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More Information Is

Not Always Better:

Connections Between Zero-Sum Local Nash
Equilibria in Feedback and Open-Loop
Information Patterns
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and Ufuk Topcu

Abstract—Noncooperative dynamic game theory pro-
vides a principled approach to modeling sequential
decision-making among multiple noncommunicative
agents. A key focus is on finding Nash equilibria in two-
agent zero-sum dynamic games under various information
structures. A well-known result states that in linear-
quadratic games, unique Nash equilibria under feedback
and open-loop information structures yield identical
trajectories. Motivated by two key perspectives—(i) real-
world problems extend beyond linear-quadratic settings
and lack unique equilibria, making only Jocal Nash
equilibria computable, and (ii) local open-loop Nash
equilibria (OLNE) are easier to compute than local feedback
Nash equilibria (FBNE)—it is natural to ask whether a
similar result holds for local equilibria in zero-sum games.
To this end, we establish that for a broad class of zero-sum
games with potentially nonconvex-nonconcave objectives
and nonlinear dynamics: (i) the state/control trajectory of
a local FBNE satisfies local OLNE first-order optimality
conditions, and vice versa, (iij) a local FBNE trajectory

Received 17 March 2025; revised 18 May 2025; accepted 6 June
2025. Date of publication 26 June 2025; date of current version
11 July 2025. DISTRIBUTION STATEMENT A. Approved for public
release. Distribution is unlimited. This material is based upon work
supported by the Under Secretary of Defense for Research and
Engineering under Air Force Contract No. FA8702-15-D-0001. Any
opinions, findings, conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the
views of the Under Secretary of Defense for Research and Engineering.
© 2025 Massachusetts Institute of Technology. Delivered to the U.S.
Government with Unlimited Rights, as defined in DFARS Part 252.227-
7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S.
Government rights in this work are defined by DFARS 252.227-7013
or DFARS 252.227-7014 as detailed above. Use of this work other
than as specifically authorized by the U.S. Government may violate any
copyrights that exist in this work. This work was also supported by the
following: Office of Naval Research Grants N00014-22-1-2703, NO0014-
24-1-2797; NSF CAREER award, Grant No. 2336840. Recommended
by Senior Editor K. Savla. (Corresponding author: Kushagra Gupta.)

Kushagra Gupta is with the Department of Electrical and Computer
Engineering, The University of Texas at Austin, Austin, TX 78712 USA
(e-mail: kushagrag @ utexas.edu).

Ross E. Allen is with the Massachusetts Institute of Technology
Lincoln Laboratory, Lexington, MA 02420 USA (e-mail: ross.allen@
Il.mit.edu).

David Fridovich-Keil and Ufuk Topcu are with the Department of
Aerospace Engineering and the Oden Institute for Computational
Engineering and Sciences, The University of Austin at Texas, Austin,
TX 78712 USA (e-mail: dfk @ utexas.edu; utopcu @ utexas.edu).

Digital Object Identifier 10.1109/LCSYS.2025.3583329

, David Fridovich-Keil

, Member, IEEE,
, Fellow, IEEE

satisfies local OLNE second-order necessary conditions,
(iii) a local FBNE trajectory satisfying feedback sufficiency
conditions also constitutes a local OLNE, and (iv) with
additional hard constraints on agents’ actuations, a local
FBNE where strict complementarity holds satisfies local
OLNE first-order optimality conditions, and vice versa.

Index Terms—Game
control.

theory, optimization, optimal

|. INTRODUCTION

N CONTRAST to single-agent optimization problems,

dynamic games require the additional specification of an
information structure, which is the information available to
each agent at every time step of the decision-making process.
Information structures have two extremes: open-loop and
feedback. The open-loop information structure assumes that,
at each time ¢, every agent knows only the initial state of the
game and nothing else about the state. On the other hand, the
feedback information structure assumes that, at each time ¢,
every agent knows the full state of all agents. The underlying
information structure of a game can greatly affect the existence
and expressivity of Nash equilibrium solutions. In particular,
feedback strategies can encode complex behaviors such as
delayed commitment which are not expressible in open-loop
strategies [1], [2], [3]. However, outside of linear-quadratic
settings, feedback Nash equilibria are generally far more
complicated to compute than open-loop Nash solutions, cf. [4].
Therefore, it is always valuable to know if for a game, the more
computationally-intensive feedback equilibrium differs from an
open-loop equilibrium.

In the general-sum game setting, it is known that feed-
back Nash equilibria (FBNE) and open-loop Nash equilibria
(OLNE) often diverge greatly [5]. In the two-agent zero-sum
setting, while some results comparing FBNE and OLNE do
exist, these results either (i) are restricted to linear-quadratic
(LQ) games or (ii) assume the existence of a strongly unique
Nash equilibrium.

However, we observe that these existing results cannot be
applied to a large class of zero-sum games that have significant
practical applications. In particular, many applications have
nonlinear dynamics and more general nonquadratic costs. Such
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scenarios are often solved by employing iterative algorithms
that solve an approximated LQ game at every iteration [4], [6],
[71, [8]. In such non-LQ settings, these methods can only find
an approximate local FBNE/OLNE: it is generally intractable
to find a global Nash equilibria, let alone one which is strongly
unique.

Further, existing results that relax the LQ assumption are
difficult to verify in potentially nonconvex-nonconcave settings
such as generative adversarial network training [9], robust
optimization [10], multi-agent reinforcement learning [11],
etc. In such settings, a unique Nash equilibrium may not
exist for any information structure, or may be intractable to
find. In such zero-sum nonconvex-nonconcave settings, and
without additional structural assumptions, all existing game-
theoretic solvers can only find local Nash equilibria, if they
exist [12], [13], [14].

Contributions: With this discussion in mind, it is pertinent
to ask: How are local FBNE and local OLNE related in
zero-sum games that extend beyond linear-quadratic settings,
and/or do not have a unique equilibrium? To this end,
we present the following contributions, which apply in a
large class of zero-sum games with potentially nonconvex-
nonconcave costs and nonlinear dynamics:

1) We show that any local FBNE also satisfies the first-
order necessary conditions for a local OLNE of the
game, and vice versa.

2) We show that any local FBNE also satisfy the second-
order necessary conditions for a local OLNE of the
game. Further, a local FBNE satisfying feedback second-
order sufficiency conditions also constitutes a local
OLNE of the game.

3) We show that, in the presence of additional constraints on
agents’ control variables, any local FBNE satisfying strict
complementarity still satisfies the first-order necessary
conditions for a local OLNE of the game, and vice versa.

Il. RELATED EXISTING RESULTS

In the setting of general-sum dynamic games, it is well
known that the state trajectories formed by control strategies
corresponding to FBNE and OLNE often diverge greatly, and
the extent of their divergence has been studied for general-sum
linear-quadratic (LQ) dynamic games [5].

In zero-sum games however, the alignment of these equi-
librium concepts becomes more nuanced. In continuous-time
zero-sum pursuit-evasion games [15], for example, open-loop
strategies are often used to synthesize feedback strategies
[16, Ch. 8]. Moreover, the existing results in the discrete-time
zero-sum setting hold only for a limited class of games. For a
certain subclass of two-agent zero-sum LQ games, including
convex-concave zero-sum LQ games, it is known that a unique
FBNE exists and its open-loop realization is also an (not
necessarily unique) OLNE [16, Th. 6.7]. Further, while the
existence of a unique OLNE implies the existence of a unique
FBNE in a two-agent zero-sum LQ game, the converse is not
true [16, Proposition 6.2]. Thus, when they both exist, a unique
OLNE and a unique FBNE generate the same state trajectory
in a two-agent zero-sum LQ game [16, Remark 6.7].

Another existing result applies beyond the setting of LQ
games, but in turn requires the game to have a strongly unique

FBNE. A strongly unique equilibrium is a unique equilibrium
where each agent’s equilibrium strategy is the unique best
response to the other’s. For a zero-sum dynamic game, if a
strongly unique FBNE and an OLNE exist, then the OLNE is
unique and generates the same state trajectory as the FBNE.
On the other hand, if a strongly unique OLNE and a FBNE
exist for the game, then the two also give the same state
trajectory [16, Th. 6.9].

As mentioned in Section I, these existing results do not
cover practical settings of interest, in which (i) the games are
not linear-quadratic, or (ii) it is not possible to reason about
or compute (strongly) unique equilibria, and only the notions
of local FBNE and OLNE are computable.

[1l. PRELIMINARIES

For n € N, let [n] denote the set {1, ..., n}. Consider a two-
agent zero-sum dynamic game with a fixed decision-making
time horizon of K time steps, with dynamics given by x,11 =
Sfe(xe, u,l, u,z), t € [K], where x; € R" denotes the states of
both agents at time ¢, and uf € R™ denotes the control action
of agent i at time ¢. For agent i, we denote the other agent as
—i = {1,2}\{i}. For t € [K], let x;.x4+1 == {xs, ..., xg+1}, and
g = {ul, ..., ul}. Let the set x(u] ., u? ) denote the state
trajectory x1.x+1 obtained by unrolling the set of controls ui: X
and u%: x according to the dynamics f;, and an initial state x;.
Forte[K—1], let T; ={¢, ..., K}.

Without loss of generality, we assume that at time ¢,
agent 1 minimizes a stage-wise cost £;(x;, u}, u,z) e R
(and thus, agent 2 minimizes —¥;). For brevity, we denote
the stagewise cost for agent i as ¢! and the dynamics as
fi» and €1 Cxp, ul, u; "), fi(xp, ul, u; ") denote the cost/dynamics
functions with the appropriate order of control arguments.
Further, let the terminal state cost for agent 1 be represented
by £k+1(xk+1). Notably, we assume ¢, can be nonconvex
(and nonquadratic), and that f; can be nonlinear. The only
assumption for €! is that it is K times differentiable, which
is an implicit requirement for finding FBNE [4], [16]. We
denote the cumulative cost for agent 1 as J(xi, u}:K, u%:K) =
YK, € (xr u}, u?) +Lky1 (xg41) where x; € x(uj g, uf.g). Let
the initial state x; be known to both agents.

A. Open-Loop Zero-Sum Games

We begin by defining a local OLNE.
Definition 1 (Local OLNE): A local OLNE of the two-
agent zero-sum game is a set of controls ull’%‘ =

{ulO% L ukPM), i = 1,2, and states x(u) 1", u1") such that

1LOL 2 1,OL _2,0L 1 20L
J(“u( v”l:K) = J(”l;K Uk ) = J(“l:/o“l:l( )

Youlg € JV(M{;,?L), ul.y € JV(M%?,?L>, (D
where .4#(-) denotes a feasible neighborhood. For uncon-
strained problems, a feasible neighborhood constitutes a ball
of some finite size centered at the argument.

A local OLNE is said to be strict if the inequalities in (1)
are strict. Note that strictness is different from and does not
imply the uniqueness of a local Nash equilibrium. Finding
a local OLNE of a two-agent zero-sum game with only
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dynamics constraints amounts to locally solving the following
equilibrium problem:

. 1 2
min —J(xl, Uj.g» ulzK),

min J(xl, ui:K, u%:K> ,
X2:K+1, UT.g

X2:K+1s Uk

Agent 1 Agent 2

St Xip1 =f,<x,, u},u?), telKl. 2

1) Necessary Conditions for Local OLNE: The Karush-
Kuhn-Tucker (KKT) conditions [17] for (2) give the first-order
necessary conditions that the corresponding local OLNE
must satisfy, under an appropriate constraint qualification.
Introducing Lagrange multipliers )L;', t € [K] for the constraints
in (2), we define the Lagrangian for agent i as

K+1 K
A DI ED N UCHEA )
=1 t=1
which in turn yields the following KKT conditions:
Vo b4 Vo ;TA = Al =0, VieT, 4)
Vil + Vi =0, ¥ielK], (5)
VXKJrlZ;(-Fl - )‘;( =0, (6)
X4l —f,(x,, ul, u,z) —0, V1elK]. )

2) Sufficiency Conditions for Local OLNE: Nonlinear pro-
gramming theory gives second-order sufficiency conditions
for (2). If a set of states and controls satisfy these conditions
in addition to the necessary KKT conditions (4)-(7), then
they correspond to a local OLNE. Consider the stage-wise
Lagrangian for agent i

i =t =T @ = ). 8)
Then the second-order sufficiency conditions are [17, Th. 12.6]

Kra. 1" d
T w2 pi X Xt 2 i,OL| %x;
du,-lvuilﬁldu,l+§ [d } v2 [d ]
=2

) )
up uy

T 2 i
+ de+l V)61(+1€ll(+1d)61<+1 >0 )
A {du,i,dxt, dui, dyg,, t € To} st
dy,,, — Vi fidy, — Vu;f,duj =0. (10)
T
Here, duT,i d; d;;t- d;; +1] # 0, t € [K] represents a direction

in the critical cone of the open-loop equilibrium problem (2).

B. Feedback Zero-Sum Games

A FBNE is defined in terms of mappings 7/:R" — R™, t €
[K],i = 1,2, value functions V;:R" — R, ¢t € [K + 1], and
control-value functions Z;:R" x R™ x R"™ — R, t € [K +
1].While V;, Z; correspond to agent 1, —V;, —Z; correspond to
agent 2. These relate to each other recursively

Vixg41) == Lrr1(xk+1), (11)
Zt(x,, utl, utz) = E,(xt, utl, u?) + Vit (f,(xt, utl, utz)), (12)
Vi) = Zt(x,, n,l(xt),ntz(x,)>, VielK]. (13)

Definition 2 (Local FBNE): Let the controls and states
at a local zero-sum FBNE be denoted by ulll;? =

i FB i FB, . I,FB  2,FB .
(W™, o ug Y, = 1,2, and x(uylg, uy; ) respectively.

Then local FBNE strategies correspond to maps 7/ (x;), defined

to return "> = 7/ (x;) such that

Zt<xt, u B, u?) < Z;(xt, u B, utz’FB> < Zt<xt, ul, u,z’FB)

Vol e L/V<u}’FB), 2 e /(u,2~FB>, t € [K]. (14)

If the inequalities in (14) are strict, the local FBNE is
said to be strict. Definition 2 is the same as the local
FBNE definition introduced in prior work [4, Definition 2.1],
and is also equivalent to the traditional definition which
encodes strong time-consistency [16, Definition 3.22]. Finding
a local FBNE of a two-agent zero-sum game with only
dynamics constraints amounts to locally solving the following
optimization problem at each time ¢ € [K] for agent i
[4, Th. 2.2]:

K
. i —iFB
- _min > (sl w7 Ly (k)
i
M;‘:K’ U1k M+LK+HD 5=t
i  —iFB
S.t. Xgr1 — f5 (xs, U, U ) =0,

u; " — 7 () = 0,

s ey, (15)

NS Tl+l'

1) Necessary Conditions for Local FBNE: As before, we list
the KKT conditions that states and controls corresponding to
a local FBNE of (15) should satisfy. Introducing Lagrange
multipliers !, s € T, and !, s € T, for the constraints
in (15), we define the Lagrangian for agent i as

K+1 K
LB =Nl =Y A e — )
s=t s=t
K
- 2w e ae)
s=t+1
which in turn yields the following KKT conditions:
i T i
Vu;i,FBKX + (Vu;i,Fst) Ay — Yy =0, s €Ty, (17)
. T
Vb + (vugg.) M =0 seT, (18)
ka+|4(+1 - }‘5( = 0, (19)
X1 —fs(xs, ug u;i’FB) =0,VseT, (20)
uy ™ — i) = 0, Y5 € Tppa, (21)
Vi by =y + (V) A5 + (V) v
=0, Vse T (22)

2) Sufficiency Conditions for Local FBNE: The stage-wise
Lagrangian for agent i in the feedback case becomes
L =t = 2 G = 1)
— I//;:T (us_i’FB — JTS_i), s € Tiyq.
in addition to the KKT conditions (17)-(22), using (23),

the second order sufficiency condition for a local FBNE
becomes

(23)

K dxx dxx
T2 pi 2 . 2 ,FB .
du,‘ Vuieidui + dulv \Y% i i é dulv
t t t XU, Us
s=t+1 du(" du:1
T 2 i
+ de+lvxK+1gK+lde+l >0 (24)
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Second-order conditions

Fig. 1. For a zero-sum game with only dynamics-induced equality
constraints, the second-order necessary/sufficiency conditions for a
local OLNE are a subset of the corresponding conditions for a local
FBNE.

A4 {dug, dy,, d”ﬂ’ du;i, de+l , 8§ €Ty} st

d,
dxs+1 - Vxvadx5+] - Vu’;,u;ifv [d MXI:| =0Vse TH‘] ’ (25)
X u

s

dxt+1 - Vuﬁfsduf =0, (26)
dyi = Vi ldy =0V s € Tpyp. 27)

Here, [d;z d;z d,;z d;Z—i d;; H]T # 0, s € T,y represents
a direcfion in the critical cone of the feedback equilibrium
problem (15).

Remark 1: For agent i, the feedback game (15) differs
from the open-loop game (2) by having (i) an equilibrium
problem at every time step, and (ii) an additional constraint
forcing agent —i to play a feedback policy. Consequently, the
feedback KKT conditions (17)-(22) and second-order condi-
tions (24)-(27) differ from the corresponding open-loop KKT
and second-order conditions (4)-(7), (9)-(10). However, we
observe that if the feedback policy constraints in the feedback
game are weakly active for both agents at a local FBNE, i.e.,
Yi =y =0, and the feedback KKT conditions reduce to the
open-loop KKT conditions. This insight motives our results
presented in Section IV. Moreover, we will show that, in this
case, the set of all open-loop critical cone directions becomes
a subset of the set of all feedback critical cone directions (cf.
Theorem 1). A similar discussion holds for the second-order
necessary conditions for local OLNE and local FBNE, which
are similar to the sufficiency conditions with the exceptions
of a nonstrict inequality and the requirement of an appropriate
constraint qualification [17, Th. 12.6].

V. MAIN RESULTS

In the following theorem, we show how state/control tra-
jectories corresponding to any local FBNE policies are related
to a local OLNE for the zero-sum game of the type described
in Section III, i.e., containing no constraints apart from those
due to the game dynamics.

Theorem 1: Consider a two-agent zero-sum dynamic game
with K stages and dynamics constraints. Then:

1) The controls and states corresponding to any existing
local FBNE also satisfy the first- and second-order
necessary conditions for a local OLNE of the game.

2) The controls and states corresponding to any existing
local OLNE also satisfy the first-order necessary condi-
tions for a local FBNE of the game.

3) Assume that a local FBNE of the game exists, and that
the corresponding local feedback equilibrium strategies

u*FB = Axk(x;), t € [K]}, i = 1,2, and state

- Xg 1} satisfy the
i+ FB

trajectory x(ui?’}’( ’”1:*1} ) ={x], ..
FBNE second-order sufficiency conditions. Then u
and x(u}fl’(FB, u%}pB) also constitute a local OLNE of

the game.
Proof: We prove the first part by showing that at any local
FBNE of the game, the feedback policy constraints (21) are
weakly active for both agents. The KKT condition for agent

—i corresponding to (19) is
Vi Uget (Feer) =25 = 0. (28)
Because the game is zero-sum, vx,(+le,;f+1 = _VXK+14<+1’
and from (28) combined with (19) evaluated at x}g 41 we get
A= —Ak. (29)

Using the KKT condition (17) corresponding to agent —i
evaluated at time s = K, and (29), we get

. T . .
= Vbl — (vu;,(na fK) Mo~y = 0. (30)
Using (18) evaluated at time s = K and (30) we get
Vg =0. (31)

Similarly, for the Lagrange multiplier for agent i in the KKT
conditions of agent —i, we get

vk =0. (32)

Using the KKT condition (22) for both agents i, —i evaluated
at time s = K, (29), (31) and (32), we get

Mgy = —Ag_1- (33)
Equation (33) suggests the following recursive pattern, which
can be verified by continuing the previous arguments: A, ' =

—A;, V t € [K]. This yields

Y=y =0VteT. (34)

Thus, at a local FBNE, the constraints forcing both agents
to play feedback policies are weakly active. From Remark 1
and (34), we can conclude that the local FBNE KKT condi-
tions (17)-(22) imply the local OLNE KKT conditions (4)-(7)
and thus u!* B ;2*FB x(uifkl’(FB, uf?}FB) also satisfy the first-
order necessary conditions for a local OLNE.

Now consider the feedback second-order sufficiency condi-
tions (24)-(27). Because the feedback policy constraints are
weakly active, from Remark 1, the condition (27) can be
dropped while considering the directions in the critical cone
for which (24) should hold. Further, we observe that the

directions such that

d, =0 (35)
dypy — V,fsd, =0, (36)
de+1 - vx&f:ydxﬁl - vugfédug = () V NS Tl+1 ) (37)

all lie in the directions in the critical cone defined by (25), (26).
We observe that (35)-(36) when applied to (24) exactly yield
the open-loop second-order sufficiency conditions (9)-(10).
Thus the directions in the open-loop critical cone are a subset
of the directions in the feedback critical cone. From Remark 1
a similar relation holds for second order necessary conditions
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between feedback and open-loop settings. Because the FBNE
controls/states must be satisfying the feedback second-order
necessary conditions, this implies that they also satisfy the
OLNE second order necessary conditions. This proves the first
part of the theorem.

To prove the second part of the theorem, let a local

OLNE exist and u}?k[’(OL, u%fl’(OL,xT:’I(gil = x(u}?}’(OL, u%fl’(OL)
denote the corresponding controls and states. Thus,
1%, 0L 2%,0L _« OL .

Upig S ULg X" satisfy the open-loop KKT con-
ditions (4)-(7). Then it 1is trivial to observe that
u%f[’(OL, u?fl’(OL,x*’OL also satisfy the feedback KKT condi-

tions (17)-(22) for the choice of feedback policy constraints
Tﬂf =9, ' =0Vt e [K]. Note that the open-loop trajectory
also satisfies (21), because the open-loop controls are derived
by solving the KKT conditions backwards in time, which
implies that the local OLNE controls satisfy (14).

For the third part of the theorem, if ul*FB 2% FB x(u{jk,’(FB,

u%fl’(FB) satisfy the feedback second-order sufficiency condi-
tions (24)-(27), from the discussion above, we can conclude
that »!*FB ;2 FB x(u{fl’(FB, u%?‘,’(FB ) also satisfy the second-
order sufficiency conditions of (and thus constitute) a local

OLNE of the game. |

V. A BROADER CLASS OF ZERO-SUM DYNAMIC GAMES

The results in Section IV rely on a cascading pattern which
ensures that the feedback policy constraints (21) are only
weakly active at a local FBNE. While true for a zero-sum
game with only dynamics constraints, this pattern may not
hold true for zero-sum games with more arbitrary state/control
constraints in general. In this section, however, we identify a
broad class of games in which a similar property still arises.

Consider the class of two-agent zero-sum games Wwith
(i) dynamics constraints, and (ii) control bound (inequality)
constraints for each agent. Such bound constraints often occur
in practical applications, for example, in systems with hard
actuator limits.

For such a game, the corresponding open-loop equilibrium
problem for agent i is

K
min Yl ub ) + Ly (k1)

X2KA1s Ui =1
_ 1.2 K
st X1 = filxnu up ), t€[K],

a <ul <bl, te[K] (38)

Using Lagrange multipliers A!, v/, ¥/, € [K], the Lagrangian
for agent i defined as
K+1 K

IO ._ Z 0 — Z (X;‘T(xm —f)
i=1

=1
+ v (uy — ap) + v (b) — ui)) (39)

The feedback equilibrium problem for agent i becomes

K
. i =
min Ly (xx, U, U

i,FB)
i —i,FB
Upg> Wepr:ke X+LK+HL s=t

+ g r1(ky1),

St Xg4q —fs(xs, uy, u;”FB) =0, seTy,

- ”z_l(xs) =0, s €T,

< uf’FB <bi, seT.

u
i
ag s

(40)
Note that we do not encode agent —i’s control constraints
in agent i’s problem at time #, as these constraints will be
implicitly imposed through agent —i’s problem at future time
steps. Using Lagrange multipliers A%, vi, 3, s € T; and ¥/, s €
T;+1, the Lagrangian corresponding to (40) is defined as

. K+1 ] K . ) )
LN SR AL @
s=t s=r+1

K
= Y (AT orr = ) 0T (e — ) + 5T (61— ) ).
s=t
In such constrained games with nonconvex-nonconcave objec-
tives and nonlinear dynamics, it is usually only possible to
find solutions that (approximately) satisfy the FBNE first-order
necessary conditions using existing game-theoretic feedback
methods [4], [7]. These first-order feedback solutions also
require much more computation than that required to find
solutions satisfying OLNE first-order necessary conditions.
Existing open-loop game-theoretic solvers can find exact
solutions that satisfy OLNE first-order (and second-order)
necessary conditions in such games [12], [13], [14]. Thus, it
is valuable to know if some relation between local OLNE and
local FBNE akin to Theorem 1 holds in such games as well.
To this end, we show that when strict complementarity holds
(a standard assumption) in such zero-sum games (i.e., at a
solution of (38) and (40), ! = a! = v/ > 0,ul = b =
! > 0), the local OLNE first-order necessary conditions are
the same as the local FBNE first-order necessary conditions.
Theorem 2: Consider a two-agent zero-sum dynamic game
with K stages, dynamic constraints, and control bound
(inequality) constraints for each agent. Then:

1) The controls and states corresponding to any existing
local FBNE where strict complementarity holds also
satisfy the first-order necessary conditions for a local
OLNE of the game.

2) The controls and states corresponding to any existing
local OLNE where strict complementarity holds also
satisfy the first-order necessary conditions for a local
FBNE of the game.

Proof: Local OLNE first-order necessary conditions are

Vo bl Vo ,TA =X =0, YVieT, (42)
Vil + Vi A — v+ 9 =0, VielK], (43)
Vg i1 = Rk = 0. (44)
X4l —f,(xt, !, uf) —0, VielK], 45)

a<u Lv'>0and0<v Lu <bi, ¥rtel[K] (46)

Similarly, local FBNE first-order necessary conditions for (40)
are

, T, ..
V”j—i,FBgé + <Vu;i,Fst) A —Y;=0, s €T, (47)
. T.. ..
Viits + <Vu;fv) AM—vi+v.=0, seTy, (48)
Vi k1 — Ak =0, (49)
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X1 — fs(xs, u u;i’FB) =0, VseT;, (50) 3) In the presence of additional constraints on agents’
“v_i'FB _ ”z_i (x) =0, Vsé€ T, (51) controlo variables, any IOCE.II FBNE (where strict comple-

i cd Lo >0and0<i Ly <b v T. (52 mentarity holds) still satisfies the first-order necessary
dy = Us N Ys = Uand U= Vg LUy = ‘ AT’ . s€Tr, (52) conditions for a local OLNE, and vice versa.

Vi lh— 2+ (ijfs)—r)\’ + (V') ¥y These results are immediately applicable—state of the art

=0, Vse Ty (53) feedback game solvers [4], [7] are computationally expensive,

If none of the control bound constraints are active at a local
FBNE/OLNE for both agents, then the result trivially follows
from Theorem 1. Thus, we need to analyze the case when at
least one control bound constraint is active for an agent.

To prove the first part, consider the feedback necessary con-
ditions (47)-(53). From (49) and the corresponding condition
for agent —i, we get A = —)1_’., which combined with (47)
and agent —i’s condition corresponding to (48) at s = K yields

Vi =’ — v’ Vi’ = — vk (54)
Let [g]; denote the 7™ component of some vector g, and let
[Q]; denote the jth row of some matrix Q. Consider [u,?i]]
and [Vyeme ]], j € [m~7]. Due to strict complementarlty,
either one of the bound constraints on [uK ]; is active and
[V_xkngi]j = 0, or both bounds on [u,}i]j are inactive and
[vgli = [Vk]; = 0. A similar argument holds for agent
—i’s problem Using (54), this implies at any local FBNE,

( w K ) \[’K = ( xk”K) \” =
into (53) and using AK = -2 we get AK | = -
a cascading pattern as before yields

0. Substituting this

x> and

NT - ST o s
(vx,n,;’) Vi = (Vork) Ug =0V 1eTs (55
Equation (55) implies that at a local FBNE, the OLNE
first-order necessary conditions (42)-(46) are a subset of the
corresponding FBNE conditions (47)-(53).
To prove the second part, let a local OLNE exist and

10L" 2+ 0L (% OL ~._ " i%OL  2%.0L
Upg ULE XK1 = x(uy.g 11KOL) d;engie the cogLe-
sponding controls and states. Thus, upy upg - and Xy

satisfy the open-loop conditions (42)-(46). Then through the

discussion above, it is trivial to observe that ”1* OL u%*[’(OL

and x|’ ,?JLF] also satisfy the feedback ﬁrst order necessary
condltlons (47)-(53) for a choice of I/ft =y = vy i, P =
bi—vi, t € Ty. Thus, u}*KOL %*KOL and x’[:gil satisfy the first-
order necessary conditions for a local FBNE of the game. ®

VI. CONCLUSION

In non-linear-quadratic dynamic games, a feedback Nash
equilibrium (FBNE) is much more computationally expensive
to compute than an open-loop equilibrium (OLNE). Thus,
it is valuable to understand relationships between the two
equilibrium types. To this end, we show that for a large class
of zero-sum games with potentially nonconvex-nonconcave
(smooth) agent costs and nonlinear dynamics:

1) Any local FBNE also satisfies the first-order necessary

conditions for a local OLNE, and vice versa.

2) Any local FBNE also satisfies the second-order neces-

sary conditions for a local OLNE of the game. Further,
a local FBNE satisfying feedback sufficiency conditions
also constitutes a local OLNE of the game.

yet are only guaranteed to find an approximate first-order local
FBNE. Our results imply that one can instead find exact local
OLNE solutions (e.g., via existing solvers [12], [13], [14]) and
by implication, also exact first-order local FBNE solutions—
at much less computational cost compared to the approximate
solvers—Ileading to our claim that “More information is not
always better”. We believe many important dynamic game
applications in motion planning, energy management, finance,
supply chain management, etc., will benefit from our results.
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