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Abstract— This paper develops a new Distributed approach for
solving the inverse problem of a Differentiable Dynamic Game
(D3G), which enables robots to learn multi-robot coordination
from given demonstrations. We formulate multi-robot coordina-
tion as the Nash equilibrium of a parameterized dynamic game,
where the behavior of each robot is dictated by an objective
function that also depends on the behavior of its neighboring
robots. The coordination thus can be adapted by tuning the
parameters of the objective and the local dynamics of each robot.
The proposed algorithm enables each robot to automatically
tune such parameters in a distributed and coordinated fashion —
only using the data of its neighbors without global information.
Its key novelty is the development of a distributed solver for
a diff-KKT condition that can enhance scalability and reduce
the computational load for gradient computation. We test the
proposed algorithm in simulation with heterogeneous robots
given different task configurations. The results demonstrate
its effectiveness and generalizability for learning multi-robot
coordination from demonstrations.

I. INTRODUCTION

The control and coordination of large-scale multi-robot
systems are challenging due to the need for sequential,
coordinated decisions. Dynamic game theory provides a
framework to model interactions among robots based on local
observations and coupled objectives [2], [3]. Designing these
objective functions is complex and often relies on heuristic
methods. Alternatively, demonstrating desired behaviors is
more intuitive, leading to the interest in inverse dynamic game
(IDG) approaches to learn objectives from demonstrations [4].
While methods exist for single-robot cases, such as imitation
learning and differentiable optimal control [5], scalable
solutions for multi-robot systems are limited due to the high
dimensionality. We propose a new Distributed Differentiable
Dynamic Game (D3G) framework for solving IDG, enabling
each robot to learn its objective function in a distributed
manner using only local data. The core of our approach is
a distributed solver that utilizes the differentiability of the
KKT condition (diff-KKT) to improve scalability and reduce
computational complexity. A conceptual diagram of D3G
with a motivating example is in Fig. 1.

Learning from demonstrations can be formulated as a prob-
lem of inverse optimal control (IOC), also known as Inverse
reinforcement learning, seeking to learn an objective function
of a decision-making agent from expert demonstrations [6].
One type of method for solving IOC directly minimizes the
residual of the optimality (KKT) conditions by assuming that
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Fig. 1: Each robot possesses a local optimal control P;, which
together constitutes a dynamic game. The Nash equilibrium of
the game reconstructs robot coordination. Problem of interest:
Distributed inverse learning (blue) of parameterized objective
functions from demonstration for robot coordination. The learned
objective is generalizable (red) to new environments.

the demonstration is optimal and fulfills these conditions [7].
Another common approach is built upon a bi-level structure,
containing a forward loop and an inverse loop. The forward
loop solves a standard optimal control problem with the
current objective estimate. Available methods for this include
dynamic programming [8], trajectory optimizations [9], and
reinforcement learning [10]. The inverse loop updates the
objective estimate such that a trajectory of the forward loop
matches the demonstrations by minimizing certain losses.
Different methods for IOC vary in how to accommodate the
forward and inverse loops [11]-[13], and also how to define
loss functions, such as least square [11], [14], maximum
margin [12], maximum entropy [13].

Dynamic game generalizes optimal control to a multi-
robot setup, where each robot’s objective functions depend
on its own action and the actions of other robots over time.
Addressing such sequential decision-making processes often
involves treating agents’ entire state and action trajectories as
variables [15], [16]. The set of robots’ planned trajectories,
when no one can improve its objective function by changing
its behaviors, constitutes the solution to the game called
open-loop Nash equilibrium [17]. Common approaches to
obtaining a Nash equilibrium include: designing an algorithm
whose dynamics asymptotically converge to the desired Nash
equilibrium [18], [19]. To satisfy dynamics constraints, [20]
introduced a projection operator that restricts the gradient
flow to a feasible set, ensuring compliance with an agent’s
local constraints. An alternative approach is to compute Nash
equilibrium directly from its holding conditions [21], which
can be done by generalizing the Pontryagin’s Maximum
Principle/KKT condition [22] to a game theoretical setup.
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Analogous to IOC, dynamic games also have their inverse
problem, i.e., given robots collective trajectories satisfying
a Nash equilibrium, how to inversely learn the objective
functions the robots aim to optimize [4]. Existing works
for solving inverse games have three main categories. The
first category aims to solve the inverse game by applying
derivative-free filter-based approaches built upon Bayesian in-
ference [23], [24], which however has high sample complexity
and requires exact observations of state. The second category
solves the inverse game by equilibrium-constrained maximum-
likelihood estimation (MLE), which uses the optimality
conditions of the open-loop Nash equilibrium, to formulate a
constrained optimization problem [25]. This type of method
can explicitly handle noisy data and partial observations.
The third category follows the minimization of residual
methods [26], which seek to minimize the residual of the first-
order necessary conditions of an open-loop Nash equilibrium.
These works are further extended in [27], [28] to involve
state and input constraints.

The approach proposed in this paper is similar to the
ones in the last category [26], [28]. However, we note
that existing methods for solving inverse dynamic games
rely on a centralized process, where the forward loop and
inverse loop are solved using the global information of all
robots. Consequently, the computation and communication
complexity grows exponentially with the number of robots and
planning horizons. While there exist distributed approaches
for solving the forward problem [15], [18], [29], the scalability
challenge remains for addressing the inverse problem.

Statement of Contributions: We study the problem of
learning multi-robot coordination from demonstration by
formulating it as a differentiable dynamic game. Each
robot in the game satisfies its dynamics and optimizes a
coupling objective function. Both the dynamics and objective
of each robot are unknown and learnable. We propose a
D3G framework to inversely solve the dynamic game by
minimizing the mismatch between the predicted multi-robot
trajectories of the dynamic game and the given demonstrations.
The learning update of D3G is based on local gradient descent.
This allows a fully distributed algorithm design, where each
robot uses the diff-KKT condition to compute its parameter
update, by only using the data of its neighbors without global
information. The effectiveness and scalability of D3G are
verified using two types of robots given four different task
configurations.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. Parametric Dynamic Game for Multi-robot Coordination

Consider a system of m robots. Suppose each robot solves
its own optimal control problem P;(6;) parameterized by a
vector 6; € R™ as follows:

T-1
i (6.) = gt ut xb . 0, (2T 2T 9.
H&Iin '-7Z<91) ZQ(xwuzamNnel) +hl($z ax./\/nel>7

t=0

x; = {29, 2T} and w; = {uf, - ,ul '} fi(-) € R™
is the robot dynamics; 7;(-) € R is the local control objective
function with ¢f(-) € R and h;(-) € R denoting the running
and final costs, respectively. To characterize the fact that
connected robots have coordinated behaviors, their objective
functions are set to be coupled, i.e., J;(-) depends not only
on the state/input of robot 7, but also on that of its neighbors,
denoted by z}. = {2} | j € N;}, with \; being the
neighbor set of robot 7. The neighborhoods of robots define
the communication topology G across the whole system,
whose vertices are associated with the robots. We assume G
is undirected. Further define &; = {x;, u;}, which represents
the full trajectory of robot ¢ for all time steps.

Since each robot only makes local observations, the
collection of optimal control problems P;(6;) across all robots
forms a general-sum dynamic game P(O) parameterized
by © = col {#1,---,0,,} € RE"", Given the objective
functions J;(0;) to be mutually coupled, the ‘forward’ (v.s.
inverse) problem of the game P(O) is to obtain a set
of state-input-trajectories £ (0) = {x}(©),u’(©)} for all
i €{1,---,m}, called open-loop Nash Equilibrium (N.E.)',
satisfying:

Ji(&7(0), &5, (0), 0:) < Ji(&, &X,(O), 6;)
S.t. €i € 51(91)

where =;(0;) is the set of all feasible trajectories of robot 4
satisfying its initial condition and system dynamics. Z;(6;) is
a function of #; because the dynamics f;(-) is parameterized
by 6;. We use the (N.E.) of P(O) to characterize distributed
multi-robot coordination, where each robot determines its
trajectory £;(©) based on the local information of its
neighboring robots. £(©) is a function of tunable O.

(N.E)

B. Problem Formulation

While lots of effort has been given to solve the ‘forward’
problem of P(0), i.e., calculating its (N.E.) given robots’
objective functions, this work focuses on the ‘inverse’ prob-
lem: Which objective functions (the parameters for ©) can
reconstruct desired multi-robot coordination strategies that
are aligned with given demonstrations.

To this end, we first introduce the following assumption.

Assumption 1: Both J;(-) and f;(-) are twice differen-
tiable. Given other variables being fixed, the cost function
Ji(+) is strictly convex on x; and u;. The feasible trajectory
set Z;(6;) is convex and bounded.

Assumption 1 ensures the existence and uniqueness of a
pure (N.E.) for P(O) [30, Theorem 4.3]. It imposes some
mild conditions on f;(-) and J;(-), which are common in the
existing literature for game-theoretic studies of multi-robot
systems [15], [18], [29] . These conditions generally hold
for physical models of simple mobile robots and regular
cost functions such as distance to the goal. In the case that
=:(0;) is unbounded, the existence and uniqueness can still be
guaranteed [30, Corollary 4.2] if we further assume J;(-) —

st alt™ = fi(al ul,0;) given 9. (P;(0;)) oo as |x;| or |u;| — oco. This holds for most cost functions.
- i t i ’
Here, for robot Z.’ z; € R™ al.ld u; € R™: are the robot’s 'In this paper, we refer to N.E. as an open-loop Nash equilibrium, in
state and control input at each time step ¢ € {0,1,2,--- ;T};  contrast to the feedback Nash equilibrium [30, Chapter 3].
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Problem of interest: Given the demonstrations of robot
trajectories {€¢,&4,--- ¢4}, d € {1,---,D}, that are
associated with the (N.E.) of a game P(©), with unknown
©. Suppose each robot i locally knows P;(-) and £. We
aim to develop a fully distributed algorithm over G such that

all robots jointly learn the parameter ©* = col {67, -- ,0%,}
by minimizing the following loss function
i Li(£:(0), €.
oo R ; (€1(0).€)) (M
The loss function in each robot is defined as
D
Li(€1(0),€0) = Y111 (0) - &3 ®
d=1

By minimizing (1), we learn a proper ©*, i.e., §7 for each
robot, to best mimic/reproduce the demonstrations (from
experts) using the (N.E.) of the parameterized game. In the
above definition of the loss (2), we consider the robot’s
trajectories at each time instant to be equally important, but
other definitions of the loss [11]-[13] are also applicable.

ITI. INVERSE LEARNING FOR DISTRIBUTED
DIFFERENTIAL DYNAMIC GAME

A. Method Overview

To solve the formulated problem, we develop a fully
distributed learning paradigm, where each robot updates its
own 0F for P;(0;) using only its local data and neighboring
communication. We are enlightened by local gradient descent
to propose the following algorithm,

k dLi(&(9), &)

e 3)

Ot =0F —n

where 7* is the learning rate. Compared with the global full
gradient, local gradient descent requires stricter step sizes to
ensure algorithm stability; however, it achieves significant
computational tractability. Similar techniques are used in
many machine learning methods, such as actor-critic methods,
where the actor and critic models are updated in a decoupled
manner [31]. In addition, recall that the global and local loss
functions defined in (2) and (1) are both non-negative. If
the demonstrations and the generated trajectories can match
perfectly, Y., £; and £; share the same minimizer at 0.
The effectiveness of ‘local gradients’ will be further justified
by our experiments.

The implementation of update (3) is summarized in
Algorithm 1, and it relies on the following chain rule to
compute the gradient.

dLi(€7(0),&)| _ 9Li(&;(9). &) 0€7(O)
db; 0k 9€:(0) £ (OF) 90, 0k
)
For the first term of the chain rule, the derivative %ﬁ(i@)

is readily accessible because the function £;(£}(©),£%) is
explicitly defined. Its evaluation point £ (©F) relies on
solving the forward problem of the game to obtain its
(N.E.) with current parameter ©F. In this paper, we achieve

Algorithm 1: Inverse Learning for Distributed Differ-
ential Dynamic Game, the local update for robot i..

Input Demonstrations of trajectory £¢.
Initialize a random guess for ¥=0.
3fork=0,1,2,--- do

* d
4 Compute % based on definition (2).
5 Solving the forward problem of the dynamic game
to obtain £ (O%). (cf. Algorithm ??, Appendix.)

[ S

6 Solving a diff-KKT condition to obtain 6%9(_@).
(g d i
7 Compute M uSiIlg (4)
db; ok
Lv « d
8 Update: 05" = oF — " dLi(§7(0),&7) ]
db; ok

9 end
10 Output 6;

this by employing an existing distributed Nash equilibrium-
seeking algorithm proposed in [18]. More details of the
implementation could be found in [1].

The major obstacle arises from the second term of the
chain rule, where 9¢;(©)/90, characterizes the change in the
robot’s (N.E.) trajectories corresponding to the change from
its local parameter. Given a general optimal control system,
its solution trajectory &;(©) does not admit an analytical
form. Thus, one possible way to compute 9€;(®)/a0, is by
numerical approximation [32]. However, the feasibility of this
approach is extremely challenging, due to the large number
of robots and the complexity of their trajectories considered
in this paper. Motivated by these, we next present a new
distributed method to compute 9€;(©)/s0,, whose idea is
based on differentiating the KKT condition [8] of the (N.E.)
with respect to the parameter © [11]. This yields a new
representation of the derivative that can significantly reduce
its computation burden, and the computation can be performed
in a distributed fashion.

B. A Fully Distributed Solver for Diff-KKT

In this subsection, we introduce a distributed and efficient
approach to compute the 9 (©)/ag, in (4). First, given z?,
define a compact form for robot ¢’s dynamics constraints
L= fial, ), 0:)
;= filal,ui,0;)

[REa

Fi(xi,u;,0;) = =0. (5

x? - fi(xzr_l’ uzr_lv 01’)

The (N.E.) of a game is the collection of the optimal
trajectories of the robots’ local optimal control problems.
Thus, define augmented functions

H; = Ji(xi,%n;, W, 0;) + N Fi(xi, 15, 60:), (6)

with A; = {\1, -+, A\, } being the co-states of the dynam-
ics constraints. Then for any O, the trajectory &;(0) =
{x7(0),u;(0)} must satisfy a distributed discrete-time
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KKT [33] condition, which reads: Vi € {1,--- ,m},
N
IR
Zif - F;,=0 (7¢)

Now, to obtain the 9€;(®)/a0,, our idea is to differentiate
equation (7) with respect to ©. This will provide us with a neat
and easy-to-solve equation set that directly takes 9¢;(©)/ag,
as variables. To visualize this, define
0x:(0) L, _ui©) [, _ON(©)
a@ I (2 a@ ’ (2 a@ . ( )
Since all variables in (8) are functions of O, differentiating
(7) with respect to © yields the following Diff-KKT:

MPX;+NPU; + > QFX,;+ SPA+Cf =0 ()
JEN;

MIX;+N/U;+ > Q) X;+S/A;+C/ =0 (9b)
JEN;

M)X;+ NJU; +C]) =0 (%)

with the application of the chain rule on the derivatives of
x7(©) and u}(©) and X (©) with respect to O:

K2

X, =

0°H, 0°H 0°H
My =S8 NP = =
! oxx2 8){*8u*7 @ = Ox;Ox}
o°H, om,
T oxroar T T Ox ook
0*H; 0*H; O*H;
B _ ? B _ ? B _ i
M= ourox:’ N = our?’ @ = urox;
s O°H; s O°H (100
5 = swon & T Guragr
O*H; 0*H; O*H;
A ? Y ? g ?
M= oxox N = aavour O T aavar (109

where we use % to denote the seconder-order derivative

of H;(-) evaluated at {o}(©),u*(©)}. All equations in
(10) are simple numerical matrices and are readily com-
putable from (7), because H;(-) is explicitly defined and
{x7(0),u;(0)}, A\ (O) are obtained from forward Nash
seeking algorithm given the current ©. To remark the
effectiveness of reformulation, given Assumption 1, results
in [33, Sec. 5.9.2] implies the existence and uniqueness
of solution to (7); results in [5, Theorem 1] implies the
uniqueness of X; and U, in (9).

Distributed lef—KKT Solver: Solving (8) from (9) gives
us the gradlent ( ) for each robot. However, solving
the equation in a centrahzed manner is not scalable as
the robot number grows. To address this, we notice that
the coupled terms, i.e., Q;;, X;, in (9) only exist among
connected neighbors j € A;. This motivates us to develop a
fully distributed solver to compute the gradient. To that end,
we rewrite all variables and matrices into a compact linear

Algorithm 2: Distributed Solver for Diff-KKT, the
local update for robot 1.

1 Input £(0F), 6%,

2 Compute \}(OF) using equations (7) with

£:(0) = {x:(6%),u; ().

3 Compute matrices A;; and A, ;, j € N; by (10) and
(12).

Acquire matrices Ay ;, { € N; from each neighbor ¢
of robot i. Assign Ay ; = 0 for ¢ ¢ N;.

Compose matrices W, CA'l by their definitions.

Initialize T =0, § € Ry, and Y;7=°, Z7=° as random
matrices with proper sizes.

while max;(|[Y;" ™ -~ Y|) > ey do

8 Exchange states Z] among neighboring robots.

9 State update:

~

AN W

=

o] =Y -Ci— ) (2] - 7)),
LeEN;

LORRED AR 2

Z[t = Z] + ov]

10 end
1 Obtain X;, U; from Y,” based on (12).

0€;(0) from {X;,U,} based on (8).
391‘ ok

—

-
[ ]

Output

equation form.

A Yi+ ) (A;;Y;)+Ci=0. (11)
JEN;
where for all 4 and j € N,
My NP oSe X |
M} N] S} A;
- (12)
© 00 ce
A= Q) 00|, Ci=|c!
Q00 o7 |

where Y; is the local unknown of robot ¢, A;; and A; ; are
known matrices, and Y, j € N is the coupled unknown
from ¢’s neighbors. Since each robot in the network possesses
an equation in the form of (11), to compute a set of Y;,

1€ {l,---,m} satisfying all these equation, we essentially
need to solve the following compact equation set
Y (TY+Ci) =0 (13)
i=1
T A —T T
where ¥; = [A,,.., A} ], C; = [0, o Cy\s0

ThTe matrix is a zero matrix if undefined. In éi, the matrix
C, is located at the ith block. By stacking the matrices

Ap; and C’Z , each row block of (13) is associated with
one (11) for ¢ € {1,--- ,m}. Further note that network G is
undirected, i.e., ¢ € Ny yields £ € A, thus, robot ¢ has access
to W; based on its local communication with its neighbors.
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Scenario ¢) Scenario d)

Fig. 2: Gazebo environment for scenarios c¢) and d).

Now, suppose each robot ¢ knows ¥; and 6'2-, we introduce
Algorithm 2 for the robots to efficiently solve its Y.

Algorithm 2 is fully distributed, in the sense that the
computation of each robot only relies on its own state and
the states of its neighbors. The convergence of the algorithm
is characterized by the following result:

Lemma 3.1: (Validity of Algorithm 2): Suppose the net-
work G is undetected and connected, suppose equation set
(13) has a unique solution, by Algorithm 2, if the positive
step-size ¢ is sufficiently small, the state Y,” of robot ¢ will
converge asymptotically to a state Y;*, where the set of
{Y;*,i=1---,m} forms a solution to (13).

The correctness of Lemma 3.1 follows our previous works for
solving coupled linear constraints using distributed network
flows [34] with a complete proof in [1].

IV. EXPERIMENTS

This section presents simulation experiments to validate the
effectiveness, scalability, and generalizability of the proposed
D3G approach for multi-robot coordination. The system
includes two types of robots: TurtleBot3 Burger and Waffle.
We consider heterogeneous settings, where each robot has
different dynamics, such as different radii, weights, and
velocity/angular ranges. Four scenarios are used: (a) fixed
swapping in open ground, (b) formation initialization using
the environment in the introductory Fig. 1, (¢) cooperative
payload transportation, and (d) formation maintenance using
the environments in Fig. 2. Simulations are done in Gazebo
via ROS. Robots can communicate with each other, but all
computations are performed locally.

Parameterization of objective functions: Fcuntion J; is
parameterized by considering a linear combination of the
following cost terms with unknown weights: formation
maintenance, which defines the positional relationship of
neighboring robots in terms of their relative positions, dis-
tances, or velocities; risk/obstacle avoidance, which employs
a reciprocal function to repel robots from given risk areas;
collision avoidance, which utilizes a reciprocal function
to prevent robots from colliding with each other; and
waypoint following, which provides sparse navigation cues
for navigating complex environments. We note that these
functions satisfy Assumption 1.

Experiment Settings in Each Scenario: We invite humans
to create several sets of trajectories (incorporating human-
induced random noise to optimal coordination trajectories
computed from N.E. of a game with parameter ©*) to serve
as the expert demonstration data. Using Algorithm 1, we learn
0 for each robot from those demonstrations. Additionally,
for each scenario, we test the generalizability of the learned
objective functions by applying them in a new environment

where the robots can still generate appropriate coordinated
behaviors. Details of simulation setups and results are as
follows:

Scenario a): We solve a multi-robot fixed swapping task.
As shown in Fig. 3-a, in the demonstrations, six robots are
initialized around a circle-like formation. Each robot navigates
to the diagonally opposite goal position on the other side of
the circle. Throughout the process, they must dynamically
adjust their positions to move without colliding. We test
the generalization of the learned objective function with an
increased number of robots, and the task is accomplished
very well. Fig.3-b shows an example with sixteen robots.

B Turtlebot3 burger

1
~
Y (m)
I
1

X (m) X (m)

(a) Inverse game solving: learning the fixed swapping task
from demonstrations. (Right: the reproduced motion)

B Turtlebot3 burger

] ]
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1 !
LR - ’
A )
~ -
~
e LN - e
E = £ - -
E - £
P - P
LR
44 . L} 44 o >
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# -
I '] )
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(b) Generalization of the learned objective with 16 robots.

Fig. 3: Learning fixed swapping tasks with sixteen robots.

Scalability of Distributed Solver: Using different numbers
of robots in scenario (a), we compare the computational
scalability of the proposed algorithm with the GT-IRL [26]
and IKKT [7] methods. The comparison result is presented
in Fig.4. Here, D3G is evaluated based on the per-iteration
time of Algorithm 1, which requires the convergence of
Algorithm 2 for the inverse pass and Algorithm 3 for the
forward pass. Since both algorithms are gradient-based and are
sensitive to initial values, we use the result of the last iteration
in Algorithm 1 as the initial values for the new iteration.
The stopping criteria are chosen such that the variables do
not change 1% of their initial values (around hundreds of
iterations). For GT-IRL, its forward pass employs a similar but
centralized gradient-based method to solve a dynamic game,
and the inverse pass uses a centralized linear equation solver.
The IKKT method uses a constraint optimization formulation,
which is solved iteratively without a forward/inverse structure.
From Fig. 4 and the trend of the data, we observe that as the
number of robots increases, D3G outperforms both GT-IRL
and IKKT in terms of computation time. The inverse pass of
D3G outperforms GT-IRL. For D3G, the local computation
of each robot is not significantly affected by the system size
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as the others, thanks to the distributed nature of the algorithm.
The increase in time is mainly because Algorithms 2 and 3
require more iterations to converge. In contrast, for centralized
algorithms, the computation time grows quickly due to the
increase in the number of variables and constraints.

I D3G: inverse pass

] D3G: forward + inverse pass
[ GT-IRL: inverse pass

] GT-IRL: forward + inverse pass
[ IKKT

4 6 8 10 12 14 16 18 20
Number of Robots

Fig. 4: Comparison of computation time with GT-IRL and IKKT.

Scenario b): As shown in the introductory example in Fig. 1,
three robots start from initial positions at 0 speed to initialize
a linear formation at the goal position, maintaining distances
of 0.8m and velocities of 0.2m/s. There exists a wide obstacle
that robots have to avoid. From the demonstrations, the robots
learn to adjust their formation to a ‘compact’ shape when
moving through the narrow space, then recover and form the
desired formation at target positions. To test the generalization
of the learned objective functions, we solve the learned game
but change the obstacle’s opening position from the middle
to the side. The robots can still generate proper coordination
to initialize the formation.

Scenario ¢): As shown in Fig. 5, three turtlebots start from
different initial positions and cooperatively transport a slung
payload. We assume each robot is attached to the payload
with a length tether visualized in Fig. 5a. The payload has to
maintain clearance from the ground. In addition, to stabilize
the payload and prevent excessively large forces between the
robots and the payload, the robot team will learn to maintain
an equilateral triangle-like form, and keep the payload in
its centroid. For simplicity, we ignore the dynamics of the
payload but only consider the equilibrium point as its location.
By learning robots’ local objective functions, the reconstructed
trajectories are shown in the right plot of Fig. 5a. We then
test the generalization of the model in a new environment. In
Fig. 5b, the placement of obstacles requires more sophisticated
robot maneuvers. The height of the payload is still well
maintained, and the robot team keeps the payload in its
centroid as much as possible for stable moving.

Scenario d): As shown in Fig. 6, six heterogeneous turtlebot3
robots, including three burgers and three waffles, maintain
a desired (circle-like) formation while navigating through
complex environments with obstacles. Robots learn to bal-
ance between local objective functions including collision
avoidance and formation maintenance. The reconstructed tra-
jectories in Fig. 6a show the robot’s capability to leverage the
shape of the obstacle to minimize the formation degradation.
We test the generalization of the learned game in 6b in a
new environment with eight robots. The robots generate
smooth trajectories and formation transitions. Furthermore,

B Turtlebot3 burger Obstacles Walls
Payload 2 |T=50
N .
0 2 4 6 8

X (m)

Payload transportation Trajectories of robot team

(a) Inverse game solving: learning payload transportation from
demonstrations. (Right: the reproduced motion at convergence)

B Turtlebot3 burger Obstacles Walls
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(b) Generalization of the learned objective in a new environment.
Fig. 5: Learning payload transportation with three robots.
we observe two robots change their orders (T=0: different

types of robots are separated v.s. T=70: two blue/red robots
become adjacent) to reduce the formation degradation.
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(a) Inverse game solving: learning formation maintenance with
six heterogeneous robots from demonstrations, figures show
reproduced motion at convergence.
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(b) Generalization of the learned objective with eight
heterogeneous robots in a new environment.

Fig. 6: Learning formation control with heterogeneous robots.

Comparison of Learning loss:

We compare the convergence of the proposed method with
the centralized IKKT method [7]. The GT-IRL [26] is not
included since it is also based on the diff-KKT condition,
leading to a similar convergence property as D3G in terms of
learning loss. The results of all scenarios are shown in Fig. 7,
where the y-axis represents the learning loss £; for each
robot, or the total learning loss for the whole system. In all
scenarios, the total learning loss converges, and the parameter
values will converge to those of the demonstrations. Apart
from the advantage in computation scalability demonstrated
previously in Fig. 4, the proposed D3G, which is fully
distributed, demonstrates a comparable, and in some cases,
better convergence speed than the centralized IKKT.
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Fig. 7: Total loss Y ;" | £; (with trajectory mismatch defined
in (2)) of each scenario.
V. CONCLUSION AND FUTURE WORK HQ
We have developed a new approach for inverse learn-
ing of a Distributed Differentiable Dynamic Game (D3G), [19]
which aims to efficiently learn multi-robot coordination from
demonstrations using robots’ local information exchange. We (201
represented multi-robot coordination as the Nash equilibrium
of a parameterized dynamic game. The goal was to learn the  [21]
parameters of the game so that it can reconstruct desired multi- 221
robot coordination. To this end, we developed a distributed
inverse dynamic game algorithm with a solver for the diff- [23]
KKT condition that allows robots to cooperatively learn
parameters for their dynamics and objective functions. We
have shown the effectiveness of the proposed algorithm  [24]
through analysis and high-fidelity Gazebo simulations and
compared it with existing methods. For future works, we 55
plan to further develop the inverse problem of D3G into
a reinforcement learning paradigm. Instead of based on [26]
demonstrations, robots will learn coordination strategies
through self-explorations.
[27]
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