
Design and Evaluation of GPU-FPX: A Low-Overhead tool for
Floating-Point Exception Detection in NVIDIA GPUs

Xinyi Li
Kahlert School of Computing

University of Utah
USA

xin_yi.li@utah.edu

Ignacio Laguna
Lawrence Livermore National

Laboratory
USA

ilaguna@llnl.gov

Bo Fang
Paci!c Northwest National

Laboratory
USA

bo.fang@pnnl.gov

Katarzyna Swirydowicz
Paci!c Northwest National

Laboratory
USA

kasia.swirydowicz@pnnl.gov

Ang Li
Paci!c Northwest National

Laboratory
USA

ang.li@pnnl.gov

Ganesh Gopalakrishnan
Kahlert School of Computing

University of Utah
USA

ganesh@cs.utah.edu

ABSTRACT
Floating-point exceptions occurring during numerical computa-
tions can be a serious threat to the validity of the computed results
if they are not caught and diagnosed. Unfortunately, on NVIDIA
GPUs—today’s most widely used type and which do not have hard-
ware exception traps—this task must be carried out in software.
Given the prevalence of closed-source kernels, e"cient binary-level
exception tracking is essential. It is also important to know how
exceptions #ow through the code, whether they alter the code’s
behavior and additionally whether these exceptions can be detected
at the program outputs or are killed inside program #ow-paths. In
this paper, we introduce GPU-FPX, a tool that has low overhead,
allows for deep understanding of the origin and #ow of exceptions,
and also how exceptions are modi!ed by code optimizations. We
measure GPU-FPX’s performance over 151 widely used GPU pro-
grams, detecting 26 serious exceptions that were previously not
reported. Our results show that GPU-FPX is 16→ faster with respect
to the geometric-mean runtime in relation to the only comparable
prior tool, while also helping debug a larger class of codes more
e$ectively. GPU-FPX and its benchmarks have been released.

CCS CONCEPTS
• Software and its engineering ↑ Software organization and
properties; Software safety; Software maintenance tools; • Com-
puter systems organization ↑ Single instruction, multiple
data.

KEYWORDS
Floating-point exceptions; GPUs; High-performance computing;
Machine Learning; Binary Instrumentation; Numerical Programs
ACM Reference Format:
Xinyi Li, Ignacio Laguna, Bo Fang, Katarzyna Swirydowicz, Ang Li, andGanesh
Gopalakrishnan. 2023. Design and Evaluation of GPU-FPX: A Low-Overhead

This work is licensed under a Creative Commons Attribution
International 4.0 License.

HPDC ’23, June 16–23, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0155-9/23/06.
https://doi.org/10.1145/3588195.3592991

tool for Floating-Point Exception Detection in NVIDIA GPUs. In Proceed-
ings of the 32nd International Symposium on High-Performance Parallel and
Distributed Computing (HPDC ’23), June 16–23, 2023, Orlando, FL, USA. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3588195.3592991

1 INTRODUCTION
Motivation
With the growing scale and variety of today’s high-performance
computing (HPC) and machine learning (ML) systems, program-
mers must be ever-vigilant of numerical errors. One of the chal-
lenges encountered in the contemporary high-performance com-
puting (HPC) community with heterogeneous systems is handling
exceptions on GPUs, as discussed in [11]. This paper is on e"-
ciently detecting !oating-point exceptions [15] that can render the
computed results unreliable and/or add to debugging e$ort.

Exceptions arise due to a number of reasons, and either impede
one’s ability to use a piece of numerical software (“outputs are
NaNs”) or produce normal-looking results that are unreliable. There
are !ve types of #oating-point exceptions as IEEE 754 [12] de!ned:
under#ow, over#ow, invalid operation, division by zero, and inexact.
Among these, invalid operation and division by zero are caused by
improper mathematical behavior, such as taking the square root of
a negative number. Meanwhile, under#ow, over#ow, and inexact
are caused by the limited representation range of #oating-point
numbers. E"cient detection of exceptions has become harder with
growing problem-scale and platform variety.

A related concept to exceptions is that of exceptional values
(NaN, INF and subnormals), also catalogued under IEEE exceptions,
and used to model things such as unknown or unrepresentable
data. Demmel et al. [9] discuss how exceptional values can cause
unreliable behavior of the widely used LAPACK suite: even though
the input “𝐿” matrix contains NaNs, the LAPACK !"#!$() can output
a NaN-free solution, which can fool the user into thinking that
the computation is reliable. Such examples highlight the need for
incisive #oating-point exception detection and diagnosis tools.

Given the growing use of GPUs in high-end HPC and ML pro-
grams, as well as rising heterogeneity [11], GPU-specialized ex-
ception detection tools are much needed. Unfortunately, building
such tools is challenging, as NVIDIA GPUs—the most widely used

59

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3588195.3592991
https://doi.org/10.1145/3588195.3592991
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3588195.3592991&domain=pdf&date_stamp=2023-08-07

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Xinyi Li, Ignacio Laguna, Bo Fang, Katarzyna Swirydowicz, Ang Li, and Ganesh Gopalakrishnan

of GPU types—do not have hardware-level exception trap mecha-
nisms1 [1]. As a result, even when exceptional values are present
in the program output, it can be di"cult to correct the underlying
issue, as even the location(s) of the underlying exception(s) are not
known. Additionally, many widely used GPU-supported functions
are available only as assembly code in a language called SASS that
carries no o"cial documentation (source-codes are not available). A
search for “NaN” on GitHub in CUDA/Python retrieves thousands
of user-reports, often with respect to closed-source GPU libraries.

Practical exception-detection tools must be su"ciently e"cient
to analyze large software libraries and applications. They must be
capable of analyzing closed-source GPU programs, and even in such
usage, they must produce adequate amounts of debugging infor-
mation. Such debugging information is vital for problem-diagnosis,
coming up with repairs, and even to conclude whether the detected
exceptions can be ignored by end-users.2 Tools with such features
can play a crucial role at many stages of GPU software development.
For instance, when compiler optimizations such as %&!’_(&’) are
applied, the exception-behavior of the code can change in confusing
ways. Another valuable insight to obtain is whether the exceptions
detected deep within kernels fail to appear at their output, and/or
whether they alter internal control-#ows in unintended ways (an
example to be given momentarily). Well-designed GPU exception
detection tools must, in such cases, help the user understand that
the output of the kernel is not dependable.

In this paper, we introduce a new tool called GPU-FPX that is the
!rst to support all the aforesaid features. We present a comprehen-
sive study of exceptions in GPU-based computations, including the
impact of compiler optimizations, and actual examples illustrating
the #ow, disappearance, and overall impact of exceptions.

Achieving high performance in GPU-FPX while retaining essen-
tial debugging information call for innovative solutions that mini-
mize unnecessary tracing and transmission of data. In this paper,
we evaluate three approaches for this: 1) keeping a table in the
GPU global memory for creating deduplicated exception records, 2)
transmitting diagnostic data from the GPU to the CPU only when
exceptional values arise, and 3) employing selective instrumentation
of the kernel (“sampling”) to minimize JIT-compilation overheads
during repeated kernel execution. Furthermore, we added an an-
alyzer to report instruction-level exceptions for users who wish
to dive deeper into the code and identify the root causes of these
exceptions.

Limitation of state-of-art approaches
Support for #oating-point exception checking in GPUs was !rst
demonstrated in the FPChecker [17] tool. This work studied a hand-
ful of GPU kernels, relying on LLVM-level instrumentation of GPU
kernels compiled using Clang. Unfortunately, the majority of high-
performance GPU programs are compiled using NVCC which is
a closed compiler where the opportunity for external users to in-
strument its internal LLVM code does not exist. Moreover, many
widely used libraries are available only in binary—at the SASS level
(sources or LLVM are unavailable).
1In contrast, AMD GPUs enable hardware-based exception trapping [4], potentially
simplifying exception-checking tool development.
2An example of when exceptions do not matter occurs when an INF is detected but
later vanishes due to division by INF, which is a standard mathematical behavior.

BinFPE [19] is the next exception checking tool of interest, per-
forming SASS-level GPU exception analysis. This tool has several
limitations compared to GPU-FPX.

First, BinFPE is orders of magnitude slower than GPU-FPX. Next,
BinFPE was studied only on a limited number of programs. Also,
there was no study of how exceptions change with compiler opti-
mizations. There was no attempt at characterizing the severity of
the detected exceptions. Also, they did not consider how exception
#ow through instructions or are a$ected by control-#ows.

To explain how exceptions may skew control-#ows and render a
program’s output unreliable, consider the statement if 𝑀 < 𝑁 then P
else Q. Here, if 𝑀 or 𝑁 are NaN, the predicate evaluates to 𝑂 𝑀𝑃𝑄𝑅 . This
can result in selecting the𝑆 code-path, which may not be what the
programmer intended. Moreover, potential exceptions within 𝑇 are
never triggered. Such control-#ow altering exceptions cannot be
detected using BinFPE. In fact, all the instructions in the right-hand
side column of Table 1 (this column includes FSEL that governs
control #ows) are missed by BinFPE.

In summary, GPU-FPX is a much more reliable and faster GPU ex-
ception debugging and diagnosis tool. We demonstrate its e$ective-
ness on 151 important ML and HPC programs. Notably, GPU-FPX
successfully terminates on benchmarks on which BinFPE hangs.
Additionally, our study of the CuMF-Movielens example (in §4)
shows that, when applying all previously mentioned optimizations
(including sampling), GPU-FPX executes in 5 minutes, compared to
BinFPE’s 6-hour runtime, without missing any exceptions.
GPU-FPX also aids in understanding the root causes of exceptions

and devising mitigation strategies3. Its ability to analyze exception
#ows is vital, particularly given that the latest IEEE 754 standard [12,
14] mandates NaN propagation for functions like (&* and (+,.
However, NVIDIA adheres to the 2008 IEEE standard [15, 27], which
does not require NaN propagation. Consequently, using GPU-FPX
safeguards users beyond NVIDIA’s requirements.

Key insights and contributions
Our key insight is that addressing the issue of #oating-point excep-
tions in GPU codes requires a comprehensive approach that includes
considerations of e"ciency, handling closed-source programs, un-
derstanding how exceptions propagate, studying optimization #ags,
and exploring techniques for repair. This is especially important
given that GPUs do not inherently generate hardware traps. Issu-
ing -.+,’%s in GPU codes is a poor substitute to either hardware
exception traps or an e"cient exception analyzer such as GPU-FPX.
GPU-FPX provides, for the !rst time, scalable and comprehensive
support for debugging #oating-point exceptions in GPU codes.

Another key insight and discovery is that one must include the
capability to track the #ow of exceptions even within individual
instructions. As we discuss later, this is a key link4in the chain of
techniques that help provide insights into the appearance, propaga-
tion, and disappearance of exceptions.

Our next insights are that many of the widely used programs
within the 151 we studied actually contain 26 serious exceptions.
Notably, these exceptions are generated even by the test inputs
3Languages such as Julia provide such operator variants that help #ow exceptions; our
analysis supports capabilities with similar bene!ts at the analysis level.
4For example in FADDR1R2 R3, if R3=INF, R1=INF, and R2 does not have an exceptional
value, then we can conclude that INF #owed from R3 to R1.

60

Design and Evaluation of GPU-FPX: A Low-Overhead tool for Floating-Point Exception Detection in NVIDIA GPUs HPDC ’23, June 16–23, 2023, Orlando, FL, USA

Table 1: Opcodes in SASS instructions: that GPU-FPX supports.

Computation Opcodes Control Flow Opcodes
Instructions Description Instructions Description

FADD FP32 Add FSEL Floating Point SelectFADD32I FP32 Add
FFMA32I FP32 Fused Multiply and Add FSET FP32 Compare And SetFFMA FP32 Fused Multiply and Add
FMUL FP32 Multiply FSETP FP32 Compare And Set PredicateFMUL32I FP32 Multiply
MUFU FP32 Multi Function Operation FMNMX FP32 Minimum/MaximumDADD FP64 Add
DFMA FP64 Fused Mutiply Add DSETP FP64 Compare And Set PredicateDMUL FP64 Multiply

provided with the programs. We show how GPU-FPX can help resolve
these exceptions through suitable repairs. A study of this magnitude
requires an e"cient tool which GPU-FPX is.

Limitations of the proposed approach
Even with the availability of a tool such as GPU-FPX, users will not
often be able to make signi!cant progress with vendor-provided
binary-only kernels. We recently experienced these di"culties
when debugging a NaN issue in cuSPARSE (closed source) library
using GPU-FPX. Through trial-and-error, we had to resort to boost-
ing the diagonal values of the matrix being used using a facility
provided within /0SPARSE. Our guessed strategy was to eliminate
a zero pivot that we suspected to be the underlying cause for the
NaN. This helps eliminate the observed NaN (detailed in §5), but
with no further assurances.

These di"culties notwithstanding, GPU-FPX still is the only tool
available today that provides this modest level of insight. A far
more useful future use of GPU-FPX would be one in which the
developers of closed-source libraries such as cuSparse used it to test
their libraries, as well as help document the exact conditions under
which they might produce exceptions. For programs with sources,
GPU-FPX provides much more helpful reports including details
of kernel launches from C++-Lambdas, line-number information
associated with exceptions, etc.

Key Results in this Paper
• We present GPU-FPX, an e"cient tool that detects exceptions
three orders of magnitude faster than the best bespoke tool.

• GPU-FPX reports exceptions in detail including how they are
introduced, propagate, and vanish.

• GPU-FPX helps programmers realize whether compiler opti-
mization #ags change exception behaviors, including when
FP64 instructions are converted to FP32 under optimization.

• GPU-FPX includes e"cient sampling-based methods to miti-
gate JIT-ting overheads.

• We employed GPU-FPX to study 151 ML and HPC programs,
showing how GPU-FPX helps understand the root-cause of
exceptions well-enough to come up with mitigation methods.

• The programs in our study are available at the public reposi-
tory at https://github.com/LLNL/GPU-FPX.

2 BACKGROUND
2.1 IEEE Floating-Point Exceptions Basics
A binary #oating-point number 𝑈 = ±𝑄 → 2𝐿 consists of the signi!-
cant 𝑄 , and the exponent 𝑅 , with three special values:

Figure 1: Application Interception, Inspection, and
Instrumentation

(1) If the exponent is FF(FFFF in FP64) Hex, then:
(a) if the mantissa is 0, it represents the INF exception.
(b) on the other hand, if the mantissa is is non-zero, then it
represents the NaN exception.

(2) Finally, if the exponent is 00 and the mantissa is non-zero,
then it represents the subnormal exception.

These three special values may be used when the following
conditions are incurred: over#ow, under#ow, or division by zero
(INF), invalid operation (NaN), an subnormal number generation
(see IEEE 754 [12]).

2.2 NVBit and SASS Basics
NVIDIA provides the only binary instrumentation framework called
NVBit [26] for observing and controlling the behavior of GPU pro-
grams at the binary SASS assembly program level; GPU-FPX builds
on NVBit. Basically, NVBit provides functions to instrument SASS
instructions by intercepting the CUDA driver APIs. As illustrated
in Figure 1, an NVBit tool inspects and instruments a CUDA pro-
gram by loading the NVBit tool shared library prior to all other
libraries. To help understand these binary-instrumentation activ-
ities for #oating-point exception detection, we provide a concise
summary of SASS #oating-point instructions. Given that NVIDIA
does not provide the details, we relied on past work [13, 16, 19]
and our own !ndings (through reverse-engineering) on top of that.
The opcodes of instructions handled by GPU-FPX include the FP64
(double precision) and FP32 (single precision) operations in Table 1.

Instruction-Format: The compute capabilities 7.𝑈–8.𝑈 use the in-
struction format (Op) (DestReg), (Param1), (Param2) ...where:
Op is the opcode de!ned in Table 1; DestReg is the destination reg-
ister that stores the result of the instruction; Param are the sources
for the instruction. Hence, GPU-FPX can handle Param with REG-
ISTER, IMM_DOUBLE, and GENERIC types [26].

Double precision quantities: SASS registers are FP32 registers
natively. FP64 results are stored in two adjacent FP32 registers,
i.e., given a FP64 instruction INST 𝑉𝑀 , 𝑉𝑁 , 𝑉𝑂 , where 𝑉𝑀 is the
destination register, the instruction uses 𝑉𝑀 and 𝑉𝑀+1 to store the

61

https://github.com/LLNL/GPU-FPX

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Xinyi Li, Ignacio Laguna, Bo Fang, Katarzyna Swirydowicz, Ang Li, and Ganesh Gopalakrishnan

result of the FP64 operation. Similarly, the instruction uses 𝑉𝑁
and 𝑉𝑁+1 to read the !rst parameter and 𝑉𝑂 and 𝑉𝑂+1 to read the
second parameter. For example, consider instruction DMUL R0, R2,
R4 which is a multiply. Here, R0 and R1 will end up containing the
result of the FP64 multiplication. To check for exceptional values
in the result of FP64 operations, we combine these registers into an
FP64 value that is passed into our analysis functions.

Division operation: Division is carried out in software by !rst
computing the reciprocal (use MUFU.RCP(64H)) and then employ-
ing an iterative algorithm. There are FCHK checks employed in such
codes for guarding against division-by-zero, etc. As it turns out, the
division algorithm gets expanded di$erently on Turing and Ampere
GPUs, while also generating a di$erent number of exceptions.5

2.3 Overview of BinFPE
BinFPE is an NVBit binary instrumentation tool designed to detect
#oating-point exceptions. By adhering to NVBit’s design principles,
it instruments each #oating-point arithmetic instruction, recording
the destination registers. These values are subsequently sent back
to the host (CPU) for analysis to identify any existing exceptions.

BinFPE has the folllowing drawbacks which GPU-FPX attempts
to overcome. First, it transmits data far in excess of what is required
to diagnose exceptions, which can bogs down the GPU-to-CPU
communication channel. Also, the BinFPE-provided debugging in-
formation does not allow one to determine the severity of the de-
tected exceptions, as it merely reports exceptions based on the value
carried in the destination register of a SASS instruction and not the
detailed #ow of exceptions caused by control-#ow instructions.

3 DETAILS OF GPU-FPX’S DESIGN
Figure 2 presents an overview of GPU-FPX organized in terms of
two components: detector and analyzer. The faster detector helps
pinpoint exception-generating locations across all kernels, while the
(relatively) slower analyzer helps compile exception #ow informa-
tion, and also helping ascertain the importance of these exceptions.
In all the performance comparisons against BinFPE reported in this
paper, we measure and report the time taken by the detector, as its
functionality matches that of BinFPE (BinFPE has no analysis com-
ponents).6 Both the detector and the analyzer rely on LD_PRELOAD
to load shared object !les before any other libraries. They follow
the architecture illustrated in Figure 1, intercepting the targeted
kernel and instrumenting the executing #oating-point instructions.
We now detail detector in §3.1, and analyzer in §3.2.

3.1 Implementation of a Scalable Detector
The detector’s design resembles that of BinFPE, as it checks the
destination register’s value for #oating-point operations. However,
in contrast to BinFPE, GPU-FPX’s checking process takes place on the
GPU device rather than the host. Additionally, GPU-FPX’s injected
code utilizes a table in global memory to record unique exceptions,
aiming to minimize data transfers between the device and the host.
By referring to this table, the detector can decide whether to send
back information, as depicted in the detector section of Figure 2.

6Turning on the analysis components of binary instrumentation, by itself, only adds
modest overheads, and typically done only on exception-generating kernels.

To further enhance performance, users can selectively instrument
temporally repeating kernels, thereby decreasing the associated
just-in-time (JIT) compilation overheads (a cost paid per invocation
while using NVBit).

The basic slowdown of an application caused by NVBit is dis-
cussed by its authors in [26]. In this section, we explain how we
minimize the additional overheads introduced by our approach.

3.1.1 On-the-fly Parallel Exception Checking: GPU-FPX’s detector
conducts on-the-#y exception checking in the GPU injected code.
For every #oating-point instruction, we inject code that examines
the values in the destination register, following the exceptional
value de!nitions outlined in §2.1.

Various instruction typesmay necessitate unique checkingmethod-
ologies. For instance, in division by zero exceptions, it is essential to
verify if the opcode is MUFU.RCP(64H) and the destination register
holds a NaN or INF value. In the case of FP64 type instructions,
we concatenate two consecutive registers (that together carry the
result) to perform the check. As a result, we implement four special-
ized injection functions and choose the appropriate one based on
Algorithm 1. Notice that in Line 12 - 16, when the opcode contains
64H, the register stores the high 32-bits of the FP64 value.
Algorithm 1 Specialized Injection Functions
Require: FP SASS instruction
1: procedure I,1#/’+2, &3"2.+’)((Op,RdestNum)
2: if Op contains MUFU.RCP then
3: if Op contains 64H then
4: inject check_64_div0(RdestNum-1,RdestNum)
5: else
6: inject check_32_div0(RdestNum)
7: end if
8: else
9: if Op has FP32 Prefix then
10: inject check_32_nan_inf_sub(RdestNum)
11: else if Op has FP64 Pre!x then
12: if Op contains 64H then
13: inject check_64_nan_inf_sub(RdestNum-1,RdestNum)
14: else
15: inject check_64_nan_inf_sub(RdestNum,RdestNum+1)
16: end if
17: else skip instrumentation
18: end if
19: end if
20: end procedure

3.1.2 Early Exception Notification, E!icient Transfers: To reduce
the overhead associated with transmitting exceptional information
to the host, we need to transfer only the minimal data necessary
for generating the report. For example, if an FP32 NaN exception
has already been reported at a speci!c location, sending the same
information again is redundant.

To achieve this, we allocate a hash table𝑊𝑋 in the global memory
when launching the GPU context. This table keeps track of the
location, exception type, and #oating-point format information.
After completing the check for each instruction, GPU-FPX examines
whether the same check result for the same location and #oating-
point type has been encountered previously. If not, the exception
information is sent back to the host using a channel API.

62

Design and Evaluation of GPU-FPX: A Low-Overhead tool for Floating-Point Exception Detection in NVIDIA GPUs HPDC ’23, June 16–23, 2023, Orlando, FL, USA

Figure 2: Overview of GPU-FPX. Utilizing the faster detector for initial screening of susceptible programs and applying the
analyzer to those with detected exceptions for a more e!cient work"ow.

Figure 3: Exception-Record Format (see Algorithm 2)

𝑊𝑋 Design: 𝑊𝑋 maintains a record of exceptional information
occurrences. Each key in the table corresponds to an exception-
record (Figure 3) – a triplet of ↓𝑌𝐿𝑃𝑄𝐿 , 𝑌𝑅𝑆𝑄 , 𝑌𝑇 𝑁 ↔. Here,

• 𝑌𝐿𝑃𝑄𝐿 employs two bits to encode crucial exceptions such as
NaN, INF, SUB (subnormal), and DIV0 (division by zero);

• 𝑌𝑅𝑆𝑄 consists of 16 bits, allowing for storage of di$erent 216
locations;

• 𝑌𝑇 𝑁 accommodates up to four FP formats (presently FP32
and FP64, with future plans to include FP16 and more).

Each value indicates whether the associated combination (repre-
sented as the key) has occurred or not. Given that the smallest GPU
memory access size is 32 bits, we utilize a 32-bit integer for value
storage. We opt for a hash table due to its 𝑍 (1) access time. The
16-bit location index is chosen to maintain the table size at 4MB.

Sending back information based on the 𝑊𝑋 table: After perform-
ing on-the-#y checking within the injected codes, we determine
whether the checked information should be sent back to the CPU,
as depicted in the detector part of Figure 2. We detail our injection
function in Algorithm 2. Upon checking the exceptions in Line 2, all
threads broadcast the checking result e_type to the leading thread
in the warp, as shown in Line 6. Then, in the leading thread, we
encode 𝑌𝐿𝑃𝑄𝐿 , 𝑌𝑅𝑆𝑄 , 𝑌𝑇 𝑁 from each thread as displayed in Figure 3,
Line 10 and only push the information to the host if the same com-
bination hasn’t occurred before. Such new exceptions alert users
about exceptions before (hour-long) GPU runs !nish. A complete
record of all exceptions is available in𝑊𝑋 for detailed analysis after
the GPU program terminates.

3.1.3 Selective Instrumentation: Reference [26] highlights that a
signi!cant portion of NVBit’s overhead comes from JIT-compilation
which is incurred each time a kernel is launched at runtime. To com-
bat this overhead, we have implemented selective instrumentation
techniques to reduce the number of kernels requiring JIT-ting.

Algorithm 2 Injected codes for each instruction
Require: reg_val: destination register value
Require: GT: Table𝑈𝑉
Require: locfp: The encoded 𝑊𝐿𝑀𝑁 and 𝑊𝑂 𝑃 for this instruction
1: procedure E*/#-’+2,4R#/2.54X%#.(reg_val, GT, locfp)
2: e↗ C)#/6E*/#(reg_val) 𝐿 Perform checking
3: for each thread𝑉 in the warp do
4: exn_type[T] = e
5: loc_fp[T] = locfp
6: Broadcast e_type to the leading thread in the same warp
7: end for
8: if in the leader thread in the warp then
9: for each exn_type[T] > 0 do
10: index↗ #,/25#_+5(loc_fp[T], exn_type[T])
11: if GT[index] is not empty then
12: Push index into GPU-CPU Channel
13: end if
14: end for
15: end if
16: end procedure

One approach we use is the "white-list" method, where code de-
velopers can select a !xed set of important kernels to be included in
the instrumentation. Additionally, we observe (especially in neural-
network GPU codes) that many kernels are repeatedly invoked. To
exploit this fact, in GPU-FPX, we allow users to instrument a kernel
once in 𝑎 of its invocations (!"#$%"#&’%!()*+" in the Algo-
rithm 3). We observe that this is a good tradeo$ between e"ciency
and collection e"cacy (measurement in Figure 6).

In Algorithm 3, Line 3 to Line 9 examine whether the user has
speci!ed a "white-list". If such a list exists and the current kernel is
included, the instr variable is set to true. If no list is provided, the
current kernel will be instrumented by default. Line 10 to Line 13
determine if undersampling is performed.

3.2 Implementation of Analyzer
We now detail analyzer’s #ow-tracking abilities.

3.2.1 Handling Control-Flow Opcodes, Source Operands: We now
describe how these unique features of GPU-FPX that support accu-
rate exception root-causing are implemented.

63

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Xinyi Li, Ignacio Laguna, Bo Fang, Katarzyna Swirydowicz, Ang Li, and Ganesh Gopalakrishnan

Algorithm 3 Whenever /0..#,’_6#.,#3 is invoked, decide
whether to instrument it (in white-list and once every 𝑎 calls).
Require: current_kernel: Kernel currently intercepted by NVBit
Require: 𝑋 : %.#74.#5,4%&/’2.
1: procedure S#3#/’+$#_I,!’.(current_kernel)
2: instr↗ false 𝐿 instr variable indicate instrument or not.
3: if user_specified_kernels then
4: if current_kernel in enable_kernels then
5: instr↗ true
6: end if
7: else
8: instr↗ true
9: end if
10: if 𝑋! = 0 then
11: if num[current_kernel]% 𝑋 != 0 then
12: instr↗ false
13: end if
14: end if
15: num[current_kernel]++
16: ,$8+’_#,&83#_+,!’.0(#,’#5(instr)
17: end procedure

Control FlowOpcodes: As the instrumentation process progresses,
control #ow opcode must be recorded in order to trace exception
#ow. To achieve this, we utilize a vector map that associates the
SASS string of the opcode with an integer, referred to as opcode_id.
This integer is then passed along and incorporated into the injected
code appropriately to permit exception-#ow tracing.

Source Operands: Source operands come in various types, includ-
ing REG, IMM_DOUBLE, GENERIC, and CBANK, each of which re-
quires a di$erent handling strategy. For IMM_DOUBLE andGENERIC
types, their values are known at compile-time. For instance, the
instruction "FADD RZ RZ +INF" has an IMM_DOUBLE type "+INF"
as one of its sources, while the instruction "MUFU.RSQ RZ -QNAN"
has a GENERIC type "-QNAN" as one of its sources. In these cases,
we obtain the relevant information during the JIT-compilation pro-
cess and pass it to the instrumented codes. On the other hand, the
values in REG and CBANK types can only be determined during
runtime. Thus, we record the register id, cbank id, and o$set, and
pass them as variadic arguments to the injection function. The
injected codes then read the corresponding values at runtime. List-
ing 1 presents the information to be passed to the injection function,
while the handling strategies for di$erent operand types are de-
tailed in Listing 2.

Shared registers in dest. and src. When designing the exceptional
value analyzer, we must consider the scenario where a register is
used as both a source and destination operand in an instruction.
For example, in the instruction "FADD R6, R1, R6", register "R6"
serves both as a source and destination. In such cases, if we were
to conduct our analysis after the instruction has been executed, we
may not accurately identify exceptional values in the source regis-
ter, as its value would have been overwritten by the computation
result. To account for this, we perform an additional check prior to
the execution of the instruction. Speci!cally, we compare the !rst
register number in the register list, which always corresponds to
the destination register, with the remaining register numbers to

1
2 /* Map the sass string to an integer opcode_id*/
3 int opcode_id = opcode_to_id_map(instr->getSASS());
4
5 /* Store the list of register numbers */
6 std::vector<int> reg_num_list;
7
8 /* Store the list of cbank ids and offsets */
9 std::vector<int> cbank_list;
10
11 /* A variable to indicate if an exception is known ↗𝑀

during compile-time */
12 int compile_e_type = NO_EXCEPT
13
14 /* A variable to record the number of values to be ↗𝑀

obtained at runtime */
15 int num_run_vals = 0;
16
17 for (int i = 0; i < instr->getNumOperands(); i++) {
18 /* Handle different types of operands*/
19 }
20 /*Pass the num_run_vals, compile_e_type, reg_num_list↗𝑀

and cbank_list into the injection function. */

Listing 1: Information passed to injection function.

1 /* get the operand "i" */
2 InstrType::operand_t *op = instr->getOperand(i);
3
4 /*Push the register number into the register list*/
5 if(op->type == InstrType::OperandType::REG) {
6 reg_num_list.push_back(op->u.reg.num);
7 num_run_vals++;
8 }
9
10 /*Push the cbank id and offset into the cbank list*/
11 else if(op->type==InstrType::OperandType::CBANK) ↗𝑀

{
12 cbank_list.push_back(op->u.cbank.id);
13 cbank_list.push_back(op->u.cbank.imm_offset);
14 num_run_vals++;
15 }
16
17 /*Check if the IMM_DOUBLE is an exceptional value*/
18 else if (op->type==InstrType::OperandType::IMM_↗𝑀

DOUBLE) {
19 double imm_value = op->u.imm_double.value;
20 if(isnan(imm_value)){
21 compile_e_type = NAN_EXCEPT;
22 }
23 else if(isinf(imm_value)){
24 compile_e_type = INF_EXCEPT;
25 }
26 }
27
28 /*Check if the GENERIC is an exceptional value*/
29 else if(op->type==InstrType::OperandType::GENERIC↗𝑀

) {
30 std::string gen_value = op->u.generic.array;
31 if(gen_value.contains("NAN")){
32 compile_e_type = NAN_EXCEPT;
33 } else if(gen_value.contains("INF")){
34 compile_e_type = INF_EXCEPT;
35 }
36 }
37 else {continue.}
38 }

Listing 2: Details of handling di#erent types of operands

64

Design and Evaluation of GPU-FPX: A Low-Overhead tool for Floating-Point Exception Detection in NVIDIA GPUs HPDC ’23, June 16–23, 2023, Orlando, FL, USA

Table 2: Instruction state categorization based on the instruc-
tion information gathered by the Analyzer. EV is a concrete
exceptional value (i.e., NaN, INF, SUB)

Instr. Info.
Share Reg. Ctrl. Flow Ops Dest. Except. Srcs. Except. State

✁
✂ ✁ Comparison

✂ ✂ Except=EV No EV Appearance
With EV Propagation

✂ ✂ No Except Except Disappearance

determine whether the destination and source operands share the
same register.

3.2.2 Generating Analysis Reports: Upon gathering the necessary
information during both compilation and runtime, it becomes possi-
ble to track the #ow of exceptional values through the instructions.
We categorize the state of instructions into !ve types, as shown in
Table 2. It is important to note that, for each case, GPU-FPX prints
the state, location, SASS code, and value types in registers, allowing
for comprehensive analysis and understanding.

4 EVALUATION OF THE GPU-FPX DETECTOR
We now present a comprehensive evaluation of GPU-FPX detector,
using a diverse set of benchmark programs. The benchmarks consist
of a total of 151 programs, including a mix of HPC and machine
learning applications, from various benchmark suites (Table 3).7

Table 3: Our evaluation target programs and their containing
benchmark suites (use of the red font indicates that excep-
tions were detected in them).

Suite Programs

gpu-rodinia
b+tree, backprop, bfs, cfd, dwt2d, gaussian, heartwall,
hotspot, hotspot3D, hu$man, hybridsort, kmeans,
lavaMD, leukocyte, lud, myocyte, nn, nw, srad, srad_v1

shoc BFS, FFT, GEMM, Stencil2D, MD, Reduction,
Scan, Sort, Spmv, Triad, MD5Hash, S3D, QTC

paraboil histo, mri-q,sad, stencil, mri-gridding, tpacf, spmv,
bfs, cutcp, sgemm

GPGPU_SIM wp, cp, lps, mum, rayTracing, libor
Exascale Proxy
Applications Laghos, Remhos, XSBench, Sw4lite, Kripke, LULESH

polybenchGpu

2DCONV, 2MM, 3DCONV, 3MM, ADI, ATAX, BICG,
CORR, COVAR, FDTD-2D, GEMM, GEMVER,
GESUMMV, GRAMSCHM, JACOBI1D, JACOBI2D,
LU, MVT, SYR2K, SYRK

NVIDIA
HPC-Benchmarks HPCG

cuda-samples 71 programs
ML open issues CuMF-Movielens, SRU-Example, cuML-HousePrice

We ran our experiments on two di$erent machines: Machine 1:
AMD Ryzen 5 3600 6-Core processor with NVIDIA GeForce RTX
2070 SUPER GPU, Machine 2: Intel(R) Core(TM) i9-10900K CPU (10
cores) @ 3.79 GHz with GeForce RTX 3060 GPU

Our key !ndings are these: (1) the detection of previously un-
known exceptions across widely used GPU programs, as shown
in Table 4; (2) a 3-orders of magnitude speedup compared to the
best available tool, as shown in Table 5; (3) the e$ectiveness of our
sampling strategy in mitigating JIT-ting overheads without missing
7We studied, but do not include the programs from CUDA-Samples in this table, given
that there are 71 programs in this suite.

relevant exceptions, as shown in Table 5; (4) the e$ect of compiler
optimizations on exceptions, as shown in Table 6, and (5) analysis
of the impact of exceptional values on programs in Table 7. The rest
of this section provides more details on these !ndings, including
tables and !gures that summarize our results.

4.1 Exception Results, Table 4.
This table lists the exceptions detected using the detector in GPU-FPX.
The results show the exceptions generated by FP64 and FP32 #oating-
point instructions when running the benchmark programs on the
data sets that came with the programs. The presence of the more
serious exceptions, namely NaN, INF, or DIV0, are denoted with
red fonts in our tables.

Out of the 151 benchmark programs, we found exceptions in
26 programs where the exceptions may be meaningful8, with nine
of them involving NaN, INF, or DIV0. These programs are widely
used and include implementations of basic physical and biological
processes that may be used in real-world simulations. We further
analyze these programs in Section §5.

For some programs, we found exceptions under both FP64 and
FP32 modes, despite the original code using FP64 exclusively. This
is because of the binding of some of the operations by the compiler
onto GPU special function units (SFUs [5, 22]) that provide higher
performance, but also higher rounding error.

4.2 Performance Across Tool Evolution, Figure 4
The performance metric we used in the evaluation is slowdown –
the ratio of the program’s running time with our tool and the pro-
gram’s original runtime (i.e., without exception checking). Figure 4
illustrates the slowdown distribution of the 151 programs tested
using BinFPE and the two phases of GPU-FPX’s evolution. In the
!rst Phase, GPU-FPX implements parallel checking and sends back
exceptions (w/o GT), while in the second phase it adds a global
table, returning only deduplicated information (w/ GT).

Figure 4 demonstrates that our techniques end up shifting more
programs from the higher slow-down ranges down to lower slow-
down ranges—showing that far less programs take longer. Although
the addition of the global table does not appear to yield signi!cant
improvements, it resolves the hanging issues in previous cases—
showing that deduplication has the e$ect of avoiding communication-
related congestion.

In summary, when using GPU-FPX’s detector, over 60% of the
programs experience a slowdown of less than 10x, compared to
only 40% of the programs with BinFPE. To better visualize the !nal
overall improvement over BinFPE, we present Figure 5.9 The X-axis
represents the (log2) slowdown caused by GPU-FPX, and the Y-axis
shows the corresponding (log2) slowdowns caused by BinFPE. Each

8For some programs involving Monte Carlo or compression algorithm, exceptional
values may be meaningless, so we didn’t show them in this table.
8Notice that GPU binary instrumentation tools su$er from signi!cantly more slow-
down than other instrumentation slowdowns—even CPU binary instrumentation
tools—due to JIT-ting and other aspects [26]. Even so, designers are known to use a
tool that has 100x slowdown if that is the only tool that can do a certain task—e.g., the
popular Valgrind has around this level of slowdown.
9The three outlier examples (simpleAWBarrier, reductionMultiBlockCG, and conju-
gateGradientMultiBlockCG) are ones where GPU-FPX is signi!cantly slower. These are
examples where there are very few #oating-point operations for which the allocation
of the global-table causes a net slow-down without any role to play.

65

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Xinyi Li, Ignacio Laguna, Bo Fang, Katarzyna Swirydowicz, Ang Li, and Ganesh Gopalakrishnan

Table 4: Exceptions detected by GPU-FPX. Red fonts indicate NAN, INF, and DIV0 exceptions.

FP64 FP32
Benchmark Suites Program NAN INF SUB DIV0 NAN INF SUB DIV0

polybenchGpu GRAMSCHM 0 0 0 0 7 1 0 1
LU 0 0 0 0 3 0 0 1

gpu-rodinia cfd 0 0 0 0 0 0 13 0
myocyte 57 63 2 3 92 76 8 0

SHOC S3D 0 0 0 0 0 7 129 0
Parboil stencil 0 0 0 0 0 0 2 0

GPGPU wp 0 0 0 0 0 0 47 0
rayTracing 0 0 0 0 0 0 10 0

cuda-samples

interval 1 1 0 0 0 0 0 0
conjugateGradientPrecond 0 0 0 0 0 0 7 0
cuSolverDn_LinearSolver 0 0 2 0 0 0 0 0
cuSolverRf 0 0 1 0 0 0 0 0
cuSolverSp_LinearSolver 0 0 1 0 0 0 0 0
cuSolverSp_LowlevelCholesky 0 0 1 0 0 0 0 0
cuSolverSp_LowlevelQR 0 0 1 0 0 0 0 0
BlackScholes 0 0 0 0 0 0 1 0
FDTD3d 0 0 0 0 0 0 1 0
binomialOptions 0 0 0 0 0 0 1 0

ECP

Laghos 1 1 1 0 1 0 0 0
Remhos 0 0 1 0 0 0 0 0
Sw4lite (64) 1 1 1 0 0 0 0 0
Sw4lite (32) 0 1 0 0 1 0 5 0

HPC-Benchmarks HPCG 1 0 0 1 0 0 0 0

ML open issues
CuMF-Movielens 0 0 0 0 29 0 0 2
SRU-Example 0 0 0 0 3 1 2 1
cuML-HousePrice 1 1 0 0 1 0 0 0

Figure 4: Slowdown distribution: BinFPE vs. GPU-FPX
without global table implementation vs. GPU-FPX with

global table implementation.

dot represents a program and indicates how one outperforms the
other tool. Speci!cally, if one dot is above the main diagonal (blue),

that means the GPU-FPX outperforms BinFPE and vice versa. This
plot reveals that even without sampling, GPU-FPX is signi!cantly
faster than BinFPE due to the performance-enhancing approaches
we have taken (§3.1). In particular, there are 49 programs where
GPU-FPX is two orders of magnitude faster, and four programs
which are three orders of magnitude faster.

4.3 Invocation Undersampling Study, Figure 6
It is e"cient (§3.1) to reduce the frequency of instrumentation when
the same kernel is repeatedly invoked. This can be achieved by set-
ting the parameter %.#74.#5,4%&/’2. to a higher value, such as 16
(causing Algorithm 3 to generate instrumented codes for kernels
only once every 16 calls). As an example of the improvements we’ve
achieved, consider the "CuMF-Movielens" program. By setting the
%.#74.#5,4%&/’2. to 256, we were able to evaluate this program
in just 5 minutes, compared to 70 minutes without using our sam-
pling technique. For reference, using BinFPE would have taken a
staggering 6 hours to evaluate the same program. It is worth noting
that this improvement comes without the loss of any previously
detected exceptions.

Table 5 provides further analysis of how exception detection
within programs containing many exceptions (“severe exceptions”)
changes with %.#74.#5,4%&/’2. equal to 64. The table shows
that, out of the 12 programs containing severe exceptions, three
experienced a decrease in the number of severe exceptions detected.

66

Design and Evaluation of GPU-FPX: A Low-Overhead tool for Floating-Point Exception Detection in NVIDIA GPUs HPDC ’23, June 16–23, 2023, Orlando, FL, USA

� 	
 � � �� �	

� �	�#� &� &���� "�����������!�����$�$� �

�

	

�

�

��

�	

�
�
	
�
#
�
&
�

&
�
�
��

"
�

��
�
�
�
��
�
#
$
"
%
�
�
�
$
�
$
�
�

����#���� "��"� �������$%��

���� "��"� �������$%��

�& � "��"#� �������$%��

Figure 5: log(slowdown) for BinFPE and GPU-FPX. Except for
a few programs, the dots are above the line, meaning that
GPU-FPX provides a signi$cant performance improvement

over BinFPE (three orders of magnitude more).

Figure 6: Impact of !"#$%"#&’%!()*+" on perf. and
exception detection. Blue bars represent geom. mean

slowdown; Red line is total num. of exceptions.

Nevertheless, the number of programs with exceptions remains the
same, ensuring that all programs can be diagnosed later if necessary.

4.4 Compiler E#ect on Exceptions, Table 6
Wenow study how exceptions are a$ected by the --use_fast_math
compiler #ag—a !rst-time study of this type. According to NVIDIA’s
o"cial documentation [23], the use of --use_fast_math performs
the following numerical optimizations that a$ect exceptions:

(1) Flushes all single-precision denormals to zeros.

(2) Uses a faster (coarser) approximation for single-precision
#oating-point division, reciprocal, and square root.

(3) Enables the contraction of #oating-pointmultiplies and adds/-
subtracts into #oating-point multiply-add operations.

(4) Some functions10 are mapped to special function units (SFU).
As the caveat in their documentation "In addition to reducing the
accuracy of the a"ected functions, it may also cause some di"erences
in special-case handling". We set out to better understand this, and
evaluate benchmarks, presenting the impacted cases in Table 6.

We observe that inGESUMMV, cfd,myocyte, S3D, stencil, wp,
and rayTracing, all subnormals just vanish, exactly as NVIDIA’s
documentation (item 1) mentions. Inmyocyte, six division-by-0
exceptions are raised immediately after eight disappearences of sub-
normal number exceptions under --use-fast-math optimization.
GPU-FPX also helps identify the locations where such changes hap-
pened. The code fragment a$ected was contained within myocyte
kernel_ecc_3. In particular, without the fast-math #ag, we could
detect a subnormal at kernel_ecc_3.cu:776. This subnormal dis-
appears and a new INF is now raised at kernel_ecc_3.cu:777 in
fast-math mode.

While more analysis need to be done by the original authors
of these programs, even from our limited studies, we can see the
consequences of using the fast-math #ag. Tools such as GPU-FPX
can o$er the required insights before programmers can feel con!-
dent about their use of the !use_fast_math #ag, and rule out the
danger of introducing cascading exceptions that may prove to be
hard to diagnose.

To summarize: (1) GPU-FPX detected previously unknown excep-
tions in 23 programs from signi!cant GPU benchmarks; (2) GPU-FPX
outperforms BinFPE by 12x on average, and is also up to three or-
ders of magnitude faster; (3) GPU-FPX helps explore compiler and
architecture impact on exceptions. (4) GPU-FPX enables e$ective
diagnosis and resolution of exceptions through its ability to locate
and identify the source of the problem.

5 ANALYZING THE EXCEPTIONS WITH
ANALYZER

Once exceptions are detected, there comes the question of diagnos-
ing and repairing the exceptions. We use analyzer to help diagnose
the programs that involve severe exceptions from Table 4. We sum-
marize the results in Table 7. From our analysis, the intervention
of experts is needed for myocyte, Laghos Sw4lite, and HPCG.

For other programs, each seems to merit its own treatment. We
explore the diagnosis and repair methods for these programs, which
also encompasses details about their distributions and source code
availability. Additionally, we present two comprehensive case stud-
ies in §5.2 and §5.3.

5.1 Diagnosis and Repair Strategies
We now describe the kinds of capabilities that GPU-FPX provides
by summarizing several exception-diagnosis studies we have con-
ducted.11

10https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#intrinsic-
functions
11Space prevents fuller descriptions, but these examples will be included in the Docker
image to be supplied with GPU-FPX.

67

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#intrinsic-functions
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#intrinsic-functions

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Xinyi Li, Ignacio Laguna, Bo Fang, Katarzyna Swirydowicz, Ang Li, and Ganesh Gopalakrishnan

Table 5: Exception detection decrease going from full GPU-FPX version to 64-invocations instrumentation

FP64 FP32
Program NAN INF SUB DIV0 NAN INF SUB DIV0
myocyte 57 ↑ 54 63 ↑ 53 2 ↑ 0 3 92 ↑ 87 53 8↑ 1 0
Sw4lite (64) 1↑ 0 1 1 0 0 0 0 0
Laghos 1 1↑ 0 1 0 1 0 0 0

Table 6: Details of kernels with respect to optimization "ags and exceptions detected

FP64 FP32
program with fastmath NAN INF SUB DIV0 NAN INF SUB DIV0

GRAMSCHM ✂ 0 0 0 0 7 1 0 1
✁ 0 0 0 0 5 0 0 1

LU ✂ 0 0 0 0 3 0 0 1
✁ 0 0 0 0 1 0 0 1

cfd ✂ 0 0 0 0 0 0 13 0
✁ 0 0 0 0 0 0 0 0

myocyte ✂ 57 63 2 3 92 76 8 0
✁ 57 63 4 3 90 81 0 6

S3D ✂ 0 0 0 0 0 7 129 0
✁ 0 0 0 0 0 7 0 0

stencil ✂ 0 0 0 0 0 0 2 0
✁ 0 0 0 0 0 0 0 0

wp ✂ 0 0 0 0 0 0 47 0
✁ 0 0 0 0 0 0 0 0

rayTracing ✂ 0 0 0 0 0 0 10 0
✁ 0 0 0 0 0 0 0 0

Table 7: Overview of Exception Diagnoses and Repairs using
Analyzer for Programs with Severe Exceptions

Program Diagnose? Exceptions Matter? Fixed?
GRAMSCHM ✁ ✁ ✁

LU ✁ ✁ ✁
myocyte ✂ N.A. N.A.
S3D ✁ ✂ N.A.

Interval ✁ ✂ N.A.
Laghos ✂ N.A. N.A.
Sw4lite ✂ N.A. N.A.
HPCG ✂ N.A. N.A.

CuMF-Movielens ✁ ✁ ✁
cuML-HousePrice ✁ ✁ ✁
SRU-Example ✁ ✁ ✁

GRAMSCHM and LU from polybenchGpu (sources available):
Running GPU-FPX reveals an INF exception due to division by 0.
This INF value is subject to a later FMA resulting in a NaN that
#ows to the output. The solution was to remove 0 values in the
input. For the LU routine studied also the cause and solution were
the same.

3D from shoc (sources available): The program has built-in
checks for the INF exception (a robust code) and hence the user
does not need to repair this code. GPU-FPX helps explain the inner
reasons for this INF.

interval from CUDA Samples (sources available): The gener-
ated NaNs are handled by the code (no action needed). GPU-FPX
helps explain the inner reasons for these NaNs.

HPCG fromNVIDIA’sHPCBenchmarks (no sources): GPU-FPX
located where the NaNs were generated. We could observe that
these NaNswere not used in subsequent calculations (yet we believe
the code ought to have detected and reported the NaNs).

CuMF-Movielens from Git (Open Issues) with sources: We
could locate the NaN to line 213 of !le als.cu and discovered a code
repair (setting alpha[0] to 0 when rsnew[0] is 0.

CuML-HousePrice fromGit (Open Issues)with partial sources:
We could locate the NaN exception source and conjecture a repair
that requires interaction with the authors.

5.2 Case Study: CUDA GMRES Solver
Our collaborator was employing the Generalized minimal residual
method (GMRES) algorithm to solve, using CUDA, a system of linear
equations involving an inde!nite nonsymmetric Matrix. When they
encountered the issue of the residual always being a NaN right from
the !rst iteration, they sought our help.

Using the detector of GPU-FPX, we identi!ed a division by zero
exception in the cuSparse kernel csrsv2_solve_upper_nontrans
_byLevel_kernel as reported in Listing 3. This NaN seemed to
be propagating to their customized kernel from the detector.

Upon reporting this !nding, our collaborator suggested that this
division by zero may have occurred during the LU step, since they
were using a nearly singular matrix.

68

Design and Evaluation of GPU-FPX: A Low-Overhead tool for Floating-Point Exception Detection in NVIDIA GPUs HPDC ’23, June 16–23, 2023, Orlando, FL, USA

1 #GPU-FPX LOC-EXCEP INFO: in kernel [void csrsv2_solve↗𝑀
_upper_nontrans_byLevel_kernel], DIV0 found @ /↗𝑀
unknown_path:0 [FP64]

2
3 #GPU-FPX LOC-EXCEP INFO: in kernel [void csrsv2_solve↗𝑀

_upper_nontrans_byLevel_kernel], NaN found @ /↗𝑀
unknown_path:0 [FP64]

4
5 #GPU-FPX LOC-EXCEP INFO: in kernel [void csrsv2_solve↗𝑀

_upper_nontrans_byLevel_kernel], NaN found @ /↗𝑀
unknown_path:0 [FP32]

6
7 Running #GPU-FPX: kernel [MassIPTwoVec] ...
8
9 #GPU-FPX LOC-EXCEP INFO: in kernel [MassIPTwoVec], ↗𝑀

NaN found @ /home/xinyi/NaNexample/customKernels↗𝑀
.cu:31 [FP64]

10 ...

Listing 3: The exception report generated by GPU-FPX
captures NaNs propagating to the custom kernel

1
2
3 #GPU-FPX-ANA SHARED REGISTER: Before executing the ↗𝑀

instruction @ /unknown_path in [void cusparse::↗𝑀
load_balancing_kernel]:0 Instruction: FSEL R2, ↗𝑀
R5, R2, !P6 ; We have 3 registers in total. ↗𝑀
Register 0 is VAL. Register 1 is NaN. Register 2↗𝑀
is VAL.

4
5 #GPU-FPX-ANA SHARED REGISTER: After executing the ↗𝑀

instruction @ /unknown_path in [void cusparse::↗𝑀
load_balancing_kernel]:0 Instruction: FSEL R2, ↗𝑀
R5, R2, !P6 ; We have 3 registers in total. ↗𝑀
Register 0 is VAL. Register 1 is NaN. Register 2↗𝑀
is VAL.

Listing 4: Application of the analyzer to the boosted version.
This listing displays the last two pieces of exceptional
information before the customized kernel is called.

They resolved this issue by boosting the matrix diagonal using an
API function already provided in cuSparse (boosting elevates values
smaller than a threshold to a larger number). This successfully
eliminated the NaNs in the output.

Subsequent checking using GPU-FPX reveals that a division by
zero still exists in csrsv2_solve_upper_nontrans_byLevel_kernel.
Using the analyzer on both the original and !xed versions, we ob-
served that in the boosted version, the NaN stops propagating at the
FSEL instruction (Listing 4), meaning it is not selected. In contrast,
in the original version, the NaN is selected and then passed to a
DADD operation (Listing 5). We inferred that this might be a guard
in this kernel, but our collaborator still expresses concerns about
the division by zero. Since cuSparse is closed source, further inves-
tigation into this issue requires help from its original developers
(such a dialog is underway).

5.3 Case Study: SRU-Example
In order to further test the capabilities of GPU-FPX in resolving
open Github issues related to NaN values appearing in GPU com-
putations, we found a promising study subject, namely an issue
reported in the Simple Recurrent Unit (SRU) project12, [21]. This
12https://github.com/asappresearch/sru

1 #GPU-FPX-ANA SHARED REGISTER: Before executing the ↗𝑀
instruction @ /unknown_path in [void cusparse::↗𝑀
load_balancing_kernel]:0 Instruction: FSEL R20, ↗𝑀
R31, R20, !P1 ; We have 3 registers in total. ↗𝑀
Register 0 is NaN. Register 1 is VAL. Register 2↗𝑀
is NaN.

2
3 #GPU-FPX-ANA SHARED REGISTER: After executing the ↗𝑀

instruction @ /unknown_path in [void cusparse::↗𝑀
load_balancing_kernel]:0 Instruction: FSEL R22, ↗𝑀
R22, R30, P0 ; We have 3 registers in total. ↗𝑀
Register 0 is NaN. Register 1 is NaN. Register 2↗𝑀
is NaN.

4
5 #GPU-FPX-ANA SHARED REGISTER: Before executing the ↗𝑀

instruction @ /unknown_path in [void cusparse::↗𝑀
load_balancing_kernel]:0 Instruction: DADD R8, ↗𝑀
R8, R22 ; We have 3 registers in total. Register↗𝑀
0 is NaN. Register 1 is NaN. Register 2 is VAL.

6
7 #GPU-FPX-ANA SHARED REGISTER: After executing the ↗𝑀

instruction @ /unknown_path in [void cusparse::↗𝑀
load_balancing_kernel]:0 Instruction: DADD R8, ↗𝑀
R8, R22 ; We have 3 registers in total. Register↗𝑀
0 is NaN. Register 1 is NaN. Register 2 is VAL.

Listing 5: Application of the analyzer to the original version.
This listing displays the last four pieces of exceptional
information before the call to the customized kernel.

1 #GPU-FPX LOC-EXCEP INFO: in kernel [mpere_sgemm_32↗𝑀
x128_nn], NaN found @ /unknown_path in [ampere_↗𝑀
sgemm_32x128_nn]:0 [FP32]

2
3 Running #GPU-FPX: kernel [void (anonymous namespace):↗𝑀

:sru_cuda_forward_kernel_simple] ...
4 #GPU-FPX LOC-EXCEP INFO: in kernel [void (anonymous ↗𝑀

namespace)::sru_cuda_forward_kernel_simple], NaN↗𝑀
found @ /unknown_path in [void (anonymous ↗𝑀
namespace)::sru_cuda_forward_kernel_simple]:0 [↗𝑀
FP32]

5 ...

Listing 6: Application of the detector to SRU example code.
We listed the $rst detected NaN in the report.

project is realized using Python/Pytorch, with details unknown
to us. We could successfully reproduce the NaN issue reported
by a user, with the NaN appearing at the output of an example
code. As detailed in Listing 6, NaN values were detected in the
ampere_sgemm_32x128_nn kernel by the detector of GPU-FPX.

Due to the unavailability of the source code, all we could go by
was information on exception #ows. The use of GPU-FPX revealed
that NaN values were propagated from the source register as shown
in Listing 7.

This led us to investigate the input data, and we found that the
original input was generated using the torch.FloatTensor(20,
32, 128).cuda() function, which creates a tensor with uninitial-
ized data on GPU memory. We resolved the issue by changing the
input generator to torch.randn(20,32,128).cuda(), which eliminated
the NaN values in the output.

69

https://github.com/asappresearch/sru

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Xinyi Li, Ignacio Laguna, Bo Fang, Katarzyna Swirydowicz, Ang Li, and Ganesh Gopalakrishnan

1 #GPU-FPX-ANA SHARED REGISTER: Before executing the ↗𝑀
instruction @ /unknown_path in [mpere_sgemm_32↗𝑀
x128_nn]:0 Instruction: FFMA R1, R88.reuse, R104↗𝑀
.reuse, R1 ; We have 4 registers in total. ↗𝑀
Register 0 is VAL. Register 1 is VAL. Register 2↗𝑀
is NaN. Register 3 is VAL.

2
3 #GPU-FPX-ANA SHARED REGISTER: After executing the ↗𝑀

instruction @ /unknown_path in [mpere_sgemm_32↗𝑀
x128_nn]:0 Instruction: FFMA R1, R88.reuse, R104↗𝑀
.reuse, R1 ; We have 4 registers in total. ↗𝑀
Register 0 is NaN. Register 1 is VAL. Register 2↗𝑀
is NaN. Register 3 is NaN.

Listing 7: Application of analyzer to SRU example code.
This clarify how the $rst NaN appears; it is from the source
register.

The key takeaway is that GPU-FPX is the only tool that brings a
designer to a point where they may be able to take these repair steps
even when sources are unavailable. It is also clear that the original
developers would have been signi!cantly enabled by GPU-FPX’s
availability to cover all the untested and/or unreported cases of
exceptions.

6 CONCLUDING REMARKS
In this work, we introduce the importance of tracking #oating-
point exceptions in GPU codes. Some of these exceptions become
impossible to ignore, as they stop a programmer from making
progress, say by providing a solution array containing NaNs. In
other cases, such NaNs do not appear in the program output, (mis-
)leading the programmer into believing that the results are reliable.
Unfortunately, as discussed through a number of case studies, we
demonstrate the fallacy of this assumption. We provide the !rst
(and only) practical tool in this space—GPU-FPX—that can help GPU
programmers make progress.

While we have shown many successes in using GPU-FPX on
codes that are unfamiliar to us, we have barely scratched the surface
of what is needed. GPU and other accelerators, along with special-
purpose hardware such as special function units and Tensor Cores
will form the bedrock of future high-performance computing. In all
these platforms, the danger of exceeding the number representation
ranges lurks. GPU-FPX is just the beginning, as clear from the survey
of future problems to expect in this area [11]. The many struggles
while training neural networks [2, 3] vividly capture some of the
future tooling needs.

Other Related Work: Tools for checking exceptions in CPU codes
have taken signi!cantly di$erent routes than GPU-FPX. FPSpy [10]
focuses on x86 binaries, o$ering the advantage of relying on OS-
level mechanisms. A new version of FPChecker [20] considers CPU
OpenMP and MPI codes, again using LLVM instrumentation. The
ideas in these e$orts do not directly help develop e"cient GPU-
based exception checkering tools. It also appears that the use of
OS-level mechanisms and LLVM instrumentation do not face the
same issues that we had to face and overcome (absence of hardware
traps, JIT-ting overhead, etc.).

Rigorous #oating-point error analysis methods as well as excep-
tion checking methods can work hand-in-hand, in that the former
can inform where exceptions might arise. Space does not permit a

detailed survey; a few key tools in rogorous error analysis are [6–
8, 24, 25].

Future Directions: A number of future directions of work are
planned to be pursued based on GPU-FPX, as well as to enhance its
capabilities.

Expanding the set of inputs on which a GPU program is run
is an important future need. Very likely, this requires designer-
input, as they alone typically know the meaningful input ranges of
their codes. For GPU libraries, these inputs are implied to be large,
and often documented. One recent work has exploited available
knowledge and sought to expand input ranges through Bayesian
Optimization [18]. This e$ort has been applied to GPU codes, and
shows that stress-testing is successful in revealing even more ex-
ceptions than previously known.

One important aspects of the work in [18] is that only the out-
put of the GPU function being tested was observed. As we have
shown, even when the output does not reveal exceptions, one must
“look inside the kernels” using tools such as GPU-FPX. This would
indeed be an exciting symbiotic direction to pursue wherein library
developers both stress-test their new libraries, identify problems
well before a customer faces them, and solidify as well as document
their code before release.

Such strengthening of GPU code-reliability is much-needed, as
evidenced by the numerous exception-related open-issues that the
community is struggling with. To help initiate this progress, we will
release GPU-FPX and our benchmarks in an easy-to-use manner,
making sure that all these programs easily run on today’s GPU
platforms.

ACKNOWLEDGMENTS
We thank the shepherd for their valuable feedback. This material is
based upon work supported by the U.S. Department of Energy, Of-
!ce of Science, O"ce of Advanced Scienti!c Computing Research,
ComPort: Rigorous Testing Methods to Safeguard Software Porting,
under Award Number 78284. The Paci!c Northwest National Lab-
oratory is operated by Battelle for the U.S. Department of Energy
under Contract DE-AC05-76RL01830. The work at Lawrence Liver-
more National Laboratory was supported under Contract DE-AC52-
07NA27344 (LLNL-CONF-833485). It is also based on NSF CISE
Awards 2217154, 2124100 and 1956106, and DOE DE-SC0022252.

REFERENCES
[1] 2022. CUDA C++ Programming Guide, v12. https://docs.nvidia.com/cuda/floatin

g-point/index.html. Online; accessed March, 30, 2022.
[2] 2022. NVIDIA Deep Learning Performance. https://docs.nvidia.com/deeplearni

ng/performance/. Online; accessed March, 30, 2022.
[3] Syed Ahmed, Christian Sarofeen, Mike Ruberry, Eddie Yan, Natalia Gimelshein,

Michael Carilli, Szymon Migacz, Piotr Bialecki, Paulius Micikevicius, Dusan
Stosic, Dong Yang, and Naoya Maruyama. 2022. https://pytorch.org/blog/what-
every-user-should-know-about-mixed-precision-training-in-pytorch/.

[4] AMD. 2015. FLOATING-POINT ARITHMETIC IN AMD PROCESSORS. https:
//community.amd.com/t5/opencl/amd-gpus-ieee-754-compliance/td-p/98382.
Accessed: 2023-04-10.

[5] NVIDIA Corporation. 2021. NVIDIA AMPERE GA102 GPU ARCHITECTURE.
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architectu
re-whitepaper-v2.1.pdf

[6] Arnab Das, Ian Briggs, Ganesh Gopalakrishnan, Sriram Krishnamoorthy, and
Pavel Panchekha. 2020. Scalable yet Rigorous Floating-Point Error Analysis.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (Atlanta, Georgia) (SC ’20). IEEE Press, Article
51, 14 pages.

70

https://docs.nvidia.com/cuda/floating-point/index.html
https://docs.nvidia.com/cuda/floating-point/index.html
https://docs.nvidia.com/deeplearning/performance/
https://docs.nvidia.com/deeplearning/performance/
https://pytorch.org/blog/what-every-user-should-know-about-mixed-precision-training-in-pytorch/
https://pytorch.org/blog/what-every-user-should-know-about-mixed-precision-training-in-pytorch/
https://community.amd.com/t5/opencl/amd-gpus-ieee-754-compliance/td-p/98382
https://community.amd.com/t5/opencl/amd-gpus-ieee-754-compliance/td-p/98382
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.1.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.1.pdf

Design and Evaluation of GPU-FPX: A Low-Overhead tool for Floating-Point Exception Detection in NVIDIA GPUs HPDC ’23, June 16–23, 2023, Orlando, FL, USA

[7] Marc Daumas and Guillaume Melquiond. 2010. Certi!cation of Bounds on
Expressions Involving Rounded Operators. ACM Trans. Math. Software 37, 1,
Article 2 (2010), 20 pages.

[8] David Delmas, Eric Goubault, Sylvie Putot, Jean Souyris, Karim Tekkal, and
Franck Védrine. 2009. Towards an Industrial Use of FLUCTUAT on Safety-Critical
Avionics Software. In Formal Methods for Industrial Critical Systems, FMICS 2009.
Lecture Notes in Computer Science, Vol. 5825. Springer Berlin Heidelberg, 53–69.
https://doi.org/10.1007/978-3-642-04570-7_6

[9] James Demmel, Jack Dongarra, Mark Gates, Greg Henry, Julien Langou, Xiaoye
Li, Piotr Luszczek, Weslley Pereira, Jason Riedy, and Cindy Rubio-González. 2022.
Proposed Consistent Exception Handling for the BLAS and LAPACK. arXiv
preprint arXiv:2207.09281 (2022).

[10] Peter Dinda, Alex Bernat, and Conor Hetland. 2020. Spying on the #oating point
behavior of existing, unmodi!ed scienti!c applications. In Proceedings of the 29th
International Symposium on High-Performance Parallel and Distributed Computing.
5–16.

[11] Ganesh Gopalakrishnan, Ignacio Laguna, Ang Li, Pavel Panchekha, Cindy Rubio-
González, and Zachary Tatlock. 2021. Guarding Numerics Amidst Rising Hetero-
geneity. In Correctness 2021: Fifth International Workshop on Software Correctness
for HPC Applications. https://correctness-workshop.github.io/2021/.

[12] IEEE 754Working Group et al. 2019. IEEE Standard for Floating-Point Arithmetic.
IEEE Std (2019), 754–2008.

[13] Ari B. Hayes, Fei Hua, Jin Huang, Yanhao Chen, and Eddy Z. Zhang. 2019. Decod-
ing CUDA Binary. In 2019 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO). 229–241. https://doi.org/10.1109/CGO.2019.8661186

[14] David G. Hough. 2019. The IEEE Standard 754: One for the History Books.
Computer 52, 12 (2019), 109–112. https://doi.org/10.1109/MC.2019.2926614

[15] 2008. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008 (2008),
1–70. https://doi.org/10.1109/IEEESTD.2008.4610935

[16] Zhe Jia, Marco Maggioni, Je$rey Smith, and Daniele Paolo Scarpazza. 2019.
Dissecting the NVidia Turing T4 GPU via Microbenchmarking. https:
//doi.org/10.48550/ARXIV.1903.07486

[17] Ignacio Laguna. 2019. FPChecker: Detecting Floating-Point Exceptions in GPU
Applications. In Proceedings of the 34th IEEE/ACM International Conference on
Automated Software Engineering (San Diego, California) (ASE ’19). IEEE Press,
1126–1129. https://doi.org/10.1109/ASE.2019.00118

[18] Ignacio Laguna and Ganesh Gopalakrishnan. 2022. Finding Inputs that Trigger
Floating-Point Exceptions in GPUs via Bayesian Optimization. In Supercomput-
ing.

[19] Ignacio Laguna, Xinyi Li, and Ganesh Gopalakrishnan. 2022. BinFPE: Accu-
rate Floating-Point Exception Detection for GPU Applications. In Proceedings
of the 11th ACM SIGPLAN International Workshop on the State Of the Art in Pro-
gram Analysis (San Diego, CA, USA) (SOAP 2022). Association for Computing
Machinery, New York, NY, USA, 1–8. https://doi.org/10.1145/3520313.3534655

[20] Ignacio Laguna, Tanmay Tirpankar, Xinyi Li, and Ganesh Gopalakrishnan. 2022.
FPChecker: Floating-Point Exception Detection Tool and Benchmark for Par-
allel and Distributed HPC. In 2022 IEEE International Symposium on Workload
Characterization (IISWC). 39–50. https://doi.org/10.1109/IISWC55918.2022.00014

[21] Tao Lei, Yu Zhang, Sida I. Wang, Hui Dai, and Yoav Artzi. 2018. Simple Recurrent
Units for Highly Parallelizable Recurrence. In Empirical Methods in Natural
Language Processing (EMNLP).

[22] Ang Li, Shuaiwen Leon Song, Mark Wijtvliet, Akash Kumar, and Henk Corporaal.
2016. SFU-Driven Transparent Approximation Acceleration on GPUs. In Proceed-
ings of the 2016 International Conference on Supercomputing (Istanbul, Turkey)
(ICS ’16). Association for Computing Machinery, New York, NY, USA, Article 15,
14 pages. https://doi.org/10.1145/2925426.2926255

[23] NVIDIA. 2022. CUDA Toolkit Documentation. https://docs.nvidia.com/cuda/cud
a-compiler-driver-nvcc/index.html. Online; accessed March, 30, 2022.

[24] Alexey Solovyev. 2017. TOPLAS FPTaylor Results Table. Retrieved October 10,
2017 from http://tinyurl.com/TOPLAS-FPTaylor-Results-Table

[25] Laura Titolo, Marco A. Feliú, Mariano Moscato, and César A. Muñoz. 2017. An
Abstract Interpretation Framework for the Round-O$ Error Analysis of Floating-
Point Programs. In Lecture Notes in Computer Science. Springer International
Publishing, 516–537. https://doi.org/10.1007/978-3-319-73721-8_24

[26] Oreste Villa, Mark Stephenson, David Nellans, and Stephen W Keckler. 2019.
Nvbit: A dynamic binary instrumentation framework for nvidia gpus. In Proceed-
ings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture.
372–383.

[27] Nathan Whitehead and Alex Fit-#orea. 2022. Precision & Performance: Floating
Point and IEEE 754 Compliance for NVIDIA GPUs. https://docs.nvidia.com/cu
da/floating-point/index.html

71

https://doi.org/10.1007/978-3-642-04570-7_6
https://correctness-workshop.github.io/2021/
https://doi.org/10.1109/CGO.2019.8661186
https://doi.org/10.1109/MC.2019.2926614
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.48550/ARXIV.1903.07486
https://doi.org/10.48550/ARXIV.1903.07486
https://doi.org/10.1109/ASE.2019.00118
https://doi.org/10.1145/3520313.3534655
https://doi.org/10.1109/IISWC55918.2022.00014
https://doi.org/10.1145/2925426.2926255
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
http://tinyurl.com/TOPLAS-FPTaylor-Results-Table
https://doi.org/10.1007/978-3-319-73721-8_24
https://docs.nvidia.com/cuda/floating-point/index.html
https://docs.nvidia.com/cuda/floating-point/index.html

	Abstract
	1 Introduction
	2 Background
	2.1 IEEE Floating-Point Exceptions Basics
	2.2 NVBit and SASS Basics
	2.3 Overview of BinFPE

	3 Details of GPU-FPX's Design
	3.1 Implementation of a Scalable Detector
	3.2 Implementation of Analyzer

	4 Evaluation of the GPU-FPX detector
	4.1 Exception Results, Table 4.
	4.2 Performance Across Tool Evolution, Figure 4
	4.3 Invocation Undersampling Study, Figure 6
	4.4 Compiler Effect on Exceptions, Table 6

	5 Analyzing the Exceptions with Analyzer
	5.1 Diagnosis and Repair Strategies
	5.2 Case Study: CUDA GMRES Solver
	5.3 Case Study: SRU-Example

	6 Concluding Remarks
	References

