructs X,
but fails to reconstruct A accurately. The failure of
reconstruction of A could be attributed to the DVGAE's limited
ability to fully comprehend the complex structure of the graph.

The objective of the inner product decoder for edge
reconstruction is to establish connections between nodes while
adhering to the logic used in generating the training data. The
logic does not solely depend on neighbor distance to link nodes.
As we discussed in Section 2.4, long-range connections are also
established between isolated node clusters. Thus, DVGAE
struggles to capture these intricate rules, resulting in low link
prediction accuracy.

Table 1: Reconstruction accuracies of both solid phase and
pore phase. R? quantifies the reconstruction accuracy of X
and A. Link prediction accuracy is measured as the percentage
of correctly predicted edge pairs matching the test dataset.

Link
Phase X A Prediction
Accuracy
Solid Training 0.999 -1.520 10.23%
Test 0.999 -6.801 5.05%
Pore Training 0.999 -1.424 10.86%
Test 0.999 -6.491 5.12%

3.2 Reconstruction accuracy of the LLM Model

Since node-based techniques like DGVAE have poor
accuracy when it comes to edge prediction, we tested edge
creation using the proposed LLM model. The edge prediction
accuracies of both solid and pore phase graphs are shown in
Table 2.

In this method, the average accuracy of 3,000 test samples
for solid phase is 95.19%, and for the pore phase is 94.41 %.
Figure 6 shows the prediction accuracy for all 3,000 samples
from the test dataset for dual phases. Here, each point represents
the accuracy of edge predictions for each graph sample, which
encompasses multiple nodes and edges.

Table 2: Link Prediction accuracy using LLM on the test set.
Link prediction accuracy is measured as the percentage of
correctly predicted edge pairs matching the test dataset.

Phase Link Prediction Accuracy
Solid Phase 95.19 %
Pore Phase 94.41 %
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Figure 6: The prediction accuracy for 3,000 test samples (a)
Solid phase (b) Pore phase.

As depicted in Figure 6, some of the reconstructions
exhibit low accuracy, which can be attributable to the inherent
non-determinism of the LLM model [71]. This non-determinism
occasionally results in suboptimal outcomes. This issue can be
mitigated by adjusting the temperature, a hyperparameter in
charge of the randomness of prediction, or implementing the
synthesizer [72, 73] to validate predictions against problem
requirements and detect discrepancies.

This scenario is illustrated in Figure 7, where the LLM
model generates three different predictions for a given set of
nodes, each yielding varying accuracies. Certain predictions, like
Prediction 1 in Figure 7 (next page), might not fulfill the
connectivity requirement. Therefore, a synthesizer can evaluate
the problem’s requirements and selectively accept predictions
that meet these requirements. Nevertheless, even with a
synthesizer, the model’s prediction can have different accuracy,
as seen in Predictions 2 and 3.
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Figure 7: lllustration of LLM model's non-determinism: three realizations in predicting node connection with same set of nodes

3.3 Generation of metamaterial designs in voxel format

By integrating the VGAE as node generator, the LLM as
edge predictor, and voxel labeling by the approximate K-nearest
neighbor-based clustering (Step 4 in Figure 4), we showcase the
capability of generating voxel images of porous metamaterial
samples in the training and testing dataset.

(b)

Figure 8: Reconstruction results of the proposed generative
model for generating voxel images of porous metamaterials: (a)
original samples in the training dataset and (b) reconstructions.

The accuracy of reconstructing voxel images of porous
structures is validated by comparing the reconstructions with the

original image in the test set. The voxel-to-voxel generative
accuracy measured by the coefficient of determination (R?) is
0.89.

4. DISCUSSION

The graph-based representation of porous metamaterials
facilitates the utilization of both GNNs and LLMs in design
generation. As demonstrated by the results of the computational
experiments, GNNs such as VGAEs excel in reconstructing node
features but may struggle to capture the underlying logic
governing connections between nodes. On the other hand,
Transformer-based LLMs excel in comprehending long-range
dependencies [74] and diverse relationships, making them well-
suited for tasks such as edge prediction in graph-based problems.
Additionally, because of their multi-head attention mechanism
[43], LLMs have the capability of parallel processing in linking
nodes, as opposed to sequential processes like Long short-term
memory (LSTM) and recurrent neural network (RNN), making
LMM models much faster and more efficient in capturing longer-
range dependencies [75, 76]. Despite their effectiveness in
detecting relationships and ability to do zero-shot learning [50-
52], the application of LLMs in structural design, including
metamaterials, remains limited mainly due to their “black box”
[77] and non-deterministic[71] nature. Nevertheless, the
integration of LLMs and GNNs presented a promising method
in metamaterial structural design [42, 44].
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5. CONCLUSION

Based on the graph representation of porous metamaterial
designs, two new approaches are proposed for the representation,
reconstruction, and generation of porous metamaterials. The first
approach utilizes a DVGAE for predicting both nodes and edges
of the graphs representing the solid and pore phases in the porous
structure. The second approach employs a VGAE as the node
generator and a fine-tuned LLM as the edge generator. In the
comparative study, we observe that LLM demonstrates
significant strength in reconstructing the edges in graphs without
prior knowledge of the existing connection rules. This indicates
that the LLM can predict graph connections even when the
connection rule is unknown, by extracting and training on
skeleton graphs. Additionally, we showcase the generation of
novel metamaterial samples using the proposed models.

In future works, we intend to enhance the model by utilizing
strategies like Low-rank adaptation[78] and parameter-efficient
fine-tuning [79, 80]. These methods aim to boost the model’s
accuracy and enable the use of a more complex and
comprehensive model than byt5-base. We will also establish a
porous metamaterial design framework based on the deep
generative models proposed in this work.
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