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Abstract—Hierarchical decision-making is a natural
paradigm for coordinating multi-agent systems in complex
environments such as air traffic management. In this letter,
we present a bilevel framework for game-theoretic hierar-
chical routing, where a high-level router assigns discrete
routes to multiple vehicles who seek to optimize potentially
noncooperative objectives that depend upon the assigned
routes. To address computational challenges, we propose a
reformulation that preserves the convexity of each agent’s
feasible set. This convex reformulation enables a solu-
tion to be identified efficiently via a branch-and-bound
algorithm. Our approach ensures global optimality while
capturing strategic interactions between agents at the
lower level. We demonstrate the solution concept of our
framework in two-vehicle and three-vehicle routing scenar-
ios.

Index Terms—Game theory,
optimization.

autonomous systems,

[. INTRODUCTION

OORDINATING multiple vehicles in a controlled fashion

is a crucial challenge for decision-making in applications
such as autonomous transportation systems and air traffic man-
agement. Such problems are inherently hierarchical: routing
decisions assign paths to multiple vehicles, and individual
vehicles determine optimal trajectories in response to their
assigned routes. Current approaches treat these problems
in isolation, i.e., higher-level routing decisions operate on
discrete graphs which abstract away the continuous lower-level
trajectory optimization process. In this letter, we present a
technique for solving these coupled problems simultaneously,
and showcase its performance in an example inspired by
air traffic management. Ultimately, our results suggest that
integrating the discrete (multi-)vehicle routing problem with
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low-level trajectory design can reduce vehicles’ control effort
and yield more efficient system-wide performance.

A natural approach to capturing this hierarchical structure
is through bilevel optimization, where the upper level handles
discrete decision-making in the form of route assignments, and
the lower level encodes continuous optimization of individual
vehicles’ trajectories. Information flows between these levels
bidirectionally. The upper-level routing problem accounts for
the physical state and operational requirements of individual
vehicles, while, at the lower-level, the vehicles generate
trajectories that respect the prescribed routing plan.

On their own, routing problems are well-studied in the
context of (mixed) integer programs [l], [2]. Similarly, the
lower-level trajectory optimization is well-explored in both
single- and multi-agent contexts. We consider the more gen-
eral multi-agent, potentially noncooperative, variants of these
problems.

Concretely, we make the following contributions. (i) We
formulate hierarchical vehicle routing and trajectory design
problems as a mixed-integer bilevel program, where the
upper level models a discrete routing problem and the lower
level encodes a (potentially noncooperative) trajectory design
game played among M vehicles. (ii) We propose a convex
reformulation that integrates the two levels, and solve the
resulting problem via a branch-and-bound algorithm that
guarantees global optimality. Experimental results demonstrate
how solving these coupled problems in tandem can yield more
efficient solutions and showcase the proposed approach in a
scenario inspired by air traffic management.

II. RELATED WORK

Current optimization models for air traffic management
typically focus on strategic decisions, such as optimizing
flight delays [3], [4] or airspace sector route assignments [5].
Recent work examines hierarchical congestion pricing and
route planning via a bilevel optimization approach, but ignores
vehicle dynamics entirely [6]. On the other hand, aircraft
and air vehicle trajectory optimization studies (e.g., [7])
typically do not jointly optimize higher-level strategic routing
or traffic flow management decisions. This separation between
strategic decision-making and trajectory optimization can lead
to inefficiencies, as strategic plans may not fully account for
vehicle dynamics and interactions at the trajectory level. This
letter contributes an approach which begins to close this gap.

At the trajectory level, multi-agent interactions play a
critical role in ensuring efficient airspace management. Game-
theoretic approaches [8], [9], [10], [11], [12], [13], [14] have
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been widely explored, and efficient methods exist which can
compute approximate and/or local Nash equilibrium strate-
gies in multi-agent, noncooperative settings. However, these
approaches generally assume a fixed environment without
a high-level planner that can influence individual agents’
decisions.

Hierarchical game-theoretic frameworks have also been
proposed for trajectory optimization, primarily in the con-
text of human-autonomous vehicle interactions [15], [16].
These works typically model motion planning as a
dynamic Stackelberg game, where an autonomous vehi-
cle (follower) anticipates and reacts to a human driver
(leader).

Existing works on bilevel optimization for routing prob-
lems [17], [18], [19] consider hierarchical decision-making
between multiple stakeholders. However, they often assume
cooperative settings and do not model interactions between
individual entities at the lower level. Moreover, their solution
methods often rely on metaheuristic algorithms such as genetic
algorithms, or involve linearizing nonconvex constraints to
obtain tractable relaxed formulations.

The control literature has similarly addressed multi-vehicle
routing and trajectory optimization problems via decentralized
frameworks [20], receding-horizon controllers [21], [22] or
heuristics-based approximations [23]. For example, recent
work [24] studies optimal assignment of a fleet of elec-
tric aircraft and their charge scheduling aimed at reducing
energy consumption. However, these prior works gener-
ally either consider discrete route assignment only or
treat discrete routing separately from continuous vehicle
dynamics.

Existing work on hierarchical routing problems in control
contexts typically approaches discrete pathfinding and conti-
nous trajectory optimization sequentially [25], [26]. Our core
contribution is to bridge this gap by presenting a unified
mixed-integer bilevel framework that simultaneously integrates
high-level routing with trajectory optimization.

Our proposed framework facilitates more efficient man-
agement of multiple vehicles and is readily applicable
for future air traffic management automation systems
(c.f. Section VI).

[1l. PROBLEM FORMULATION

In this section, we formulate a hierarchical routing game
problem. This formulation can easily accommodate additional
application-specific constraints, cf. Section IV.

A. Preliminaries

We represent the environment as a graph with N nodes,
each corresponding to a point of interest to be visited (e.g.,
airspace navigational aids), and M vehicles, each generating
their own continuous state/action trajectories. The nodes are
defined in a 2D Cartesian plane as P := {f)l}N 1 =G, j/l)}{v |-
Addltlonally, each vehicle’s trajectory starts at their own start
node §/, whose position is p’S = (x’s, )/S) and ends at terminal

node 7V, which is located at P, = (&, ;). A waypoint is
any node included in the route; a route has K waypoints,
and cannot have more than N waypoints, i.e., K < N.
Between each pair of consecutive waypoints, 7 intermediate
subwaypoints define a trajectory segment.

B. Proposed Bilevel Framework
The proposed bilevel program is of the form:

min J,(z,,z;) (1a)
lee u
Z]EZ]
st Vj e [M] {z{e argmin  J(z,,%),  (Ib)

i§EZ§ (zll,27j>

where z, € R™ and z; € R™ represent the upper-level
(discrete) and the lower-level (continuous) decision vari-
ables, respectively. Similarly, J,(-) : R™ x R” — R and
Ji() : R x R" — R denote the objective functions
at the upper and lower level, respectively. We formulate
the upper level as a discrete problem that consists of
binary decision variables z, = (z',...,ZM] where 7 =

[y 1s o gk Dt -Gt - D) € 0. 11K, vj € [M].

AA RN & i Ti K _
The binary variable zi ¢ 1s defined such that Zi’k = 1 if

node i is the k™ waypoint for vehicle j, and zi.’k = 0 oth-

erwise. The lower-level decision variables z; := [zll, e zé"’ ]
are continuous, and for each vehicle j, z, = (¥, W)
o] . K1 T,L/l K1:7) wherex;( e R~ andu’ e R

represent the state and the control input Varlables of the

7™ vehicle. The superscript on z/ € R”]I in (1b) refers to the j

vehicle’s variables. We use z[ e R"~ m to denote the variables
of all vehicles except j. [M] in (1b) denotes the set {1, ..., M}.
In subsequent sections, we characterize the structure of the
constraints and cost functions in (1).

C. Upper-Level Routing Problem

The upper level routing problem in (1) models a router
that determines the sequence of waypoints for all vehicles’
routes, given fixed initial and terminal nodes for each vehicle.
Z, in (la) denotes the feasible set for z, and is defined in
terms of constraints that must be satisfied for a feasible route.
By definition, the following constraints naturally encode the
beginning and the end of a trajectory:

z’ =17

k=1 YjeMl. )

No vehicle can be assigned two waypoints at the same time,
and at most one vehicle can be assigned any waypoint at the
same time. These constraints are encoded by:

Mz

Z’k:I, Vk € [K],j € [M], 3)

L
1

M:

Zﬁkf

s

1, Vi € [N],k € [K]. 4

J

Furthermore, a node may not be visited more than once by
any vehicle, i.e.,

K
Y 2, <1 Vie[NLje Ml (5)
k=1

Equations (2) to (5) together define Z, in (1a).
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D. Lower-Level Trajectory Game

The lower-level trajectory planning problem in (1b) is
mathematically formulated as a multi-agent trajectory game,
whose solution is a Nash equilibrium (NE) [27]. We consider
a variant of linear quadratic (LQ) games [28] for this level,
i.e., (1b) is in the form of:

J{(zu,x,uf)
in =3 (0(+,,.7, i 2) +1(x.x7) 6
o Ekz(Q( kot 1:N,k) + 1l k,t”2) +1<va ) (6a)
=1
St Xy =AY, +Bu,, Vk<K, Vi<T, (6b)
)‘Jk+1,1 :AX;C,T +B”§«,T’ Vk < K, (6¢)
x<x, <% VkelK], Viel[Tl, (6d)
u<u, <7, VkelK], VielTl. (6e)

Equations (6b) to (6e) together characterize Z; in (1). The
subscripts (k, ¢) in (6) correspond to time step ¢, after passing
the k" waypoint. Specifically, (6b) describes state transition
within the trajectory segment k, i.e., from the k' to the
(k+ 1™ waypoint. Similarly, (6¢) defines the changes from
the final time step T of segment k to the initial time step of
segment k + 1. Equations (6d) to (6e) encode the bounds on
the state and control variables for the j™ vehicle. Note that—
despite their apparent restriction to linear dynamical systems
and quadratic agent objectives—LQ games can also apply in
more general settings, e.g., those in which the game dynamics
are differentially flat and agent objectives are quadratic in the
flat outputs. We discuss the cost structure (6a) of the lower-
level problem in the next section.

E. Structure of Cost Functions

We now characterize the structure of objective functions at
the upper (1a) and lower (1b) levels. The upper-level routing
problem minimizes the total control effort, as a proxy for

. . M K T j
fuel consumption, i.e., [u(zu, 7)) = Zj:l D et Dy ||u§(,l||%.

Note that the variable uf( , (6) is determined at the lower level
in response to the routing choice z, (1) at the upper level.
The cost function at the lower level, Jf(zu, x, W), in (6a)
is comprised of two parts. The first term captures individ-
ual vehicle costs such as state penalties and control effort,
while the second term accounts for interaction effects among
vehicles. The function Q(x;at, ZII: . ) 1s convex and quadratic

with respect to both x, , and 2],y ,. In Section V, we describe

how Q(x,,,7).y;) can penalize trajectory deviations from
the_uppt_er-ievel routing plan. The inter-agent interaction term
I(¥,x77) is also a convex quadratic function, and encodes the
influence of other vehicles’ trajectories on vehicle j’s cost. In
Section V, we use this term to model aircraft formation flight.

The lower-level game consists of linear constraints and
quadratic objective functions for all vehicles, i.e., the lower-
level game is a convex game parameterized by z,. Thus,
the Karush-Kuhn-Tucker (KKT) conditions for each agent’s
problem are both necessary and sufficient for optimality [27].

IV. METHODOLOGY

In this section, we present a KKT reformulation [29], [30]
of the hierarchical routing game in (1). We introduce auxiliary

variables to transform the problem into a mixed integer
quadratic problem (MIQP), and solve the resulting problem
via a branch-and-bound algorithm [31].

A. KKT Reformulation

For the ease of discussion, we express the lower-level LQ
game (6) in the following form:

(Vehicle j’s problem) min J{(zu, x, W) (7a)
¥, W
s.t. g(¥, ) =0, (7b)
h(x',w) > 0, (Tc)
where x := [x/,x7]. Equation (7b) encodes the equality

constraints from Equations (6b) and (6¢). These govern the
dynamics of the j vehicle’s trajectory. Similarly, (7c) refers
to the bounds in Equations (6b) and (6e), which encode the
state and control bounds.

Assumption 1 (Slater’s Condition for the Lower Level): For
a given feasible z,, € Z, of (1), Slater’s constraint qualification
holds for the lower-level problem, i.e., there exists ¥, W
s.t. g, W) =0 and h(¥, W) > 0.

From Assumption 1, it follows that the original bilevel
problem (1) and its single-level reformulation using KKT
conditions of (1b) are equivalent. In other words, we can
rewrite (7) using its KKT conditions and obtain the following
single-level reformulation:

min  J,(zy, 2;) (8a)
Zy 21,k L

s.t. z, € Z,, (8b)

Vg L£(2u, X, W, N, 1) =0, (8¢)

0<h(¥,w)LA=>0, (8d)

g(¥, W) =0, Vje[M, (8e)

where the ;1 agent’s Lagrangian function is defined as
L2y, x, W, N, W) = F(z,, x, W)= N Th(¥, W) — 1/ T g(x/, W).
Note that x4/ and A refer to the dual variables corresponding
to the inequality and equality constraints of the j* vehicle in
(7), respectively.

We observe that the KKT reformulation introduces com-
plementarity constraints in (8d), ie., A(¥X,w) L A; =
h(x/,W)TA; = 0, which involve bilinear terms that break
the convexity of the feasible set in (8). For general non-
linear programming (NLP) problems at the upper level,
these complementarity constraints (8) can be handled using
relaxation-based approaches [32], [33]. However, since the
upper level variables z, are binary, this formulation results
in a nonconvex mixed integer nonlinear problem (MINLP),
which is intractable to solve. A standard strategy in the MINLP
literature is to obtain convex relaxations of the underlying non-
convex problems [34], [35]. However, rather than developing
tighter convex relaxations of an inherently nonconvex problem,
we propose a more direct approach: reformulating the problem
to preserve convexity from the outset.

B. Introducing Auxiliary Variables to Preserve Convexity

The nonconvexity of (8) arises from the inequality con-
straints in (7c) of the LQ game. To bypass this issue, we
introduce auxiliary variables at the upper level to reconstruct
the equilibrium trajectories from the lower-level problems.
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To this end, we define auxiliary variables 7, = (¥, W) =
(X).x.1:7 .5 1.7)> and obtain the following problem:

s
ooy ol %) [ Al e
s.t. z, € Z,, (9b)
g(¥, W) =0, h(¥,¥)>0,Ve[M], (9)
z; € argmin J{(zu, Zl), Vj € [M], (9d)

He ()

where J,(Z,, 2) = Zﬁ‘il Zszl Zszl ||122’[||% and ¢ > 0 is a
weight parameter that penalizes large deviations from o, w).
We can interpret (¥, W) as a reference trajectory that arises
from the noncooperative game played at the lower level (i.e.,
accounting for individual and inter-agent interaction costs, cf.
Section III). Note that, in (9d), Z, = {(¥/, W) |g(¥,w) =
0}, which consists of equality constraints (7b) of vehicle
Jj’s problem. As a result, in this reformulation, the lower-
level game (9d) does not have inequality constraints anymore.
Instead, the inequality constraints are enforced at the top-
level problem on the auxiliary variables, i.e., (¥, W). These
auxiliary variables refer to the adjusted trajectory (for the
™ vehicle) that must still satisfy the dynamics g(¥, W) =0
and state-control bounds A(¥, W) > 0.

With the auxiliary variables defined in (9), we can write its
KKT reformulation as follows

2
j J

min J Zu, [x :| [X :| (10a)

LBy, 2

L

s.t. z, € Zuv (IOb)
g(¥, W) =0, h(¥, W) >0, Vje[M], (10c)
Vx/,ufz(zuv X, ui’ /‘Lj) =0, Vje[M] (10d)
¢(¥.0) =0, Vje[M], (10c)

where L(z,, x, W, ) = F(z,, x, W) — /T g(xd/, ).

Proposition 1 establishes the connection between (8) and
the reformulation via auxiliary variables in (10).

Proposition 1: Let (z;, z;, A*, ©*) be an optimal solution
of (8) such that h(xJ* w*) > 0 Vj € [M]. Then, A* = 0 and
the tuple (z}, Z;, z, u*) with z; = z is optimal for (10) with
the same objective value as (8)‘ ‘

Proof: Because each h(¥*,w*) > 0, (8d) forces
M* = 0 Vj. This implies L(z}, x* w* M* w*) =
Z(z X, W, /). Setting ¥ = x*, W = ¥ Vj in (IOa)
recovers the same objective value as (Sa) and (z}, Z}, Zl uw*)
satisfies the KKT conditions of (10). [ |

We now state a key lemma that formalizes the convexity of
the continuous relaxation of the KKT reformulation in (10).

Lemma 1: The continuous relaxation of (10) (i.e., allowing
z, to be fractional) is a convex quadratic program (QP).

Proof: Under the assumptions of Section III—that each
vehicle j’s lower-level cost f;(zu,x, w) and the upper-level
cost J,,(Zy, z;) are convex and quadratic and all constraints £ (-)
and g(-) are affine—the reformulation in the (10) does not
entail complementarity constraints. As a result, the feasible
set in (10) remains convex (apart from the binary nature
of the variables z,). This, in turn, implies that the problem
(10) is a mixed integer quadratic problem (MIQP). Thus, any
continuous relaxation of the upper-level binary variables z,
yields a convex quadratic programming (QP) problem. |

Next, we present a proposition that characterizes the global
optimality of the solution to (10), which is obtained via a
branch-and-bound algorithm [31].

Proposition 2: Under the same conditions as Lemma 1, one
can find a global optimal solution to (10) via a branch-and-
bound algorithm.

Proof: Branch-and-bound algorithms operate by solving
tree-structured subproblems, each of which imposes a stricter
relaxation of the integer constraints on z, than its parent
problem. From Lemma 1, it follows the solution to each
subproblem provides a valid lower bound on the objective
(10a) for every child subproblem (with smaller feasible set). At
any subproblem, if a solution is found that improves upon the
current best, then the current best solution is updated, which
ensures that the sequence of candidate optimal values (J’Lj*) is
decreasing monotonically. Since there are a finite number of
subproblems to explore—2MNK__the algorithm terminates in
a finite number of steps with a globally optimal solution. M

V. EXPERIMENTAL RESULTS

In this section, we (i) compare our proposed bilevel
approach with a decomposition-based baseline to illustrate
how solving the two levels of planning simultaneously
improves system-wide efficiency, and (ii) showcase the
performance of our proposed hierarchical routing framework
in a more complex example (in which agents’ low-level
trajectory costs are coupled), leveraging the reformulation in
(10).

Comparison with baseline. To illustrate the improved
efficiency provided by our method, we consider a three-
vehicle routing scenario, where the conventional approach is to
first solve high-level discrete routing independently of vehicle
dynamics (i.e., state and control input) and subsequently
generate dynamically feasible continuous trajectories based on
the prescribed routes. o

Modeling formation flight via interaction term /(x’/, x7).
To demonstrate how our proposed framework can account
for inter-agent interaction effects (at the lower-level), we
consider a formation flight scenario involving two vehicles and
three vehicles to demonstrate how the vehicles’ interactions
influence their individual trajectories in accordance with the
high-level routing decisions.

A. Experiment Setup

We first formalize vehicle dynamics at the lower level,
which are the equality constraints in Equations (6b) and (6c).
Concretely, we model each vehicle as a double integrator with

[pfct,pi,,%t,v”]—r € R* encoding the state of the
Vehlcle and ”kt aﬁ{ o a’ }

input at time step t € [T]. The state vector x} consists of
position and velocity in the horizontal and vertical directions,
and the control vector u, consists of acceleration in the
horizontal and vertical directions, respectively. We discretize

the double-integrator dynamics at resolution At, i.e.,

T € R? representing the control

10 A 0 %Aﬂ 0
j 01 0 At 0 a2l
xgc,t-i-l: 00 1 x’ At 20 uﬁm. (11)
00 0 1 0 At
—
A B

Note that (11) encodes the constraint (6b). A similar variant
of (11) can be formed for (6c).
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(a) Our method (b) Baseline: Brute-force

Fig. 1. Comparison of our bilevel method and a baseline, decoupled
routing and trajectory design approach on a sample three-vehicle
scenario.

Next, we define the individual vehicles’ objective functions
(6a). The component of each vehicle’s objective which pertains
only to their upper- and lower-level variables is encoded by the
function Q(xic,t’zlsi ) T %Zfﬂ ||P§<,1 - ZiT;S/' Zi',kf)i”%'
This cost term penalizes any deviations of the vehicle’s state
at the start of each trajectory segment k, pi’] = (xﬁcxlecy]),
from the chosen waypoint, whose location is determined by
the product z, p;.

Comparison with baseline. The baseline method searches
for the global optimal solution by brute-force enumeration,
identifying the set of routes with the minimum total route
cost, which is evaluated based on Euclidean distances between
nodes. In the brute-force search, we perform conflict resolution
among all candidate routes to ensure that no two vehicles
visit the same waypoint at the same time. We then generate
continuous state-action trajectories following the prescribed
route plan.

Modeling formation flight via interaction term /(x/, x V).
We introduce I(¥/,x7) in (6a) to account for inter-agent
interaction for the lower-level game. We model this interaction

— M K T j / i .
as I, x7) = 30 Yy Yoy ICK) = 1) |13, In this
section, we consider a one-dimensional variant of I(x/, xV),
i.e., C =[1000]. This means that Cx] , = p}’,. In the two-

vehicle setting (Figure 2), we consider Cr!? = r, and Cr?! =
—r. Here, r > 0 models the situation where Vehicle 1 wishes
to stay on the left of Vehicle 2 and Vehicle 2 wants to be
on the right of Vehicle 1, with a separation of r along the
horizontal axis. In the three-vehicle setting (Figure 3), each of
the ¥/’ are distinct.

B. Detailed Analysis of Results

Comparison with baseline. In this scenario, we have
N=9, K =4,T = 5 and M = 3. Based on Euclidean
distances, Vehicle 1 (red) vists the nodes S; —> 3 — 6 — Ty,
Vehicle 2 (blue) visits S — 7 — 4 — T,, and Vehicle 3
(orange) follows S3 — 4 — 5 — T3, incurring a total control
input cost (across all vehicles) of 188.4 (c.f. Figure 1b). In
contrast, our bilevel method directs Vehicle 2 to visit S, —
5 - 3 — T, (keeping the same routes for the others),
resulting in a total control input cost of 147.3 (c.f. Figure la).
This substantial improvement of total control cost is because
our method accounts for vehicle dynamics and avoids visiting
nearby nodes that require sharp turns, as in the baseline’s
trajectory for Vehicle 2.

Modeling formation flight via interaction term /(x/, x V).
In the following experiment with two vehicles, we consider
a scenario with N = 9 nodes, K = 5 and T = 7. For the

Altered trajectories —f

5 &,

@ Visited Nodes (Waypoints)
o Unvisited Nodes

« Venice 1

« Venicle 2

(a) No interaction cost (b) With interaction cost

Fig. 2. Comparison of optimal vehicle routes and trajectories in a two-
vehicle formation flight routing game. Dashed straight lines indicate each
vehicle’s visited nodes.

(a) No interaction cost (b) With interaction cost

Fig. 3. Comparison of optimal vehicle routes and trajectories in a three-
vehicle formation flight routing game. Dashed straight lines indicate each
vehicle’s visited nodes.

three-vehicle case, we set the number of waypoints to K = 4,
while keeping all other parameters unchanged.
Figure 2

and Figure 3 present the impact of interaction costs in
(6a) in two-vehicle and three-vehicle settings, respectively.
In the absence of I(¥,x V), each vehicle generates their
trajectory to only minimize their own cost while visiting
required waypoints. This implies that the game in (9) is
essentially a set of decoupled optimization problems, for any
fixed choice of routing variables z,. In contrast, we observe
distinct alterations in the trajectories due to the interaction
term. The circled region in Figure 2b highlights how the
trajectories have changed substantially so that the vehicles can
maintain formation. We also observe that the routing selections
change as well. In Figure 2a, Vehicle 1 (red) chooses to visit
nodes S1 - 5 — 4 — 6 — T1 and Vehicle 2 (blue)’s route
is S2 - 7 - 3 — 4 — T2. However, accounting for the
interaction term, their trajectories change in Figure 2b, i.e.,
Vehicle 1 selects nodes S1 - 5 — 3 — 6 — T1 and Vehicle
2 visits nodes S2 — 7 — 1 — 4 — T2. This behavior stems
from inter-vehicle interactions: each vehicle adjusts its optimal
trajectory based on the paths chosen by the others.

We observe similar trajectory adjustments in the three-
vehicle formation flight scenario. Without interaction costs
(Figure 3a), Vehicle 1 (red) follows the route S; — 3 —
6 — Tj, Vehicle 2 (blue) follows S; — 5 — 4 — T, and
Vehicle 3 (orange) follows S3 — 7 — 6 — T3. However,
when accounting for inter-agent proximity (in the horizontal
direction), the vehicles adjust their trajectories to maintain
formation. In Figure 3b, Vehicle 1 remains in the middle and
makes minimal modifications to its trajectory. On the other
hand, Vehicles 2 and 3 alter their paths to ensure proper
spacing from Vehicle 1. To this end, Vehicle 2 visits the nodes
Sp - 7 — 3 — T, and Vehicle 3 follows the path S; —
5—>4—T;s.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on October 02,2025 at 17:24:50 UTC from IEEE Xplore. Restrictions apply.



LEE et al.: CONVEX FORMULATION OF GAME-THEORETIC HIERARCHICAL ROUTING

323

These routing changes occur because our formulation
explicitly couples the choice of vehicles’ waypoints at the
high level with their low-level planning process. The exam-
ples above illustrate that, when vehicles’ trajectory planning
preferences change (e.g., to include a preference for flying in
formation), the hierarchical router can proactively generate a
route which accounts for that change. Furthermore, due to the
convexity of the proposed formulation and by Proposition 2,
the new route is globally optimal.

VI. CONCLUSION

In this letter, we present a bilevel game-theoretic framework
for multi-agent hierarchical routing that integrates discrete
route assignments with continuous trajectory optimization. We
propose a convex reformulation of the resulting mixed-integer
program, and demonstrate our results in two- and three-vehicle
formation flight scenarios. Our proposed method is general-
izable and can accommodate domain-specific constraints and
objectives, such as routing and scheduling constraints in an
emergency response scenario and time window constraints in
last-mile delivery using heterogeneous fleets of ground robots
and drones. Future work will focus on extending the proposed
framework to real-world applications, particularly in next-
generation air traffic management decision support tools. For
example, the U.S. Federal Aviation Administration seeks to
adopt a new automation system, Flow Management Data and
Services (FMDS), which is a potentially multi-hundreds of
millions USD investment [36]. FMDS seeks to integrate data
streams such as real- and near-real time aircraft trajectory
information with services such as air traffic demand-capacity
balancing. The modeling results herein provide a foundation
for future services that can run on FMDS, potentially impact-
ing thousands of commercial flights serviced by FMDS.
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