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A B S T R A C T 
The early growth of black holes (BHs) in atomic-cooling haloes is likely influenced by feedback on the surrounding gas. While 
the effects of radiative feedback are well-documented, mechanical feedback, particularly from active galactic nucleus (AGN) 
jets, has been comparatively less explored. Building on our previous work that examined the growth of a 100 M ! BH in a 
constant density environment regulated by AGN jets, we expand the initial BH mass range from 1 to 10 4 M ! and adopt a more 
realistic density profile for atomic-cooling haloes. We reaffirm the validity of our analytic models for jet cocoon propagation and 
feedback regulation. We identify several critical radii – namely, the terminal radius of jet cocoon propagation, the isotropization 
radius of the jet cocoon, and the core radius of the atomic-cooling halo – that are crucial in determining BH growth given 
specific gas properties and jet feedback parameters. In a significant portion of the parameter space, our findings show that 
jet feedback substantially disrupts the halo’s core during the initial feedback episode, preventing BH growth beyond 10 4 M !. 
Conversely, conditions characterized by low jet velocities and high gas densities enable sustained BH growth over extended 
periods. We provide a prediction for the BH mass growth as a function of time and feedback parameters. We found that, to form 
a supermassive BH ( > 10 6 M !) within 1 Gyr entirely by accreting gas from an atomic-cooling halo, the jet energy feedback 
efficiency must be ! 10 −4 Ṁ BH c 2 even if the seed BH mass is 10 4 M !. 
Key words: accretion, accretion discs – black hole physics – hydrodynamics – methods: numerical – galaxies: jets. 

1  I N T RO D U C T I O N  
Active galactic nucleus (AGN) feedback is a crucial factor in the 
evolution of galaxies, particularly in the suppression of star formation 
in massive galaxies and clusters, thus maintaining their ‘red and dead’ 
status for a substantial part of cosmic history. Research e xtensiv ely 
indicates that AGN jet feedback mechanisms are theoretically able 
to quench star formation and arrest cooling flows within galaxy- 
scale simulations (e.g. Dubois et al. 2010 ; Gaspari, Brighenti & 
Temi 2012 ; Yang, Sutter & Ricker 2012 ; Li & Bryan 2014 ; Li 
et al. 2015 ; Prasad, Sharma & Babul 2015 ; Yang & Reynolds 
2016 ; Bourne & Sijacki 2017 ; Ruszkowski, Yang & Zweibel 2017 ; 
Su et al. 2020 ). Observational data also support the notion that 
AGNs can provide energy outputs on par with cooling rates (B ̂ ırzan 
et al. 2004 ). Moreo v er , A GNs are observed ejecting gas from 
galaxies, contributing thermal energy through shocks, sound waves, 
photoionization, Compton heating, or by enhancing turbulence in 
the circumgalactic medium (CGM) and intracluster medium (ICM), 
leading to the formation of hot plasma ‘bubbles’ with significant 
relativistic components around massive galaxies (see, e.g. Fabian 
2012 ; Hickox & Alexander 2018 , for a detailed re vie w). In Su et al. 
( 2021 , 2023a ), a comprehensive parameter study on AGN jets within 
! E-mail: kungyisu@gmail.com 

10 12 − 10 15 M ! clusters identified certain models that can produce a 
sufficiently large cocoon with an extended cooling period, enabling 
these jets to ef fecti vely quench the galaxy. 

Beyond the established instances of supermassive black holes 
(SMBHs) in large galaxies, the influence of AGN feedback extends 
to smaller dwarf galaxies and stellar-mass to intermediate-mass 
BHs (IMBHs) with masses ranging from M BH ∼a few to 10 5 M !
(e.g. Nyland et al. 2017 ; Bradford et al. 2018 ; Penny et al. 2018 ; 
Dickey et al. 2019 ; Manzano-King, Canalizo & Sales 2019 ). These 
smaller BHs, some of which are the sources of AGN jets, have 
been observationally documented (e.g. Greene, Ho & Ulvestad 2006 ; 
Wrobel & Ho 2006 ; Wrobel et al. 2008 ; Mezcua & Lobanov 2011 ; 
Nyland et al. 2012 ; Reines & Deller 2012 ; Webb et al. 2012 ; Mezcua 
et al. 2013a , b ; Reines et al. 2014 ; Mezcua et al. 2015 , 2018a , b ; 
Mezcua, Suh & Ci v ano 2019 ; Reines et al. 2020 ). It should not 
be surprising that AGN feedback impacts the development of these 
smaller BHs, modifying the characteristics of the surrounding gas 
and significantly influencing their host galaxies, particularly in dwarf 
and early universe galaxies (e.g. Barai & de Gouveia Dal Pino 2019 ; 
Koudmani et al. 2019 ; Sharma et al. 2020 ). 

Studies have identified SMBH ( M BH > 10 6 M !) in the early uni- 
verse ( z " 4), with indications of AGN jets (e.g. Sbarrato et al. 2021 , 
2022 ). Moreo v er, recent observations with JWST have identified a 
significant population of SMBHs at relatively high redshifts, beyond 
z ∼ 6 and even beyond z ∼ 10 (e.g. Carnall et al. 2023 ; Harikane 
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et al. 2023 ; Kocevski et al. 2023 ; Larson et al. 2023 ; Onoue et al. 
2023 ; Übler et al. 2023 ; Maiolino et al. 2024 ; Scoggins & Haiman 
2024 ). The feasibility of a stellar-mass ! 100 M ! BH or even a 
direct-collapse BH " 10 4 M ! evolving into a SMBH in such a brief 
time-frame remains uncertain (e.g. Pacucci et al. 2023 ; Schneider 
et al. 2023 ; Bennett et al. 2024 ; Mehta, Regan & Prole 2024 ). 
Specifically, the influence of jets on the growth rate of initial BH seeds 
poses additional questions regarding their accretion and expansion 
(e.g. Park & Ricotti 2011 ; Ryu et al. 2016 ). The necessity for 
alternative mechanisms, such as runaway mergers (e.g. Portegies 
Zwart & McMillan 2002 ; G ̈urkan, Freitag & Rasio 2004 ; Shi, 
Grudi ́c & Hopkins 2021 ), primordial BHs, or other strategies to 
account for the presence of SMBHs in the early universe remains a 
significant area of inquiry (see Inayoshi, Visbal & Haiman 2020 , for 
a comprehensive review). 

Previous research has tackled comparable issues, using various 
feedback mechanisms, including radiation (e.g. Milosavljevi ́c et al. 
2009 ; Park & Ricotti 2011 ) and stellar winds (e.g. Takeo, Inayoshi & 
Mineshige 2020 ), or by studying the development of slightly larger 
BHs ( > 10 4 M !) through simulations at the scale of entire galaxies 
with jet feedback (e.g. Regan et al. 2019 ; Massonneau et al. 2022 ). In 
the study presented in Su et al. ( 2023b ), we explored the influence of 
AGN jets on the accretion processes of BHs with masses of 100 M !
located in dense, low-metallicity gaseous environments typical of 
the cores of atomic-cooling haloes. Additionally, we examined the 
dynamics of how jet-induced cocoons expand across e xtensiv e radii. 
Our methodology involved a systematic variation of parameters such 
as gas density, temperature, and the AGN feedback mechanism to 
ascertain the dependency of BH accretion rates and jet propagation 
characteristics on these factors. 

Our approach in that work involved modelling the gas environment 
surrounding BHs at resolutions exceeding the Bondi radius, enabling 
accurate estimation of the gravitational capture of gas particles. 
Starting from Su et al. ( 2023b ), we employed a variety of jet 
models to investigate their influence on the growth of BHs and the 
outward propagation of jets. Through that research, we developed an 
analytical model that aligned with our simulation outcomes, offering 
insights into jet propagation and the self-regulation mechanisms 
of AGN fluxes and BH accretion rates. Moreo v er, we predicted 
conditions under which super-Eddington accretion occurs. Yet, that 
model has limitations, being only validated in simulations with 
initially static gas environments and at a 100 M ! BH mass. Indeed, 
as a BH accrues mass, the assumption of constant density up to the 
Bondi radius becomes increasingly unrealistic within the typical size 
of an atomic-cooling halo. Building on this previous effort (Su et al. 
2023b ), this study broadens our exploration to include a wider array 
of BH seed masses from stellar-mass to the lower mass end of direct- 
collapse BH range (1–10 4 M !). We also included a more realistic 
density profile resembling the core of an atomic-cooling halo. 

In Section 2 , we summarize our initial conditions (ICs), BH 
accretion model, and the AGN jet parameters we surv e y, as well 
as describe our numerical simulations. In Section 3 , we outline the 
toy model that describes jet propagation and self-regulation in a 
constant-density environment. We present the simulation results in 
Section 4 . We then generalize the toy model to include cases where 
the jet cocoon propagates into a decaying density profile and further 
suppresses the gas density in Section 5 . Based on the toy model, we 
predict the BH mass as a function of time, seed BH mass, feedback 
mass loading, and jet velocity in Section 6 . We discuss the limitations 
of the work and its observational implications in Section 7 . Finally, 
we summarize our main conclusion in Section 8 . 

2  M E T H O D O L O G Y  
Our study involves conducting simulations on a gas box influenced 
by jet feedback from a 100 M ! BH, utilizing the GIZMO code 1 
(Hopkins 2015 ) in its meshless finite mass (MFM) configuration. 
This method combines the strengths of grid-based and smoothed- 
particle hydrodynamics (SPH) techniques in a Lagrangian mesh- 
free Godunov approach. We detail the numerical implementation 
and conduct thorough tests, as described in methodological papers 
focussing on hydrodynamics and self-gravity (Hopkins 2015 ). Our 
simulations incorporate the FIRE-2 model for cooling processes 
(ranging from 10 to 10 10 K), encompassing photoelectric and pho- 
toionization heating, along with collisional, Compton, fine structure, 
recombination, atomic, and molecular cooling effects. We set a lower 
limit for the temperature, T ∞ , defined in the initial conditions, to 
prevent the gas from cooling below this threshold due to other 
feedback mechanisms not co v ered in our simulations. In the absence 
of such a limit, and considering the densities in our study, molecular 
cooling could reduce the temperature of all gas to 10 K in less than 
1000 yr, even at extremely low metallicity levels (10 −4 Z ! in this 
case). 
2.1 Initial conditions 
In an optimal setting, we would model BH accretion within a 
cosmological simulation that precisely resolves gas dynamics at early 
cosmic times, similar to studies conducted on minihaloes (Alvarez, 
Wise & Abel 2009 ). Ho we ver, due to significant uncertainties in 
the conditions at high redshifts, and in order to gain a better 
understanding of the physics, we adopt a simplified approach that 
simulates the environment near the BH as a uniform gas patch, 
akin to the core of an atomic-cooling halo. We systematically vary 
the properties of this gas patch to explore their influence on BH 
regulation. Our initial set-up is a 3D box populated with randomly 
placed gas particles at a fixed temperature, denoted as T ∞ . The gas 
density initially adheres to a specific profile as outlined in Table 1 . 
For simulations with BHs less than 100 M !, the density ( n Bondi ) is 
constant throughout. In cases involving a 10 4 M ! BH, the density is 
uniform up to the Bondi radius ( n Bondi ), beyond which it follows a 
power -law distrib ution, n ∝ r α , as per Regan et al. ( 2019 ). A BH 
occupies the centre of the set-up, with the gas’s initial metallicity 
being set at a very low level (10 −4 Z !). All elements in the initial set- 
up are dynamic, evolving in response to gravitational, hydrodynamic, 
and additional baryonic physics. 

To attain enhanced resolution near the BH, crucial for capturing 
the dynamics of accretion and feedback processes, we implement a 
hierarchical super-Lagrangian refinement technique (Su et al. 2020 , 
2021 ). This strategy enables us to achieve a superior mass resolution 
in the area surrounding the z -axis, where the jet originates, as outlined 
in Table 1 , significantly exceeding the resolution achieved in many 
earlier global investigations. The resolution progressively decreases 
with distance from the z -axis ( r 2d ), in a manner approximately pro- 
portional to r 2d . These computational specifics are comprehensively 
documented in Table 1 . Insights from our resolution analysis are 
detailed in the appendix of Su et al. ( 2023b ). 

1 A public version of this code is available at http://www.tapir.caltech.edu/ 
∼phopkins/ Site/ GIZMO.html . 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
3
8
/1

/1
1
/8

0
0
6
7
0
9
 b

y
 lib

ra
ry

@
is

t.a
c
.a

t u
s
e
r o

n
 0

1
 O

c
to

b
e
r 2

0
2
5

http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.html


Self-regulation of high-z BH growth via jets 13 

MNRAS 538, 11–30 (2025) 

Ta
bl

e 1. 
Ph

ys
ic

s vari
at

io
ns

 of al
l simu

la
tio

ns
. 

N
um

er
ic

al
 detail

s 
Fe

ed
ba

ck
 param

et
er

s 
B

ac
kg

ro
un

d gas 
R

es
ul

tin
g aver

ag
ed
 accre

tio
n rate 

an
d fluxe

s 
M

od
el
 

M
 BH 

#
T
 

B
ox

 size 
m
 m

ax
 

g 
m
 jet 

η
m
 , fb 

V
 jet 

T
 jet 

n
 Bondi 

n
 index 

T
 ∞ 
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2.2 Black hole accretion 
As highlighted in the introduction, our approach to modelling BH 
accretion diverges from the conventional Bondi assumption, fa v oring 
a method that simulates the gravitational capture of gas directly on to 
the BH, feeding a subgrid α-disc (Torrey et al. 2020 ). A gas particle is 
designated for accretion if it is gravitationally bound to the BH and its 
estimated pericentric radius is less than the sink radius, r acc . This sink 
radius is defined as 3 × 10 −5 − 1 . 5 × 10 −4 (m max 

g / 1 . 4 × 10 −6 )−1 / 3 
pc, tailored to the gas density in the vicinity of the BH. m max 

g 
represents the maximum gas mass resolution for each run, as labelled 
in Table 1 . More specifically, the sink radius r acc is determined as 
the radius around the BH that encloses 96 ‘weighted’ neighbour- 
hood gas particles, but with the constraint that it must lie within 
3 × 10 −5 − 1 . 5 × 10 −4 (m max 

g / 1 . 4 × 10 −6 )−1 / 3 pc. 
While our simulations track gas mo v ements in close proximity to 

the BH, we do not explicitly simulate the accretion disc’s detailed 
physics. Instead, we employ a subgrid α-disc model. Within this 
model, gas that is accreted contributes to the mass of the α-disc 
( M α), which starts at zero. The mass accumulated in the α-disc is 
then transferred to the BH at a rate determined by the equation 
Ṁ acc = Mα/t disc , (1) 
where t disc set to a constant value. This duration is based 
on the viscous time-scale of a disc as described by 
Shakura & Sunyaev ( 1973 ), assuming the disc temperature is 
10 4 K . The formula for t disc is derived as t disc ∼ t ff M 2 /α ∼
1000 yr ( M BH / 100 M !) ( α/ 0 . 1 ) −1 (r acc / 10 −4 pc )1 / 2 , where t ff denotes 
the free-fall time at r acc , and M represents the Mach number. In the 
appendix of Su et al. ( 2023b ), we delve into the effects of altering t disc 
on the simulation outcomes. We also briefly discuss in Section 7.2 . 
2.3 Jet models 
We implement a jet model as outlined in Su et al. ( 2021 , 2023b , 2024 ) 
and Weinberger et al. ( 2023 ) which involves a particle spawning 
technique for jet launch. This technique generates new gas cells 
(resolution elements) to simulate jet material, endowing these cells 
with pre-determined mass, temperature, and velocity to define the 
jet’s specific energy. This approach grants us enhanced control o v er 
jet characteristics, as it minimizes dependence on surrounding gas 
conditions through neighbour-finding algorithms. 2 It also allows for 
the enforcement of higher resolution within jet structures, facilitating 
the precise simulation of light jets. 

The resolution of the spawned gas particles is given in Table 1 . 
These particles are restricted from merging back into larger gas 
elements until their velocity drops below 10 per cent of the initial 
launch speed. To ensure exact conservation of linear momentum, 
two particles are simultaneously emitted in opposite directions along 
the z -axis each time the accumulated mass flux of the jet doubles the 
mass of a target spawned particle. The initial positioning of these 
particles is random, within a sphere of radius r 0 , which is the lesser 
of 10 −5 (m max 

g / 1 . 4 × 10 −6 )−1 / 3 pc or half the distance from the BH 
to the nearest gas particle. 

For a particle initialized at coordinates ( r 0 , θ0 , φ0 ) within a jet 
model with an opening angle θop = 1 o , the initial velocity direction 
2 Conventionally, energy and momentum are distributed to gas particles 
identified via a neighbour search from the BH, making the impact reliant 
on local gas attributes and their spatial arrangement. Refer to Wellons et al. 
( 2022 ) for a discussion on various methodologies. 

is adjusted to 2 θop θ0 /π for θ0 < π/ 2 and to π − 2 θop ( π − θ0 ) /π for 
θ0 > π/ 2. This configuration ensures that the trajectories of any two 
particles will not cross, maintaining a coherent jet structure. 

We define the jet mass flux using a fixed feedback mass loading 
as follows: 
Ṁ jet = ηm , fb Ṁ BH , (2) 
which allows us to calculate the feedback energy and momentum 
fluxes of the jet through the equations: 
Ė jet = ηm , fb Ṁ BH (1 

2 V 2 jet + 3 kT 
2 µ

)
, 

Ṗ jet = ηm , fb Ṁ BH V jet , (3) 
where V jet represents the chosen velocity for the jet, and µ signifies 
the average mass of a jet particle. 

The efficiency jet energy efficiency is 
ηeff ≡ Ė jet 

Ṁ BH c 2 = ηm , fb V 2 jet 
2 c 2 + ηm , fb 3 kT 

2 µc 2 . (4) 
We note that the jet’s mass loading and velocity depends on 

various factors in the vicinity of the BH, including the properties 
of the accretion disc and the BH spin. Ho we ver, uncertainties persist 
regarding how feedback propagates from the event horizon scale to 
the scales resolvable in our simulations. To address this, we opted for 
a series of runs varying the feedback mass loading and velocity as free 
parameters, rather than introducing a more sophisticated functional 
dependence of feedback efficiency. This approach allows us to gain a 
clearer understanding of BH growth as a function of these parameters, 
which may realistically not be free. 
3  REVI EW  O F  A  SIMPLE  M O D E L  F O R  J E T  
P RO PAG AT I O N  A N D  C O C O O N  F O R M AT I O N  
In Su et al. ( 2023b ), we developed a toy model describing the jet 
propagation and feedback regulation. We briefly summarize it here 
for future verification over a wider BH mass range (and modification 
for a non-uniform background in Section 5 ). 
3.1 Jet propagation 
When a jet is launched, the initial cocoon (defined here as the outer 
shock) can be approximately described by a cylindrical expansion, 
with width and height R cocoon ( t) and Z cocoon ( t). The cocoon evolution 
follows from momentum conservation in the z -direction and energy 
consideration in the lateral directions (e.g. Begelman & Cioffi 1989 ; 
Su et al. 2021 ). With this, we can write down the propagation of the 
jet cocoon propagating into a background medium with density ρ∞ 
as a function of time, as follows: 

V R ( t) = ( γ 2 
72 πβ2 

)1 / 6 
Ṁ 1 / 6 jet ρ1 / 6 

c ρ−1 / 3 
∞ V 1 / 2 jet t −1 / 3 

R cocoon ( t) = ( 81 γ 2 
512 πβ2 

)1 / 6 
Ṁ 1 / 6 jet ρ1 / 6 

c ρ−1 / 3 
∞ V 1 / 2 jet t 2 / 3 (5) 

and the time dependence of V z and z cocoon as 
V z ( t) = ( 8 β

9 πγ

)1 / 3 
Ṁ 1 / 3 jet ρ−1 / 6 

c ρ−1 / 6 
∞ t −2 / 3 

z cocoon ( t) = (24 β
πγ

)1 / 3 
Ṁ 1 / 3 jet ρ−1 / 6 

c ρ−1 / 6 
∞ t 1 / 3 , (6) 
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where γ ≡ Ė expansion / ̇E kin ∝ Ė jet / ̇E kin ≡ f −1 
kin , β is an order-of-unity 

factor accounting for the non-cylindrical shape of the jet cocoon, 
and ρc is the cocoon gas density. Assuming the jet results in strong 
shocks, γ in the abo v e e xpression roughly follows: 
γsuper−sonic ∼ Ė post−shock 

Ė pre −shock Ė pre −shock 
Ė jet Ė jet 

Ė kin 
∼

ρpost v 3 post 
ρpre v 3 pre × (1 − f loss ) f −1 

kin 
∼ 1 

16 × (1 − f loss ) f −1 
kin ! 1 

16 f −1 
kin , (7) 

where f loss represents the fraction of energy lost through radiative 
cooling during propagation. 

We assume that ρc , the cocoon gas density, is related to the 
background gas density and velocity and jet velocity as 
ρc ∝ ρζ

∞ T ,∞ V δjet , (8) 
where ζ , , , and δ are exponents that we will determine later. 

Following equations ( 5 ) and ( 6 ), the lateral size grows more rapidly 
than the z-expansion and eventually becomes comparable to the 
propagation distance in the jet direction ( R cocoon /z cocoon ∼ 1). This 
happens at a height of 
z iso ≡ r iso = ( Ṁ jet 

2 πρc V jet 
)1 / 2 (16 β

γ

)

+ 1 . 3 × 10 −3 pc (1 − f loss ) −1 f kin × ( n c 
10 5 cm −3 )−1 / 2 

(
Ṁ jet 

5 × 10 −9 M !yr −1 
)1 / 2 (

V J 
10 4 km s −1 )−1 / 2 

, (9) 
where n c is the gas number density of the cocoon (corresponding to 
ρc ). Beyond this radius, the cocoon becomes isotropic, with radius 
R( t), and the propagation is go v erned solely by energy conservation 
with: 
V R ( t) = ( 

9 γ ′ Ṁ jet V 2 jet ρ1 / 2 
c 

200 πρ
3 / 2 
∞ 

) 1 / 5 
( t − t iso ) −2 / 5 

R( t) = ( 
125 γ ′ Ṁ jet V 2 jet ρ1 / 2 

c 
216 πρ

3 / 2 
∞ 

) 1 / 5 
( t − t iso ) 3 / 5 . (10) 

3.2 Feedback self-regulation 
In Su et al. ( 2023b ), we concluded that jet feedback self-regulates 
such that the time-averaged isotropic component of the outflowing 
momentum flux of the jet cocoon roughly balances the free-fall 
inflowing momentum flux at the Bondi radius (the ‘Bondi flux’). 
The isotropic component is defined as the radial momentum flux, 
assuming that the momentum flux in all directions is the minimum 
of the lateral or the jet-direction components. Depending on where 
the cocoon isotropizes, there can be two possibilities: one when 
r iso > r Bondi and one when r iso < r Bondi . The resulting mass flux 
approximately obeys the following expression: 
Ṁ jet ∼

 
 
 

∝ M 2 BH ρ2 −ζ
∞ T −,

∞ V −3 −δ
jet (for r iso > r Bondi ) 

∝ M 2 BH ρ(3 −ζ ) / 2 
∞ T −(1 + , ) / 2 

∞ V −2 −δ/ 2 
jet (for r iso < r Bondi ) (11) 

The jet cocoon will be elongated at the Bondi radius if z iso > r Bondi 
or, from equations ( 9 ), if 
Ṁ jet > (πγ 2 r 2 Bondi 

128 β2 
)

ρc V jet ∼ ρζ
∞ T ,∞ V 1 + δ

jet . (12) 

Otherwise, the cocoon isotropizes before reaching the Bondi radius. 
4  SI MULATI ON  RESULTS:  A  STRONG  
D E P E N D E N C E  O N  BLACK  H O L E  MASS  
We now test (and eventually generalize) these expressions with 
numerical simulations that push to significantly higher BH masses. 
4.1 Black hole accretion and jet fluxes 
Fig. 1 shows the BH accretion rate as well as the jet mass, momentum, 
and energy fluxes for our simulations with varying initial gas densities 
and BH masses. It is clear that for all BH masses surv e yed, jets 
launched from BHs in denser environments self-regulate to achieve 
higher mass, momentum, and energy fluxes, all of which increase 
superlinearly with the density. Ho we ver, while simulations involving 
a 10 4 M ! BH initially exhibit a similar pattern, the accretion rates and 
fluxes rapidly decline thereafter. The majority of the BH accretion 
occurs within the first 2 Myr, after which the contribution to the 
net accreted mass becomes exponentially small throughout the 
simulations. As we will discuss in more detail below, this is primarily 
due to the o v erall drop in density profiles in some of the runs when the 
jet cocoon propagates beyond the core radius, approximately 1 pc. 
We will discuss the conditions for such density suppression and its 
effects in later sections. 
4.2 Agreement with analytic models for black holes up to 
M BH < 10 4 M !
In this work, we surv e y a broader range of BH masses, from 1 to 
10 4 M !. As we mentioned in Section 4.1 , and will return to later, a 
suppression of the density profile can occur for M BH " 10 4 M !. In 
this section, we show that the analytic models described in Section 3 
hold for BHs up to M BH < 10 4 M !. The case of M BH = 100 M !
was demonstrated in our previous papers, so this section focusses 
primarily on the M BH = 1 M ! cases. 
4.2.1 The self-regulation of the cocoon by its isotropic momentum 
flux 
Fig. 2 shows that the regulation found in Su et al. ( 2023b ) also occurs 
for the smaller BH, M BH = 1 M !, which we explicitly tested in this 
work. In Fig. 2 , we plot the injected jet momentum flux (red), the 
isotropic (pink), and z component (cyan) of the outflowing jet cocoon 
momentum flux, and the inflowing momentum flux assuming a Bondi 
solution (green) as a function of radius. Additionally, we indicate the 
Bondi radius with a vertical grey line. 

In the low-jet-velocity ( V jet ∼ 3000 km s −1 ) cases, the jet cocoon 
clearly manifests momentum conservation in the z direction, as 
the z component of cocoon momentum flux (cyan) agrees with 
the injected jet momentum flux (red) to radii beyond the Bondi 
radius. The isotropic component of the cocoon momentum flux 
eventually picks up and becomes comparable to the z component 
of the cocoon momentum flux at the isotropization radius. Beyond 
this, the propagation of the jet cocoon becomes an energy-driven 
bubble, and the outflowing cocoon momentum flux can be higher 
than the injected momentum flux. Although at the Bondi radius the 
isotropic component of the cocoon momentum flux is much smaller 
than the z component momentum flux, it is the isotropic component 
that is regulated to the free-fall inflowing momentum flux at the 
Bondi radius. The o v erall picture is consistent with what is described 
in Section 3.2 for the case where r iso > r Bondi . 
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Figure 1. From top to bottom, each row of panels shows (i) the black hole accretion rate, (ii) jet mass flux, (iii) momentum flux, and (iv) energy flux, in runs, 
varying the initial gas density from 10 2 to 10 6 cm −3 (density denoted by line colour and style). The columns show these quantities for initial black hole mass of 
1 M ! (left), 100 M ! (centre), and 10 4 M ! (right). The second, third, and fourth rows (from the top) show moving averages around the specific time of the run. 
Jets emanating from black holes in denser environments self-regulate to achieve higher mass, momentum, and energy flux, all of which increase superlinearly 
with the density. Simulations involving a 10 4 M ! black hole initially exhibit a similar pattern; ho we ver, the accretion rates and fluxes rapidly decline thereafter. 

For runs with higher jet velocity, this isotropization happens 
at smaller radii, eventually occurring within the Bondi radius. 
Ho we ver, in those cases, it is also the isotropic component of the 
cocoon momentum flux that matches the inflowing momentum flux, 
assuming the Bondi value at the Bondi radius. The o v erall picture is 
again consistent with what is described in Section 3.2 for the case 
where r iso < r Bondi . 
4.2.2 Thermal phase structure of the cocoon/bubble gas 
To determine how the jet mass flux scales with the gas properties 
and feedback parameters according to equation ( 11 ), we first need 
to understand how the thermodynamic properties of the cocoon gas 
scale with those of the background gas (parametrized as power laws 
in equation 8 ). Our previous study (Su et al. 2023b ) concluded that 
the scaling roughly follows n c ∝ n ζ∞ T ,∞ with ζ ! 0 . 9 and , ∼ 0 for 
M BH = 100 M !. 

As we explore a broader range of BH masses, Fig. 3 describes 
the scaling for M BH = 1 M !. The y -axes represent the cocoon gas 

density and temperature, while the x -axes represent the background 
gas temperature and density. The red, blue, and green dots and lines 
correspond to the hot, cold, and combined phases, respectively. The 
dots are from each simulation, and the lines are fitted power laws 
with the index ( .) labelled. For simplicity, the cocoon is defined 
as all gas with T > 1 . 2 T ∞ . We find n c ∝ n ζ∞ T ,∞ with ζ ! 0 . 9 and 
, ∼ −0 . 6 to −0 . 7. 
4.2.3 The black hole accretion rate and jet mass flux 
With the scaling of gas properties relative to the background gas 
properties, we now have the full scaling of the BH accretion 
rate with respect to the jet parameters and the gas properties 
(following equation equation 11 ). Fig. 4 shows a comparison of 
what the toy model predicts versus what we measured in the 
simulation. 

The top four panels in this figure show the results for a 1 M ! BH. 
The scaling obtained from the toy model (indicated in brackets) is 
broadly comparable to the fitted slope from the simulation. 
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Figure 2. The comparison of time-averaged momentum fluxes from the simulations is shown. Three types of momentum flux are illustrated: (i) the average 
jet momentum flux (red dotted), (ii) the cocoon momentum flux, with cyan dashed and pink dash-dotted lines representing the z component and the isotropic 
component (comparable to the lateral component), respectively, and (iii) the estimated inward free-fall (Bondi) momentum flux (green thick). The dashed grey 
vertical line in each plot indicates the Bondi radius. The isotropic component of the outward cocoon momentum flux matches the inward Bondi momentum flux 
at the Bondi radius. Runs with elongated cocoons (v = 3000 km s −1 ) have the z-component of their cocoon fluxes roughly matching the jet momentum fluxes 
(momentum-driven) and are much larger than the isotropic components. Runs with bubble-shaped cocoons (v " 10000 km s −1 , all except for the two panels with 
v = 3000 km s −1 ) all exhibit cocoon momentum fluxes (energy-driven) higher than the jet momentum fluxes. 
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Figure 3. The dependence of the cocoon gas density and temperature on 
background gas properties (the former e v aluated at the Bondi radius) for the 
1 M ! run is shown. The red, blue, and green dots and lines correspond to 
the hot, cold, and combined phases, respectively. The dots are from each 
simulation, and the lines are fitted power laws with the index ( .) labelled. 
The cocoon is defined for simplicity as all gas with T > 1 . 2 T ∞ . We find 
n c ∝ n ζ∞ T ,∞ with ζ ! 0 . 9 and , ∼ −0 . 6 to −0 . 7. 

We note that although the toy model predicts the BH accretion 
rate assuming self-regulation at the Bondi radius, the required mass 
flux can be too high to achieve this. At any given time, the BH 
accretion rate and the wind mass flux can, at most, add up to the 
Bondi accretion flux. If the required fluxes exceed this, the accretion 
rate is capped at Ṁ Bondi (1 − ηjet, fb ) −1 , and the system simply fails 
to self-regulate. The red dots represent runs that marginally fail to 
regulate, which makes the fitted slope slightly different from the toy 
model results. 

The bottom panel in Fig. 4 shows the scaling of the BH accretion 
rate as a function of the BH mass, assuming n ∞ = 10 4 cm −3 , T ∞ = 
10 4 K, and V jet = 10 4 km s −1 . The resulting scaling is roughly Ṁ jet ∼
M 2 BH , consistent with the prediction of the toy model. 

We emphasize that we show three points for the M BH = 10 4 M !
case, corresponding to three different times. The black, cyan, and 
magenta dots, respectively, characterize the accretion rate averaged 
o v er the first 0.5 Myr, all time, and after 1 Myr. As time progresses, 
the accretion rate of the 10 4 M ! run decays (see Fig. 1 ). The lines 
were fitted only through the black dots (shortest averaging period). 
The resulting slope indicates that the initial BH accretion and self- 
regulation are well described by our toy model. Only at later times, 
when the density profile drops, does the result deviate from the model. 
We discuss this in the following section, Section 4.3 . 
4.3 Evolution of density profiles: beyond the M BH = 10 4 M !
threshold 
When the BH mass reaches M BH = 10 4 M !, the jet cocoon can 
propagate beyond the core radius of approximately 1 pc, causing 
an o v erall decay of the density profile o v er time. In this section, we 
demonstrate this effect. 

Figure 4. The dependence of the jet mass flux ( Ṁ jet ) on the adopted 
jet model and background gas properties is shown for M BH = 1 M ! (top 
four panels) and across black hole masses assuming ( n ∞ , T ∞ , v jet ) = 
(10 4 cm −3 , 10 4 K, 10 4 km s −1 ) (bottom panel). The black, cyan, and magenta 
dots, respectively, characterize the accretion rate averaged over the first 
0.5 Myr, all time, and after 1 Myr for M BH = 10 4 M !. The dots represent 
the simulation results, while the lines show power-law fits with the index ( .) 
labelled. The number in parentheses is an estimate from the toy model, and the 
fit to the cocoon gas-phase dependence in Fig. 3 roughly agrees with what we 
measured from the simulation. The red dots represent runs that marginally 
failed to regulate, hence the slightly lower fluxes. In the last panel for the 
10 4 M ! case, the black, cyan, and magenta dots represent the accretion rate 
av eraged o v er the first 0.5 Myr, the entire time, and after 1 Myr, respectively. 
The later decay in the jet fluxes due to core density suppression is discussed 
in Section 4.3 . 
4.3.1 The evolution of density profiles 
Fig. 5 shows the time evolution of the density profile for the runs with 
M BH = 10 4 M !. For all such runs with a density lower than 10 4 cm −3 
and a velocity of 10 4 km s −1 or abo v e, the system e xperiences density 
drops o v er time. As the jet cocoon propagates, this density suppres- 
sion extends to a larger radius. Eventually, the density suppression 
stops at approximately 30 pc, which is the terminal radius where 
the jet cocoon stops propagating (a model for this will be presented 
in Section 5 ). Within the terminal radius, the density is roughly 
uniform. The uniform density can be approximately explained by 
the high sound speed within the cocoon. Assuming a density profile 
of ρ0 ( r/r 0 ) −2 , the resulting uniform density inside the shock front 
position, R, can be estimated as 
〈 ρ〉 ∼

R ∫ 
0 4 πr 2 ρ0 ( r 

r 0 )−2 
d r 

4 πR 3 / 3 ∼ 3 ρ0 (R 
r 0 
)−2 

. (13) 
Given that part of the mass is accreted by the BH, this estimate is not 
far from the original density at the current position of the cocoon’s 
shock front. 
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Figure 5. The time evolution of the density profile for the runs with M BH = 10 4 M ! for a range of jet velocities and core densities (as indicated). For cases 
with very high jet velocity or a density lower than 10 4 cm −3 , the density within the radius where the cocoon propagates drops to at least the density at the jet 
cocoon shock front. For the case with n ∞ = 10 4 cm −3 and v jet = 10 4 km s −1 , the density profile remains intact until the BH mass grows by a factor of 3, after 
which the density is suppressed. The density profile remains intact in the low jet velocity case (bottom left panel). 

The density suppression also depends on the jet v elocity. F or higher 
gas density at 10 5 cm −3 , we tested a wide range of jet v elocities. F or 
the fiducial jet velocity of 10 4 km s −1 , the density profile is initially 
sustained at the initial profile for about 100 kyr, during which the BH 
mass grows by a factor of 3. After that, density suppression starts 
to occur, and the terminal radius reaches roughly 100 pc. For the 
lower jet velocity case, density suppression never occurs. Instead, the 
density evolves from an initially flat profile within the core radius 
toward a cuspier profile. For the higher jet velocity case, density 
suppression occurs again. 

Overall, the lower the gas density and/or the higher the jet velocity, 
the more likely density suppression is to happen. The o v erall trend 
suggests that the more bubble-like the jet cocoon is, the easier it is 
for density suppression to occur. We discuss the criteria for this as 
follows. 
4.3.2 Criteria for density suppression 
To understand the conditions where density suppression occurs, we 
highlight three rele v ant radii: the core radius ( r core ), within which the 
density is initially flat; the isotropization radius ( r iso ), where the jet 
cocoon becomes isotropic; and the terminal radius ( r terminal ), where 
the jet cocoon or bubble stops propagating. Details of the terminal 
radius are discussed in Section 5 . By comparing these three radii, we 
can identify several different regimes, as characterized in the cartoon 
shown in Fig. 6 . The fourth relevant radius is the Bondi radius ( r Bondi ). 
If r Bondi falls within the region of suppressed density, the BH ‘feels’ 
the density suppression, and the BH accretion rate is reduced. We 
list them case by case as follows: 

(a) r iso < r terminal < r core (No density suppression) : as shown in 
the upper left of Fig. 6 , the cocoon stops propagating before reaching 

the core radius, so it never reaches the radius where the density starts 
to drop. Therefore, there is no density suppression. This is typical 
for smaller BH cases ( M BH < 10 4 M !). 

(b) r terminal < r iso (No density suppression) : as shown in the 
lower left of Fig. 6 , the jet cocoon never isotropizes before losing 
all its energy. As a result, even if the cocoon penetrates into the 
low-density region, it does not suppress the density in all directions. 
Ov erall, the spherically av eraged density profile is not significantly 
suppressed. 

(c) r core < r iso < r terminal (Density suppression beyond r iso ) : as 
shown in the upper right of Fig. 6 , the jet cocoon isotropizes beyond 
the core radius and continues to propagate into the low-density 
region. The density then becomes constant from the isotropization 
radius up to the radius where the jet cocoon shock is. This is typical 
for more massive BHs ( M BH > 10 4 M !) with isotropization radius 
larger than the core radius. 

(d) r iso < r core < r terminal (Density suppression beyond r iso ) : as 
shown in the lower right of Fig. 6 , the jet cocoon first isotropizes 
and then pushes beyond the core radius into the low-density region. 
As indicated in Fig. 5 , the density then becomes constant from the 
isotropization radius up to the radius of the jet cocoon shock. This is 
typical for more massive BHs ( M BH > 10 4 M !) with isotropization 
radius smaller than the core radius. 
4.3.3 The consequence of density suppression – a secularly 
evolving regulation 
As the density profile drops, the density at the Bondi radius also 
decreases. Meanwhile, the accretion rate and jet fluxes also drop. 
Ho we ver, the isotropic component of the outflowing cocoon momen- 
tum flux still regulates to the real-time Bondi inflowing momentum 
flux. The only difference is that it becomes a moving regulation. 
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Figure 6. A cartoon depicting the conditions under which an o v erall drop in the density profile occurs. These conditions are determined by comparing the core 
radius ( r core ), within which the density is initially flat; the isotropization radius ( r iso ), where the jet cocoon becomes isotropic; and the terminal radius ( r terminal ), 
where the jet cocoon or bubble loses its energy and stalls. 

Fig. 7 demonstrates this moving regulation for six different 
simulations with a 10 4 M ! BH. As in Fig. 2 , we plot the injected jet 
momentum flux (red), the isotropic (pink), and z component (cyan) 
of the outflowing jet cocoon momentum flux, and the inflowing 
momentum flux assuming a Bondi solution based on the initial 
density (green) as a function of radius. To account for the decay 
of density at the Bondi radius, we also plotted the Bondi inflowing 
momentum flux corrected by the real-time measured density at the 
Bondi radius (lime). We indicate the evolving Bondi radius at each 
time with a vertical gray line. 

Each row represents one run at different times. For all the runs, 
the real-time corrected Bondi inflowing momentum flux matches the 
isotropic component of the cocoon momentum flux at the Bondi 
radius, indicating that this mo ving re gulation holds in a broad sense. 
We note that the run with n = 10 5 cm −3 , v = 3000 km s −1 (fifth row) 
nev er e xperiences density suppression as time progresses and the BH 
mass increases. The regulation still holds perfectly. 

As the density at the Bondi radius drops, the gas density within 
the jet cocoon also decreases. Therefore, we need to account for 
this when determining the scaling relation of cocoon gas density 
with respect to background gas density (as shown in Fig. 3 ) for 
the M BH = 10 4 M ! case. In Fig. 8 , we divide the simulation into 
several 0.1 Myr bins and plot the average background gas density 
at the Bondi radius ( n Bondi ) and the cocoon gas density at the Bondi 
radius ( n cocoon ) at the corresponding times. As a result of the time- 
varying regulation, each run forms a series of points, and we fit a line 

through all the points. We find that n cocoon ∝ n ζBondi with ζ ! 0 . 9, 
very similar to the scaling relation obtained for other BH masses 
without the o v erall density evolution. 

Finally, to demonstrate that the toy model picture works even for 
the moving regulation case, we can plug the scaling relation (between 
the cocoon gas properties and the background gas properties) into 
the toy model to obtain the scaling of the BH accretion rate with 
the background gas properties. Fig. 9 again divides each simulation 
into 0.8 Myr time periods and calculates the Ṁ BH and n cocoon 
av eraged o v er the specific time period. By fitting through all the 
points, we obtain a scaling relation Ṁ BH ∝ n 1 . 5 Bondi , broadly similar to 
(but slightly steeper than) what the toy model implies. The scaling 
relation is also broadly consistent with what was obtained for the 
M BH = 1 M ! and M BH = 100 M ! cases. 

4.4 Summary for the toy model for self-regulation as a function 
of black hole mass 
Here, we summarize what our generalized analytic model predicts for 
the scalings, and compare it with the simulation results. Compiling 
the scaling relations we derived, we have: 
Ṁ BH 
Ṁ Edd ∼

 
 
 

∝ M BH ρα1 
∞ T /1 

∞ η−1 
m , BH V −3 

jet (for r iso > r Bondi ) 
∝ M BH ρα2 

∞ T /2 
∞ η−1 

m , BH V −2 
jet (for r iso < r Bondi ) (14) 
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Figure 7. The comparison of time-averaged momentum fluxes from six simulations with M BH = 10 4 M !. Each row represents one run, with each column 
corresponding to a different time of that run. Three types of momentum flux are illustrated: (i) the average jet momentum flux (red dotted), (ii) the cocoon 
momentum flux, with cyan dashed and pink dash-dotted lines representing the z component and the isotropic component (comparable to the lateral component), 
respectively, and (iii) the estimated inward Bondi momentum flux assuming the initial density (green thick) and real-time density (lime thick). The dashed grey 
vertical line in each plot indicates the Bondi radius. The isotropic component of the outward cocoon momentum flux broadly matches the instantaneous (lime) 
inward Bondi momentum flux at the Bondi radius, tracking the decrease in density at the Bondi radius. 
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Figure 8. The dependence of the cocoon gas density on background gas properties (e v aluated at the Bondi radius) for the 10 4 M ! run. Each simulation is 
divided into 0.1 Myr periods, and the average quantities for each period are plotted. The dots of the same colour are from the same simulation. The lines are 
fitted power laws with the index ( .) labelled. The cocoon is defined for simplicity as all gas with T > 1 . 2 T ∞ , and hot gas as gas with T > 3 . 6 T ∞ . We find 
n c ∝ n ζ∞ T ,∞ with ζ ! 0 . 9. 

Figure 9. The dependence of the jet mass flux ( Ṁ jet ) on the background gas 
properties for M BH = 10 4 M !. The run is divided into 0.8 Myr periods, and 
the accretion rate and background gas density at the Bondi radius averaged 
o v er each specific time period are plotted. Each colour represents one run. 
The lines show power-law fits, with the index ( .) labelled. The number in 
parentheses is an estimate from the toy model, and the fit to the cocoon gas- 
phase dependence in Fig. 8 roughly agrees with what we measured from the 
simulation. 
where 

α1 ∼ 1 . 1 α2 ∼ 1 . 05 
/1 ∼ 0 . 6 (for M BH = 1 M !) to − 0 . 2 (for M BH = 100 M !) 

/2 ∼ −0 . 2 (for M BH = 1 M !) to − 0 . 6 (for M BH = 100 M !) (15) 
Note that from the simulations, we measure α1 ∼ α2 ∼ 1 . 5. 

Fig. 10 shows the comparison of the scaling from the toy model 
to the simulation results. The background colour represents the 
toy model’s predictions, while each circle corresponds to one run, 

coloured by the actual measured accretion rate from the simulation. 
The first three rows show the results for 1 M !, 100 M !, and the first 
0.2 Myr of 10 4 M !, respectiv ely. F or the left panel, which shows 
the scaling of the accretion rate with gas temperature and density, 
we assume r iso > r Bondi , as it describes most of the parameter space 
there. All of them show reasonable agreement with the toy model’s 
prediction. We note that for BH masses larger than 100 M !, super- 
Eddington accretion is possible in part of the parameter space with 
low feedback efficiency, high gas density, and low gas temperature. 

For M BH = 10 4 M !, there is a significant decay in the accretion 
rate after the initial period, as shown in Fig. 1 . We provided an 
analytical description of how the jet cocoon propagates once density 
suppression occurs in Section 5 . 
5  A N  A NA LY T I C  M O D E L  F O R  T H E  TERMINAL  
R A D I U S  O F  T H E  J E T  C O C O O N  EXPANSI O N  
In this section, we generalize the model previously developed to 
provide a quantitative understanding of how the jet cocoon evolves 
once density suppression occurs. From the discussion abo v e, we 
know the following facts when the density is suppressed: 

(i) The isotropic component of the cocoon momentum flux is 
regulated to the real-time inflowing Bondi momentum flux, given 
the current density at the Bondi radius. Thus, Ṁ BH ∝ n αBondi . 

(ii) Density suppression occurs beyond r iso when r terminal > r iso 
and r terminal > r core . 

(iii) The BH can ‘feel’ the density suppression if the Bondi radius, 
r Bondi , is larger than r iso but smaller than r terminal , as the density at r Bondi 
will decrease o v er most of the solid angle. For simplicity, we do not 
consider density suppression when r Bondi < r core . 

(iv) Density suppression begins to affect the BH as soon as the jet 
cocoon propagates through the Bondi radius. 

(v) When density suppression occurs, the density within the 
suppressed region becomes roughly constant at the density of the 
current position of the cocoon shock front. 

The key assumption we will make to derive the location of the 
terminal radius is that the jet cocoon terminates when the cumulative 
energy flux of the jet equals the time-integrated cooling rate within 
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Figure 10. The predicted Ṁ acc / Ṁ Edd from the scaling of our toy model, assuming normalization to the fiducial runs, is shown as the background colour in each 
panel. Runs with low background gas temperature ( T ∞ ), high background gas density ( n ∞ ), low jet velocity ( V jet ), or low feedback mass loading ( ηm , jet ) result 
in super-Eddington accretion for cases with M BH " 100 M !. Black dotted lines indicate Eddington accretion. The results from the simulations are shown as 
circles, colored with the measured value in order to give an indication of how well the model fares in predicting the simulation results. The three rows show the 
cases for 1 M !, 100 M !, and the first 0.2 Myr of 10 4 M !. The left column shows the results as a function of gas properties, while the right column shows the 
results as a function of AGN jet parameters. They show a qualitative agreement with the toy model. 
the jet cocoon. Once this occurs, the jet cocoon can no longer 
propagate, and the influence of the cocoon on the surrounding gas 
becomes minimal. Equipped with this information, we can write 
down an analytical description of cocoon propagation. In Section 5.1 , 
we will derive the integrated jet energy flux, in Section 5.2 , we will 
compute the cocoon radiative cooling rate and, in Section 5.3 , we 
will equate these to determine the terminal radius. 
5.1 Integrated jet energy flux 
Given the points above, we consider density suppression to start 
the moment ( t = t Bondi ) when an isotropized jet cocoon, with radius 
R( t), passes through the Bondi radius, which is equal to or larger 
than the core radius. We will use ρ0 , Bondi ( n 0 , Bondi ) to denote the 
initial background gas (number) density at the Bondi radius, r Bondi 

when t = t Bondi . We note that for our runs with an initial BH mass of 
10 4 M !, this radius is ∼ 1 pc, which is also the core radius, r core . In 
that case, the initial number density at the Bondi radius, n 0 , Bondi , is 
also the initial core gas density, n 0 , core . 

In our previous paper (Su et al. 2023b ), we derived the energy 
conservation equation go v erning the conv ersion of jet energy flux 
into cocoon energy flux during the bubble ( R( r) > r iso ) phase, as 
well as the momentum conservation at the cocoon shock front for 
a uniform-density background medium. Given the density evolution 
within the Bondi radius, the gas density also becomes a function of 
time. 
4 πR( t ) 2 ρc ( t ) V 3 R , Hot ( t ) = γ

2 Ṁ jet ( t) V 2 jet 
V 2 R , Hot ( t ) ρc ( t ) = V 2 R ( t ) ρ( t ) , (16) 
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where V R , Hot ( t) and ρc ( t) are the velocity and density of the hot phase 
of gas, respectively, while V R ( t) is the cocoon propagation velocity, 
and ρ( t) is the density at the shock front of the jet cocoon. 

When R( t) reaches r Bondi at t = t Bondi , we define: 
ρ( t Bondi ) = ρ0 , Bondi , ρc ( t Bondi ) = ρ0 , c , 

and Ṁ jet ( t Bondi ) = Ṁ 0 , jet . (17) 
After R( t) reaches r Bondi , the gas between r iso and R( t) remains at 
approximately constant density. Since r Bondi lies within this radial 
range, ρBondi ( t) = ρ( t). 

Since the density profile follows ρ( r) ∝ n ( r) ∝ r −2 in the radial 
range we are considering, we have 
ρBondi ( t) = ρ( t) = ρ0 , Bondi ( R( t) 

r 0 , Bondi 
)−2 

ρc ( t) = ρ0 , c ( R( t) 
R core 

)−2 
. (18) 

Supposed Ṁ jet ( t) ∝ ρα
Bondi ( t) ∝ n αBondi ( t), we have 

Ṁ jet ( t) = Ṁ 0 , jet ( ρ( t) 
ρ0 , Bondi 

)α

= Ṁ 0 , jet ( R( t) 
r Bondi 

)−2 α
. (19) 

Following the toy model summarized in Section 3.1 , equation ( 8 ) 
can be generalized as n c ( t) ∝ n ,Bondi ( t) with , ! 1. Equation ( 11 ) 
also gives α ∼ (3 − , ) / 2 for the isotropic case. 

Putting equations ( 16 ), ( 18 ), and ( 19 ) together, we get: 
V R ( R) = ( γ

8 π
)1 / 3 

Ṁ 1 / 3 0 , jet V 2 / 3 jet ρ
1 / 6 
0 , c ρ−1 / 2 

0 , Bondi r −2 + 2 α
3 

Bondi R −2 α/ 3 ( t) , (20) 
and 
R( t) = [ (

2 α + 3 
3 

)3 
γ

8 π
] 1 

3 + 2 α
Ṁ 1 

3 + 2 α
0 , jet V 2 

3 + 2 α
jet ρ

1 
6 + 4 α

0 , c ρ
−3 

6 + 4 α
0 , Bondi 

r −2 + 2 α
3 + 2 α

Bondi t 3 
2 α+ 3 . (21) 

The net integrated energy flux from the time when R( t Bondi ) = 
r Bondi is 
E tot, jet ( t) = ∫ 1 

2 Ṁ jet V 2 jet d t 
= t ∫ 

t Bondi 
1 
2 Ṁ 0 , jet ( R( t) 

R Bondi 
)−2 α

V 2 jet d t 
= 1 

2 
[ (

2 α + 3 
3 

)3 
γ

8 π
] −2 α

3 + 2 α
Ṁ 3 

3 + 2 α
0 , jet V 6 

3 + 2 α
jet ρ

−2 α
6 + 4 α

0 , c ρ
6 α

6 + 4 α
0 , Bondi 

r 10 α
3 + 2 α

Bondi [2 α + 3 
4 α − 3 

(
t 3 −4 α

2 α+ 3 
Bondi − t 3 −4 α

2 α+ 3 )]
, (22) 

or in terms of the position of the shock front, 
E tot, J ( R) = ∫ 1 

2 Ṁ jet V 2 jet d t 
= R ∫ 

r Bondi 
1 
2 Ṁ 0 , jet ( R 

r Bondi 
)−2 α

V 2 jet V −1 
R ( R)d R 

= ( γ

π

)−1 / 3 
Ṁ 2 / 3 0 , jet r 2 + 4 α3 

Bondi V 4 / 3 jet ρ
1 / 6 
0 , c ρ1 / 2 

0 , Bondi 
(

3 
4 α − 3 

)(
r 3 −4 α

3 
Bondi − R 3 −4 α

3 ) . (23) 

This saturates to a maximum value: 
E max , jet = ( γ

π

)−1 / 3 
Ṁ 2 / 3 0 , jet r 5 3 

Bondi V 4 / 3 jet ρ
−1 / 6 
0 , c ρ

1 / 2 
0 , Bondi ( 3 

4 α − 3 
)

∝ n 2 α3 − ,
6 + 1 2 

0 , Bondi . (24) 
From Figs 8 and 9 , where we measured , = 0 . 9 and α = 1 . 5, we 
obtain E max , jet ∝ n 1 . 35 

0 , Bondi . 3 
5.2 The integrated cocoon cooling 
The instantaneous cooling rate within the jet cocoon at a specific 
time after R( t Bondi ) = r Bondi is given by: 
Ė cool ( R) = R ∫ 

0 
d Ė cool 
d Vol 4 πr 2 d r 

= R ∫ 
0 0 4 πn c , e ( R ) n c , H ( R ) r 2 d r 
∼ 0 4 π

3 n c , e ( R ) n c , H ( R ) R 3 
∼ 0 ′ 4 π

3 n 2 0 , c ( R 
r Bondi 

)−4 
R 3 , (25) 

where 0 is the cooling function, and n c , e ( R) and n c , H ( R) denote 
the electron and hydrogen number densities of the jet cocoon gas, 
respecti vely. Gi ven the assumption of constant density within the jet 
cocoon, both are constant with respect to r but scale with R, the 
current position of the cocoon shock front, following equation ( 18 ). 
0 ′ accounts for the conversion from hydrogen or electron number 
density to the o v erall gas cocoon number density. To estimate the 
cooling function, the cocoon gas is mostly from 10 5 − 10 8 K, for 
which 0 ∼ 10 −23 erg s −1 cm 3 . 

The accumulated cooling up R( t Bondi ) = r Bondi to the time the 
bubble reaches R would then be: 
E cool ( R) = ∫ Ė cool ( t)d t 

= R ∫ 
r Bondi Ė cool ( R ) V −1 

R ( R )d R 
= 4 π

3 0 ′ n 2 0 , c r −2 α+ 14 
3 

Bondi ( γ

8 π
)−1 / 3 

Ṁ −1 / 3 
0 , jet 

V −2 / 3 
jet ρ

−1 / 6 
0 , c ρ

1 / 2 
0 , Bondi ( 3 

2 α
)(

R 2 α3 − r 2 α3 Bondi )
∝ n 11 / 6 

0 , c n 1 / 2 −α/ 3 
0 , Bondi R 2 α3 ( for R >> r Bondi ) (26) 

5.3 The terminal radius 
Finally, we derive the terminal radius by balancing heating and 
cooling, or in other words setting Ė cool ( R) ∼ Ė max , jet ( R) and solving 
for R = r terminal . For α = 1 . 5 and , = 0 . 9, we have 
r terminal ∼ 12 pc ( n 0 , Bondi 

10 3 cm −3 )0 . 3 
∼ 12 pc ( n 0 , core 

10 3 cm −3 )0 . 3 
. (27) 

We find a very weak dependence on the gas density, which is roughly 
comparable to the value shown in Fig. 5 . 
3 Alternatively, if we only use , = 0 . 9 from Fig. 8 and substitute it into 
equation ( 11 ) to get α = 1 . 05, we find E max , jet ∝ n 1 . 05 

0 , Bondi . 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
3
8
/1

/1
1
/8

0
0
6
7
0
9
 b

y
 lib

ra
ry

@
is

t.a
c
.a

t u
s
e
r o

n
 0

1
 O

c
to

b
e
r 2

0
2
5



Self-regulation of high-z BH growth via jets 25 

MNRAS 538, 11–30 (2025) 

Figure 11. The prediction of the black hole mass 100 Myr after seeding a 
100 M ! black hole in our fiducial profile of an atomic-cooling halo is as 
follows: black holes with high-efficiency feedback (I, above the dotted line) 
ne ver gro w out of the constant-density phase. Black holes with lo w-ef ficiency 
feedback (II and III, below the solid white line) undergo an extended ‘fail to 
regulate’ phase, where most of the mass is accreted. If the feedback efficiency 
is very low (below the light white line), the black hole has not re-entered the 
self-regulation phase at the time. Black holes with intermediate-efficiency 
feedback (IV and V, between the dashed and solid white lines) never go 
through a ‘fail to regulate’ phase. Black holes with feedback parameters 
to the left of the dashed line (II and IV) end up going through a core 
density suppression phase. The maximum efficiency allowed for forming a 
supermassive black hole with M BH > 10 6 M ! is ηeff = 10 −5 . See Section 6.1 
for discussion. 
6  PUTTING  IT  A L L  TOGETHER:  PREDICTI NG  
SEED  BLACK  H O L E  G ROW T H  F O R  A N  
ATOMIC-COOLING  H A L O  
In this section, we combine the analytic model we have developed 
with the expected conditions for atomic-cooling haloes to determine 
how much BH growth we expect under various conditions. In 
Section 6.1 , we discuss the detailed calculations behind this plot and 
the different phases of growth. In Section 6.2 , we explore how these 
results change with BH seed mass and time, and in Section 6.3 , we 
highlight the importance of the feedback efficiency. We first re vie w 
the contents of our analytic understanding, which includes: 

(i) How a jet cocoon propagates in a constant density environment 
(Section 3.1 ). 

(ii) How a jet cocoon propagates in an n ∝ r −2 environment 
undergoing density suppression (Section 5 ). 

(iii) How BH accretion is regulated by jets in a constant density 
environment (Section 3.2 ). 

(iv) How BH accretion is regulated by jets in an n ∝ r −2 decay 
environment undergoing density suppression (Section 5.3 ). 

Equipped with this knowledge, we can predict the growth of a 
BH seeded in the fiducial density profile, with n = 10 5 cm −3 within 
r core = 1 pc and an n ∝ r −2 profile outside of that, typical of high- 
redshift ( z ∼ 20) atomic-cooling haloes (e.g. Regan et al. 2019 ). 

For a seed BH mass of 100 M ! (an expected outcome of first star 
formation), the predicted BH mass after 10 8 yr as a function of the 
AGN feedback parameter is shown in Fig. 11 . As we will describe 
in more detail below, we find the growth depends principally on the 
ef fecti ve jet energy efficiency ( ηeff ). After 10 8 yr, a BH can possibly 
grow to 10 6 M ! when ηeff < 10 −5 and to 10 7 M ! when ηeff < 10 −7 . 
The lower the feedback mass loading and the lower the jet velocity, 

the faster the BH will grow. The transition is sharp; if ηeff < 10 −4 , 
the BH grows beyond its initial mass. 
6.1 The phases of growth 
To determine the o v erall amount of mass a BH can accrete, ac- 
counting for the jet feedback detailed in this paper, we first need to 
determine the phases that the system passes through, which we can 
broadly classify into two cases: 

(i) BH growth with r Bondi < r core (constant density) : for jet- 
based self-regulation in this case, the accretion rate is described by 
equations ( 14 ) and ( 15 ), but note that Ṁ BH + Ṁ jet should be capped 
by Ṁ Bondi . If the required Ṁ jet in equations ( 14 ) and ( 15 ) is higher 
than this value, Ṁ BH will be at most Ṁ Bondi / (1 + ηm,f b ). In both 
cases, given that the density at the Bondi radius is kept constant in 
this phase of growth, 
Ṁ BH ∝ Ṁ Bondi ∝ M 2 BH . (28) 

(ii) BH growth with r Bondi > r core : when the Bondi radius ex- 
ceeds the core radius, there are three possibilities: 

(a) Self-regulation without density suppression : in the 
case of self-regulation, the accretion rate is still described by 
equation ( 11 ), but with ρ∞ replaced by ρBondi ( t). If density 
suppression does not occur, ρBondi ( r Bondi ) is exactly the initial 
density at the location. As ρBondi ( r Bondi ) ∝ r −2 

Bondi ∝ M −2 
BH , we get 

Ṁ BH ∝ M 2 BH ρα ∝ M −1 
BH , (29) 

where we follow equation ( 14 ) but adopted α ∼ 1 . 5, as seen in 
the simulations. 

(b) Failur e to r egulate : if the required Ṁ jet in equations ( 14 ) 
and ( 15 ) implies that Ṁ jet + Ṁ BH is higher than Ṁ Bondi , then, 
as before, Ṁ BH will be at most Ṁ Bondi / (1 + ηm,f b ). In such a 
case, 
Ṁ BH ∝ Ṁ Bondi ∝ M 2 BH ρ ∝ constant , (30) 
so that the accretion rate is independent of M BH . 

(c) Self-regulation with density suppression : finally, den- 
sity suppression occurs when r Bondi > r core and r Bondi > r iso . 
After density suppression, the jet energy flux evolution follows 
equation ( 23 ) as Ṁ BH = 2 ̇E tot, J / ( ηm , fb V 2 J ), which barely grows 
due to the rapid density drop as the cocoon propagates. Note 
that in this phase, realistically, the propagation of the shock 
front stops at the terminal radius. After that, another episode 
of accretion can occur, and we could calculate it by adopting 
an ef fecti ve profile with a core radius at the first r terminal and 
the original density at r terminal as the core density. Ho we ver, due 
to the large suppression of the core density, this will not result 
in significant accretion, and so we neglect such a second or 
subsequent episode of accretion in Fig. 11 (and Fig. 12 , which 
will be discussed in Section 6.2 ). 

To help guide understanding of these phases and how they connect 
to the calculated BH growth, we use Roman numerals in Fig. 11 (and 
Fig. 12 ) to represent different growth histories, as indicated below. 
Each Zone indicates the different sequence of growth histories using 
the notation of the previous enumeration, indicated by arrows. 4 To 
visualize the sequences described abo v e, Fig. 13 presents typical 
4 So, for example Zone II begins with constant density accretion until the 
BH mass grows such that its Bondi radius reaches the halo core radius, 
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Figure 12. The prediction of the black hole mass at 10 7 (left column), 10 8 (centre column), and 10 9 yr (right column) after seeding a 1 (first row), 100 (second 
ro w), and 10 4 M ! (third ro w) black hole in our fiducial profile of an atomic-cooling halo. The fourth ro w sho ws the results for seeding a 100 M ! black hole, 
assuming a more cuspy profile with n core = 10 9 cm −3 and core radius r core = 10 −2 pc. Green dotted lines indicate constant jet energy efficiency, while white 
lines delineate accretion regions and are described in the text. Seeding a more massive black hole or assuming a cuspy profile of the atomic-cooling halo only 
affects the final mass for black holes with higher efficiency feedback. 
examples of BH growth with different feedback parameters, each 
falling into distinct zones. The phases of BH growth in each zone are 
represented by different line styles, with phase transitions indicated 
by dots. 

(i) Zone I: the BHs here have high-efficiency feedback, so they 
ne ver gro w beyond 10 4 M !. 

at which point it undergoes an episode of rapid growth due to failed self- 
regulation until the Bondi radius reaches a sufficiently low density (since 
ρ ∝ r −2 ) that regulation can be re-established, but without driving density 
suppression in the core (and, if there is sufficient time, the Bondi radius will 
grow while the isotropization radius shrinks. Once the Bondi radius exceeds 
the isotropization radius, the BH will ‘fee’ density suppression). 

(i) BH growth in constant density 
(ii) Zone II: the BH here has lo w-ef ficiency feedback and goes 

through the fail-to-regulate phase. The isotropization radius is also 
small enough that, eventually, density suppression occurs. 
(i) BH growth in constant density ⇒ (ii-b) Fail to regulate ⇒ (ii-c) 
Self-regulation w/o density suppression ⇒ (ii-a) Self-regulation 
with density suppression 

(iii) Zone III: the BH here has lo w-ef ficiency feedback and goes 
through the fail-to-regulate phase. The isotropization radius is large 
enough that density suppression has not occurred. 
(i) BH growth in constant density ⇒ (ii-b) Fail to regulate ⇒ 
(ii-c) Self-regulation w/o density suppression 

(iv) Zone IV: the BH here has intermediate-efficiency feedback 
and never fails to regulate. The isotropization radius is also small 
enough that, eventually, density suppression occurs. 
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Figure 13. Examples of black hole growth with different feedback param- 
eters ( ηm , fb , V jet ) fall into distinct zones: Zone I (0.02, 3 × 10 4 km s −1 ), 
Zone II (0.005, 3 × 10 3 km s −1 ), Zone III (0.002, 6 × 10 2 km s −1 ), Zone IV 
(0.1, 4 × 10 3 km s −1 ), and Zone V (0.5, 3 × 10 3 km s −1 ). The phases of black 
hole growth that each zone undergoes (see Section 6.1 ) are represented by 
different line styles, with the phase transitions marked by dots. 
(i) BH growth in constant density ⇒ (ii-c) Self-regulation w/o 
density suppression ⇒ (ii-a) Self-regulation with density sup- 
pression 

(v) Zone V: the BH here has intermediate-efficiency feedback and 
never fails to regulate.The isotropization radius is large enough that 
density suppression has not occurred. 
(i) BH growth in constant density ⇒ (ii-c) Self-regulation w/o 
density suppression 

Note that for cases with 10 4 M ! (and 100 M ! with a cuspy profile), 
the initial Bondi radius coincides with the core radius, so the BH has 
never been through phase (i), and hence there is also no Zone I, as 
shown in Fig. 12 . We will discuss this in Section 6.2 . BHs with low 
feedback efficiency (below the light white line in Figs 11 and 12 ) 
have not re-entered the self-regulation phase at the corresponding 
time. 
6.2 Dependence on seed black hole mass and time 
Fig. 12 shows 12 cases with different seed BH masses (1 M !, 
100 M !, 10 4 M !), and predictions after 10 7 , 10 8 , and 10 9 yr, 
and within each panel, the result is shown as a function of jet 
parameters. The fourth row shows a case with a 100 M ! initial BH, 
but assuming a more cuspy profile, with n core = 10 9 cm −3 and core 
radius r core = 10 −2 pc. In the cases with 10 4 M ! and 100 M ! in cuspy 
profiles, the Bondi radius starts at the core radius, so they do not go 
through growth in the constant density profile [phase (i)]. 

For the 10 4 M ! case, we have run some simulations to ∼ 10 7 yr, 
allowing an exact comparison with our toy model. The simulation 
results are marked with circles in the corresponding panel (third 
row, 1st column). The colours in the circles indicate the BH mass 
at the end of the simulation, which agrees extremely well with the 
prediction based on the toy model. 

Taking the 100 M ! case as an example, at 10 7 yr, the majority 
of the parameter space is still in the constant density phase and has 
not grown much from its initial mass. Only the lowest efficiency 
cases grow beyond 10 4 M !, mostly due to the ‘fail to regulate’ phase. 
As time evolves, the intermediate efficienc y re gion grows out of 
the constant density phase and starts to grow, leading to regions 

IV and V. As time progresses, more of the parameter space grows 
out of the constant density phase, and regions IV and V become 
larger. 

The parameter space with efficiency lower than the light white line 
between IV/V and II/III (Zone II, III) undergoes a ‘fail to regulate’ 
phase. As the BH grows, the Bondi radius increases, and the density 
at the Bondi radius decreases. Ho we ver, the required mass flux for 
regulation scales with ρ1 . 5 , while the Bondi accretion rate scales with 
n . As the density decays, self-regulation eventually resumes. 

For the highest efficiency parameter space (I), the BH never 
grows much beyond its initial mass. For the intermediate efficiency 
parameter space (IV, V), the BH never fails to regulate. For the 
parameter space to the left of the dashed white line, the BH undergoes 
a phase of suppressing the density halo due to jet cocoon propagation. 

Changing the seed BH mass mostly affects the high-efficiency part 
of the parameter space. BHs with high-efficiency feedback grow very 
slowly, so having a head start with a higher seed mass significantly 
increases the resulting BH mass. For the cases with lower efficiency, 
which do grow to SMBHs, changing the seed mass does not change 
the result, as they reach a BH mass much larger than 10 4 M ! within 
a very short time period anyway. The exceptions are the 1 M ! cases 
within 10 8 yr. Decreasing the seed BH mass to that level prevents 
any of the cases from growing beyond 100 M ! within the designated 
time. 

Having a cuspy profile also helps the initial BH growth (bottom 
panel). Ho we ver, BHs with feedback in the lo w-ef ficiency parameter 
space grow to large masses very quickly regardless, so the cuspy 
profile hardly matters. 

We note that, realistically, the final BH mass for seeding 100 M !
BHs in a cuspy profile should be strictly larger than seeding them 
in a fiducial profile. We see this is not the case for the upper 
left corner. This artefact is mostly due to the simplification in the 
theoretical calculation caused by not considering the core density 
suppression before the BH grows to 10 4 M ! when r Bondi reaches 
r core = 1 pc. Realistically, such suppression can happen earlier when 
the cocoon isotropizes, and the shock front already propagates 
beyond r core . Therefore, we slightly overestimate the final BH mass 
for the upper left corner of region IV for the 100 M ! fiducial profile 
case. 
6.3 Maximum feedback efficiency for forming supermassi v e 
black hole 
Fig. 14 shows the maximum jet efficiency ( ηeff defined in equation 4 ) 
that will allow a BH to grow to intermediate mass scale (10 4 −
10 6 M !; top panel) or SMBHs ( > 10 6 M !; top panel) as a function 
of time, for different seed masses and halo properties (assuming 
V Jet > 500 km s −1 ). F or most cases, e xcept for the 1 M ! seed, an 
efficiency smaller than ηeff = (10 −6 , 10 −5 , 10 −4 ) is required for the 
BH to grow to supermassive size within t = (10 7 , 10 8 , 10 9 ) yr. 

Seeding a 1 M ! BH requires more than 2 orders of magnitude 
lo wer ef ficiency to gro w to supermassi ve size within the same time 
frame, and it is only possible after 3 × 10 8 yr. Having a cuspy profile 
or seeding a 10 4 M ! BH slightly increases the efficiency upper bound 
for SMBHs, by a similar extent, within a factor of 2. 

Ho we ver, having cuspier density profiles and increasing the seed 
BH mass can increase the allowed feedback efficiency for forming 
IMBHs by orders of magnitude. Both of these factors give the BH 
growth a head start, allowing BHs with feedback o v er a larger 
parameter space to grow to > 10 4 M !. 
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Figure 14. The maximum efficiency for seeding different halo masses in 
dif ferent gas profiles, allo wing the black hole to gro w to intermediate mass 
black holes (10 4 − 10 6 M !, upper) or supermassive black holes ( > 10 6 M !, 
lower) assuming V Jet > 500 km s −1 , is shown as a function of time. For 
most cases, except for a 1 M ! seed, an efficiency smaller than ηeff = 
(10 −6 , 10 −5 , 10 −4 ) is required for the black hole to grow to supermassive 
status by t = (10 7 , 10 8 , 10 9 ) yr. Having cuspier density profiles and increas- 
ing the seed black hole mass can increase the feedback efficiency upper bound 
for forming intermediate mass black holes by orders of magnitude. 

7  DISCUSSION  
7.1 The choice of seed masses and gas profiles 
In this work, we surv e yed a full BH seed mass range of 1 − 10 4 M !. 
We note that BH masses are typically much larger than 1 M !, and 
BH remnants of Population III stars may be heavier than 100 M !
(Bromm, Coppi & Larson 1999 , 2002 ; Abel, Bryan & Norman 
2002 ). The inclusion of 1 M ! in this study is primarily for testing 
the applicability of the analytical model o v er a wide range in BH 
mass. We also note that 10 4 M ! represents the lower end of the BH 
mass range for direct collapse BHs and emphasize the importance of 
investigating more massive cases for future work. 

The fiducial gas density profile was moti v ated by a typical atomic 
cooling halo, as described in, for example Regan et al. ( 2019 ). We 
varied the slope of the density profile around the fiducial value. 
Ho we ver, since our study tests BH accretion within a single typical 
atomic cooling halo scenario across different seed masses, we did not 
modify the density profile range when varying the BH seed mass. The 
fiducial profile essentially sets the range of T ∞ and n ∞ (or T Bondi and 
n Bondi ) in the simulations. We note that we expect – and did recover –
a Bondi-like solution, n ∝ r −3 / 2 , after the run starts, in the absence of 
feedback, which should represent the steepest slope possible without 
incorporating additional physics, such as net angular momentum. 

7.2 Limitations of the model 
In this work, we focus on set-ups with constant initial temperature and 
an idealized density profile: a core with constant density within 1 pc, 
transitioning to an n ∝ r −2 profile beyond that. We neglect any initial 
gas motion, such as turbulence or rotation. While turbulence arises 
after the jet is launched, we do not include any other causes of gas 
motion. Realistically, both rotation and turbulence can significantly 
hinder accretion. We also neglect the presence of magnetic fields, 
which may further suppress accretion. We emphasize that, while 
we believe the excluded processes may further suppress accretion, 
we cannot rule out the possibility that non-linear interactions could 
produce the opposite effect. For example Schleicher et al. ( 2009 ), 
Sethi, Haiman & P ande y ( 2010 ), Turk et al. ( 2012 ), and Guo et al. 
( 2024 ) found that magnetic fields could enhance accretion, whereas 
Cho et al. ( 2023 , 2024 ) suggest that magnetic fields might suppress 
it. These contrasting conclusions likely arise from the distinct gas 
phases and environmental conditions modelled around the BH in each 
study. A detailed investigation of these additional physical processes 
is beyond the scope of this work and will be explored in future 
studies. 

In our simulations, the outer edge of the accretion disc is only 
marginally resolved during periods of strong accretion. Ho we ver, 
since the initial conditions assume no net angular momentum, a 
transient, rotationally supported structure stochastically forms with 
random orientation. We, therefore, utilize a sub-grid α-disc model, 
whose validity can depend significantly on the accretion rate. In 
our simulations, the Eddington ratio varies widely across runs 
due to the influence of feedback parameters and shows substantial 
variability within certain individual runs. For simplicity, we apply 
the same α-disc model across all runs. Realistically, incorporating 
such a model primarily affects the short-term variability of accretion 
rates. As demonstrated in Su et al. ( 2023b ), the long-term averaged 
behaviour remains largely unaffected, so we do not anticipate 
significant differences from adopting a more sophisticated accretion 
disc model. A more detailed study of accretion disc formation and 
the implementation of a more sophisticated sub-resolution accretion 
disc model are left for future work. 

Our simulations are run for a finite amount of time, capturing 
only a glimpse of the various phases of BH growth. Although our 
predictions for BH mass after a time longer than the simulation 
run-time are based on physical understanding and a toy model 
that faithfully describes the simulation results, there is a significant 
extrapolation that needs verification in future work. 

We focus solely on jets, which are highly collimated mechanical 
feedback mechanisms. Realistically, there can be other forms of AGN 
feedback, such as winds with broader opening angles and radiative 
feedback, which can result in very different cocoon propagation. We 
treated the jet velocity and feedback mass loading as constant and free 
parameters. In reality, these quantities are likely functions of factors 
such as the accretion rate, BH spin, and accretion disc properties. 
While our analytical modelling framework remains applicable for 
more sophisticated feedback models, implementing and testing such 
models is beyond the scope of this work and will be addressed in 
future studies. 

Most importantly, we neglect other galactic processes like star 
formation and stellar feedback, which can further suppress BH 
accretion. We also do not consider the later growth of the atomic- 
cooling halo or mergers. As a result, our predicted BH mass should 
be viewed as an upper bound for BHs accreting within a single atomic 
halo. We emphasize that there are many other channels through which 
BHs can grow, and we are not able to constrain those in this work. 
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We also anchor the BH at the centre of the atomic-cooling halo. 
In reality, the BH seed may ‘wander’ away from the halo centre and 
may not be located in the densest region (Regan & Volonteri 2024 ). 
7.3 Obser v ational implication 
Despite the limitations discussed in Section 7.2 , this work provides a 
strong constraint on the channel of BH growth that relies on accreting 
gas within a single atomic-cooling halo. Recent observations with 
JWST have identified a population of SMBHs at relatively high 
redshifts, beyond z ∼ 6 and even beyond z ∼ 10 (e.g. Carnall et al. 
2023 ; Harikane et al. 2023 ; Kocevski et al. 2023 ; Larson et al. 
2023 ; Onoue et al. 2023 ; Übler et al. 2023 ; Maiolino et al. 2024 ; 
Scoggins & Haiman 2024 ). Assuming an atomic-cooling halo forms 
at z ∼ 12 and a BH is seeded immediately, 10 8 and 10 9 yr later would 
correspond to z ∼ 10 and z ∼ 5, respectively. 

As shown in Figs 12 and 14 , even a small amount of collimated 
mechanical feedback with relati vely lo w ef ficiency can significantly 
hinder BH growth. If we rely on this channel to explain the SMBHs 
observed by JWST , the feedback efficiency should be - 10 −4 , and 
e ven lo wer to form those at z > 10. Heavy seeds do not help in this 
scenario, as most of the time spent reaching SMBH status occurs 
when the BH mass exceeds 10 4 M !. Alternatively, the BHs observed 
at high redshift could form in even denser environments than a typical 
atomic-cooling halo or grow via other channels. 
8  C O N C L U S I O N  
In this work, we have utilized a set of idealized simulations with BHs 
of different masses seeded in various gas environments mimicking 
the centres of atomic-cooling haloes. Based on these simulations, 
we provide a toy model describing the propagation of jet cocoons 
and their resulting regulation of BH growth. Using this toy model, 
we predict BH mass as a function of time, assuming different seed 
masses. We found that even with relatively low feedback efficiency, 
the central density profile of the atomic-cooling halo can be largely 
suppressed after the first episode of jet cocoon propagation. After 
this density suppression, BH growth essentially stops. Thus, very 
low mechanical feedback efficiency is required to form an SMBH at 
high redshift if relying on feeding a BH by a single atomic-cooling 
halo. We summarize our conclusions as follows: 

(i) We confirm the toy model presented in Su et al. ( 2023b ) for 
jet cocoon propagation across various BH masses. The propagation 
of the jet cocoon in the jet direction is go v erned by momentum 
conservation, while the lateral expansion is governed by energy 
conservation due to the pressure in the cocoon. Eventually, the lateral 
velocity increases and becomes comparable to the velocity in the jet 
direction at the isotropization radius ( r iso ). Beyond this radius, the 
jet cocoon becomes an energy-driven isotropic bubble. Lower jet 
velocity and higher density result in a larger isotropization radius. 

(ii) We confirm that despite different comparisons of the 
isotropization radius ( r iso ) and the Bondi radius ( r Bondi ), it is al w ays 
the isotropic component of the cocoon momentum that is regulated 
by the inflowing momentum flux, assuming a Bondi solution at the 
Bondi radius. 

(iii) Super-Eddington accretion can occur when the BH mass 
reaches approximately ∼ 100 M ! in cases with high density, low 
temperature, and/or low feedback efficiency. 

(iv) As the jet cocoon isotropizes and propagates beyond the core 
radius ( r core ), it can significantly suppress the density profile at the 
centre of the atomic-cooling halo. This density suppression occurs 

from the isotropization radius ( r iso ) to the current location of the 
cocoon shock front, making the density roughly constant within that 
range. If the Bondi radius ( r Bondi ) falls within this radial range, the 
BH accretion is affected by the density suppression. 

(v) The cocoon will propagate to the terminal radius, where the 
integrated cooling of the gas within the jet cocoon balances the 
integrated jet energy flux, stalling its growth. 

(vi) Despite the density suppression, we find that the isotropic 
component of the outflowing momentum flux is still regulated 
to match the Bondi inflowing momentum at the Bondi radius, 
accounting for the real-time density at that radius. This results in 
a secularly evolving regulation scenario. 

(vii) Based on an analytic model inspired and calibrated by the 
simulations, we provide a prediction of BH mass growth as a function 
of time and BH seed mass, assuming accretion from a single atomic- 
cooling halo. To form a SMBH within 10 8 and 10 9 yr, we require a 
jet efficiency of η < 10 −5 and η < 10 −4 , respectively. 

(viii) For BHs with feedback in the parameter space that allows 
growth to a SMBH, most of the time is spent when the BH mass 
exceeds 10 4 M !. Therefore, having a heavier seed (at least up to 
10 4 M !, which represents the lower-mass end of direct collapse BHs) 
or assuming a cuspier profile does not significantly increase the 
efficiency upper bound for SMBH formation. 

(ix) On the other hand, having a heavier seed or a cuspier profile 
provides a head start for BH growth, assuming high feedback 
ef ficiency. This allo ws BHs with a larger feedback parameter space 
to reach IMBHs. 

(x) We identified several phases of BH growth (Figs 11 and 
12 ). For the feedback parameter space that allows the formation of 
SMBHs, most of the accreted mass occurs during the growth phase, 
where the very lo w ef ficiency feedback fails to regulate the Bondi 
accretion. 

We reemphasize that the abo v e conclusions only apply to BH 
growth relying on feeding within a single typical atomic halo, 
providing constraints specific to this growth channel. We also neglect 
stellar physics and magnetic fields, which may further hinder BH 
growth. Our predictions should be viewed as an upper bound for BH 
accretion. We leave these other aspects for future study. 
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the GIZMO code is available at ht tp://www.tapir.calt ech.edu/ ∼phopk 
ins/Site/GIZMO.html . 
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