ON THE ERGODIC THEORY OF THE REAL REL FOLIATION

JON CHAIKA AND BARAK WEISS

ABSTRACT. Let H be a stratum of translation surfaces with at least two sin-
gularities, let my; denote the Masur-Veech measure on H, and let Zy be a
flow on (H,my) obtained by integrating a Rel vector field. We prove that
Zo is mixing of all orders, and in particular is ergodic. We also characterize
the ergodicity of flows defined by Rel vector fields, for more general spaces
(L,mg), where L C H is an orbit-closure for the action of G = SL2(R) (i.e.,
an affine invariant subvariety) and m, is the natural measure. These results
are conditional on a forthcoming measure classification result of Brown, Eskin,
Filip and Rodriguez-Hertz. We also prove that the entropy of Zy with respect
to any of the measures m, is zero.

1. INTRODUCTION

Let H be a stratum of area-one translation surfaces, and let G o SLa(R). There

is a G-invariant finite measure my on ‘H known as the Masur-Veech measure, and
the dynamics of the G-action on (H,m3) have been intensively studied in recent
years and are intimately connected to many problems in geometry and ergodic the-
ory; see, for example, [MaTal [Zo]. Suppose that surfaces in H have k singularities,
where k > 2. Then there is a k — 1-dimensional foliation of H, known as the real
Rel foliation. A precise definition of the foliation and some of its properties will
be given below in Loosely speaking, two surfaces are in the same real Rel
leaf if one can be obtained from the other by a surgery in which singular points
are moved with respect to each other in the horizontal direction without otherwise
changing the geometry of the surface. A natural question, which we address here,
is the ergodic properties of this foliation. Most of our results below rely on an
unpublished result of Brown, Eskin, Filip and Rodriguez-Hertz, which we refer to
as Statement A and discuss in

As we review in by labeling the singularities and removing a set of leaves
of measure zero, we can think of the real Rel leaves as being the orbits of an action
of a group Z on H, where Z = R*~!, and the restriction of this action to any one-
dimensional subgroup of Z defines a flow. Our first main result is the following.

Theorem 1.1. Assume Statement A. Let H be a connected component of a stratum
H(a,...,ar) with all a; > 0 (i.e., no marked points). Let my; be the Masur-Veech
measure on H, let Z = R*=1 be the corresponding action given by translation
along the leaves of the real Rel foliation, and let Zy C Z be any one-dimensional
connected subgroup of Z. Then the Zy-flow on (H,myy) is mizing of all orders (and
in particular, ergodic).

The definition of mixing of all orders is given in §3.3] For purposes of this
introduction, it is enough to note that it implies ergodicity of any nontrivial element.
1
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Note that when H has marked points, there will be subgroups Z; which only move
the marked points on surfaces without otherwise changing the geometry, and the
conclusion of Theorem [I.1] will not hold. This is the only obstruction to generalizing
our results to strata with marked points; see Theorem [8.1

The proof of Theorem 1.1} as well as most of the other results of this paper,
relies crucially on measure-rigidity results of Eskin, Mirzakhani and Mohammadi
[EM| [EMM] and further forthcoming work extending these results, which we will
describe in

Theorem improves on the results of several authors. In those results, er-
godicity for the full Rel foliation was studied. The full Rel foliation (also referred
to as the ‘kernel foliation’, ‘isoperiodic foliation’ or ‘absolute period foliation’) will
also be defined in Its leaves are of dimension 2(k — 1) — that is, twice the di-
mension of the real Rel leaves. Loosely speaking, two surfaces are in the same leaf
for this foliation if one can be obtained from the other by moving the singularities
(without otherwise affecting the geometry of the surface). That is, we relax the
hypothesis that points can only be moved horizontally. The first ergodicity results
for the full Rel foliation were obtained by McMullen [McM]|, who proved ergodic-
ity in the two strata H(1,1) and H(1,1,1,1). Subsequently, Calsamiglia, Deroin
and Francaviglia [CDF] proved ergodicity in all principal strata, and Hamenstadt
[Ham| reproved their result by a simpler argument. Recently, Winsor [Wil] proved
ergodicity for most of the additional strata and, in [Wi2], showed that there are
dense orbits for the Zy-flow, for any Z; as in Theorem Note that ergodicity for
a foliation is implied by ergodicity for any of its subfoliations, and that ergodicity
implies the existence of dense leaves, and thus Theorem generalizes all of these
results. Also note that full Rel is a foliation which is not given by a group action,
and the notions of mixing and multiple mixing do not make sense in this case.

The papers [McM| [CDF] go beyond ergodicity and obtain classifications of full
Rel closed leaves and leaf-closures in their respective settings. We suspect that
there is not a reasonable classification of real Rel leaf-closures; indeed, it is already
known (see [HW]) that there are real Rel trajectories that leave every compact set
never to return.

The strata H support other interesting measures for which similar questions
could be asked. Namely, by work of Eskin, Mirzakhani and Mohammadi [EM]

EMM], for any ¢ € H, the orbit-closure Cdéfqu is the support of a unique smooth
G-invariant measure which we denote by m,. Let Z, be the subgroup of Z leaving £
invariant. Then Z, also preserves m, and for many choices of £, we have dim Z, >
0. In these cases, for any closed connected Z; C Z., there is a complexification Ry,
which gives a foliation of £ whose leaves 9 (¢) have dimension 2dim Z; (see §2.2).
The leaves M1 (q) have a natural translation structure, and this induces a natural
locally finite translation-invariant measure on each leaf. With this terminology, we
can now state the main result of this paper:

Theorem 1.2. Assume Statement A. Let L be a G-orbit closure, and let ms, Z,
be as above, where dim Z, > 0. Let zy be a nontrivial element of Z,, and let
Zy = spang(zg). Then either

(1) The action of Zy on (L,mg) is mizing of all orders (and in particular, zy
acts ergodically); or
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(2) there is an intermediate closed connected subgroup Zy so that Zg C Z; C
Zr, and the complexification Ry of Z1 satisfies
o for every q € L, the leaf R1(q) is closed, and
o formg-a.e. q, R1(q) is of finite volume with respect to its translation-
invariant measure, and Zoq = R1(q).

Example 1.3 (Branched covers). Using covering constructions, it is not hard to
find examples for which Case above holds. Namely, suppose H = H(aq,...,ax)
is a connected component of a stratum and H' = H(ay,...,ax,0) is the space ob-
tained from H by marking an additional nonsingular point on every surface in H.
Thus, we can write every surface in H' as a pair (¢,p), where ¢ € H and p is a
nonsingular point on the underlying surface M,. We let L be the Hurwitz space
of all surfaces obtained as branched covers of My a fized topolgicial type, branched
only over p, for surfaces (q,p) € H', and let Zy be the subspace of Z consisting of
deformations which move p horizontally on M, relative to the other singular points,
without affecting the periods of paths between other singular points. In this case, we
have Zy = Z1, R1(q) is naturally isomorphic to Mgy, with singular points removed,
the translation invariant measure on MR1(q) is the natural measure on My, and we
will have R1(q) = Zoq whenever the horizontal direction is minimal on M,.

By Theorem in order to establish ergodicity of real Rel subfoliations on G-
orbit-closures, it is enough to rule out Case . We will prove Proposition which
provides a simple way to achieve this, using cylinder circumferences of surfaces in
L. Theorems [I.1] and [8.1] are deduced from Theorem [I.2] using Proposition

The following statement is an immediate consequence of Theorem

Corollary 1.4. Assume Statement A. Let L be a G-orbit-closure, let mp, Z, be as
above, and let Z1 C Z be one-dimensional. Suppose that the foliation induced by
the complexification Ry has a dense leaf. Then the Zi-flow on (L,mr) is mizing
of all orders (and in particular, ergodic).

The density of certain leaves of the full Rel foliation in G-orbit-closures of rank
one was obtained by Ygouf in [Y]. Using these results, we obtain ergodicity of
one-dimensional subgroups of the real Rel foliation in many cases. For instance,
using [Y, Theorem A & Proposition 5.1], we have the following:

Corollary 1.5. Assume Statement A. The real Rel foliation is mizing of all orders
(and in particular, ergodic) in any eigenform locus in H(1,1) with a non-square
discriminant.

Recall that in [Wi2] Winsor proved the existence of dense real Rel leaves, and
dense leaves for one-dimensional flows Zj, in all strata. Using these results in
conjunction with Corollary one can obtain an alternative proof of Theorem
that avoids the use of Proposition

We also consider the entropy of real-Rel flows and show the following:

Theorem 1.6. Let L,mr, Z;,zo be as in the statement of Theorem @ Then the
entropy of the action of Rel,, on the measure space (L, mr) is zero.

Using the geodesic flow, one easily shows that Rel,, is conjugate to Rel,, for any
t > 0, and from this, it follows that the entropy is either zero or infinite. However,
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the Rel flow is not continuous, and we could not find a simple way to rule out
infinite entropy. Our proof gives a more general result; see Theorem However,
the argument fails for Zp-invariant measures for which the backward time geodesic
flow diverges almost surely, and thus, we do not settle the question of whether the
topological entropy of real Rel flows is zero.

1.1. Outline. In we give background material on translation surfaces, their
moduli spaces, and the Rel foliation. In we use standard facts about joinings
to build a measure 6 on the product of two strata (see (3.1)), depending on a real
Rel flow Zj, such that if € is the product measure, then Zj is ergodic. In we
discuss a technique of Mozes that makes it possible to upgrade ergodicity to mixing
of all orders. In we show that 0 is ergodic for the diagonal action of the upper
triangular group P C G on the product of two strata. In §5| we state Statement A,
which is a far-reaching measure rigidity result of Brown, Eskin, Filip and Rodriguez-
Hertz for P-ergodic measures on products of two strata. In we use Statement
A, as well as prior results for the action on one stratum due to Wright, in order
to characterize the situations in which 6 is not a product measure, thus proving
Theorem [1.2] Proposition is proved in and we check its conditions to deduce
Theorems and in We prove Theorem in

1.2. Acknowledgements. We are very grateful to Alex Eskin for crucial contribu-
tions to this project. We also thank Simion Filip, Curt McMullen and Alex Wright
for useful discussions, we and acknowledge the support of ISF grant 2919/19, BSF
grant 2016256, NSFC-ISF grant 3739/21, a Warnock chair, a Simons Fellowship
and NSF grants DMS-1452762 and DMS-2055354.

2. PRELIMINARIES ABOUT TRANSLATION SURFACES

2.1. Strata, period coordinates. In this section, we collect standard facts about
translation surfaces and fix our notation. For more details, we refer the reader to
[Zo, Wr1, BSW]. Below, we briefly summarize the treatment in [BSW), §2].

Let S be a compact oriented surface of genus g, & = {&;,...,&} C S a finite set,
ai,...,a non-negative integers with > a; = 2g—2, and H = H(aq, ..., ax) the cor-
responding stratum of unit-area translation surfaces. We let Hy, = Hum (a1, - .., ax)
denote the stratum of unit-area marked translation surfaces and 7 : H,,, — H the
forgetful mapping. Our convention is that singular points are labeled, or equiv-
alently, H = Huy/Mod(S, %), where Mod(S,Y) is the group of isotopy classes of
orientation-preserving homeomorphisms of S fixing ¥, up to an isotopy fixing X.

There is an R+ g-action that dilates the atlas of a translation surface by ¢ € Ry .
For a stratum H and marked stratum 7H,,, we denote the collection of surfaces
of arbitrary area, obtained by applying such dilations, by H, Hm. The marked
stratum H,, is a linear manifold modeled on the vector space H'(S,¥;R?). It has
a developing map dev : H,, — H'(S,%;R?), sending an element of H,,, represented
by f : S — M, where M is a translation surface, to f*(hol(M,-)), where for
an oriented path v in M which is either closed or has endpoints at singularities,

i

d
hol(M,~) = v , and dx,dy are the 1-forms on M inherited from the plane.
Jydy

Furthermore, there is an open cover {U,} of H,,, indexed by triangulations 7 of
S with triangles whose vertices are in ¥, and maps dev|y. : U, — H(S,¥;R?),
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which are homeomorphisms onto their image, and such that the transition maps on
overlaps for this atlas are restrictions of linear automorphisms of H'(S, ¥; R?).

This atlas of charts {(U,,dev|y, )} is known as period coordinates. Since
each U, is identified via period coordinates with an open subset of the vector
space H'(S,%;R?), the tangent space at each U, is identified canonically with
H'(S,%;R?), and thus the tangent bundle of H,, is locally constant. A sub-bundle
of the tangent bundle is called locally constant or flat if it is constant in the charts
afforded by period coordinates. The Mod (.9, X)-action on H,, is properly discontin-
uous, and hence, H is an orbifold, and the map 7 : H,, — H is an orbifold covering
map.

The group G acts on translation surfaces in H by modifying planar charts and
acts on H1(S,¥;R?) via its action on R?, thus inducing a G-action on H,,,. The G-
action commutes with the Mod(S, ¥)-action, and thus, the map 7 is G-equivariant
for these actions. The G-action on H,, is free since dev(gq) # dev(q) for any
nontrivial g € G. We will use the following subgroups of G:

(et 0 (1 s
7= o et) 70 1
a b
U= {us:seR}, P—{<0 a_l):a>0,b€R}.

2.2. Rel foliation and real Rel foliation. We define and list some important
properties of the Rel foliation, the real Rel foliation and the corresponding action
on the space of surfaces without horizontal saddle connections. See [MW, BSW]|
for more details. See also [Zo, McM], and references therein.

We have a canonical splitting R?> = R @& R, and we write R? = Ry & Ry to
distinguish the two summands in this splitting. There is a corresponding splitting

(2.1) H'Y(S,%;R?) = HY(S,%;R,) @ H'(S,%;Ry).

We also have a canonical restriction map Res : H1(S, ; R?) — H(S;R?) (given
by restricting a cochain to absolute periods). Since Res is topologically defined,
its kernel ker(Res) is Mod(S, ¥)-invariant. Moreover, from our convention that
singular points are marked, the Mod(S, ¥)-action on ker(Res) is trivial.

Let
(2.2) R ker(Res) and Z RN H(S,I;Ry).

Since H*(S,X;Ry) and H'(S, X; Ry) are naturally identified with each other via
their identification with H!(S,¥;R), for each Z; C Z, we can define the space R;
spanned by the two copies of Z; in H'(S,3;Ry) and H'(S,X;Ry), respectively.
The space R, is the complezification of Zy. This terminology arises from viewing
HY(S,3;R?) as H'(S,X;C), a vector space over C, and viewing H!(S,3;R,) and
H'(S,%;Ry) as the real and imaginary subspace of this complex vector space. With
this viewpoint, R; is the C-span of Z;.

For any subspace Z; C R, we can foliate the vector space H' (S, ¥; R?) by affine
subspaces parallel to Z;. Pulling back this foliation using the period coordinate
charts gives rise to a foliation of H,,. Since monodromy acts trivially on R, this
foliation descends to a well-defined foliation on H. It is known (see, for exam-
ple, [BSW| Proposition 4.1]) that the area of a surface is constant on leaves of the
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Rel foliation, and thus, the Rel foliation and any of its subfoliations descend to a
foliation of H. The foliation corresponding to R (respectively, to Z) is known as
the Rel foliation (respectively, the real Rel foliation).

Because the Mod(S, ¥)-monodromy action fixes all points of 2R, the leaves of
the Rel foliation, and any of its sub-foliations, acquire a translation structure. In
particular, they are equipped with a natural measure.

For any v € Z, we have a constant vector field, well-defined on H,, and on H,
everywhere equal to v. Integrating this vector field we get a partially defined real
REL flow (corresponding to v) (t,q) — Rely(q); the flow may not be defined for
all time due to possible ‘collide of zeroes’. For every g € H, it is defined for ¢ € I,
where the domain of definition I, = I;(v) is an open subset of R which contains
0. The sets I,(v) are explicitly described in [BSW, Theorem 6.1]. Let H denote
the set of surfaces in H with no horizontal saddle connections. Then I, = R for all
q€H.

IfgeH,scRand 7€ I, then

Te€l,,, and Rel:,(usq) = usRel (q).

Similarly, if ¢ € H, t € R and 7 € I;, then

(2.3) et ¢ Iy, and Rely,(g19) = g1Relry(q).
In particular, since P preserves H and P = {gu, : t,s € R}, there is an action of
P x Z on H, given by (p, z).q = pRel.(q).

3. PRELIMINARIES FROM ERGODIC THEORY

3.1. Ergodic decomposition. We will use the notation G O (X, u) to indicate
that G is a locally compact second countable group, (X,B) is a standard Borel
space, and p is a probability measure on B preserved by the G-action. We say that
G O (Y,v) is a factor of (X, u) if there is a measurable G-invariant conull subset
Xop C X and a measurable map 7' : Xo — Y such that Tog=goT for all g € G,
and v = T,pu. In this situation, we refer to T as the factor map. Given a factor
map, there is a (unique up to nullsets) measure disintegration u = [ p, dv(y), for
a Borel mapping y — 1, from Y to the space of Borel probability measures on X,
such that (T~ (y)) = 1 for v-a.e. y. Equivalently, we can write p = [ s, du(z),

where !, def Wr(z)- For a closed subgroup H C G, we say that p is H-ergodic
if any invariant set is null or conull. We have the following well-known ergodic
decomposition theorem:

Proposition 3.1. Suppose G O (X, ), and H is a closed subgroup of G. Then
there is a factor of H O (X, ), called the space of ergodic components and denoted
by X/JH, with the following properties:

(i) Forv-a.e. y € X/H, p, is H-invariant and H-ergodic.
(i) H acts trivially on X/ H.
(1) H O (X, ) is ergodic if and only if XJH = {pt.}.
(iv) The properties (i)-(iii) uniquely determine the factor X JH up to measur-
able isomorphism.

(v) If H< G, then G O (X/H,v).
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Proof. For (i) and (ii), see [Val Theorem 4.4] (in the notation of [Va], these asser-
tions follow from the fact that 8 is a map on points and is H-invariant). Assertion
(iil) is immediate from definitions and (iv) follows from [Val Lemma 4.4]. For (v),
one can argue using the uniqueness property (iv), and the fact that the image of
an H-invariant ergodic measures under any element g € G is also H-invariant and
ergodic. O

Remark 3.2. An action is called prime if it has no factors (besides the action itself,
and the trivial action on a point). The construction above shows that if H <1 G, G’
is a subgroup of G so that G' O (X, u) is prime and H O (X, u) is not isomorphic
to the trivial action, then H O (X, u) is ergodic. This is not the approach we will
take for proving Theorem

3.2. Joinings. We recall some well-known facts about joinings; see [dIR] and ref-
erences therein. Let G O (X, p;) for i = 1,2. A joining is a measure 6 on X; x X,
invariant under the diagonal action of G, such that ;.0 = u;. A self-joining
is a joining in case X; = Xo. If (X;, ;) — (Z,v) is a joint factor, then the
relatively independent joining over Z is the joining [,(u1). X (p2)z dv(z), where
Wi = fz(ﬂi)z dv(z) is the disintegration of p;. In case X1 = Xo = X, and Z = X /H
is the space of ergodic components of the action of H on (X, i) as in Proposition
we obtain the relatively independent self-joining over X /H. From the definitions,
one finds that this joining satisfies:

Proposition 3.3. The following are equivalent:

o H O (X,u) is ergodic.

e X/H = {pt.}.
e The relatively independent self-joining over X JH is u X p.

We note three properties of this self-joining. We fix a topology on X which
generates the o-algebra and denote by supp 1 the topological support of p (i.e., the
smallest closed set of full measure).

Proposition 3.4. Let 0 be the measure on X x X which is the relatively independent
self-joining over X JH, for some H, and let T : X — X/JH be the factor map. Then
the following hold:

o We have
(3.1) 0= /XMT(m) X pr(z) dp().

o The set {x € X : x ¢ supp uT(m)} is of p-measure zero.
e If X = supppu, then suppf contains the diagonal Ax def {(z,z) 2z € X}.

Proof. Formula is immediate from the definition of the relatively independent
self-joining over X/H. Since each ), = pip(y) is H-invariant and ergodic, and
p(T~1(T(x))) = 1, the set {x € X : z ¢ supppl,} is a p-nullset. For the last
assertion, given (xg,z0) € X x X, and a neighborhood U of (z¢,z¢), we need to
show that 8(U) > 0. We can assume with no loss of generality that & = O x O for
an open set O C X containing xz. Since supp p = X, we have u(O) > 0, and by
the preceding discussion, for a.e. z € O, x € supp 1, and hence, p/,(O) > 0. Now
the result follows from . O
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Example 3.5 (Branched covers, cont.). With the notation of Example @, the
relatively independent self-joining 6 can be written as

9=/qum£<q>,
L

where v, is the natural translation invariant measure on the leaf R1(q), which is
identified with the underlying surface Mgy, and which we embed in L x L via the
map

ml(q) — L X 'Cv q/ = (qva)

3.3. Ergodicity, mixing, and mixing of all orders. For G O (X, ), let L3(p)
denote the Hilbert space of L?-functions on (X, i) of integral zero, and let k > 2.
The action is called k-mizing if for any fi, ..., fr € L(u) and for any k—1 sequences

(gg)) N €G, i=1,...,k—1, for which all of the sequences
ne

(4) <i<k— (@) (@) —1 < i< k—
(99)  @<i<k-1) and (§0Y)7") (Q<i<j<k-1)

eventually leave every compact subset of G, we have

[ (o02) - i (o) o) ) i°>°1f[ [ sidn=o.

We say that the action is mizing if it is 2-mixing, and mizing of all orders if it is
mixing of order k for any k > 2. It is easy to check that mixing implies ergodicity
of any unbounded subgroup of G. We have the following;:

Proposition 3.6. Let Zy = R, and let {g:} be a one-parameter group acting on
Zy by dilations (i.e., for all v € Zy and t € R we have gyv = e*v for some X\ #0).
Let F = {g1} x Zy, and let F O (X, n) be a probability space. The following are
equivalent:

(a) the restricted flow Zy O (X, ) is ergodic;

(b) the restricted flow Zy O (X, u) is mizing of all orders;
(c) the restricted flow Zy O (X, p) is mizing;

(d) any nontrivial element of Zy acts ergodically.

Remark 3.7. The group F appearing in Proposition [3.6 is isomorphic as a Lie
group to the subgroup P of upper triangular matrices in G, but in our application,
we will use it for the group generated by a one-parameter real Rel flow Zy and the

diagonal flow {g;}.

Proof. Clearly, @ - - @ - @ We assume that the Zp-flow is
ergodic. To see that it is mixing, it is enough by [Pl Chapter 2, Proposition 5.9] to
prove that it has countable Lebesgue spectrum, and for this, use [KT) Proposition
1.23 & Proposition 2.2]. The proof of mixing of all orders follows verbatim from
an argument of Mozes [Mo] for mixing actions of Lie groups which are ‘Ad-proper’.
Since our group F' is not Ad-proper, we cannot cite [Mo] directly, so we sketch the
proof. For notational convenience, we deduce 3-fold mixing from mixing (the proof
that ‘k-fold mixing = k + 1-fold mixing’, for k > 3, is identical but requires
more cumbersome notation).

We use additive notation in the group Zy and denote the action of Zy on X by

(z,2) = z.x. Let (by),cy and (cn),cy be sequences in Zy such that each of the
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sequences (bn),cn s (€n)pen s (bn + ),y eventually leaves every compact set, and
let fi, fa, f3 be in L3(). We need to prove that

| 1@ felbra) oo+ )0y dnte) =5 [ fd [ foau [ fadn
X X X X
For each n, define a measure u,, on X3 Ty x X x X by

[ 2™ [ fabn,bn+ ) dute), v € €L,

X3 b'e

That is, p, is the pushforward of the diagonal measure on X3 by the triple
(0,by,,b,, + cp). It is easy to see that 3-mixing is equivalent to the fact that the

weak-* limit of 1y, is the measure 113 < 1 x px y. The group F3 % Fx Fx F acts on
X3 by acting separately on each component, and as in [Mo], since Z, is mixing, it
suffices to show that any measure v on X2 which is a weak-* limit of a subsequence
of (fin), cns is invariant under (0, u,v) € R3 C F3, for some (u,v) € RZ~ (0,0). We
claim that for any s € R, the measure pu,, is invariant under

hn(S) o (gmbn * st (_bn)v (bn + Cn) * s (_bn - Cn)) ’

where the multiplication is in the group F3. Indeed, since yu is {gs }-invariant,

/ Fdpn = / F (95 b (95), (b + cn)-(gs2)) du(z),
X3 X

and
hn(s) : (ldF> by, by, + Cn) = (987 by, - Js; (bn + c”) ’ gs)'
That is, applying h,(s) changes one description of u,, to another.

We embed F' as a multiplicative group of matrices in GLy(R) and let dp be the
metric on F' induced by some norm on GLy(R). By a straightforward computation,
we have

h(s) = (QSa (1- e)\s)bn “gs, (1= e)\s)(bn +cn) 'QS) )
and dp(idp, hy(s)) is a continuous function of s which goes to 0 as s — 0 and for
any fixed s > 0, increases to infinity as n — oco. Therefore, we can choose s, — 0
so that dp(idp, hn(sy)) = 1 for all large enough n. As in [Mo], v is invariant
under some subsequential limit of h,,(s,) which is of the form (0,u,v) for some
(u,v) € R%2 ~ (0,0). This establishes our sufficient condition. O

4. THE RELATIVELY INDEPENDENT SELF-JOINING FOR A REL FLOW

Recall that £ C £ is the set of surfaces without horizontal saddle connections,
and this is a P-invariant set of full measure with respect to m,. We can combine
the product action of Z, x Z, on £ x £ with the diagonal action of P to obtain an
action of the semi-direct product P x (Z; x Z) on £ x L. Since £ C L is of full
measure, and the arguments of this section involve passing to sets of full measure,
in the remainder of this section, we will ignore the distinction between £ and L.

Proposition 4.1. Let Z C Z, be a closed connected subgroup. If 6 is an invariant
probability measure for an action of the semidirect product P x (Z x Z) on L x L,
then any f € L*(0) which is {g; }-invariant is also Z x Z-invariant.

Proof. Forany z € ZXZ, g12g—+ —t——o0o 0. So the claim follows from the Mautner
phenomenon; see, for example, [EW, Proposition 11.18]. (]
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Proposition 4.2. Let (L,mz) be a G-orbit-closure with a fully supported P-
invariant ergodic measure, let Z C Zp be a connected closed subgroup, and let
0 on L x L be the relatively independent joining over L)Z. Then 6 is P-invariant
and {gi }-ergodic (and hence P-ergodic). Also Ay C supp®.

As we will see in under the conditions of the Proposition, m, is the so-called
‘flat measure’ on L.

Proof. Let w: L x L — L be the projection onto the first factor, and let v = 7.0.

We have v = myg by (3.1) and the properties of the ergodic decomposition. For

each z € L, let Q, % 7~1(x) = {z} x £ be the fiber, and let 6, be the fiber measure

appearing in the disintegration 6 = [, 6, dv(z). Then Z acts on Q, via the second
factor in Z x Z, and 6, is Z-invariant and ergodic by the definition of the ergodic
decomposition and Proposition [3.1](i) (with H = Z).

It follows from Proposition v) (with G = P x (Z x Z)) that 6 is P-invariant.
To prove ergodicity, let f € L?(L x £, 0) be a P-invariant function. By Proposition

fis Z x Z-invariant. For each x € L, let f, def fla,- There is Lo C L such that
me(Lo) = 1, and for every x € Ly, f. belongs to L?(£,60,) and is Z-invariant.
Hence, by ergodicity, there is f : Lo — R such that for every x € Lo, f(x) is the
6,-almost-sure value of f,. Since f is P-invariant for the diagonal action of P, f

is P-invariant for the action of P on L. By ergodicity of P O (£,mz), f is v-a.e.
constant, and thus, f is f-a.e. constant.

The last assertion follows from Proposition [3.4] (]

5. AN UPGRADED MAGIC WAND THEOREM

The celebrated ‘magic wand’ Theorem of Eskin and Mirzakhani [EM], and en-
suing work of Eskin, Mirzakhani and Mohammadi [EMM], classified P- and G-
invariant probability measures and orbit-closures on strata of translation surfaces.
These results can be summarized as follows (see [EM| Definitions 1.1 & 1.2, Theo-
rems 1.4 & 1.5]):

Theorem 5.1. Let H, Hy, H, Hm be as in §2.1. Any P-invariant ergodic proba-
bility measure m has the following properties:

(i) It is G-invariant.

(ii) There is a complex-affine manifold N and a proper immersion ¢ : N' — H

such that
£ suppm =1 N e(N).

(iii) There is an open G-invariant subset U C H satisfying m(U) = 1, and for
any x € U N L, there is an open set V containing x such that V is evenly
covered by V C Huy, under the map m: Hy — H, and wdgdevo (m]y)~togp
coincides on its domain with a C-linear map, with real coefficients.

(iv) The subspace W Lef Im(v)) satisfies that Res(W) symplectic, and the measure
m is obtained via the cone construction from the Lebesque measures on
Res(W) and on RNW.

(v) The complement L\ U is a finite union of supports of measures satisfying
properties (i)-(iv), for which the manifolds N’ appearing in (i) satisfy
dim N’ < dim .
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Any orbit-closure for the P-action is a set L as above.

The description of m, in item (iv) means that we fix a normalization Leby,
of Lebesgue measure on W using the symplectic structure on Res(W) and the
translation structure on RN, and for a Borel subset A C V' C L, where V = 7(V)
is as in item (iii), we have

m(A) = Lebw ({t-dev(n|;;'(q)) :q € At €[0,1]}).

We will refer to £ as an orbit-closure and to m = m, as a flat measure on L.
Orbit-closures are referred to as affine invariant manifolds and also as tnvariant
subvarieties. The use of an evenly covered neighborhood in item (iii) is a standard
approach for defining period coordinates (see, for example, [MS]).

It is easy to check, using our convention that singularities are labeled, that

Re 9 n Im(v)) is well defined; that is, it does not depend on the choice of the

neighborhood V used in (iii) (see, for example, [CWY] §2.3]). The statement in
item (iv) that Res(W) is symplectic is proved in [AEM]. We refer to [Wrl] for a
survey containing more information on orbit-closures.

In a forthcoming work of Brown, Eskin, Filip and Rodriguez-Hertz, the same
conclusion is obtained for the diagonal actions of P and G on a product of strata
H x H'. Namely, the following is shown:

Statement A. Let H,H' be strata of translation surfaces, and let P and G act
on H x H' via their diagonal embeddings in G x G. Then all of the conclusions of
Theorem E hold for this action (with H x H' replacing H ).

We refer to this as a ‘Statement’ rather than a ‘Theorem’ since it has not yet
appeared in print. For further discussion of this result and related statements, see
[MiWr, Conjecture 2.10] and [ChWr, §7].

6. PROOF OF MAIN RESULT

Using Statement A and further work of Wright [Wr2|, we can prove our main
result.

Proof of Theorem[I.2. Let Zy = spang(z9) be a one-dimensional connected real
Rel subgroup. Assume that fails, so that the action of Zy on (£, m,) is not
mixing of all orders. Then, by Proposition [3.6] it is not ergodic. Let 6 be the
relatively independent self-joining over £//Zy. Applying Propositions and
we have that 6 # m,; x my and Ay C suppf. Applying Proposition [4.2] and
Statement A, we have that there is a G-invariant open subset U of full #-measure
such that UNsupp @ is contained in the isomorphic image of an affine complex-linear
manifold whose (real) dimension is strictly smaller than 2dim H, and 6 is obtained
from Lebesgue measure on this complex-linear manifold by the cone construction.

We claim that the set
def
Ur={qeMN:(q,9) €U}

is of full measure for (m).6, where 71 : L x £ — L is the projection onto the first
factor. Indeed, the measure  is invariant under Zy x {Id}, and hence, so is its
support. Since Zy acts by homeomorphisms where defined, and using property (v)
in Theoremand Statement A, we have that the set U is also Zy x {Id}-invariant.
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Thus, for any Zp-ergodic measure, it is either null or conull. Thus, if ¢ ¢ Uy and ¢ is
generic for the measure pr(,) appearing in , then fi7(q),q assigns measure zero
to U, where pp(q),q is the measure on supp @ defined by prpg),q(A) = prg({d" :
(¢’,q) € A}). If this were to happen for a positive measure of ¢, it would follow
from and the fact that prp) X prq) = f,uT(q/),q/duT(q) that U does not have
full measure for 6.

For ¢ € Uy, let N, denote the connected component of U N ﬂfl(q) N supp @ con-
taining (¢, ¢). Recall from item (ii) of Theorem [5.1]that £ is locally the intersection
of £ = p(N), a C-linear subset of H, with the quadric hypersurface H consisting of
surfaces of unit area. In this proof, we will call such a subset an affine submanifold
of H. Similarly, we will say that a subset of £ x £ is an affine submanifold if it
is locally the intersection of a C-linear subset of H x H with H x H. Since the
fibers 77 *(q) are also affine submanifolds of £ x £, we have that the N, are affine
submanifolds contained in 7y Y(q) = L, so we can identify them with invariant sub-
manifolds in £ (which we continue to denote by N,;). With this notation, we have
q € Ng.

The mapping g — T,(N,) is locally constant; that is, letting V C H and V C H,
be open sets such that 7|y, : V — V is a homeomorphism and ¢ € V, the map
q +— dev 07T|\_,1(q) sends a neighborhood of ¢ in Ny to an affine subspace W = W,
of H'(S,%;R?), and the linear subspaces tangent to W are the same for all ¢ € V.
Since m, X m, is the unique P-invariant ergodic measure on £ x £ of full support,
we have dim IV, < dim £ for every ¢ € U;.

Let 71 : H x H denote the projection on the first factor, let Nq denote the

connected component of U N7 *(g) N £ containing (¢, q), and let
N, € T,(N,)

(the tangent space to N, at g, thought of as a subset of the tangent space T,(L)).
That is, surfaces in IV, are obtained by moving locally in the affine space W defining
0, as in item (iv) of Theorem M without requiring that the surfaces in N, have
area one. Then we either have dim N, = dim N, or dim N, = dim N, +1, depending
on whether or not moving in W can change the area of a surface. The assignment

g — M, defines a proper flat sub-bundle of the tangent bundle T'(L£). Flat sub-
bundles of T'(L) were classified in [Wr2]. According to [Wr2, Theorem 5.1}, M, C
N for each g, and N, is a complex linear subspace which is locally constant. Since
R is acted on trivially by monodromy, we in fact have that 91, is independent of
g, and we denote it by 2R;. The leaves 2R (q) coincide with N, for each g since N,
is connected and of the same dimension. Since Rel deformations do not affect the

area of the surface, we see that N, = N,. In particular, R(q) is closed for each g.

By (3.1), for a.e. g, N, is a connected component of the support of the ergodic
component (mg)q, which is a probability measure, and in particular,

(mg)q(Ny) < 00, for ae. gq.

Since Zj acts ergodically with respect to (mz),, we have that almost surely N, =
MR(q). Since the measure (mg), is affine in charts, it is a scalar multiple of the
translation-invariant measure on f(q), and thus, the volume V, of fR(q) (with
respect to its translation-invariant measure) is almost surely finite. It is clear that
the function ¢ — V; is U-invariant, and by ergodicity, it is constant almost surely.
Thus, assertion of Theorem holds, with Z; =R N Z.. [
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Remark 6.1. We note that the above argument works under much weaker conclu-
sions than those given in Statement A. Indeed, in the first step of the argument,
Statement A was used simply to extract a G-invariant assignment q — Ny, where
N, is a subspace of T,(L), which is proper if 8 is not the product joining. A fun-
damental fact about such G-invariant assignments is that they are very restricted
— besides [Wr2], see [EEW]| and [Fi]. In particular, [Fi] gives strong restrictions on
assignments that are only assumed to be defined almost everywhere and measurable.

7. A TOPOLOGICAL CONDITION FOR REL ERGODICITY

Let Zy C Z be a subspace. We say that a translation surface z is Zy-stably
periodic if it can be presented as a finite union of horizontal cylinders and the
Zy-orbit of x is well defined. Recall that a horizontal separatriz is a horizontal
leaf whose closure contains at least one singularity, and it is a horizontal saddle
connection if its closure contains two singularities. Then the condition of being Zy-
stably periodic is equivalent to requiring that all horizontal separatrices starting at
singular points are on horizontal saddle connections, and Z; preserves the holonomy
of every horizontal saddle connection on z. In case Z = Z; is the full real Rel
group, we say that z is fully stably periodic. This is equivalent to saying that all
horizontal separatrices starting at singular points are on saddle connections, and all
horizontal saddle connections start and end at the same singularity. In particular,
for any cylinder C' on a fully stably periodic surface, each boundary component of
C is made of saddle connections starting and ending at the same singular point &;
we say that the boundary component only sees singularity €. For more information
on the real Rel action on surfaces which are horizontally completely periodic, see
[HW] §6.1].

Proposition 7.1. Suppose x is a surface which is Zy-stably periodic, and v € Zj
moves two singularities p and q with respect to each other. Suppose that x contains
two cylinders C1 and Cy that both only see singularity p on one boundary component
and only see singularity q on another boundary component. Finally, suppose the
circumferences c1, co of these cylinders satisfy ‘é—; ¢ Q. Then Case of Theorem
[1.1 does not hold for x.

Proof. Since ¢t ¢ Q, the trajectory {Relsw () : ¢t € R} is not closed, let £ denote
its closure. We claim that the tangent space to £ is not contained in Z. Let oy
denote a saddle connection from p to g in C; and let o2 denote a saddle connection
from ¢ to p in Cy. Let o be the concatenation. Then o represents an absolute
homology class because it goes from p back to p, and it is nontrivial because the
vertical component of its holonomy on x is nonzero. If we consider the restriction
of the rel-action to C7 U Cs, then it only affects the twist parameters, which is
a 2-dimensional space. This space can be generated by the horizontal holonomy
of o1 and the horizontal holonomy of o5. Since % ¢ Q, this restricted action
does not give a closed orbit. So the tangent space to £ contains directions, which
continuously affect the holonomy of ¢. Since ¢ is an absolute period, we see that

the tangent space to L is not contained in Z. (]
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8. CHECKING THE CONDITION FOR STRATA

Let H = H(a1,...,ar), and for 4,5 € {1,...,k}, let &,&; be the corresponding
singular points of a surface in H. Let z € R be a Rel cohomology class. We
say that z mowves &;,&; with respect to each other if for some (equivalently, every)
a € Hi(S,%) represented by a path starting at ¢ and ending at &;, we have
z(a) # 0. Below, when we discuss a stratum H(aq,...,ax); we allow a; = 0;
that is, we allow marked points. We call points with cone angle 27 (that is, with
a = 0) removable singularities, and otherwise, we call them non-removable. The
following result, which clearly implies Theorem allows strata with removable
singularities.

Theorem 8.1. Let H be a connected component of a stratum H(aq,...,ax). Let
myy be the Masur-Veech measure on H, let Z be the corresponding real Rel foliation,
and let Zy C Z be a one-dimensional connected subgroup of Z. Suppose that there
are 1 <14 < j < k with corresponding singular points &;,&;, such that a; > 0, a; >0
and such that some element of Zy moves &, &; with respect to each other. Then the
Zo-flow on (H,myy) is mizing of all orders (and in particular, ergodic).

Clearly, Theorem [8.1]follows from Theorem[I.2] Proposition[7.I]and the following
result.

Proposition 8.2. Let H C H(aq,...,ar) be a connected component of a stratum of
translation surfaces with at least two non-removable singular points. If p # q is any
pair of non-removable singularities, then there exists M € H, which has cylinders
C1, Cy with circumferences cq, ¢y so that

(1) M is fully stably periodic.

(2) = ¢ Q.

(8) Both C1 and Co only see singularity p on one boundary component and only
see singularity q on the other boundary component.

For the proof of Proposition [8.2] we will also need the following:

Proposition 8.3. Let H = H(ay,...,ax) be a stratum of translation surfaces with
at least two singular points (that is k > 2). If p # q is any pair of distinct sin-
gularities (possibly removable), then there exists M € H, so that M is fully stably
periodic and there exists a cylinder on M that only sees singularity p on one bound-
ary component, and only sees singularity q on the other boundary component.

Propositions and will both be proved by induction, after some prepara-
tions.

Lemma 8.4 (The basic surgery — gluing in a torus). Let H = H(b1,...,be) be
a stratum of translation surfaces, and let M € H, with singularities labeled by
&1,..., &, so that the order of €; is b;. Suppose M has a horizontal cylinder C, with
circumgference ¢, where one boundary component is made of saddle connections that
begin and end at &, and the other is made of saddle connections that begin and end
at &, where b; > 0 and b; > 0 (so that &;,&; might be removable). Then for all
w > 0, there exists M’ € H(by,...,b;+1,...,b;+1,...,b), with singularities labeled
&, ..., &, which has two horizontal cylinders C{, Cy, where C] has circumference
¢+ w and C} has circumference w. The complements M ~ C and M' ~ (C1 U Cs)
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FIGURE 1. The surface M has a cylinder of circumference ¢, and its
boundary components see only the singularities §; and §; (denoted
by o and e). The edges not labeled by A are connected to M \ C.

FIGURE 2. To obtain M’ from M, glue in a torus (rectangle on the
right). This transforms C into a cylinder Cf of circumference c+w,
and adds a horizontal cylinder C of circumference w. Edges not
labeled by A, O, / or the color green are attached to M’'~ (C1UCY).

are isometric by an isometry mapping & to & for all i. The cylinders C1 and Co
only see singularity & on one boundary component, and 5;» on another. Moreover,
if M s fully stably periodic, then so is M'.

Proof. Tt will be easier to follow the proof while consulting Figures [1| (before) and
(after). Given a polygonal presentation for M, we give a polygonal presentation
for M’. Let M be a polygon representation for M in which the cylinder C is
represented by a parallelogram P (in Figure |1} the large rectangle in the center
of the presentation), with two horizontal sides of length ¢, nonhorizontal sides
identified to each other, and the singular points &;, §; on adjacent corners of P.
Thus, the nonhorizontal sides of P represent a saddle connection o on M connecting
& to ;. We consider the two nonhorizontal sides of P as distinct and label them
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by o1,02. Let P’ be a parallelogram with sides parallel to those of P, where the
horizontal sides have length w and the nonhorizontal sides are longer than the ones
on P (in Figure 2| P’ is to the right of P).

Label the two horizontal sides of P’ by h} and k), and identify them by a trans-
lation. Partition the nonhorizontal sides of P’ into two segments. The segments
o', 0% are parallel to each other and have the same length as 01,09 and start at a
corner of P. The segments 7}, ¥4 comprise the remainder of the nonhorizontal sides
of P’ (and in particular, have the same length). Identify 71 to v} by a translation,
and identify o7, 0% to 01,02 by a translation so that each o is attached to the o;
with the opposite orientation. Let M’ be the translation surface corresponding to
this presentation. It is clear that M’ has the required properties.

O

Proof of Proposition[8.3. The proof is by induction on Y a;.

Base of induction: The base case is the stratum #(aq,0°) — that is, one
singular point (removable or non-removable) of order a;, and some number s > 1
of removable singular points. In this case, we take a surface in H(a1) which is made
of one horizontal cylinder. We label the singular point by £; and place additional
removable singular points &a,...,&s41 in the interior of the cylinder, at different
heights (so that the resulting surface has no horizontal saddle connections between
distinct singularities) and so that & and ; are on opposite sides of a cylinder.

Inductive step: Suppose H' = H(ay,...,a;) is our stratum, where at least
two of the singularities are non-removable. Let p’, ¢’ be labels of singular points
for surfaces in H’, corresponding to indices 7 # j. To simplify notation, assume
i = 1,7 = 2. There are three cases to consider: a; = a; = 0, or one of a;,a; are
positive, or both are positive.

If a; = a; = 0, then by assumption, £ > 4. We take a cylinder C on a fully stably
completely periodic surface M in H = H(a1,...,a;,...,4a;,...,a;). The notation
a; means that the symbol should be ignored — that is, on a stratum of the same
genus with & — 2 > 2 singular points obtained by removing two removable singular
points. We place two singular points marked p’, ¢’ in the interior of C at different
heights. If a; > 0 and a; = 0 is zero, we take a fully stably periodic surface M in
H(ai,...,a;,...,4;,...,a;), find a cylinder C on M whose boundary component
is made of saddle connections starting and ending at &;, and place a marked point
labeled &; in the interior of C. If a; and a; are both positive, we use the induction
hypothesis to find a surface M € H(a1,...,a;—1,...,a;—1,...,a;) with a cylinder
whose boundary components see §; and &;, and we perform the surgery in Lemma

to this cylinder. O
Lemma 8.5 (Two surgeries involving genus two surfaces). Let H = H(by,...,bg)

be a stratum of translation surfaces, and let M € H have a horizontal cylinder C,
with circumference c. Let p and q be singular points with order b;,b;, respectively,
such that one boundary component of C only sees singularity p and the other only
sees singularity q. Then for any wy,ws > 0, there exists M’ € H' = H(by,...,b; +
2,...,b; +2,...,by) which has three cylinders Cy,Cy,Cs with circumferences c +
w1 +we, w1 and we, respectively. The complements M ~.C and M'~ (C1UC2UC3)
are isometric by an isometry preserving the labels of singular points, and C1,Cy, Cs
all have one boundary component that sees only p, and another that sees only q.
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FIGURE 3. First option for M’ in Lemma Attaching the sub-
surface on the right increases the genus by 2. Unlabeled edges are
attached to M’ ~\ (C1 UCy U Ch).

FIGURE 4. Second option for M’, with a different spin.

Thus, if M is fully stably periodic, so is M'. Moreover, if the b; are all even, so
that H' has even and odd spin components, we can choose M’ to be in either the
even or odd connected component.

Proof. Once again, we encourage the reader to consult Figures [3| and

In Lemma [8.4] we made a slit in M, running through P from top to bottom,
and glued in a torus with a slit. In this case, we make an identical slit, this time
gluing in a genus two surface with a slit. This surface is presented in Figures|3[and
as made up of three rectangles. It is straightforward to check that M’ € H’ and
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FIGURE 5. Modifying the symplectic basis. Gluings as in Figure

that it has cylinders satisfying the desired properties. It remains to check the final
assertion about the parity of the spin structure.

Recall from [KZ| equation (4)] that where defined, the spin structure of a surface
M of genus g can be computed as follows. Let «;,3; (where 1 < i,j < g) be a
symplectic basis for Hy (M), realized explicitly as smooth curves on M. This means
that all of these curves are disjoint, except for «; and ; which intersect once. For
each curve ~, let ind(y) be the turning index — that is, the total number of circles
made by the tangent vector to 7y, as one goes around . The parity of M is then the
parity of the integer Y7_, (1 + ind(;))(1 + ind(8;)). It is shown in [KZ] that this
number is well defined (independent of the choice of the symplectic basis) when all
the singular points have even order.

Suppose M has genus g and is equipped with a symplectic basis. Since any
non-separating simple closed curve can be completed to a symplectic basis, we can
assume that «q is the core curve of C, and the other curves in the basis do not
intersect the saddle connection from p to g passing through C'. We construct a sym-
plectic basis for M’ in both cases, by modifying a1, keeping s, ..., a4, 51, ..., By,
and adding new curves ag41, 0g+2, Bg+1, Bg+2. The modified curves are shown in
Figures 5] and [f] and the reader can easily check that these new curves still form a
symplectic basis and that these two choices add two numbers of different parities
to the spin structure. O

Note that in Proposition we care about all connected components of strata.
We need to record some information about the classification of connected compo-
nents of strata, due to Kontsevich and Zorich. A translation surface is hyperelliptic
if it admits an involution which acts on absolute homology as —Id (see [FM] or
[KZl, §2.1] for more details). A connected component of a stratum is hyperelliptic
if all surfaces in the component are hyperelliptic.

Proposition 8.6 ([KZ|, Theorems 1 & 5 and Corollary 5 of Appendix B). Let
H(ai,...,ar) be a stratum with a; > 0 for all i. The following holds:

e 7 has three connected components in the following cases:
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FIGURE 6. Modifying the symplectic basis, second case. Gluings
as in Figure 4| Note the change in the rotation number of B412.

—k=1a1 =29 —2,9 >4

—k=2,a,=ay=g9g—1, g >5isodd. One is hyperelliptic, and the two
non-hyperelliptic strata are distinguished by the spin invariant.

e H has two connected components in the following cases:

— All of the a; are even, g > 4, and either k > 3 or ay > as. The
components are distinguished by their spin.

— a1 = ay and g is either 3 or is even. One of the components is hyper-
elliptic and the other is not. When g = 3, the hyperelliptic component
is even, and the other one is odd.

e H is connected in all other cases.

Proof of Proposition[8.2. The proof will be case-by-case. Here are the cases:
(i) H(1,1).

(ii) All the a; are nonzero, and H is connected.

(iii) All the a; are nonzero, and H has two connected components distinguished
by spin.

(iv) All the a; are nonzero, and H has two connected components distinguished
by hyperellipticity.

(v) All the a; are nonzero, and H has three connected components.

(vi) Some of the a; are zero.

Case @ There is just one connected component, and the desired surface is
a Z-shaped surface, with three horizontal cylinders C7,C5,C3 of circumferences
c1,c1 4¢3, c3, where Cp, Cs are simple. We put all of the removable singular points
in the interior of C5 and choose ¢y, ¢z so that ¢;/(c1 +¢3) ¢ Q. It is clear that with
these choices, the conditions are satisfied.

Case The stratum H is connected, and we have at least two singularities of
positive order. So with no loss of generality, they are labelled 1 and 2. The result
follows from Lemma applied to a surface in H(a; — 1,a9 — 1,as,...,a;) and
taking w ¢ cQ, so that w/(c + w) ¢ Q.
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FIGURE 7. A surface in H"vP(2,2).

Case We apply the surgery in Lemma with wy /we ¢ Q. Namely, if p
and g are labelled 4, j, we let b; = a; — 2, bj = a; — 2 and b, = a, for £ # 1, j.

Case . There are two connected components. One is hyperelliptic; one is
not. This means that a; = ag and either ¢ = 3 (in which case a3 = aa = 2) or
g > 4 is even (in which case a; = a3 = g—1). In this case, we give explicit surfaces,
one in each connected component. The first surface (the #(2,2) case is shown in
Figure [7)) is a ‘staircase’ surface made of gluing 2¢g rectangles to each other. The
rectangles are labelled (k, B) and (k,T) for k = 1,...,9. The top (respectively,
bottom) of (k, B) is glued to the bottom (resp., top) of (k,T) for k =1,...,¢, and
the left (resp., right) of (k,T') is glued to the right (resp., left) of (k + 1, B) for
k=1,...,9 — 1. The horizontal sides of (1, B) are glued to each other, as are the
horizontal sides of (g, T). This surface is hyperelliptic since it has a hyperelliptic
involution rotating each rectangle around its midpoint, and this involution swaps
the singularities (see [KZl Remark 3]). The second surface is obtained as follows.
We first construct a hyperelliptic surface in H(a; — 2,a2 — 2) as in the previous
paragraph. Then we perform the surgery described in Lemma The resulting
surface has a horizontal cylinder intersecting three vertical cylinders and thus, by
[Li, Lemma 2.1], is not hyperelliptic. See Figure[§|for an example in (2, 2). In both
of these constructions, there are no restrictions on the sidelengths of the rectangles,
and we can easily arrange that two of the circumferences are incommensurable.
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FIGURE 8. A surface in H""hp (2 2).

Case |(v)l In this case, a; = a2 =g — 1 for ¢ > 5 odd. Applying the argument
in Case We obtain the required surfaces in the odd and even connected com-
ponents. To obtain the required surface in the hyperelliptic component, we use the
‘staircase surface’ described in Case

Case . Assume with no loss of generality that the removable singularities
are labelled k' +1, ...,k for some k' > 2, and let H' = H(aq,...,ar ). Note that the
singularities p and ¢ have label in {1,...,k’}. Apply the preceding considerations
to obtain a surface in H' with the required cylinders. By examining the proof in
all preceding cases, one sees that the number of horizontal cylinders on this surface
is at least three; that is, there is at least one cylinder Cs which is distinct from the
cylinders C1, Cs, and we modify M by adding k — &k’ points in general position in
the interior of C3, to obtain the desired surface.

O

9. ZERO ENTROPY

In this section, we prove the following result:

Theorem 9.1. Let H be a stratum for which dim Z > 0, let z € Z ~ {0}, and let
w be a probability measure on H such that Rel,(q) is defined for p-a.e. q. Assume
that p is Rel,-invariant and ergodic, and assume in addition that

(9.1) there is t, — oo so that (g_¢, )« converges to a probability measure

(in the weak-* topology). Then the entropy of Rel, acting on (H,u) is zero.
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For the proof of Theorem we will need an estimate showing that points stay
close to each other for times up to L, provided their initial distance is polynomially
small (as a function of L). To make this precise, we will use the sup-norm Finsler
metric on H, which was introduced by Avila, Gouézel and Yoccoz [AGY] and whose
definition we now recall. For ¢g, g1 belonging to the same connected component of
a stratum H, we write

1
92 dist(an,a2) = inf || (Ot
0
where 7 : [0,1] — Hu ranges over all C! curves with v(0) € 7 1(q), (1) €
71 (q1), and || - ||q is a pointwise norm on the tangent space to Hy, at q, identified

via the developing map with H'(S,Y;R?). Below, balls, diameters of sets and
e-neighborhoods of sets will be defined using this metric. We can now state our
estimate.

Proposition 9.2. Let H be a stratum of translation surfaces with at least two
singularities, let Z be its real Rel space, let zg € Z, and let T be the map of H
defined by applying Rel,, (where defined). Then for every compact subset K C H,
there is Lo > 0, such that if g € H, L € N, L > Ly satisfy

(9.3) qe K and g_4q € K, where €d§f210g L,
then the maps T, ..., TY are all defined on B (q, %), and we have

. ; 1
j:rrllix.)'(’L diam (TJ (B (q, L5>>> —L—o0 0.

We have made no attempt to optimize the power 5 in this statement.

Our proof of Proposition will use some properties of the sup-norm metric.
They are proved in [AGY]; see also [AG] and [CSW], §2]. Our notation will follow
the one used in [CSW].

Proposition 9.3. The following hold:

(a) For all qo,q1 and all t € R, dist(g:qo, g:q1) < eldist(qo, q1).

(b) The metric dist is proper; that is, for any fized basepoint qq, the map q —
dist(q, qo) is proper. In particular, the e-neighborhood of a compact set is
pre-compact, for any e > 0.

(¢c) The map q — | - ||q is continuous and hence bounded on compact sets.
This means that for any compact K C Hy,, there is C > 0 such that for
any do,q1 i K, the norms || - |lqo, || - llq, are bi-Lipschitz equivalent with
constant C.

(d) The infimum in is actually a minimum that is attained by some curve
.

With these preparations, we can give the following:

Proof of Proposition[9.2. Write BY B (a,75) Adéfg,g(B) (note that A and B

both depend on L and ¢, but we suppress this from the notation). Let K’ be the
1-neighborhood of K, which is a pre-compact subset of H by Proposition b).
Since diam(B) < %, Proposition a) implies that

) 2
(9.4) diam(A) < 75
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It follows from (9.3) that AN K # &, and therefore, A C K’. Since

. 1
(9.5) max [lje 0]l < 0]l 00 0

.....

for all large enough L (depending on K'), we have that Rel;.—¢, (¢') is defined

for ¢ € K’'. Since ¢} dﬁfReljeszO o0 g_¢(q1) is defined for q; € B, we have from
([2-3) that T9(q1) = Rel;j., (1) = ge(q}) is also defined. This proves that the maps
T,T2,...,T" are all defined on B.

Furthermore, this computation shows that 77 (B) = g¢(Rel;.-¢,,(A)), and so by
Proposition a), it suffices to show that

L? - diam (Reljo-e, (4)) =100 0.

Taking into account ((9.4) and (9.5)), it suffices to show that for any compact K’,
there are positive €, C' such that for any qo,q1 € K’ with dist(qo,q1) < €, and any
z € Z with ||z]| < &, we have

(9.6) dist(Rel, (g0, ¢1)) < Cdist(qo, q1)-

Informally, this is a uniform local Lipschitz estimate for the family of maps defined
by small elements of Z.

To see , let €1 be small enough so that for any ¢ € K’, the ball B(q,2¢;) is
contained in a neighborhood which is evenly covered by the map 7 : H,, — H, and
let C be a bound as in Proposition ¢), corresponding to the compact set which
is the 2e;-neighborhood of K’. Let ¢ < &1 so that for any z € Z with ||z]] < e
and any ¢q € H, dist(q,Rel,(q)) < e1. If dist(go, q1) < &, then the path « realizing
their distance (see Proposition d)) is contained in a connected component V of
771 (B(qo,€1)). Let

3:[0,1) = H' (S, % R?),  3(t) & dev(y(t)) — dev(7(0)),

let
71 déf Relz o,

and analogously define
71[0,1) = HY(S, 5 R, 1(8) = dev(n (1)) — dev(n (0)).

By choice of € and e1, the curve =7 also has its image in V. Since Rel, is expressed
by dev|y as a translation map, the curves 7,7, are identical maps. When computing
dist(Rel,(qo), Rel.(q1)) via , an upper bound is given by computing the path
integral along the curve v;. We compare this path integral along 7;, with the path
integral along v giving dist(go,q1). In these two integrals, for any ¢, the tangent
vectors 7/ (t), 7 (t) are identical elements of H'(S,¥;R?)) for all ¢, but the norms
are evaluated using different basepoints. Since these basepoints are all in the 2¢;-
neighborhood of K’, by choice of C, we have ||| (t)[l,, ) < ClV'(t)|ly) for all .

This implies . U

We now list a few additional results we will need. The first is the following weak
Besicovitch-type covering Lemma for balls of equal size.

Proposition 9.4. For any compact K C H, there is N € N so that for any
€ (0,1), for any G C K, the collection ¢ {B(q,r) : ¢ € G} contains N finite
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subcollections Fi, ..., Fn satisfying G C Ufil U Fi, and each collection F; consists
of disjoint balls.

Proof. The argument is standard; we sketch it for lack of a suitable reference.

We first claim that given a compact K, there is N so that for any r € (0,1),
the largest r-separated subset of any ball of radius 2r has cardinality at most N.
Indeed, this property is true for Euclidean space (for any r) by a simple volume
argument and is invariant under biLipschitz maps (up to changing the constant
N). For any compact K, let K; be the 1-neighborhood of K in H, which is also
compact by Proposition b) and contains all balls in H which are centered in K
and have radius 7 < 1. Now the claim holds by Proposition [9.3{c).

We now inductively choose the F;. Let F; be a maximal collection of disjoint
balls of radius r with centers in G. For ¢ > 2, suppose Fi,...,F;_1 have been

chosen, let G; %G < U;;ll U F;j, and let F; be the maximal collection of disjoint
balls of radius r with centers in G;. Clearly, G D G; D -+ D Gy, and we need
to show that Gy = &. Since F; is maximal, for any x € G; there is «’ which is

the center of one of the balls of F;, so that d(z,z’) < 2r. If x € Gyy1 # &, then

the ball B(x,2r) contains x1,...,xyx such that x; is the center of one of the balls
of F;. For ¢/ > i, d(x;,xy) > r since x;y € Gy. This contradicts the property of N
from the preceding paragraph. (I

We will need to know that volumes of balls do not decay exponentially:

Lemma 9.5. For any probability measure pn on H, for any n, for p-a.e. x, we have

(9.7) 1_i>1(1;1+ —rlog(u(B(x,r"™)) =0.

s

Sketch of proof. We fix n. Observe that (9.7) says that for almost every point x, for
1

alle >0, e ™ is o(u(B(x,7))), as r — 0. Let K be a compact subset of H, and
let d = dimH. For all small enough r, we can cover K by O (r’d) balls of radius
r; we let B, = {B(x;,r)} denote such a finite collection of balls. If B = B(z,r),
then any element of Bz that contains x is contained in B and hence has measure
at most u(B). For k € N, let

& = {B € By : u(B) < e_Qk/(zn)},
3
so that

(9.8) [ ( U B> =0 (2’“1@—2’““2"”) .

Beé&y

Since K was arbitrary, it suffices to show that a.e. x € K belongs to at most finitely
many of the sets &; this follows from and Borel-Cantelli. O

We also need some standard facts about entropy. In the following proposition,
X is a standard Borel space, T : X — X is a measurable map, Prob(X)” denotes
the T-invariant Borel probability measures on X, u is a measure in Prob(X)?, P
is a measurable partition of X, and h,(T,P) is the entropy of T with respect to
p and P. Then the entropy of T" with respect to u is supp hy(T,P), where the
supremum ranges over all finite P. For © € X, P,(z) is the atom of the finite
refinement \/!_, TP containing z.
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Proposition 9.6. We have the following:
(1) [Shannon-McMillan-Breiman Theorem.] If u is ergodic, then for p-a.e. x,
we have |
L~ Tog(u(Pu(2)))

n—00 n

(2) [Entropy and convex combinations.| If u = fpmb(X)T v df, for some prob-
ability measure 6 on Prob(X)T, then

= h,(T,P).

h,(T,P) = / ho (T, P) do.
Prob(X)T
(3) [Partitions with small boundary.] Let X be a locally compact, separable
metrizable space. Then h,(T) = suppepay, hu(T, P), where Party denotes
the finite partitions of X into sets P; satisfy p(0P;) =0 for all i.

For items (1) and (2), see, for example, [GI, Theorems 14.35 & 15.12] or [ELW,
Chapters 2 & 3]. Item (3) is left as an exercise (see [ELW, Pf. of Theorem 2.2]).

Proof of Theorem[9.1. We assume that the entropy h = h,,(T) satisfies h > 0, and
we will derive a contradiction. Using Proposition 3), we choose a partition
P = {P;}¥_, so that u(9P;) = 0 for each i and h,(T,P) > 4. Choose K compact
so that p(K) > 3 and

(9.9) limsup p (g:(K)) > §

t—o0 4

A compact set with this property exists by the nondivergence assumption (9.1)).
Let N and ry be as in Proposition for this choice of K. Using the Shannon-
McMillan-Breiman theorem, let Ly be large enough so that for all L > Lg, the

! log(s(P1())) _
def —log(pu\£n(q
= e~ 7 —
w {q 7 < 2}
satisfies
1

Our goal will be to choose some L > Lg for which we have a contradiction to (9.10).

Below, we will simplify notation by writing B (q, %) as By, or simply as B.
Let

e B
G {q:u(Bq,LﬂW) > M(;’L)}
We will show below that
1
(9.11) there are arbitrarily large L for which p(K NGr) > —-.

3

We first explain why leads to a contradiction with . Let L > Ly be
large enough so that diam(B) < 2 < 7o and u(K NGy) > 5, and let

cY {Bgr:q€GL}.
By Proposition there is a subcollection F C C, consisting of disjoint balls, so
that

u(KnGquf) E%M(KHGL)>SLN.
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Then we have

pW) = p(WalJF) = > uwnn) >y

BeF BeF

(B

~

pUF) 1

> FENE
- 2 ~ 6N

[\D ‘

where the equality follows from the disjointness of F and the strict inequality follows
from the definitions of G, and C. This gives the desired contradiction to (9.10).

It remains to show (9.11)). Choose € > 0 so that
h
(9.12) 21¢ log(k) < 3

Given any Ly, let L > Ly, and let X = Xo(L) C K such that ;(Xo) > %, and so
that for any g € Xo, we have (9.3). Such L and Xy exist by . Using Lemma
0.5 with n = 5, we can take L large enough so that

99 def -
(9.13) p(X1) > 100 where X; = {q 1 (BgL) >k EL} )
and by making L even larger, we can assume that
1
(9.14) k10l < 3

Now choose r > 0 so that

k
(9.15) w(V) <e, where v {y : dist (y, U aPi> < 7“} :

This is possible because (| J; 0P;) = 0.
We claim that

2 .
(916) p(X2) > 2, where Xy e Xy {0<i<L:TqeV}| <10eL}.

To see this, define

EY{q:{0<i<L:TqeV}| >10:L},
and let 1y denote the indicator function of V. Using (9.15)), and since p is T-
invariant,

L
eL>Lu(V) = Z/lv (T'q) dp > 10eLu(E).
i=1

Dividing through by 10Le, we have u(E) < 15, giving (9.16).
Let

L
/Bdéfkfmd, and write PE) \/ T7'(P).
i=1
For each ¢, we let P(“:5) be the elements of P(*) which intersect B = B, 1 and
partition P into two subcollections defined by

PP P e PER  u(P) = u(B)}  and PU IR (pED),

We claim that if ¢ € X5, then

(9.17) 1 (BmUpét_lzéL)> > (1 _ kfweL) 1 (B) %



ERGODIC THEORY OF REAL REL 27

To see this, we note that for g satisfying the conclusion of Proposition the
cardinality of P(B) is at most kHOSI=L:T"a€V}H  Inpdeed, for such ¢, whenever
Tiq ¢ V, T*(B) is contained in one of the P; (and for the other i, we use the
obvious bound that T%q € V, T* (B) could intersect all of the P;). For ¢ € X5, we

also have that f~1/2 > k‘{OSiSL:TiQGVH, and this implies that
L _ _
p(BOlUPGR) < 87128u(B) = k-1 (),
and this proves (9.17).
Ifge XiNXsand ¢ € By N UPé?g’:L), then we have

w(PL(q')) = Bu(Bqg,r) > k™,

and this implies via (9.12)) that ¢’ € W. This and (9.17)) shows that X; N Xy C Gp.
Thus,

2 1
1 >uXinNXg)>=-——>—
(0.19 WG 2 XN X 2 5 - >
and we have shown (9.11). O

Proof of Theorem[1.6. Denote by T the map defined by Rel,, (where defined).
Since m, is G-invariant, it is rotation invariant, and thus m,-a.e. ¢ has no hori-
zontal saddle connections. In particular, for such ¢, Rel,(q) is defined for all z € Z.

Assume first that my is ergodic. By G-invariance of m., we have (9.1)), so the
hypotheses of Theorem are satisfied for y = my. Now suppose m, is not
ergodic, and let p = fProb(X)T v df be the ergodic decomposition of u, where

is a probability measure on Prob(X)T such that f-a.e. v is ergodic for T. By
Proposition 2), it suffices to show that the entropy of v is zero for #-a.e. v, and
thus, we only need to show that assumption holds for #-a.e. v. This follows
from the g;-invariance of m,. Indeed, by invariance and regularity of m,, for any
g > 0, there exists a compact K, so that for all t, m,(g;(K)) = mg(K) > 1 — &2
Thus, for every t,

O{v:g-wv(K)>1—¢c})>1—c.
Thus, for any € > 0, there is K so that the set of v, for which (g_¢,).v(K) >1—¢
for a sequence t; — 00, has #-measure at least 1 —e. Since € was arbitrary, we have

19.1)) for f-a.e. v. 0
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