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Abstract— This paper develops a new Distributed approach for
solving the inverse problem of a Differentiable Dynamic Game
(D3G), which enables robots to learn multi-robot coordination
from given demonstrations. We formulate multi-robot coordina-
tion as the Nash equilibrium of a parameterized dynamic game,
where the behavior of each robot is dictated by an objective
function that also depends on the behavior of its neighboring
robots. The coordination thus can be adapted by tuning the
parameters of the objective and the local dynamics of each robot.
The proposed algorithm enables each robot to automatically
tune such parameters in a distributed and coordinated fashion —
only using the data of its neighbors without global information.
Its key novelty is the development of a distributed solver for
a diff-KKT condition that can enhance scalability and reduce
the computational load for gradient computation. We test the
proposed algorithm in simulation with heterogeneous robots
given different task configurations. The results demonstrate
its effectiveness and generalizability for learning multi-robot
coordination from demonstrations.

I. INTRODUCTION

The control and coordination of large-scale multi-robot

systems are challenging due to the need for sequential,

coordinated decisions. Dynamic game theory provides a

framework to model interactions among robots based on local

observations and coupled objectives [2], [3]. Designing these

objective functions is complex and often relies on heuristic

methods. Alternatively, demonstrating desired behaviors is

more intuitive, leading to the interest in inverse dynamic game

(IDG) approaches to learn objectives from demonstrations [4].

While methods exist for single-robot cases, such as imitation

learning and differentiable optimal control [5], scalable

solutions for multi-robot systems are limited due to the high

dimensionality. We propose a new Distributed Differentiable

Dynamic Game (D3G) framework for solving IDG, enabling

each robot to learn its objective function in a distributed

manner using only local data. The core of our approach is

a distributed solver that utilizes the differentiability of the

KKT condition (diff-KKT) to improve scalability and reduce

computational complexity. A conceptual diagram of D3G

with a motivating example is in Fig. 1.

Learning from demonstrations can be formulated as a prob-

lem of inverse optimal control (IOC), also known as Inverse

reinforcement learning, seeking to learn an objective function

of a decision-making agent from expert demonstrations [6].

One type of method for solving IOC directly minimizes the

residual of the optimality (KKT) conditions by assuming that
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Fig. 1: Each robot possesses a local optimal control Pi, which
together constitutes a dynamic game. The Nash equilibrium of
the game reconstructs robot coordination. Problem of interest:
Distributed inverse learning (blue) of parameterized objective
functions from demonstration for robot coordination. The learned
objective is generalizable (red) to new environments.

the demonstration is optimal and fulfills these conditions [7].

Another common approach is built upon a bi-level structure,

containing a forward loop and an inverse loop. The forward

loop solves a standard optimal control problem with the

current objective estimate. Available methods for this include

dynamic programming [8], trajectory optimizations [9], and

reinforcement learning [10]. The inverse loop updates the

objective estimate such that a trajectory of the forward loop

matches the demonstrations by minimizing certain losses.

Different methods for IOC vary in how to accommodate the

forward and inverse loops [11]–[13] , and also how to define

loss functions, such as least square [11], [14], maximum

margin [12], maximum entropy [13].

Dynamic game generalizes optimal control to a multi-

robot setup, where each robot’s objective functions depend

on its own action and the actions of other robots over time.

Addressing such sequential decision-making processes often

involves treating agents’ entire state and action trajectories as

variables [15], [16]. The set of robots’ planned trajectories,

when no one can improve its objective function by changing

its behaviors, constitutes the solution to the game called

open-loop Nash equilibrium [17]. Common approaches to

obtaining a Nash equilibrium include: designing an algorithm

whose dynamics asymptotically converge to the desired Nash

equilibrium [18], [19]. To satisfy dynamics constraints, [20]

introduced a projection operator that restricts the gradient

flow to a feasible set, ensuring compliance with an agent’s

local constraints. An alternative approach is to compute Nash

equilibrium directly from its holding conditions [21], which

can be done by generalizing the Pontryagin’s Maximum

Principle/KKT condition [22] to a game theoretical setup.
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Analogous to IOC, dynamic games also have their inverse

problem, i.e., given robots collective trajectories satisfying

a Nash equilibrium, how to inversely learn the objective

functions the robots aim to optimize [4]. Existing works

for solving inverse games have three main categories. The

first category aims to solve the inverse game by applying

derivative-free filter-based approaches built upon Bayesian in-

ference [23], [24], which however has high sample complexity

and requires exact observations of state. The second category

solves the inverse game by equilibrium-constrained maximum-

likelihood estimation (MLE), which uses the optimality

conditions of the open-loop Nash equilibrium, to formulate a

constrained optimization problem [25]. This type of method

can explicitly handle noisy data and partial observations.

The third category follows the minimization of residual

methods [26], which seek to minimize the residual of the first-

order necessary conditions of an open-loop Nash equilibrium.

These works are further extended in [27], [28] to involve

state and input constraints.

The approach proposed in this paper is similar to the

ones in the last category [26], [28]. However, we note

that existing methods for solving inverse dynamic games

rely on a centralized process, where the forward loop and

inverse loop are solved using the global information of all

robots. Consequently, the computation and communication

complexity grows exponentially with the number of robots and

planning horizons. While there exist distributed approaches

for solving the forward problem [15], [18], [29], the scalability

challenge remains for addressing the inverse problem.

Statement of Contributions: We study the problem of

learning multi-robot coordination from demonstration by

formulating it as a differentiable dynamic game. Each

robot in the game satisfies its dynamics and optimizes a

coupling objective function. Both the dynamics and objective

of each robot are unknown and learnable. We propose a

D3G framework to inversely solve the dynamic game by

minimizing the mismatch between the predicted multi-robot

trajectories of the dynamic game and the given demonstrations.

The learning update of D3G is based on local gradient descent.

This allows a fully distributed algorithm design, where each

robot uses the diff-KKT condition to compute its parameter

update, by only using the data of its neighbors without global

information. The effectiveness and scalability of D3G are

verified using two types of robots given four different task

configurations.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Parametric Dynamic Game for Multi-robot Coordination

Consider a system of m robots. Suppose each robot solves

its own optimal control problem Pi(¹i) parameterized by a

vector ¹i ∈ R
ri as follows:

min
ui

Ji(¹i) =
T−1∑

t=0

cti(x
t
i, u

t
i, x

t
Ni

, ¹i) + hi(x
T
i , x

T
Ni

, ¹i),

s.t. xt+1
i = fi(x

t
i, u

t
i, ¹i) given x0

i . (Pi(¹i))

Here, for robot i, xt
i ∈ R

ni and ut
i ∈ R

mi are the robot’s

state and control input at each time step t ∈ {0, 1, 2, · · · , T};

xi = {x0
i , · · · , x

T
i } and ui = {u0

i , · · · , u
T−1
i }; fi(·) ∈ R

ni

is the robot dynamics; Ji(·) ∈ R is the local control objective

function with cti(·) ∈ R and hi(·) ∈ R denoting the running

and final costs, respectively. To characterize the fact that

connected robots have coordinated behaviors, their objective

functions are set to be coupled, i.e., Ji(·) depends not only

on the state/input of robot i, but also on that of its neighbors,

denoted by xt
Ni

= {xt
j | j ∈ Ni}, with Ni being the

neighbor set of robot i. The neighborhoods of robots define

the communication topology G across the whole system,

whose vertices are associated with the robots. We assume G

is undirected. Further define ξi = {xi,ui}, which represents

the full trajectory of robot i for all time steps.

Since each robot only makes local observations, the

collection of optimal control problems Pi(¹i) across all robots

forms a general-sum dynamic game P(Θ) parameterized

by Θ = col {¹1, · · · , ¹m} ∈ R
∑

m

i
ri . Given the objective

functions Ji(¹i) to be mutually coupled, the ‘forward’ (v.s.

inverse) problem of the game P(Θ) is to obtain a set

of state-input-trajectories ξ⋆i (Θ) = {x⋆
i (Θ),u⋆

i (Θ)} for all

i ∈ {1, · · · ,m}, called open-loop Nash Equilibrium (N.E.)1,

satisfying:

Ji(ξ
⋆
i (Θ), ξ⋆Ni

(Θ), ¹i) f Ji(ξi, ξ⋆Ni
(Θ), ¹i)

s.t. ξi ∈ Ξi(¹i).
(N.E.)

where Ξi(¹i) is the set of all feasible trajectories of robot i
satisfying its initial condition and system dynamics. Ξi(¹i) is

a function of ¹i because the dynamics fi(·) is parameterized

by ¹i. We use the (N.E.) of P(Θ) to characterize distributed

multi-robot coordination, where each robot determines its

trajectory ξ⋆i (Θ) based on the local information of its

neighboring robots. ξ⋆i (Θ) is a function of tunable Θ.

B. Problem Formulation

While lots of effort has been given to solve the ‘forward’

problem of P(Θ), i.e., calculating its (N.E.) given robots’

objective functions, this work focuses on the ‘inverse’ prob-

lem: Which objective functions (the parameters for Θ) can

reconstruct desired multi-robot coordination strategies that

are aligned with given demonstrations.

To this end, we first introduce the following assumption.

Assumption 1: Both Ji(·) and fi(·) are twice differen-

tiable. Given other variables being fixed, the cost function

Ji(·) is strictly convex on xi and ui. The feasible trajectory

set Ξi(¹i) is convex and bounded.

Assumption 1 ensures the existence and uniqueness of a

pure (N.E.) for P(Θ) [30, Theorem 4.3]. It imposes some

mild conditions on fi(·) and Ji(·), which are common in the

existing literature for game-theoretic studies of multi-robot

systems [15], [18], [29] . These conditions generally hold

for physical models of simple mobile robots and regular

cost functions such as distance to the goal. In the case that

Ξi(¹i) is unbounded, the existence and uniqueness can still be

guaranteed [30, Corollary 4.2] if we further assume Ji(·) →
∞ as |xi| or |ui| → ∞. This holds for most cost functions.

1In this paper, we refer to N.E. as an open-loop Nash equilibrium, in
contrast to the feedback Nash equilibrium [30, Chapter 3].
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Problem of interest: Given the demonstrations of robot

trajectories {ξd1 , ξ
d
2 , · · · , ξ

d
m}, d ∈ {1, · · · , D}, that are

associated with the (N.E.) of a game P(Θ), with unknown

Θ. Suppose each robot i locally knows Pi(·) and ξdi . We

aim to develop a fully distributed algorithm over G such that

all robots jointly learn the parameter Θ⋆ = col {¹⋆1 , · · · , ¹
⋆
m}

by minimizing the following loss function

min
Θ=col {¹1,··· ,¹m}

m∑

i=1

Li(ξ
⋆
i (Θ), ξdi ). (1)

The loss function in each robot is defined as

Li(ξ
⋆
i (Θ), ξdi ) =

D∑

d=1

∥ξ⋆i (Θ)− ξdi ∥
2
2 (2)

By minimizing (1), we learn a proper Θ⋆, i.e., ¹⋆i for each

robot, to best mimic/reproduce the demonstrations (from

experts) using the (N.E.) of the parameterized game. In the

above definition of the loss (2), we consider the robot’s

trajectories at each time instant to be equally important, but

other definitions of the loss [11]–[13] are also applicable.

III. INVERSE LEARNING FOR DISTRIBUTED

DIFFERENTIAL DYNAMIC GAME

A. Method Overview

To solve the formulated problem, we develop a fully

distributed learning paradigm, where each robot updates its

own ¹⋆i for Pi(¹i) using only its local data and neighboring

communication. We are enlightened by local gradient descent

to propose the following algorithm,

¹k+1
i = ¹ki − ¸k

dLi(ξ
⋆
i (Θ), ξdi )

d¹i

∣∣∣∣
¹k

i

(3)

where ¸k is the learning rate. Compared with the global full

gradient, local gradient descent requires stricter step sizes to

ensure algorithm stability; however, it achieves significant

computational tractability. Similar techniques are used in

many machine learning methods, such as actor-critic methods,

where the actor and critic models are updated in a decoupled

manner [31]. In addition, recall that the global and local loss

functions defined in (2) and (1) are both non-negative. If

the demonstrations and the generated trajectories can match

perfectly,
∑m

i−1 Li and Li share the same minimizer at 0.

The effectiveness of ‘local gradients’ will be further justified

by our experiments.

The implementation of update (3) is summarized in

Algorithm 1, and it relies on the following chain rule to

compute the gradient.

dLi(ξ
⋆
i (Θ), ξdi )

d¹i

∣∣∣∣
¹k

i

=
∂Li(ξ

⋆
i (Θ), ξdi )

∂ξ⋆i (Θ)

∣∣∣∣
ξ⋆

i
(Θk)

·
∂ξ⋆i (Θ)

∂¹i

∣∣∣∣
¹k

i

.

(4)

For the first term of the chain rule, the derivative ∂Li

∂ξ⋆

i
(Θ)

is readily accessible because the function Li(ξ
⋆
i (Θ), ξdi ) is

explicitly defined. Its evaluation point ξ⋆i (Θ
k) relies on

solving the forward problem of the game to obtain its

(N.E.) with current parameter Θk. In this paper, we achieve

Algorithm 1: Inverse Learning for Distributed Differ-

ential Dynamic Game, the local update for robot i..

1 Input Demonstrations of trajectory ξdi .

2 Initialize a random guess for ¹k=0
i .

3 for k = 0, 1, 2, · · · do

4 Compute
∂Li(ξ

⋆
i (Θ), ξd

i )

∂ξ⋆
i (Θ)

based on definition (2).

5 Solving the forward problem of the dynamic game

to obtain ξ⋆i (Θ
k). (cf. Algorithm ??, Appendix.)

6 Solving a diff-KKT condition to obtain
∂ξ⋆

i (Θ)

∂θi
.

7 Compute
dLi(ξ

⋆
i (Θ), ξd

i )

dθi

∣

∣

∣

∣

¹k
i

using (4).

8 Update: θ
k+1

i = θ
k
i − η

k dLi(ξ
⋆
i (Θ), ξd

i )

dθi

∣

∣

∣

∣

¹k
i

.

9 end

10 Output ¹i

this by employing an existing distributed Nash equilibrium-

seeking algorithm proposed in [18]. More details of the

implementation could be found in [1].

The major obstacle arises from the second term of the

chain rule, where ∂ξ⋆

i
(Θ)/∂¹i characterizes the change in the

robot’s (N.E.) trajectories corresponding to the change from

its local parameter. Given a general optimal control system,

its solution trajectory ξ⋆i (Θ) does not admit an analytical

form. Thus, one possible way to compute ∂ξ⋆

i
(Θ)/∂¹i is by

numerical approximation [32]. However, the feasibility of this

approach is extremely challenging, due to the large number

of robots and the complexity of their trajectories considered

in this paper. Motivated by these, we next present a new

distributed method to compute ∂ξ⋆

i
(Θ)/∂¹i, whose idea is

based on differentiating the KKT condition [8] of the (N.E.)

with respect to the parameter Θ [11]. This yields a new

representation of the derivative that can significantly reduce

its computation burden, and the computation can be performed

in a distributed fashion.

B. A Fully Distributed Solver for Diff-KKT

In this subsection, we introduce a distributed and efficient

approach to compute the ∂ξ⋆

i
(Θ)/∂¹i in (4). First, given x0

i ,

define a compact form for robot i’s dynamics constraints

Fi(xi,ui, ¹i) =




x1
i − fi(x

0
i , u

0
i , ¹i)

x2
i − fi(x

1
i , u

1
i , ¹i)

...

xT
i − fi(x

T−1
i , uT−1

i , ¹i)


 = 0. (5)

The (N.E.) of a game is the collection of the optimal

trajectories of the robots’ local optimal control problems.

Thus, define augmented functions

Hi = Ji(xi,xNi
,ui, ¹i) + λ¦

i Fi(xi,ui, ¹i), (6)

with λi = {¼1, · · · , ¼m} being the co-states of the dynam-

ics constraints. Then for any Θ, the trajectory ξ⋆i (Θ) =
{x⋆

i (Θ),u⋆
i (Θ)} must satisfy a distributed discrete-time
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KKT [33] condition, which reads: ∀i ∈ {1, · · · ,m},

∂Hi

∂xi

=
∂Ji

∂xi

+ λ¦
i

∂Fi

∂xi

= 0 (7a)

∂Hi

∂ui

=
∂Ji

∂ui

+ λ¦
i

∂Fi

∂ui

= 0 (7b)

∂Hi

∂λi

= Fi = 0 (7c)

Now, to obtain the ∂ξ⋆

i
(Θ)/∂¹i, our idea is to differentiate

equation (7) with respect to Θ. This will provide us with a neat

and easy-to-solve equation set that directly takes ∂ξ⋆

i
(Θ)/∂¹i

as variables. To visualize this, define

Xi =
∂x⋆

i (Θ)

∂Θ
, Ui =

∂u⋆
i (Θ)

∂Θ
, Λi =

∂λ⋆
i (Θ)

∂Θ
. (8)

Since all variables in (8) are functions of Θ, differentiating

(7) with respect to Θ yields the following Diff-KKT:

M³
i Xi +N³

i Ui +
∑

j∈Ni

Q³
ijXj + S³

i Λi + C³
i = 0 (9a)

M´
i Xi +N´

i Ui +
∑

j∈Ni

Q´
ijXj + S´

i Λi + C´
i = 0 (9b)

Mµ
i Xi +Nµ

i Ui + Cµ
i = 0 (9c)

with the application of the chain rule on the derivatives of
x
⋆
i (Θ) and u

⋆
i (Θ) and λ⋆

i (Θ) with respect to Θ:

M
³
i =

∂2
Hi

∂x⋆
i
2
, N

³
i =

∂2
Hi

∂x⋆
i ∂u

⋆
i

, Q
³
ij =

∂2
Hi

∂x⋆
i ∂x

⋆
j

S
³
i =

∂2
Hi

∂x⋆
i ∂λ

⋆
i

, C
³
i =

∂2
Hi

∂x⋆
i ∂θ

k
i

(10a)

M
´
i =

∂2
Hi

∂u⋆
i ∂x

⋆
i

, N
´
i =

∂2
Hi

∂u⋆
i
2
, Q

´
ij =

∂2
Hi

∂u⋆
i ∂x

⋆
j

S
´
i =

∂2
Hi

∂u⋆
i ∂λ

⋆
i

, C
´
i =

∂2
Hi

∂u⋆
i ∂θ

k
i

(10b)

M
µ
i =

∂2
Hi

∂λ⋆
i ∂x

⋆
i

, N
µ
i =

∂2
Hi

∂λ⋆
i ∂u

⋆
i

, C
µ
i =

∂2
Hi

∂λ⋆
i ∂θ

k
i

(10c)

where we use ∂2
Hi

∂Ã⋆

i
∂µ⋆

i

to denote the seconder-order derivative

of Hi(·) evaluated at {Ã⋆
i (Θ), µ⋆

i (Θ)}. All equations in

(10) are simple numerical matrices and are readily com-

putable from (7), because Hi(·) is explicitly defined and

{x⋆
i (Θ),u⋆

i (Θ)},λ⋆
i (Θ) are obtained from forward Nash

seeking algorithm given the current Θ. To remark the

effectiveness of reformulation, given Assumption 1, results

in [33, Sec. 5.9.2] implies the existence and uniqueness

of solution to (7); results in [5, Theorem 1] implies the

uniqueness of Xi and Ui in (9).

Distributed Diff-KKT Solver: Solving (8) from (9) gives

us the gradient
∂ξ⋆

i
(Θ)

∂¹i
for each robot. However, solving

the equation in a centralized manner is not scalable as

the robot number grows. To address this, we notice that

the coupled terms, i.e., Qij ,Xj , in (9) only exist among

connected neighbors j ∈ Ni. This motivates us to develop a

fully distributed solver to compute the gradient. To that end,

we rewrite all variables and matrices into a compact linear

Algorithm 2: Distributed Solver for Diff-KKT, the

local update for robot i.

1 Input ξ⋆i (Θ
k), ¹ki .

2 Compute λ⋆
i (Θ

k) using equations (7) with

ξ⋆i (Θ) = {x⋆
i (Θ

k),u⋆
i (Θ

k)}.

3 Compute matrices Ai,i and Ai,j , j ∈ Ni by (10) and

(12).

4 Acquire matrices Aℓ,i, ℓ ∈ Ni from each neighbor ℓ
of robot i. Assign Aℓ,i = 0 for ℓ /∈ Ni.

5 Compose matrices Ψi, Ĉi by their definitions.

6 Initialize Ä = 0, ¶ ∈ R+, and Y Ä=0
i , ZÄ=0

i as random

matrices with proper sizes.

7 while maxi(|Y
Ä+1
i − Y Ä

i |) g ϵY do

8 Exchange states ZÄ
i among neighboring robots.

9 State update:

vÄ
i = ΨiY

Ä
i − Ĉi −

∑

ℓ∈Ni

(ZÄ
i −ZÄ

ℓ ).

Y Ä+1
i = Y Ä

i − ¶Ψ¦
i v

Ä
i

ZÄ+1
i = ZÄ

i + ¶vÄ
i

10 end

11 Obtain Xi, Ui from Y Ä
i based on (12).

12 Output
∂ξ⋆i (Θ)

∂¹i

∣∣∣∣
¹k

i

from {Xi,Ui} based on (8).

equation form.

Ai,iYi +
∑

j∈Ni

(Ai,jYj) + Ci = 0. (11)

where for all i and j ∈ Ni,

Ai,i =



M³

i N³
i S³

i

M´
i N´

i S´
i

Mµ
i Nµ

i Sµ
i


 , Yi =



Xi

Ui

Λi




Ai,j =



Q³

i,j 0 0

Q´
i,j 0 0

Qµ
i,j 0 0


 , Ci =



C³

i

C´
i

Cµ
i




(12)

where Yi is the local unknown of robot i, Ai,i and Ai,j are

known matrices, and Yj , j ∈ Ni is the coupled unknown

from i’s neighbors. Since each robot in the network possesses

an equation in the form of (11), to compute a set of Yi,

i ∈ {1, · · · ,m} satisfying all these equation, we essentially

need to solve the following compact equation set

m∑

i=1

(ΨiYi + Ĉi) = 0 (13)

where Ψi =
[
A¦

1,i, ...,A
¦
m,i

]¦
, Ĉi =

[
0, ..., C

¦
i , ...,0

]¦
.

The matrix is a zero matrix if undefined. In Ĉi, the matrix

C
¦
i is located at the ith block. By stacking the matrices

Aℓ,i and C
¦
i , each row block of (13) is associated with

one (11) for i ∈ {1, · · · ,m}. Further note that network G is

undirected, i.e., i ∈ Nℓ yields ℓ ∈ Ni, thus, robot i has access

to Ψi based on its local communication with its neighbors.
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c d

Fig. 2: Gazebo environment for scenarios c) and d).

Now, suppose each robot i knows Ψi and Ĉi, we introduce

Algorithm 2 for the robots to efficiently solve its Yi.

Algorithm 2 is fully distributed, in the sense that the

computation of each robot only relies on its own state and

the states of its neighbors. The convergence of the algorithm

is characterized by the following result:

Lemma 3.1: (Validity of Algorithm 2): Suppose the net-

work G is undetected and connected, suppose equation set

(13) has a unique solution, by Algorithm 2, if the positive

step-size ¶ is sufficiently small, the state Y Ä
i of robot i will

converge asymptotically to a state Y ⋆
i , where the set of

{Y ⋆
i , i = 1 · · · ,m} forms a solution to (13).

The correctness of Lemma 3.1 follows our previous works for

solving coupled linear constraints using distributed network

flows [34] with a complete proof in [1].

IV. EXPERIMENTS

This section presents simulation experiments to validate the

effectiveness, scalability, and generalizability of the proposed

D3G approach for multi-robot coordination. The system

includes two types of robots: TurtleBot3 Burger and Waffle.

We consider heterogeneous settings, where each robot has

different dynamics, such as different radii, weights, and

velocity/angular ranges. Four scenarios are used: (a) fixed

swapping in open ground, (b) formation initialization using

the environment in the introductory Fig. 1, (c) cooperative

payload transportation, and (d) formation maintenance using

the environments in Fig. 2. Simulations are done in Gazebo

via ROS. Robots can communicate with each other, but all

computations are performed locally.

Parameterization of objective functions: Fcuntion Ji is

parameterized by considering a linear combination of the

following cost terms with unknown weights: formation

maintenance, which defines the positional relationship of

neighboring robots in terms of their relative positions, dis-

tances, or velocities; risk/obstacle avoidance, which employs

a reciprocal function to repel robots from given risk areas;

collision avoidance, which utilizes a reciprocal function

to prevent robots from colliding with each other; and

waypoint following, which provides sparse navigation cues

for navigating complex environments. We note that these

functions satisfy Assumption 1.

Experiment Settings in Each Scenario: We invite humans

to create several sets of trajectories (incorporating human-

induced random noise to optimal coordination trajectories

computed from N.E. of a game with parameter Θ⋆) to serve

as the expert demonstration data. Using Algorithm 1, we learn

¹⋆i for each robot from those demonstrations. Additionally,

for each scenario, we test the generalizability of the learned

objective functions by applying them in a new environment

where the robots can still generate appropriate coordinated

behaviors. Details of simulation setups and results are as

follows:

Scenario a): We solve a multi-robot fixed swapping task.

As shown in Fig. 3-a, in the demonstrations, six robots are

initialized around a circle-like formation. Each robot navigates

to the diagonally opposite goal position on the other side of

the circle. Throughout the process, they must dynamically

adjust their positions to move without colliding. We test

the generalization of the learned objective function with an

increased number of robots, and the task is accomplished

very well. Fig.3-b shows an example with sixteen robots.

(a) Inverse game solving: learning the fixed swapping task
from demonstrations. (Right: the reproduced motion)

(b) Generalization of the learned objective with 16 robots.

Fig. 3: Learning fixed swapping tasks with sixteen robots.

Scalability of Distributed Solver: Using different numbers

of robots in scenario (a), we compare the computational

scalability of the proposed algorithm with the GT-IRL [26]

and IKKT [7] methods. The comparison result is presented

in Fig.4. Here, D3G is evaluated based on the per-iteration

time of Algorithm 1, which requires the convergence of

Algorithm 2 for the inverse pass and Algorithm 3 for the

forward pass. Since both algorithms are gradient-based and are

sensitive to initial values, we use the result of the last iteration

in Algorithm 1 as the initial values for the new iteration.

The stopping criteria are chosen such that the variables do

not change 1% of their initial values (around hundreds of

iterations). For GT-IRL, its forward pass employs a similar but

centralized gradient-based method to solve a dynamic game,

and the inverse pass uses a centralized linear equation solver.

The IKKT method uses a constraint optimization formulation,

which is solved iteratively without a forward/inverse structure.

From Fig. 4 and the trend of the data, we observe that as the

number of robots increases, D3G outperforms both GT-IRL

and IKKT in terms of computation time. The inverse pass of

D3G outperforms GT-IRL. For D3G, the local computation

of each robot is not significantly affected by the system size
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as the others, thanks to the distributed nature of the algorithm.

The increase in time is mainly because Algorithms 2 and 3

require more iterations to converge. In contrast, for centralized

algorithms, the computation time grows quickly due to the

increase in the number of variables and constraints.

Fig. 4: Comparison of computation time with GT-IRL and IKKT.

Scenario b): As shown in the introductory example in Fig. 1,

three robots start from initial positions at 0 speed to initialize

a linear formation at the goal position, maintaining distances

of 0.8m and velocities of 0.2m/s. There exists a wide obstacle

that robots have to avoid. From the demonstrations, the robots

learn to adjust their formation to a ‘compact’ shape when

moving through the narrow space, then recover and form the

desired formation at target positions. To test the generalization

of the learned objective functions, we solve the learned game

but change the obstacle’s opening position from the middle

to the side. The robots can still generate proper coordination

to initialize the formation.

Scenario c): As shown in Fig. 5, three turtlebots start from

different initial positions and cooperatively transport a slung

payload. We assume each robot is attached to the payload

with a length tether visualized in Fig. 5a. The payload has to

maintain clearance from the ground. In addition, to stabilize

the payload and prevent excessively large forces between the

robots and the payload, the robot team will learn to maintain

an equilateral triangle-like form, and keep the payload in

its centroid. For simplicity, we ignore the dynamics of the

payload but only consider the equilibrium point as its location.

By learning robots’ local objective functions, the reconstructed

trajectories are shown in the right plot of Fig. 5a. We then

test the generalization of the model in a new environment. In

Fig. 5b, the placement of obstacles requires more sophisticated

robot maneuvers. The height of the payload is still well

maintained, and the robot team keeps the payload in its

centroid as much as possible for stable moving.

Scenario d): As shown in Fig. 6, six heterogeneous turtlebot3

robots, including three burgers and three waffles, maintain

a desired (circle-like) formation while navigating through

complex environments with obstacles. Robots learn to bal-

ance between local objective functions including collision

avoidance and formation maintenance. The reconstructed tra-

jectories in Fig. 6a show the robot’s capability to leverage the

shape of the obstacle to minimize the formation degradation.

We test the generalization of the learned game in 6b in a

new environment with eight robots. The robots generate

smooth trajectories and formation transitions. Furthermore,

(a) Inverse game solving: learning payload transportation from
demonstrations. (Right: the reproduced motion at convergence)

(b) Generalization of the learned objective in a new environment.

Fig. 5: Learning payload transportation with three robots.

we observe two robots change their orders (T=0: different

types of robots are separated v.s. T=70: two blue/red robots

become adjacent) to reduce the formation degradation.

(a) Inverse game solving: learning formation maintenance with
six heterogeneous robots from demonstrations, figures show

reproduced motion at convergence.

(b) Generalization of the learned objective with eight
heterogeneous robots in a new environment.

Fig. 6: Learning formation control with heterogeneous robots.

Comparison of Learning loss:

We compare the convergence of the proposed method with

the centralized IKKT method [7]. The GT-IRL [26] is not

included since it is also based on the diff-KKT condition,

leading to a similar convergence property as D3G in terms of

learning loss. The results of all scenarios are shown in Fig. 7,

where the y-axis represents the learning loss Li for each

robot, or the total learning loss for the whole system. In all

scenarios, the total learning loss converges, and the parameter

values will converge to those of the demonstrations. Apart

from the advantage in computation scalability demonstrated

previously in Fig. 4, the proposed D3G, which is fully

distributed, demonstrates a comparable, and in some cases,

better convergence speed than the centralized IKKT.
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L  per robot

(a) Learning loss of scenario a. (b) Learning loss of scenario b.

(c) Learning loss of scenario c. (d) Learning loss of scenario d.

Fig. 7: Total loss
∑m

i=1 Li (with trajectory mismatch defined

in (2)) of each scenario.

V. CONCLUSION AND FUTURE WORK

We have developed a new approach for inverse learn-

ing of a Distributed Differentiable Dynamic Game (D3G),

which aims to efficiently learn multi-robot coordination from

demonstrations using robots’ local information exchange. We

represented multi-robot coordination as the Nash equilibrium

of a parameterized dynamic game. The goal was to learn the

parameters of the game so that it can reconstruct desired multi-

robot coordination. To this end, we developed a distributed

inverse dynamic game algorithm with a solver for the diff-

KKT condition that allows robots to cooperatively learn

parameters for their dynamics and objective functions. We

have shown the effectiveness of the proposed algorithm

through analysis and high-fidelity Gazebo simulations and

compared it with existing methods. For future works, we

plan to further develop the inverse problem of D3G into

a reinforcement learning paradigm. Instead of based on

demonstrations, robots will learn coordination strategies

through self-explorations.
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