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1 Introduction

In this paper, we consider the bifurcation of isolated equilibria of locally defined vector fields in Rn. This

well-studied subject has recently had some fresh observations by Rajapakse and Smale [15] concerning

the pitchfork bifurcation and its relevance for biology. It is our intention to expand on their treatment

by generalizing the hypotheses and uncovering significant new subtleties.

First, let us recall the context: when locally defined vector fields and their bifurcations are used to

model a phenomenon in the observable world, the fact that the phenomenon is observable at all speaks

to its stability under small perturbation. The dogma of perturbation and bifurcation theory reasonably

asserts that the aspects of the dynamics of the vector fields and their bifurcations used to explain the

phenomenon should be stable as well. The only generic and stable simple non-hyperbolic bifurcation with

one-dimensional parameters is the saddle-node bifurcation, in which zeros of adjacent indices are created

or canceled.

While the pitchfork bifurcation is not generally stable, it is stable under a certain additional hypothesis

such as symmetry (namely equivariant branching) or the vanishing of a certain second derivative at the

bifurcation point (see [12] and [9, Theorem 7.7]). The stability and the symmetry of the pitchfork

bifurcation is usually expressed in terms of its normal form u̇ = uε − u3. This family of vector fields is

invariant under the involution u → −u. Rajapakse and Smale [13–15] were most interested in the case

where one stable equilibrium gives rise to two new stable equilibria after the bifurcation and without
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symmetry. They argue that if the state of a cell is modeled as a stable equilibrium, then the cellular

division should give rise to two new stable equilibria after division. They model this phenomenon with a

non-symmetric pitchfork bifurcation in which one stable equilibrium gives rise to three, two new stable

and one unstable. We generalize their results significantly and supply complete proofs.

Consider a one-parameter family of C2 vector fields in Rn given by ẋ = V (x, ε) where ε ∈ R1. A point

(x0, ε0) is simple non-hyperbolic if DxV (x0, ε0) has a simple eigenvalue λ = 0 and all other eigenvalues

are not on the imaginary axis. A fixed point (x, ε) = (x0, ε0) is said to undergo a 1 → many bifurcation, if

the flow has one and only one fixed point in a neighborhood of x0 for any sufficient close ε 6 ε0 while the

flow has many fixed points around x0 for any sufficient close ε > ε0. A fixed point (x, ε) = (x0, ε0) is said

to undergo a many → 1 bifurcation, if the flow has many fixed points in a neighborhood of x0 for any

sufficient close ε 6 ε0 while the flow has one and only one fixed point around x0 for any sufficient close

ε > ε0. We say that the bifurcation is of pitchfork type if there is a neighborhood of x0 such that x0 is

the unique non-hyperbolic zero in the neighborhood for any sufficient close ε 6 ε0, x0 continues smoothly

to xε as one of the equilibrium points for any sufficiently close ε > ε0 and the number of the equilibrium

points for any sufficient close ε > ε0 is greater than or equal to three. Moreover it is called a pitchfork

bifurcation if the number of new equilibria for a pitchfork-type bifurcation is exactly three.

In the literature, the hypotheses to guarantee the existence of a pitchfork bifurcation generally contain

one of the following two types of assumptions:

Type a. The set of zeros (xt, εt) consists of one stable equilibrium of index −1 for t < 0 which continues

smoothly to (xt, εt) of index 1 for t > 0 when an eigenvalue at the zeros changes from negative to positive

(see [3–5,10,15]).

Type b. The equation has some symmetry which is frequently exhibited by a normal form with respect

to a center manifold which is assumed to be explicitly known (see [9, Chapter 7], [18, Chapter 19] and

the references therein).

In this paper, we assume neither of these scenarios. We work with n-dimensional vector fields and

prove that Type a follows from our hypotheses. Our hypotheses are much easier to check compared with

the hypotheses of Type a or Type b. We also give examples without symmetry and counterexamples to

show that if any of our hypotheses fails there may not be a pitchfork-type or a pitchfork bifurcation.

An essential part of our treatment relies on a topological argument. We refer to [8,11,16,17] for some

work in the literature using topological approaches in dealing with bifurcation problems. Here we consider

under which conditions the bifurcation of an isolated simple non-hyperbolic equilibrium with non-zero

index gives rise to many equilibria with non-zero index (see Subsection 4.1 for the definition of index).

We are interested in the bifurcation of stable equilibria which are interior to the basin of attraction. Our

criteria for the bifurcation are multidimensional (see (P0)–(P2) below) and are expressed in terms of

the derivative at the bifurcation point. We do not invoke the explicit form of a reduction to the center

manifold, even for (P3). Based on our criterion, we give an example of a family of vector fields without

symmetry which undergoes a pitchfork bifurcation.

Fix (x0, ε0). Denote by F the set of one-parameter C∞ vector fields V which satisfy the following

conditions:

(P0) V (x, ε0) has an isolated simple non-hyperbolic equilibrium x0 with non-zero index;

(P1) ∂V
∂ε |(x0,ε0) ∈ image(DxV );

(P2) there exists ω = (ω1, . . . , ωn+1)
T such that

DV (x0, ε0)ω = 0 and ωn+1 ̸= 0, and D(det(DxV ))(x0, ε0)ω ̸= 0.

Our conditions are easy to check. Here we make some comments.

• (P0) is immediate if there exists a small ball B(x0) around x0 such that for any ε < ε0 close enough

to ε0, there is one and only one zero inside the small ball B(x0) and it is transversal, i.e., 0 is not an

eigenvalue of the derivative. Then the index of the zero at ε = ε0 is either 1 or −1 (see Subsection 2.1).

• (P1) is verified if the rank of the derivative DV (x0, ε0) is n− 1.

• In the coordinates (x1, . . . , xn) given by the eigenspaces of DxV (x0, ε0) with (1, 0, . . . , 0) the zero

eigenvector, (P2) is true if and only if ∂2V1

∂x∂ε ̸= 0.
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Theorem 1.1 (Bifurcation). Every V ∈ F undergoes a pitchfork-type bifurcation, i.e., it is a 1 → k

or k → 1, 3 6 k 6 +∞ bifurcation at (x0, ε0).

Theorem 1.1 implies Rajapakse and Smale’s result [15].

Corollary 1.2 (See [15]). Suppose the following conditions:

(1) dx
dt = V (x, ε), x ∈ X,V (x0, ε) = 0 for ε 6 ε0 and the determinant of the Jacobian of V at (x0, ε0)

is zero.

(2) The eigenvalues of the Jacobian matrix satisfy

real(λi) < 0, i > 1; λ1 = 0 and
dλ1

dε

∣∣∣∣
(x0,ε0)

> 0.

(3) The multiplicity of V (x, ε0) at x0 is three and the Poincarè index is (−1)n relative to a disk Bn
r

about x0.

These are sufficient conditions for the pitchfork bifurcation.

The condition (P1) is trivial in Corollary 1.2, i.e., ∂V
∂ε (ε0, x0) = 0 since V is constant in ε at x0.

Conditions (P0) and (P2) are also trivial in Corollary 1.2. The multiplicity assumption in Corollary 1.2

implies the bifurcation given in Theorem 1.1 is exactly one to three. Hence Theorem 1.1 is much more

general. We refer to Section 2 for an example, where (P0)–(P2) are not trivial while Theorem 1.1 applies.

Moreover, Corollary 1.2 may be false if the conditions are not satisfied (see Section 3).

As one may have noticed, one of the key points in Theorem 1.1 is that we consider the derivative of the

determinant of DV , instead of V,DV and D2V as the classical argument goes. The proof of theorem 1.1

goes in two steps. Here is an outline:

Step 1. From the fact that the equilibrium is a simple non-hyperbolic point, it follows that there is

a center manifold normally hyperbolic associated with it. Moreover, it is shown that the index property

can be reduced to the index restricted to the center manifold.

Step 2. (P0) and (P1) guarantee a continuation of the zero to any parameter value near the bifurcation

parameter. This follows from considering the dynamics of vector fields along the center manifolds and

then proving the fact that (P0) and (P1) are carried over to the dynamics along the center manifold.

Moreover, (P2), i.e., the condition on the derivative of the determinant implies that the bifurcation is of

pitchfork type, meaning that at least two new zeros with different indices arise after the bifurcation.

A natural question is to consider how many equilibria appear in Theorem 1.1. The following theorem

gives a criterion for the existence of a pitchfork bifurcation which does not depend on the multiplicity

hypothesis in Corollary 1.2. Let G ⊂ F be such that any V ∈ G is of the form{
u̇ = F (u, y, ε),

ẏ = My +G(u, y, ε),

where u ∈ R1 and y ∈ Rn−1, the square matrix M has eigenvalues with only non-zero real parts and

F (0, 0, 0) = 0, DF (0, 0, 0) = 0, G(0, 0, 0) = 0, DG(0, 0, 0) = 0,

satisfy one extra condition

(P3) Duu detDV |(0,0,0) −Dy(detDV )(M−1Guu) |(0,0,0) ̸= 0.

We give a comment here about (P3).

• In the case where the center manifold is explicitly known, with the presence of the condition (P0),

the conditions (P1)–(P3) are equivalent to the usual hypotheses that the third derivative of V restricted

to the center manifold is not zero. But we re-emphasize that (P3) does not require knowledge of the

center manifold which might be difficult to compute.

Theorem 1.3 (Pitchfork bifurcation). Every V ∈ G undergoes a 1 → 3 or 3 → 1 bifurcation.

Endow F with the usual topology of C∞ maps. Based on Theorem 1.3, we obtain the genericity of

the pitchfork bifurcation.
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Theorem 1.4. There exists an open and dense subset of vector fields with the pitchfork bifurcation

in F .

It is worth noting that there is a Banach space version of these theorems where the index refer to the

index in the finite dimensional center manifold.

The rest of this paper is organized as follows. In Section 2, we give some examples: one of them

shows the lack of stability of the pitchfork bifurcation under general perturbation and one shows the

existence of a pitchfork bifurcation without symmetry. In Section 3, we provide examples that show if

any of the assumptions fails, there may not be a pitchfork bifurcation. In Section 4, we introduce some

preliminaries. As a preparation for the proof of Theorem 1.1, we give some discussions on the index of

fixed points in Section 5. Then in Section 6 we deliver some observations for the one-dimensional case.

In Section 7, we present Theorem 1.1 based on center reduction techniques and the product property of

the index of fixed points. We also give the proof of Corollary 1.2. In Section 8, we give the proofs of

Theorems 1.3 and 1.4 based on an analysis of graph transform.

To finish Section 1, we give some comments and comparison with some results in the literature. We

give necessary and sufficient conditions for those pitchfork bifurcations which can be put in the normal

form. Our conditions are in terms of the Taylor expansion of V at the point (x0, ε0) alone. This makes the

conditions significantly easier to check. In previous studies of the pitchfork bifurcation, for example the

one provided by Crandall and Rabinowitz [4, 5] and explained in Subsection 6.6 of the book Methods of

Bifurcation by Chow and Hale [3], it is explicitly assumed that for any parameter nearby the bifurcation

point there is at least one zero, i.e., there is a branch of solutions through (0, 0). In particular, that

hypothesis is not assumed in our paper. Moreover, it is shown in Example 3.3 that even assuming there

is a branch of solutions, if the other condition (P2) is not satisfied then it could happen that there is no

bifurcation. Also, Example 3.2 shows that the conditions provided in [13] is not enough to guarantee a

bifurcation if the zero of the initial vector field is allowed to move.

Our work shares some similarities with [10, Theorem 2.1], where the authors also give a criterion for the

existence of transcritical and pitchfork bifurcations without known center manifolds and a line of known

solutions. The condition (F1) there also assumes simple eigenvalues, as part of our condition (P0) here;

(F2′) there is the same as (P1) here. Besides (F1) and (F2′), the work in [10] requires det(H0) ̸= 0 (see

Formula (2.2) in [10] for the definition of H0) which is different from the other conditions in our paper.

Our result does apply to some cases when det(H0) = 0. Such an example can always be constructed by

varying the coefficients of the x2, y2, ϵ2 terms in Example 2.3 in Section 2. In addition, the techniques

used here are different from the techniques used there.

An excellent detailed account of the pitchfork bifurcation with a Taylor series description may be found

in [6, p. 25]. The discussion proceeds via Liapunov-Schmidt reduction and extends to group symmetries

and universal unfolding. The main difference with the treatment here is a difference of perspective. The

index assumption is crucial for us and does not appear in [6]; moreover, the center manifold reduction

also gives a clear idea of the dynamics after the bifurcation which is not immediately clear from the

singularity perspective.

2 Examples

In this section, we will use our method to detect bifurcations. Compared with the classical method, the

normal form, our method tends to be more efficient. We also give a construction of a one-parameter

family of vector fields without symmetry which undergoes a pitchfork bifurcation.

Example 2.1 (Revisiting the Rajapakse-Smale example). Consider the vector field X with{
ẋ = y2 − (ε+ 1)y − x,

ẏ = x2 − (ε+ 1)x− y

near the equilibrium point (x, y) = (0, 0) at the bifurcation parameter ε = 0. We use Theorem 1.1 to

verify the existence of bifurcations: for ε < 0, around (0, 0) there is one and only one real equilibrium:
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(x0, y0) = (0, 0). Moreover,

det(DxV ) = 1− (2x− (ε+ 1))(2y − (ε+ 1)).

Here, we use Dx to stand for D(x,y). Then

∂

∂ε
det(DxV ) |((x,y),ε)=((0,0),0) = −2.

Now let us verify the condition (P2): ∂V
∂ε (0, 0) = (0, 0). Hence we have all of the conditions in Theorem 1.1

for Example 2.1. Since the multiplicity of (0, 0) is three (one zero far away from (0, 0)), we have a pitchfork

bifurcation.

Here, we also give the argument by using the classical method, the normal form, as a comparison.

Under the change of the coordinates {
u = x− y,

v = x+ y,

we get u̇ = εu− uv,

v̇ = −(2 + ε)v +
u2 + v2

2
.

For ε near 0, we reduce this vector field to a parametrized equation along the local center manifold, i.e.,

u̇ = εu− uh(u, ε), where v = h(u, ε) satisfies that h(0, 0) = 0, D(u,ε)h(0, 0) = 0, and

∂uh(u, ε)[εu− uh(u, ε)] = −(2 + ε)h(u, ε) +
u2 + (h(u, ε))2

2
.

Taking ε = 0, and expanding h(u, 0) = h2u
2 +O(u3), we get h2 = 1

4 . Therefore, we obtain u̇ = εu− 1
4u

3.

By Lemma 6.4, this vector field experiences a pitchfork bifurcation.

Even though Example 2.1 does not have (x, y) → (−x,−y) symmetry, it does have center symmetry,

i.e., (x, y) → (y, x). Here, we add a small perturbation of the Rajapakse-Smale example to destroy the

symmetry. We recall the definition of symmetry for a vector field.

Definition 2.2 (See [9, p. 278]). We say that the vector field ẋ = V (x, ε), x ∈ Rn, ε ∈ R, has symmetry

if there exists a matrix transformation R : x 7→ Rx such that

RV (x, ε) = V (Rx, ε), R2 = I.

Example 2.3 (Pitchfork bifurcation without symmetry). Consider the 2-D ordinary differential equa-

tion (ODE) {
ẋ = y2 − (ε+ 1)y − x,

ẏ = x2 − (ε+ 1)x− y + ε2

near the equilibrium point (x, y) = (0, 0) at the bifurcation parameter ε = 0. We note here that Corol-

lary 1.2 does not apply to this example. We use Theorem 1.1 to verify the pitchfork bifurcation: for

ε < 0, there are only one equilibrium (x0, y0) = (0, 0) in a neighborhood of (0, 0). Moreover,

det(DxV ) = 1− (2x− (ε+ 1))(2y − (ε+ 1)).

Hence det(DxV ) = 0 at ((0, 0), 0) and ∂
∂ε det(DxV ) |((x,y),ε) = −2. Hence we have all of the conditions in

Theorem 1.1 for Example 2.3. Since the multiplicity of (0, 0) is three (one zero far away from (0, 0)), the

pitchfork bifurcation follows.

Example 2.4 (Perturbation of the pitchfork bifurcation). Consider the following family of vector

fields: {
ẋ = y2 − (ε+ 1)y − x,

ẏ = (1 + ε0)x
2 − (ε+ 1)x− y.
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Let y2−(ε+1)y−x = 0 and (1+ε0)x
2−(ε+1)x−y = 0. Then we have x = y2−(ε+1)y. Plugging it into

the second one at ε = 0 gives (1+ ε0)(y
2−y)2− (y2−y)−y = 0, i.e., y2((1+ ε0)y

2−2(1+ ε0)y+ ε0) = 0.

Hence as long as ε0 ̸= 0, we have four zeros y = 0, y = 0 and y = 1+ε0±
√
1+ε0

1+ε0
. Hence the vector field

can only undergo a saddle-node bifurcation at (0, 0) while for ε0 = 0, we already know it undergoes a

pitchfork bifurcation. We can view this as the perturbation of the Rajapakse and Smale example. As long

as ε0 ̸= 0, the vector field undergoes a saddle-node bifurcation which may be hard to see numerically.

When ε0 = 0, it undergoes a pitchfork bifurcation. This shows clearly that the pitchfork bifurcation

is not stable. Actually, because the derivative at the bifurcation point in (x, ε) has a two-dimensional

kernel, the bifurcation cannot be transversal to the zero section. Hence the pitchfork bifurcation is not

stable. This is also clearly visible from the fact that the zero set is not locally a manifold.

3 Necessity of the conditions provided

In the present section, we show through examples that if any of our conditions is not satisfied then the

pitchfork bifurcation may not happen.

Example 3.1 (Missing (P0): Transcritical bifurcation). The vector field

ẋ = εx+ x2 + x3

has the transcritical bifurcation locally. The zeros are given by x = 0 and x = −1±
√
1−4ε

2 . We miss (P0)

because the index of x = 0 is zero. Even though the other conditions (P1)–(P3) are all satisfied, we do

not have a pitchfork bifurcation in this example.

Example 3.2 (Missing (P1): No bifurcation). The vector field

ẋ = ε− εx+ x3

has no bifurcation. It is easy to see that (P0), (P2) and (P3) all hold, but (P1) does not. There is only

one solution for small ε. This is because if (P1) does not hold, then the zeros lie on a smooth curve

through (x0, ε0). So there is no bifurcation. In this example, the eigenvalues of the zeros go from positive

to zero to positive.

Example 3.3 (Missing (P2): A moving center manifold). Consider{
ẋ = xε+ 2xy + x3,

ẏ = 2y + ε.

We have ∂V
∂ε = (0, 1) which is transversal to the center direction (1, 0). However, this is not enough. Also

∂det(DV )

∂ε
(0, 0) =

∂(ε+ 2y + 3x2)

∂ε
= 2 ̸= 0.

However, there is no bifurcation. The only equilibrium is (0,− ε
2 ). This is because the (P2) condition is

not satisfied: the kernel of DV is generated by (1, 0, 0) and (0,− 1
2 , 1). So

D(detDV )(0, 1, 0) = 0, D(detDV )

(
0,−1

2
, 1

)
= 0.

Example 3.4 (Missing (P3): 1 → k, k > 3 bifurcation). Consider the vector fields

ẋ = x

(
ε− x2 sin2

1

x
− x4

)
.

We claim that this example satisfies the conditions in our main theorem. Now let us prove this claim.

When ε = 0, V (x, 0) = −x3 sin2 1
x − x5. Since x2 sin2 1

x + x4 > 0, ∀x ̸= 0, we have

V (x, 0) = −x

(
x2 sin2

1

x
+ x4

)
< 0, ∀x > 0.
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Similarly, we have V (x, 0) > 0, ∀x < 0. Hence the index of (0, 0) is −1. We have ∂V (x,ε)
∂ε (0, 0) = 0

and ∂V (x,ε)
∂x = (ε − x2 sin2 1

x − x4) + x(4x3 − 2 sin 1
x cos 1

x + 2x sin2 1
x ). Hence ∂V (x,ε)

∂x (0, 0) = 0, and
∂2V (x,ε)

∂ε∂x = 1 ̸= 0. So it satisfies (P0)–(P2) but not (P3). It undergoes a 1 → k, k > 3 bifurcation. One

direct way to prove it is to compute the zeros for the vector field numerically.

Example 3.5 (Missing “half of (P3)”: 1 → k, k > 3 bifurcation). Considerẋ = 2x3 − xy + xy2 − 4x5 + x

(
ε− x4 sin2

1

x
− x6

)
,

ẏ = 2y − 4x2.

This vector field has the same zeros as ẋ = x(ε−x4 sin2 1
x−x6) which undergoes a 1 → k, k > 3 bifurcation.

Even though it satisfies Duu(detDV )(0) = 8 which is positive definite, it does not satisfy (P3). This is

because (0,−M−1Guu(0)) = (0, 4) and D(det(D(x,y)V (0))) = (0,−2). Hence

Duu(detDV )(0) +Dy(det(D(x,y)V ))(0,−M−1Guu(0))
T = 0.

4 Preliminaries

4.1 An index property for vector fields

Given a map ϕ : Sn → Sn, the degree of ϕ denoted by degϕ is the unique integer such that for any

x ∈ HnS
n, ϕ∗(x) = deg ϕ · x. Here, ϕ∗ is the induced homomorphism in integral homology. Suppose

that x0 is an isolated zero of the vector field V . Pick a closed disk D centered at x0, so that x0 is the

only zero of V in D. Then we define the index of x0 for V , indx0(V ), to be the degree of the map

ϕ : ∂Dn → Sn−1, ϕ(x) = V (z)
|V (z)| . The following theorem is a well-known result on the index of vector

fields (see, for example, [1]).

Theorem 4.1. Consider a smooth vector field dx
dt = V (x). If D is a disk containing finitely many

zeros x1, . . . , xk of V , then the degree of V (x)
∥V (x)∥ on ∂D is equal to the sum of the indices of V at the xi.

Moreover, when xi are all non-degenerate,∑
V (x)=0,x∈D

sign(det(J))(x) = Q,

where J is the Jacobian of V at x and Q is the degree of the map V (x)
∥V (x)∥ from the boundary of D to the

n− 1 sphere.

4.2 Center manifold

Theorem 4.2 (See [7] and [2, p. 16]). Let E be an open subset of Rn containing the origin and consider

the non-linear system ẋ = V (x), i.e., {
ẋ = Cx+ F (x, y),

ẏ = My +G(x, y),
(4.1)

where the square matrix C has c-eigenvalues with zero real parts and the square matrix M has only

eigenvalues with non-zero real parts and

F (0, 0) = 0, DF (0, 0) = 0; G(0, 0) = 0, DG(0, 0) = 0.

Then there exist a δ > 0 and a function h ∈ Cr(Bδ(0)), h(0) = 0, Dh(0) = 0 that defines the local center

manifold

W c
loc(0) = {(x, y) ∈ Rc × Rs × Ru | y = h(x) for ∥x∥ 6 δ}

and satisfies Dh(x)[Cx+F (x, h(x))]−Mh(x)−G(x, h(x)) = 0, |x| 6 δ and the flow on the center manifold

W c(0) is defined by u̇ = Cu+ F (x, h(u)).



1844 Pujals E et al. Sci China Math September 2020 Vol. 63 No. 9

Theorem 4.3 (See [9, p. 155]). The flow given by the vector field (4.1) is locally topologically equivalent

near the origin to the product system {
ẋ = Cx+ F (x, h(x)),

ẏ = My,
(4.2)

i.e., there exists a homeomorphism h mapping orbits of the first system onto orbits of the second system,

preserving the direction of time.

5 Index of the fixed points

As a preparation for the proof of Theorem 1.1, in this section we present a product property for the index

of the fixed points. Let us consider the vector field ẋ = V (x), with V (x0) = 0 and the eigenvalues of

DV (x0) have non-zero real parts except for one eigenvalue. Here, we assume x0 is an isolated zero point

for V . Let U ⊂ Rn be a small neighborhood of x0 such that V (x) ̸= 0. Let Dn be a homeomorphic image

of the n-ball with the natural orientation and x0 ∈ Dn ⊂ Dn ⊂ U . According to the definition of the

index at x0 of V , the index of the zero x0 for V is given by the degree of the map ξV (x) =
V (x)

∥V (x)∥ , x ∈ ∂Dn

where ∂Dn is a ball around x0.

The following lemma builds a relation between the index of the fixed points x0 for the vector field V

and the index of x0 as a zero for the map V (x).

Lemma 5.1. The index of the zero point x0 of V equals the index of x0 as a fixed point of the locally

defined flow ϕt for t > 0 sufficiently small.

Proof. Let U ⊂ Rn be a small neighborhood of x0 such that V (x) ̸= 0 and ϕt(x) ̸= x for all x ∈ U\{x0}.
Let Dn be a homeomorphic image of the n-ball with the natural orientation and x0 ∈ Dn ⊂ Dn ⊂ U .

According to the definition of the index at x0 of V , it suffices to prove that ξV (x) =
V (x)

∥V (x)∥ , x ∈ ∂Dn and

ϕϕt(x) = x−ϕt(x)
∥x−ϕt(x)∥ , x ∈ ∂Dn have the same degree. Denote

δ := min{inf{∥V (x)∥ | x ∈ ∂Dn}, inf{∥x− ϕt(x)∥ | x ∈ ∂Dn}}.

Since the eigenvalues of DV (x0) have non-zero real parts except for one eigenvalue, there is no small

periodic orbits in U . Hence δ > 0. As long as t is sufficiently small, we have

∥V (x)− x− ϕt(x)∥ = ∥V (x)− x− ϕt(x)∥ 6 ∥V (x)− tV (x)∥ 6 (1− t)δ

on ∂Dn, since ϕt is differentiable at x0 and V (x) is its differential. Hence ξV and ϕϕt are never antipodal,

and thus straight-line homotopic via
tξV +(1−t)ϕϕt

∥tξV +(1−t)ϕϕt∥ . Thus deg ξV = deg ϕϕt .

We note here that the vector fields V and A−1V (A) have the same index at the fixed point x0 and

A−1x0, respectively, where A is a linear isomorphism. This follows immediately from the independence

of the definition of index on the coordinates. Please refer to [1, Chapter 7] for a proof. Under suitable

coordinates, we assume the vector field V can be written as{
ẋ = Cx+ F (x, y),

ẏ = My +G(x, y),

where the square matrix C has c-eigenvalues with zero real parts and the square matrix M has only

eigenvalues with non-zero real parts and F (0, 0) = 0, DF (0, 0) = 0;G(0, 0) = 0, DG(0, 0) = 0. By

Theorem 4.2, there exist a δ > 0 and a function h ∈ Cr(Bδ(0)), h(0) = 0, Dh(0) = 0 such that the vector

field on the center manifold is defined by

u̇ = V c := Cu+ F (x, h(u)).



Pujals E et al. Sci China Math September 2020 Vol. 63 No. 9 1845

Lemma 5.2. The product property indV (0) = indV c(0)×(−1)♯{i |λi>0} holds, where λi are the non-zero

eigenvalues for DV .

Proof. On the one hand, by Theorem 4.3, the index of (0, 0) for the flow ϕt
V given by V is the same as

the index of (0, 0) for the flow ϕt
V1
. On the other hand, by Lemma 5.1, we obtain ϕt

V and ϕt
V1

have the

same index at (0, 0). Therefore, the two vector fields

V =

{
ẋ = Cx+ F (x, y),

ẏ = My +G(x, y)

and V1 = (Cx + F (x, h(x)),My) have the same index for the zero (0, 0). Finally, by the fact that the

index of a product map is the product of the index along each direction, we finish the proof.

6 Observations on the one-dimensional case

Before we delve into the proof of Theorem 1.1, let us turn our attention to the one-dimensional case first.

Theorem 4.3 and Lemma 5.2 show that the one-dimensional center direction can reflect the bifurcation

properties and the index around the fixed point of an arbitrary-dimensional vector field. Following this

idea, a classical argument will be the method of center reduction. By doing center reduction, one can

change the high-dimensional problems to one-dimensional problems. In this section, we study some

observations for the one-dimensional case.

Lemma 6.1. Consider the family of smooth functions V (u, ε), u ∈ R1, ε ∈ R1. Let u = 0 be an isolated

non-hyperbolic zero with non-zero index for V (u, 0). Assume

∂V

∂ε
(0, 0) = 0 and

∂2V

∂u∂ε
(0, 0) ̸= 0.

Then for any ε sufficiently close to zero, we have uε as zeros for V (·, ε) inside Bε1−δ(0), for any sufficiently

small number δ > 0. Moreover, the index of uε for V (·, ε) has different signs for ε > 0 and ε < 0.

Proof. We shall use Newton’s method to find the zero point uε. By the assumption that u = 0 is a

non-hyperbolic zero for V (u, 0), we get V (0, 0) = 0, ∂V
∂u (0, 0) = 0. Since the index of u = 0 is non-zero,

we know the first k such that ∂kV
∂uk (0, 0) ̸= 0 should be odd. Hence ∂2V

∂u2 (0, 0) = 0. Fix an arbitrary small

number ε. Denote Vε(u) := V (u, ε). Consider the following sequence of iterations given in Newton’s

argument: un = un−1 − Vε(un−1)
V ′
ε (un−1)

. Then the fixed point of the following map will be the zero points for

Vε: Fε(u) = u− Vε(u)
V ′
ε (u)

. We claim that Fε is a contracting map on the disc Bε1−δ(0). Actually, we have

F ′
ε(u) = 1− V ′

ε (u)
2 − Vε(u)V

′′
ε (u)

V ′
ε (u)

2
=

Vε(u)V
′′
ε (u)

(V ′
ε (u))

2
.

Denote ∂2V
∂u∂ε (0, 0) = c ̸= 0. The denominator V ′

ε (u) satisfies

|V ′
ε (u)| =

∣∣∣∣∂V∂u (u, ε)− ∂V

∂u
(0, ε) +

∂V

∂u
(0, ε)− ∂V

∂u
(0, 0)

∣∣∣∣
> −

∣∣∣∣∂V∂u (u, ε)− ∂V

∂u
(0, ε)

∣∣∣∣+ ∣∣∣∣∂V∂u (0, ε)− ∂V

∂u
(0, 0)

∣∣∣∣
> ∂2V

∂u∂ε
(0, ε̃)ε− ∂2V

∂u2
(ũ, ε)u > C0(|c+ ε̃|)ε− |ũu| > Ccε

on the ball Bε1−δ(0), where C and C0 are constant numbers (in the following argument we shall use C

for all constant numbers). Similarly, the numerator satisfies Vε(u)V
′′
ε (u) 6 Ccε3−2δ. Therefore we have

F ′
ε(u) = 1− V ′

ε (u)
2 − Vε(u)V

′′
ε (u)

V ′
ε (u)

2
=

Vε(u)V
′′
ε (u)

(V ′
ε (u))

2
6 Ccε3−2δ

Cc2ε2
6 Cε1−2δ,
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where C is a constant number. Hence we finish the proof of the claim. On the other hand, since

|Fε(u)| 6 Cε2−3δ 6 ε1−δ, we have Fε(Bε1−δ (0)) ⊂ Bε1−δ (0) for small δ > 0. It follows that there is one

and only one fixed point inside Bε1−δ (0). At uε, we have ∂V (uε,ε)
∂u which has the same sign as cε. Since

there is a change of signs for cε with the variation of ε from negative to positive, there is a change of

signs for ∂V (uε,ε)
∂u with the variation of ε from negative to positive.

The following lemma shows that the vector field has one and only one equilibrium at one side of the

bifurcation time.

Lemma 6.2 (Uniqueness). Consider the family of one-dimensional vector fields: u̇ = V (u, ε), u ∈ R1,

ε ∈ R1. Assume u = 0 to be an isolated non-hyperbolic zero with non-zero index for V (u, 0). Assume

∂V

∂ε
(0, 0) = 0 and

∂2V

∂ε∂u
(0, 0) ̸= 0.

Then there exist a neighborhood U ⊂ R1 of x = 0 and a small number ε0 > 0 such that there is one and

only one zero uε ∈ U for any ε ∈ [0, ε0] or any ε ∈ [−ε0, 0].

Proof. By the implicit function theorem and the assumption ∂2V
∂ε∂u (0, 0) ̸= 0, there exists (u, ε(u)) as

the graph of ∂V
∂u (u, ε(u)) = 0. We claim that there exists a small neighborhood (−r, r) such that either

ε(u) > 0, for any u ∈ (−r, r) or ε(u) < 0, for any u ∈ (−r, r). Now let us prove this claim. Since the index

of V (u, 0) at u = 0 is 1 (the argument for the index −1 case is similar), there exists a small neighborhood

(−r, r) such that V (u, 0) > 0, ∀u ∈ (0, r) and V (u, 0) < 0, ∀u ∈ (−r, 0). Hence by the mean value

theorem, for any 0 < r1 < r there exist u1 ∈ (0, r1) such that ∂V (u,ε)
∂u |(u1,0) > 0 and u2 ∈ (0, r1) such

that ∂V (u,ε)
∂u |(u2,0) > 0. On the other hand, the graph of ∂V

∂u (u, ε) = 0 will cut the (u, ε) space into two

connected regions A1 = {(u, ε) | ∂V
∂u (u, ε) > 0} and A2 = {(u, ε) | ∂V

∂u (u, ε) < 0}. Hence the vertical line

([−r, r], 0)\{(0, 0)} can only lie in A1. So (u, ε(u)) cannot go across the vertical line ([−r, r], 0) and that

finishes the claim.

By the definition of index, we have any zero of V (u, ε) = 0 lying in A1 has index 1, any zero of

V (u, ε) = 0 lying in A1 has index −1 and any zero of V (u, ε) = 0 lying in (u, ε(u)) can only have index

1,−1 or 0. By Theorem 4.1, we have for sufficiently small |ε|,
∑

V (u,ε)=0 index(u) = 1. If ε(u) > 0, we

have for any ε < 0 sufficiently close to zero, there are no zero points on (u, ε(u)). Hence there is one and

only one zero u(ε) for ε < 0. If ε(u) < 0, we have for any ε > 0 sufficiently close to zero, there are no

zero points on (u, ε(u)). Hence there is one and only one zero u(ε) for ε > 0.

Corollary 6.3 (Bifurcation). Consider the family of one-dimensional vector fields: u̇ = V (u, ε), u ∈
R1, ε ∈ R1. Assume u = 0 to be an isolated non-hyperbolic zero with non-zero index for V (u, 0). Assume

∂V

∂ε
(0, 0) = 0 and

∂2V

∂ε∂u
(0, 0) ̸= 0.

Then V undergoes a 1 → k or k → 1, k > 3 bifurcation in a neighborhood of (u0, ε0).

Proof. By Lemma 6.1, there always exists zero xε for V (·, ε). By Lemma 6.2, there exists a neighbor-

hood U of x = 0 such that xε is the only zero for V (·, ε), either for negative ε sufficiently close to zero or

for positive ε sufficiently close to zero. Assume it holds for negative ε. By Lemma 6.1 again, the index

of uε changes signs when ε varies from negative to positive. Hence there must be at least two other zeros

inside U for ε > 0.

Finally, let us give a criterion for the 1 → 3 or 3 → 1 bifurcation. The condition ∂3V
∂u3 (0, 0) ̸= 0 in the

following corollary plays the role of the multiplicity assumption in Corollary 1.2.

Corollary 6.4 (Pitchfork bifurcation). Consider the family of one-dimensional vector fields: u̇ =

V (u, ε), u ∈ R1, ε ∈ R1. Assume u = 0 to be an isolated non-hyperbolic zero with non-zero index for

V (u, 0). Assume
∂V

∂ε
(0, 0) = 0,

∂2V

∂ε∂u
(0, 0) ̸= 0, and

∂3V

∂u3
(0, 0) ̸= 0.

Then V (x, ε) undergoes a 1 → 3 or 3 → 1 bifurcation around (0, 0).
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Proof. Since ∂3V
∂u3 (0, 0) ̸= 0, locally the maximal number of zeros is 3. By Corollary 6.3, it undergoes a

1 → 3 or 3 → 1 bifurcation. We finish the proof.

7 Undergoing of bifurcations

In this section, we present the proof of the undergoing of bifurcations under the assumptions (P0)–(P2),

i.e., the proof of Theorem 1.1. First of all, let us study the invariance of (P0)–(P2) under the change of

coordinates. In the following argument, we shall use an equivalent condition for (P1):

(P1′) vl
∂V
∂ε = 0, where vlDxV (x0, ε0) = 0.

The following lemma shows that the assumption (P2) makes sense.

Lemma 7.1. For the vector field V (x, ε) with the conditions (P0) and (P1), there exists

ω = (ω1, . . . , ωn, ωn+1)
T

such that DV (x0, ε0)ω = 0 and ωn+1 ̸= 0.

Proof. Denote by vl and vr the vectors such that

vlDxV (x0, ε0) = 0 and DxV (x0, ε0)vr = 0.

It is straightforward that (vl, 0)DV = 0. Assume the extended vector fields to be ẋ = V (x, ε), ε̇ = 0.

Differentiating the extended vector field, we have[
DxV DεV

0 0

]

with (vl, 0) and (0, 1) as two left eigenvectors for the eigenvalue zero. Since the dimensions of the left

null space and the right null space are the same, there exists a vector ω = (ω1, . . . , ωn, ωn+1)
T such that

DV (x0, ε0)ω = 0 and ωn+1 ̸= 0.

Lemma 7.2. For a family of vector fields ẋ = V (x, ε), the following conditions:

(P0) V (x, ε) has an isolated simple non-hyperbolic equilibrium (x0, ε0) with non-zero index; denote by vl
and vr the unique left eigenvectors for the eigenvalue 0, i.e., vlDxV (x0, ε0) = 0 and DxV (x0, ε0)vr = 0;

(P1) vl
∂V
∂ε |(x0,ε0) = 0;

(P2) D(det(DxV ))(x0, ε0)ω ̸= 0, for any ω = (ω1, . . . , ωn+1)
T such that

DV (x0, ε0)ω = 0 and ωn+1 ̸= 0,

are invariant under the linear change of the coordinates

Ã =

[
A ∗
0 1

]
, where ∗ is an arbitrary n × 1 vector .

Proof. Consider the following linear change of coordinates: (x̃, ε̃)T = Ã(x, ε)T, where

Ã =

[
A ∗
0 1

]
.

Denote by Ã−1 the inverse matrix of Ã. Since the inverse of the upper triangular matrix is still upper

triangular, we have

Ã−1 =

[
A−1 ∗
0 1

]
.
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Under the new coordinates, the vector field becomes ( ˙̃x)T = AV (Ã−1(x̃, ε̃)T) =: Ṽ (x̃, ε̃). Denote by

ω1 :=

[
vr

0

]
, ω = (ω1, . . . , ωn, ωn)

T

the base for the kernel of D(x,ε)V (x0, ε0). Since D(x̃,ε̃)Ṽ (x̃0, ε̃0) = ADV (Ã−1(x̃, ε̃)T)Ã−1, we have

ADV (Ã−1(x̃, ε̃)T)Ã−1Ã

[
vr

0

]
= ADV (Ã−1(x̃, ε̃)T)

[
vr

0

]
= 0

and ADV (Ã−1(x̃, ε̃)T)Ã−1Ãω = ADV (Ã−1(x̃, ε̃)T)ω = 0. Hence the base for the center direction of the

kernel D(x̃,ε̃)Ṽ (x̃0, ε̃0) is {
Ãω1 =

[
Avr

0

]
, Ãω

}
.

For the vector field Ṽ , let us check the conditions (P0)–(P2). Assume (x̃0, ε0) to be the fixed points.

Actually, the first condition (P0) index(x̃0) = index(x0) holds, since the index is topological invariant.

Let us verify (P1). First of all, the left eigenvector of Ṽ for the eigenvalue zero is given by vlA
−1.

Hence we have

vlA
−1Dε̃Ṽ |x̃0 = vlA

−1ADε̃(V (Ã−1(x̃, ε))Ã−1)(0, 1)T = 0.

Now let us check the condition (P2) for the vector field Ṽ . For this vector field, we have Dx̃Ṽ =

ADxV (Ã−1(x̃, ε))A−1. Moreover, it follows that

det(Dx̃Ṽ ) = det(ADxV (Ã−1(x̃, ε))A−1) = detDxV (Ã−1(x̃, ε̃)).

Hence we have D(det(Dx̃(Ṽ ))(x̃, ε̃)) = D det(DxV )(Ã−1(x̃, ε̃))Ã−1. For any ω̃ = (ω̃0, . . . , ω̃n+1)
T, we

have

ω = Ã−1ω̃ =

[
A−1(ω1, . . . , ωn)

T + ωn+1∗
ωn+1

]
.

So ωn+1 ̸= 0 if and only if ω̃n+1 ̸= 0. On the other hand, we have

D(det(Dx̃Ṽ )(x̃0, ε̃0))ω̃ = D det(DxV )(Ã−1(x̃0, ε̃0))Ã
−1(Ãω − tÃvr)

= D det(DxV )(Ã−1(x̃0, ε̃0))ω

= D det(DxV )(x0, ε0)ω ̸= 0.

Hence (P2) still holds.

Now we are ready to present the proof of Theorem 1.1.

Proof of Theorem 1.1. By Theorem 4.1, a continuous deformation would not change the total index

in U , i.e., index(V (·, ε), U) = index(x0). By Lemma 7.2, we can assume the vector field V is of the form{
u̇ = F (u, y, ε),

ẏ = My +G(u, y, ε),

where u ∈ R1 and y ∈ Rn−1, the square matrix M has eigenvalues with only non-zero real parts and

F (0, 0, 0) = 0, D(u,y)F (0, 0, 0) = 0, G(0, 0, 0) = 0, DG(0, 0, 0) = 0

with the conditions (P0)–(P2). The left center direction for V now is vl = (1, 0). By (P1), we have

vlDεV (0, 0, 0) = DεF (0, 0, 0) = 0. Hence we have DF (0, 0, 0) = 0. So we can apply Theorem 4.2 to

the extended vector field by adding ε̇ = 0 as one direction. By Theorem 4.2, there exists a smooth

function h(u, ε) which represents the center manifold for V . The vector field along the center becomes
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u̇ = F (u, h(u, ε), ε). By Lemma 5.2, the index of (u, y) = (0, 0) for V (u, y, 0) is non-zero if and only if the

index of u = 0 is non-zero for F (u, h(u, 0), 0). Hence by the assumption (P0), it follows that the first k

such that ∂kF
∂uk (0, 0) ̸= 0 is an odd number and k > 3.

Claim 1. ∂2F
∂u∂ε (0, 0) ̸= 0. First of all, let us give some discussions on DV . We have

D(u,y)V (u, y, ε) =

[
DuF (u, y, ε) DyF (u, y, ε)

DuG(u, y, ε) M +DyG(u, y, ε)

]
.

By Jacobi’s formula,

∂ det(D(u,y)V (u, 0, 0))

∂u

= tr

(
adj

[
DuF (u, 0, 0) DyF (u, 0, 0)

DuG(u, 0, 0) M +DyG(u, 0, 0)

][
DuuF (u, 0, 0) DyuF (u, 0, 0)

DuuG(u, 0, 0) DyuG(u, 0, 0)

])

= tr

(
adj

[
DuF (u, 0, 0) DyF (u, 0, 0)

DuG(u, 0, 0) M +DyG(u, 0, 0)

][
DuuF (u, 0, 0) DyuF (u, 0, 0)

DuuG(u, 0, 0) DyuG(u, 0, 0)

])
.

Hence at u = 0, we have

∂ det(D(u,y)V (0, 0, 0))

∂u
= tr

(
adj

[
0 0

0 M

][
0 DyuF (0, 0, 0)

DuuG(0, 0, 0) DyuG(0, 0, 0)

])

= tr

([
detM 0

0 0

][
0 DyuF (0, 0, 0)

DuuG(0, 0, 0) DyuG(0, 0, 0)

])
= 0.

It is easy to see that the kernel of DV (u, y, ε) has (1, 0, 0) and (0, 0, 1) as a base. Since along the

direction (1, 0, 0), we have

D(u,y,ε) det(D(u,y)V ) |(0,0,0)(1, 0, 0)T =
∂ det(D(u,y)V )

∂u

∣∣∣∣
(0,0,0)

=
∂ det(D(u,y)V (u, 0, 0))

∂u

∣∣∣∣
u=0

= 0,

by the assumption (P2), we have

D(u,y,ε) det(D(u,y)V ) |(0,0,0)(0, 0, 1)T =
∂DetDxV

∂ε

∣∣∣∣
(x0,ε0)

̸= 0.

On the other hand, DetD(u,y)V (0, 0, ε) = ∂F
∂u (0, 0, ε)(Det(M + ∂G

∂y (0, 0, ε))). Hence

∂DetDxV |(x0,ε0)

∂ε
=

∂2F

∂u∂ε
(0, 0, 0)

(
Det

(
M +

∂G

∂y
(0, 0, 0)

))
=

∂2F

∂u∂ε
·DetM ̸= 0.

So we get ∂2F
∂u∂ε ̸= 0. We complete the proof of Claim 1. Hence the function V c(u, ε) := F (u, h(u, ε), ε)

satisfies all of the conditions in Corollary 6.3. By Corollary 6.3, V undergoes a 1 → k or k → 1

bifurcation.

Remark 7.3. Fix V ∈ F . For ε > 0, the number of zeros is less than or equal to the first non-vanishing

jet of V (x, 0) restricted to the center manifold.

At the end of this section, we would like to prove Corollary 1.2 from Theorem 1.1.
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Proof of Corollary 1.2. Since dλ1

dε (x0, ε0) > 0, λ1(x0, ε0) = 0, we have λ1(x0, ε) < 0, for ε less than ε0
and close enough to ε0. Hence the index of λ1(x0, ε) does not equal to 0. By the isolated requirement on

the fixed points (x0, ε) for ε < ε0 and the stability of the indices of fixed points, we know that the index of

(x0, ε0) is non-zero. By λ1(x0, ε0) = 0 again, we know ∂V
∂ε (x0, ε0) = 0. Then the condition (P1) follows.

By dλ1

dε (x0, ε0) > 0 and λ1(x0, ε0) = 0, we know Dx(detDxV ) = 0 and Dε(detDxV ) ̸= 0. So (P2) holds.

Hence we have all of the conditions required in Theorem 1.1. It follows that there exists a 1 → k, k > ∞
bifurcation. By the assumption on the multiplicity, there are at most three fixed points showing up. So

it is the pitchfork bifurcation. We finish the proof of this corollary.

8 Pitchfork bifurcation and its genericity

In this section, we prove a criterion for a pitchfork bifurcation and its genericity. To do this, we would

like to state an equivalent condition first.

Lemma 8.1. For any vector field V , assume (c1(u), . . . , cn(u)) to be the center manifold. The following

condition

(P3′) (det(DxV (c1(u), . . . , cn(u))))
′′ |u0 ̸= 0 where u0 is the bifurcation point

is equivalent to

(P3′′) (NTD2
x det(DxV )N +Dx det(DxV )N ′) |(x0) ̸= 0 where N ′ = (c′′1(u), . . . , c

′′
n(u)).

Proof. This is basically due to the chain rule. Denote N = (1, 0, . . . , 0)T. It follows from

(det(DxV (c1(u), . . . , cn(u))))
′′

= (D det(DxV (c1(u), . . . , cn(u)))(c
′
1, . . . , c

′
n)

T)′

= (c′1, . . . , c
′
n)D

2 det(DxV (c1(u), . . . , cn(u)))(c
′
1, . . . , c

′
n)

T

+D det(DxV (c1(u), . . . , cn(u)))(c
′′
1 , . . . , c

′′
n)

T

= (NTD2
x det(DxV )N +Dx det(DxV )N ′) |(x0,ε0) ̸= 0.

This completes the proof.

Lemma 8.2. For the vector field V of the form

V :=

{
u̇ = F (u, y, ε),

ẏ = My +G(u, y, ε),

where u ∈ R1 and y ∈ Rn−1, the square matrix M has only eigenvalues with non-zero real parts and

F (0, 0, 0) = 0, D(u,y)F (0, 0, 0) = 0, G(0, 0, 0) = 0, DG(0, 0, 0) = 0. Then (P3) is equivalent to (P3′′)

(NTD2
x det(DxV )N + Dx det(DxV )N ′) |(x0) ̸= 0 with the center manifold (u, c2(u), . . . , cn(u)), N =

(1, 0, 0) and N ′ = (0, c′′2(u), . . . , c
′′
n(u)).

Proof. First of all, it is easy to see that N = (1, 0, 0) is the center direction at (0, 0). Hence we can

assume the center manifold for V to be c(u) = (u, c2(u), . . . , cn(u)). Denote N ′(u) = (c′′1(u), c
′′
2(u),

. . . , c′′n(u)). Then N ′ = N ′(u0) where u0 is the point such that c(u0) = 0. By the local center manifold

theorem, we have

V (c(u)) = a(u)c′(u), (8.1)

where a(u) : R1 → R1 is the scaling. At u = u0, we obtain a(u0) = 0. Differentiating (8.1), we have

DV (c(u))c′(u) = a′(u)c′(u) + a(u)c′′(u). (8.2)

Hence at u = u0, we have a′(u0) = 0. Moreover, differentiating (8.2), we obtain

c′(u)TD2V (c(u))c′(u) +DV (c(u))c′′(u) = a′′(u)c′(u) + a′(u)c′(u) + a′(u)c′′(u) + a(u)c′′′(u).
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Hence at u = u0, we obtain NTD2V (0)N +DV (0)N ′ = a′′(u0)N. Hence

DV (0)N ′ = a′′(u0)N −NTD2V (0)N. (8.3)

Plugging V into (8.3), we obtain N ′ = (0,M−1Guu(0)) and

NTD2 det(DxV )N = Duu(det(DV )).

Hence we know that (P3) is equivalent to (P3′′).

Now let us give the proof of Theorem 1.3.

Proof of Theorem 1.3. Due to the conditions (P0)–(P2), we have

DεV (x0, ε0) = 0 and Dε(det(DxV )(x0, ε0)) ̸= 0. (8.4)

Now let us consider the solution of the implicit function: det(DxV )(x, ε(x)) = 0. By (8.4) and the implicit

function theorem, we have

Dx(ε(x0)) = −Dx(det(DxV )(x0, ε0))

Dε(det(DxV )(x0, ε0))
.

Denote the graph of the center manifold by c(u) = (u, c2(u), . . . , cn(u)). Then the restriction of (x, ε(x))

to the center manifold becomes: (c(u), ε(c(u))). We claim two facts:

Claim 1. Du(ε(c(u))) |c(u)=x0
= 0.

Claim 2. D2
u(ε(c(u))) |c(u)=x0

̸= 0.

Claim 1 follows from the following equality:

Du(ε(c(u))) |c(u)=x0
= Dx(ε(c(u)))Du(c(u)) =

Dx(det(DxV )(x0, ε0))

Dε(det(DxV )(x0, ε0))
Du(c(u)) = 0,

where the second equality holds because of the index assumption (as Claim 1 in the proof of Theorem 1.1).

Moreover, Claim 2 holds because of Lemma 8.1. By Claims 1 and 2, we know locally the graph of

ε(c(u)) satisfies either ε(c(u)) > 0, or ε(c(u)) < 0. Without lose of generality, we assume ε(c(u)) > 0.

Hence for sufficiently small ε > 0, there exist at most two points on the center manifold such that

det(DxV (c(u), ε)) = 0. Moreover, for sufficiently small ε > 0, there are at most three zeros for V (c(u), ε).

Otherwise by the mean value theorem, there will be more than three points with det(DxV (c(u), ε)) = 0

which leads to a contradiction. By Theorem 1.1, there exists at least three points. Hence we have exactly

a 1 → 3 bifurcation, i.e., a pitchfork bifurcation. Hence the proof is complete.

Lemma 8.3. (P3′) in Lemma 8.1 is invariant under the linear change x = Ax̃.

Proof. Assume the change of coordinates to be x = Ax̃. Then the vector field ẋ = V (x) becomes
˙̃x = A−1V (Ax̃) =: Ṽ (x̃, ε). For this vector field, we have Dx̃Ṽ = A−1DxV (Ax̃)A. Moreover, it follows

that det(Dx̃Ṽ ) = det(A−1DxV (Ax̃, ε)A) = detDxV (Ax̃). Assume (c1(u), . . . , cn(u)) to be the center

manifold for V . Then it follows directly from the invariance of the center manifold, the center manifold

after changing of coordinates becomes A−1(c1(u), . . . , cn(u)). Hence

det(DxṼ (A−1(c1(u), . . . , cn(u)))) = det(DxV (c1(u), . . . , cn(u))).

So we have (P3′) is invariant under changing of coordinates.

The proof of Theorem 1.4. Based on Theorem 1.3 and Lemma 8.3, we only need to prove that the

vector fields with the condition (P3) are open and dense inside F . Since (0,M−1Guu(0)) is decided

by (DxV,D
2
xV ) (order two terms in the expansion) of the vector field V (x) at (x0, ε0), we denote x =

(u, y). Besides, Dx(det(DxV )) |(x0,ε0) is also determined by (DxV,D
2
xV ) at (x0, ε0). On the other hand,

since D2
x detDxV (x) is decided by (DV,D2V,D3V ), we can perturb V by changing D3V and keeping

DV,D2V so that the condition (P3) holds. Hence we know that the maps with (P3) are open and dense

inside F .
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