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Abstract— In multi-robot systems, achieving coordinated mis-
sions remains a significant challenge due to the coupled nature
of coordination behaviors and the lack of global information
for individual robots. To mitigate these challenges, this paper
introduces a novel approach, Bi-level Coordination Learning
(Bi-CL), that leverages a bi-level optimization structure within
a CTDE paradigm. Our bi-level reformulation decomposes
the original problem into a reinforcement learning level with
reduced action space, and an imitation learning level that
gains demonstrations from a global optimizer. Bi-CL further
integrates an alignment penalty mechanism, aiming to minimize
the discrepancy between the two levels without degrading
their training efficiency. We introduce a running example
to conceptualize the problem formulation. Simulation results
demonstrate that Bi-CL can learn more efficiently and achieve
comparable performance with traditional multi-agent reinforce-
ment learning baselines for multi-robot coordination.

I. INTRODUCTION

Multi-robot systems have extensive applications in various
engineering fields, but their deployment relies on scalable
algorithms that enable robots to make coordinated and
sequential decisions using local observation [2], [3]. To
this end, Centralized Training with Decentralized Execution
(CTDE) [4] emerges as a promising approach, offering a
balanced framework for coordinating multiple robots through
centralized learning processes that guide decentralized oper-
ational decisions. A similar case applies to Proximal Policy
Optimization (PPO) algorithm and its generalization Multi-
agent PPO [5]. While these approaches might be concerned
with state dimensionality during centralized training, recent
advances, such as Value-Decomposition Networks (VDN),
can be leveraged to decompose the joint value function into
individual value functions for each robot [6]. Building on
this, QMIX [7] further extends the framework, allowing for
a more complex, state-dependent mixing of individual robot’s
value functions to learn coordinated behaviors. However,
the effectiveness of CTDE faces significant challenges as
the dimensionality of action spaces expands and each robot
only has local observation of the system. These challenges
complicate the training process and potentially impedes
practical deployment.

In this context, we note that multi-robot cooperative mis-
sions often exhibit inherent hierarchical structures, allow-
ing them to be decomposed into high-level and low-level
tasks [8]. For instance, rescue missions utilize teams of
robots to search large or hazardous areas [9], [10], where
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Fig. 1: A running example for a firefighting scenario. Robots
can simultaneously perform two actions: move (to where)
and guard (which adversary). Team reward depends on the
risk of fire, which is a coupled function of both actions.

a high-level planning task may focus on area coverage,
and a low-level task may address navigation and obsta-
cle avoidance. A similar scenario arises from warehouse
automation [11], where high-level tasks involve managing
robot fleets for picking, packing, and sorting, and low-level
tasks ensure precise and safe navigation in densely populated
environments. Nevertheless, in most cases, the decomposed
problems are internally coupled by state dependence, which
can not be solved independently. Bi-level optimization [12]
presents a solution to this issue, with the capability of
enhancing learning efficiency and stability while maintaining
the explicit connections between the two levels of problems.
Bi-level optimization is a hierarchical mathematical for-
mulation where the solution of one optimization task is
restricted by the solution set mapping of another task [12].
In recent years, this technique has been incorporated with
various machine learning methods for nested decision-
making, including multi-task meta-learning [13], neural ar-
chitecture search [14], adversarial learning [15], and deep
reinforcement learning [16]. The applications of these bi-
level learning approaches span economics, management,
optimal control, systems engineering, and resource alloca-
tion problems [17]-[21], with a comprehensive review by
Liu et al. [12]. Corresponding to the scope of this paper,
when solving multi-robot coordination problems, bi-level
decomposition has been introduced [22], [23] for actor-
critic MARL to reduce the training burden of each level,
thus improving the training efficiency and convergence. Le
et al. [24] uses latent variables to introduce a mechanism
similar to bi-level optimization that can significantly improve
the performance of multi-agent imitation learning.
However, despite the abundance of research on addressing
such coupling in static optimization problems for both single-
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agent [25], [26] or multi-agent [22] cases, there remains
a scarcity of studies tailored for multi-agent reinforcement
learning (MARL) under CTDE with robots’ local obser-
vation. This gap motivates our research to develop new
approaches that leverage the benefits of bi-level optimization
for reinforcement learning applications in multi-robot sys-
tems, thereby enhancing their deployment efficiency across
a variety of complex and dynamic environments.
Statement of contribution: The contributions of this pa-
per include (i) the formulation of a bi-level Decentralized
Markov Decision Process (Dec-MDP) for multi-robot co-
ordination; (ii) a Bi-level Coordination Learning (Bi-CL)
framework with a novel alignment mechanism to integrate
multi-agent reinforcement learning and imitation learning
under the CTDE scheme; (iii) simulated experiments that
verify the effectiveness of the proposed Bi-CL algorithm
and a comparison with traditional MARL algorithms to solve
multi-robot coordination tasks.
Running Example: We conceptualize the proposed bi-level
approach using an example, as visualized in Fig. 1. Consider
multiple robots traversing an area with multiple adversaries.
During their traversal, each robot suffers risk or damage from
adversaries accumulated over time, if it enters their impact
range. Each robot has two decomposable actions: the action
of move and the action of guard, which are performed simul-
taneously. The move action changes the robot’s locations in
the environment. In each step, the relative positions of robots
to adversaries determine a base risk the robot accumulates.
The guard is an additional action each robot can choose to
perform against an adversary, which increases its own risk
but reduces the risks that this adversary poses to other robots.
Our goal is to minimize the accumulated risk and traveling
time for all robots to arrive at a target position, given each
robot only has local (partial) observation of the system.
The same scenario discussed above applies to a handful of
applications for multi-robot coordination, such as firefight-
ing considering fire as adversaries; battlefields considering
enemy robots as adversaries; and team car racing or football
games considering non-cooperative players as adversaries.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. Formulation of a Bi-level Optimization

A regular centralized Markov Decision Process (MDP)
can be defined by a tuple (S,.A,T,~, R), including state,
action, state transition, discount factor, and reward. The goal
is to learn a policy 7 : S — A to maximize the expected
cumulative reward over the task horizon 7T, i.e.,

T
Z ’tht )

t=0

E

ai~m(-|st)

max
T

)

where a; € A and s; € S are the action and state of the
system at each step.

Let’s assume the actions of the system can be decomposed
as a; = {xy,y:} € X x Y, and the system’s state transition
depends only on action x; such that 7 : S x X — S:

2

St+1 = T(St, .’Et).
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Fig. 2: A Bi-level Coordination Learning (Bi-CL) Algorithm:
incorporating multi-agent reinforcement learning (MARL)
and imitation learning (MAIL), guided by a global optimizer.

However, the reward function depends on both actions:
Rt = U(St7 T, yt) (3)

If the structure of problem (1) satisfies (2) and (3), it can be
formulated into a bi-level problem:

T

m@x ,]E ’th(sta L, y:(sty wt)) 9 (43)
T @y ~T(|8t) =0

s.t. y; (8¢, @) = arg II;&X U(st, @t Yt )- (4b)

In this paper, we make the following assumption:

Assumption 1. Problem (4a) is complex such that T is solved
using a reinforcement learning (e.g. actor-critic method),
whereas problem (4b) can be solved explicitly and be de-
scribed as a mapping f: S x X — Y.

The assumption can be justified by the fact that (4a) is a
planning problem involving state transitions and rewards for
future 7' steps, while (4b) only involves a one-step reward.

Under Assumption 1, for the lower level problem (4b),
the optimal y; is solvable from f : & x X — ), based
on the current s; and the choice of x;. Bringing this
solution back to the upper level (4a), we only need to solve
a reduced-dimension MDP defined by (S, X, 7,7, R), to
obtain a policy 7 : § — X that generates action x;.
During implementation, the policy 7 in problem (1) can be a
composition of 7 = 7o f. We learn the policy 7 to generate
x; from s, then use f to generate y; from {s;, z:}.

B. Bi-level Formulation for Multi-robot Coordination Learn-
ing with Local Robot Observation

In this paper, we generalize the bi-level formulation into a
multi-robot system with local observation. Consider a multi-
robot system with a set of n = {1,--- ,n} robots. Suppose
the centralized actions and states in (1) are decomposed into
each robot’s state and action as s; = {s{,...,s'} € S and
a; = {a},...,al} € A. Assume each robot’s action can
be further written as a! = {z%,yi}, where the action z!
determines the robot’s local state update s}, = T (s}, z}).
The multi-robot system shares a global reward determined by
all robots’ states, and their two actions: Ry = U(s¢, T4, Yt ).
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For many real-world applications, the deployment of a
multi-robot system faces communication and sensing con-
straints, where each agent may only have access to the states
of its neighbors through a network, denoted by set A;. The
neighbors’ states are a subset of the full system state, denoted
by sf/ * C s;. Such local observation turns the problem into
a Dec-MDP. Under this constraint, the problem of interest
in this paper is to learn a local policy 7 for each agent such
that:

max E
™ ajemiCls))

®)

li 7' Ry

t=0

While solving Dec-MDP problems is known to be diffi-
cult [27], in this paper, we will generalize the idea of bi-level
optimization under the scheme of CTDE and use action space
reduction to alleviate the challenges in high-dimensional
parameter tuning for MARL. Note that such a generaliza-
tion is non-trivial and the main challenge lies in the local
observation and local decision-making of each robot using
incomplete information. As a consequence, compared with
the centralized case, the robots cannot solve an optimization
problem like (4b) to determine their secondary action %!.

III. MAIN APPROACH

As described in Sec. II-A, the centralized bi-level formula-
tion leverages the optimizer (4b) to reduce the dimensionality
of the action space, thereby enhancing training efficiency.
However, such optimization requires global information,
which is not accessible to robots during decentralized exe-
cution. Thus, robots cannot locally generate yz* To address
this issue, in this section, we introduce a new reformulation
to generalize the concept of bi-level optimization to a CTDE
setup.

To present our approach, we reformulate (5) into the
following Bi-level Coordination Learning (Bi-CL) problem,
Vie{l,---,n},

T

max E > AU (st e,y (s1,m0)) | (6a)
4 T (s ) =0

min o g = (s )1, (6b)

m yiront(clsy *hay )

n
s.t. Y7 (s¢, ) =argmax | U(sy, @y, Y1) —Ck Z Hi(yé7 UZ))
Yt P

alignment penalty

(6¢)

In equations (6a) and (6b), we aim to train two local policies
for each robot: one policy, 7 : SNi 5 Xt generates action
x%; another policy, 7 : SNi x XNi — V', generates action
y;. Note that the two policies are coupled since their inputs
rely on the outputs of each other. If training two policies
simultaneously, such coupling can pose a stability issue and
reduce training efficiency. To address this, our idea is to
introduce a global optimizer (6¢) under the CTDE scheme

Algorithm 1: The Bi-CL Algorithm

1 Initialize local RL models 7(s"¢|6z:) and IL
models 7’ ("¢, zVi 0,:) for all robots. Initialize
centralized critic Q(s,x|0¢) if needed;

2 Initialize alignment penalty co-efficient cy;

3 for k=0 to T}, do

4 | Update coefficient ¢, = {——fa—m:
5 for t =0 to T; do
6 for i =1 ton do
7 Get action: z¢ by adding random
perturbation to 7% (s)V|6:);
8 Get action: i = 1 (s, ]6,:);
9 State update: s, = T"(s}, z});
10 end
1 Solve arg maxy, [U (8¢, @i, Yt) — ck O rq Hil
to obtain y;;
12 Observe reward Ry = U (8¢, ¢, Y7 );
13 Record (st, x:, Yy, R, St+1) to a fixed size
buffer B with first-in-first-out;
14 Sample (s;, @, Yr, 7r, Sr4+1) from B as a
random minibatch of size w;
15 Update critic network 8¢ using the minibatch,
if critic exist;
16 for i =1 to n do
17 Update IL learning model 0,: using the
minibatch;
18 Update RL learning model: 6=: using the
minibatch;
19 end
20 end
21 end

to decouple and guide the training of both policies, as we
explain next and visualized in Fig. 2.
Bi-level optimization: First, we introduce optimization prob-
lem (6¢) to solve y;. If temporarily ignoring the alignment
penalty term, the equations (6a) and (6¢) together represent
a CTDE version of the bi-level problem (4). During the cen-
tralized training process, we can utilize global information
for all robots’ states s; and actions «; to solve y;. Based
on y;(s¢, @), we train the local policy 7 in (6a) for each
agent’s x! using a reinforcement learning scheme. 7 has a
reduced-dimension action space because y; is not learned.
On the other hand, while optimizer (6¢c) can be used in
centralized training to obtain action y; for all robots, it
cannot be used by robots during decentralized execution due
to the local observations. Thus, we introduce (6b) to train a
local policy 7' to generate agent’s yi. The policy n’ can be
trained conveniently using an imitation learning (IL) scheme
that uses optimizer (6¢) as the expert demonstration. Here,
the imitation loss in (6b) measures the difference between
the policy output ¥ using local information and the optimal
action solved from optimizer (6¢) using global information.
Alignment of the two policies: We explain the alignment
term in (6¢). Based on the above explanation, the policy 7
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is trained assuming the actions y; = {y ,---,yP*} are
optimal for all robots, and the policy n’ seeks to generate
such optimal actions using only local information. Clearly,
during decentralized execution, the optimality of 1’ can
hardly be guaranteed, thus creating a mismatch between the
policies 7 and 7’. To address this, we introduce an alignment
penalty term ¢, > H;(yi,n')) in (6¢), where ¢, > 0 and
H; = E T

Gioni(Clsy Ty

llyi —
)

Here, 4! is the output of the model 7n’, then H; evaluates
how well an action y! aligns with the policy n°. Minimizing
this penalty helps to reduce the mismatch between the two
local policies. Mathematically, the value of H; for each robot
equals the loss in (6b). Hence, ¢, is an important coefficient
and we shall remark on its choice during the training. If ¢;, —
0, the reformulation (6) disregards the policy mismatch,
always opting for the solution that maximizes U to train 7.
Conversely, when ¢, — oo, the penalty forces the training
of 7t using the action chosen by 7, making the two policies
fully coupled, and the IL (6b) no longer updates. To strike a
balance, our idea is to make sure the IL model is sufficiently
trained before the penalty is applied. For this purpose, we
define a modified logistic function:

C

T Tretom MO

c>0,6>0h>0 (7)

Ck

where k is the training episode. We let ¢ start with zero
to ‘jump start’ the training of 7 and 7 using the optimal
y; for maximizing U. Afterwards, ¢ is gradually increased
to a sufficiently large value c to fine-tune 7, taking into
account the output of 7° and ensuring alignment between
the two policies, 7 and 1. The described training scheme
is summarized in Algorithm 1.

I'V. NUMERICAL RESULTS

In this section, we employ the running example to verify
the proposed algorithm. We use simulated experiments to
demonstrate: (i) the effectiveness of the proposed bi-level
learning schemes, in particular, the alignment penalty term;
(ii) the advantage of the proposed approach in terms of train-
ing efficiency compared with alternative MARL algorithms.

Through this section, we use the accumulated reward (5) to
evaluate the proposed Bi-CL algorithm. To avoid ambiguity,
we distinguish the following metrics:

RL-Reward.: refers to the reward of the reinforcement learn-
ing policy 7* when solving (6a) during centralized training.
T-Reward: refers to an average reward obtained by executing
both the learned reinforcement learning policy 7 and imita-
tion learning policy 7; in the environment for thirty times.
R-Gap: refers to the subtraction between the RL-Reward and
the T-Reward.

Remark 1. Note that RL-Reward and T-Reward are different
because they use different ways to choose robots’ action ;.
RL-Reward uses an ‘optimal’ solution yf = {y}”,--- ,y*}
of (6¢); T-Reward uses output of the learned policy n;. Only
the T-Reward reflects the true performance of the policies
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Fig. 3: Running Example (a): all robots travel along a route.
because it is achievable during decentralized execution, and
higher means better. Since R-Gap evaluates the difference,
smaller means better.

Running Example: We introduce a running example for co-
ordinated multi-robot route traversal, by assuming all robots
travel continuously through a route. Each robot can only
observe a subset of full system states through an underlying
communication network. Fig. 3 provides a visualization
of the environment. The testing environment we use is a
mathematical abstraction that may not exactly follow its
physical layout and the number of adversaries may change.
e Each robot ¢ has a continuous move action (velocity)
2! € [~Vmax, Umax), and a discrete guard action y: € M
where M is the set of all adversaries. The robot ¢’s state
transition (position) follows dynamics si; = s} +x?. These
align with definition (2).
e Suppose adversary j € M has an impacted area ;. Each
time-step, if s; € B;, robot i accumulates a cost c;(s}).
Besides, for any robot k, if sf € B;, it can perform guard
against adversary j, i.e., yF = j. The guarding effect is
characterized by a discount factor on the costs created by
adversary j:

(ko) = {

Such a discount is more effective when the robot admits at
a lower moving velocity z;. The total team cost in each step
is defined as:

Rt:U(St,ﬂ%,yt):*ZZ

i=1j=1

where § is a constant time penalty. A one-time positive

reward is added when all robots arrive at the target. The

definition of U aligns with definition (3).

e The goal is to minimize the team accumulated cost in the

form of (5) before all robots arrive at the target position.
The alignment of the problem with (2) and (3) allows it

to be reformulated into (6) and then solved by our Bi-CL.

_ ok .
-l i

Vmax
1

k,j
Qy .
otherwise.

n

k,j i,J i
[Ttk vb)cid (sh)] -5,
k=1

Effectiveness of Alignment Penalty: We first implement
the proposed Bi-CL in an environment with 4 robots and
4 adversaries (fire). In Bi-CL, the reinforcement learning of
7' uses an independent actor in each robot with centralized
critic [28, Sec. 2.4], following the structure of MADDPG [4]
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Fig. 4: Comparison of cumulative reward for different alignment penalties with four robots and four adversaries. The height

of red dash lines determines implementation performance.

but over reduced action space. Each robot only observes part
of the global information, i.e., its own state and the states of
a subset of other robots in the system The cost function c;
is an affine function that depends on the closeness between
the robot and the center of the adversary.

Fig. 4 illustrates the RL-Reward curves and T-Reward for
different ¢; by setting ¢ = 0,¢ = 1,¢ = 5,¢ = 10,¢ = 50,
all with 8 = 2e — 3 and h = 3000. This, together with
(7), makes cj gradually increase in an ‘S’ shape from 0
to c. Upon examining the results, it is evident that the R-
Gap is large when c is small, and the gap diminishes as
c increases. This verifies the effectiveness of the proposed
alignment penalty term in (6¢), as it motivates the policy 7
to be tuned using a y}” that is closer to the output of 7?. It
is also important to note that although the MARL training
reward appears high when c is small, this is misleading and
unattainable in decentralized execution due to the mismatch
between 7 and 7;. The attainable reward (T-Reward) is much
lower with smaller c.

Finally, we observe in the last plot of Fig. 4 that a very
large ¢ = 50 may negatively impact the training performance.
This is due to two reasons. First, as we discussed in the
algorithm development, larger c; reduces the training effi-
ciency of the imitation learning part of the algorithm. This
is reflected by the lower values on both RL-Reward and T-
Reward. Second, since c; impacts the computation of yi’*
during the training process, changing it too aggressively will
lead to instability in training. This is evidenced by the middle
part of the curve, where increased osculation is observed.

The same test is performed under various environment se-
tups and the results are shown in Table I. Here, Na_Mb means

TABLE I: Average reward per episode of different c;, values

Environments Metric ¢ =0 p= 27
c=1¢=5c¢c=10 ¢c=50
e Thoe S wu i i
v T 10 R %
e et O 0w e
NMH G 654 38t 1R 059 037

55

T 40 7 B
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5 — Bi-CL — Bi-CL
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Fig. 5: Performance Comparisons in Different Scenarios.

the environment has a robots and b adversaries. Especially,
in N5_M4*, each robot further reduces the number of other
robots’s states it can observe. The results in the table align
with our above analysis. In all cases where ¢, = ¢ = 0,
i.e., without alignment penalty, the performance is the worst.
The R-Gap generally reduces when ¢ grows large. Since T-
Reward is the core metric for performance, the best result
mostly occurs at ¢ = 10 with only one exception and the
difference is small. Furthermore, to read the table column-
wise, environments with the same number of adversaries, i.e.,
M4 are comparable. From N4_M4 to N5_M4, the T-Rewards
generally increase because more coordination behaviors can
be generated. When comparing N5_M4* and N5_M4, the
T-Rewards generally decrease due to the reduced sensing
distances of the robots. This also leads to a larger R-Gap
when ¢ = 0, necessitating the introduced alignment penalty.

Comparing Training Efficiency with Baselines: We also
compare the proposed Bi-CL algorithm with two well-
established MARL algorithms, MADDPG [4] and QMIX [7],
respectively. MADDPG and QMIX are implemented in
complete action space A’ = X% x Y of each robot. The
same learning rates with Bi-CL are used. The comparison is
visualized in Fig. 5 for the four cases in the above discussion.
Here, we choose ¢ 10 as the R-Gaps are small. Thus,
the RL-Reward curve can represent the convergence of our
algorithm and can approximate the true reward our algorithm
can achieve. It can be observed that in all cases, Bi-CL can
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achieve similar final rewards compared with baselines, which
justifies the effectiveness of the proposed algorithm. The
efficiency of Bi-CL is evidenced by its faster convergence
speed compared with baselines. Furthermore, the starting
reward of our algorithm is significantly better because it uses
the optimization (6¢) to boost and guide the policy training,
while other methods are purely based on exploration. For a
similar reason, we observe that both MADDPG and QMIX
suffer from training stability issues for complex scenarios,
while the proposed Bi-CL does not.

V. CONCLUSION

We presented a bi-level formulation for multi-robot coordi-
nation learning with local observation, wherein robots’ state
transitions and their cooperative behaviors are abstracted
and optimized on different levels, significantly enhancing
learning efficiency. A key enabler of our Bi-CL algorithm
was an alignment penalty that enables upper-level learning
to account for potential discrepancies arising from local
observations in lower-level optimization. We validated our
algorithm through a running example. Experimental results
demonstrated that our algorithm can effectively learn in the
environment. We evaluated the performance enhancement
of the Bi-CL using different alignment penalty parameters.
Comparative analysis with baselines verified the efficiency
of our algorithm.

For future work, we aim to explore the scalability of
our Bi-CL to accommodate larger multi-robot systems and
more complex environments, further refining the alignment
penalty mechanism to enhance its adaptability and efficiency.
Moreover, we intend to extend our way of handling robots’
information loss to effectively manage dynamic, stochastic,
and noisy scenarios, thereby enhancing its resilience and per-
formance in unpredictably evolving multi-robot coordination
environments.
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