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Abstract— In multi-robot systems, achieving coordinated mis-
sions remains a significant challenge due to the coupled nature
of coordination behaviors and the lack of global information
for individual robots. To mitigate these challenges, this paper
introduces a novel approach, Bi-level Coordination Learning
(Bi-CL), that leverages a bi-level optimization structure within
a CTDE paradigm. Our bi-level reformulation decomposes
the original problem into a reinforcement learning level with
reduced action space, and an imitation learning level that
gains demonstrations from a global optimizer. Bi-CL further
integrates an alignment penalty mechanism, aiming to minimize
the discrepancy between the two levels without degrading
their training efficiency. We introduce a running example
to conceptualize the problem formulation. Simulation results
demonstrate that Bi-CL can learn more efficiently and achieve
comparable performance with traditional multi-agent reinforce-
ment learning baselines for multi-robot coordination.

I. INTRODUCTION

Multi-robot systems have extensive applications in various

engineering fields, but their deployment relies on scalable

algorithms that enable robots to make coordinated and

sequential decisions using local observation [2], [3]. To

this end, Centralized Training with Decentralized Execution

(CTDE) [4] emerges as a promising approach, offering a

balanced framework for coordinating multiple robots through

centralized learning processes that guide decentralized oper-

ational decisions. A similar case applies to Proximal Policy

Optimization (PPO) algorithm and its generalization Multi-

agent PPO [5]. While these approaches might be concerned

with state dimensionality during centralized training, recent

advances, such as Value-Decomposition Networks (VDN),

can be leveraged to decompose the joint value function into

individual value functions for each robot [6]. Building on

this, QMIX [7] further extends the framework, allowing for

a more complex, state-dependent mixing of individual robot’s

value functions to learn coordinated behaviors. However,

the effectiveness of CTDE faces significant challenges as

the dimensionality of action spaces expands and each robot

only has local observation of the system. These challenges

complicate the training process and potentially impedes

practical deployment.

In this context, we note that multi-robot cooperative mis-

sions often exhibit inherent hierarchical structures, allow-

ing them to be decomposed into high-level and low-level

tasks [8]. For instance, rescue missions utilize teams of

robots to search large or hazardous areas [9], [10], where
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Fig. 1: A running example for a firefighting scenario. Robots

can simultaneously perform two actions: move (to where)

and guard (which adversary). Team reward depends on the

risk of fire, which is a coupled function of both actions.

a high-level planning task may focus on area coverage,

and a low-level task may address navigation and obsta-

cle avoidance. A similar scenario arises from warehouse

automation [11], where high-level tasks involve managing

robot fleets for picking, packing, and sorting, and low-level

tasks ensure precise and safe navigation in densely populated

environments. Nevertheless, in most cases, the decomposed

problems are internally coupled by state dependence, which

can not be solved independently. Bi-level optimization [12]

presents a solution to this issue, with the capability of

enhancing learning efficiency and stability while maintaining

the explicit connections between the two levels of problems.

Bi-level optimization is a hierarchical mathematical for-

mulation where the solution of one optimization task is

restricted by the solution set mapping of another task [12].

In recent years, this technique has been incorporated with

various machine learning methods for nested decision-

making, including multi-task meta-learning [13], neural ar-

chitecture search [14], adversarial learning [15], and deep

reinforcement learning [16]. The applications of these bi-

level learning approaches span economics, management,

optimal control, systems engineering, and resource alloca-

tion problems [17]–[21], with a comprehensive review by

Liu et al. [12]. Corresponding to the scope of this paper,

when solving multi-robot coordination problems, bi-level

decomposition has been introduced [22], [23] for actor-

critic MARL to reduce the training burden of each level,

thus improving the training efficiency and convergence. Le

et al. [24] uses latent variables to introduce a mechanism

similar to bi-level optimization that can significantly improve

the performance of multi-agent imitation learning.

However, despite the abundance of research on addressing

such coupling in static optimization problems for both single-
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agent [25], [26] or multi-agent [22] cases, there remains

a scarcity of studies tailored for multi-agent reinforcement

learning (MARL) under CTDE with robots’ local obser-

vation. This gap motivates our research to develop new

approaches that leverage the benefits of bi-level optimization

for reinforcement learning applications in multi-robot sys-

tems, thereby enhancing their deployment efficiency across

a variety of complex and dynamic environments.

Statement of contribution: The contributions of this pa-

per include (i) the formulation of a bi-level Decentralized

Markov Decision Process (Dec-MDP) for multi-robot co-

ordination; (ii) a Bi-level Coordination Learning (Bi-CL)

framework with a novel alignment mechanism to integrate

multi-agent reinforcement learning and imitation learning

under the CTDE scheme; (iii) simulated experiments that

verify the effectiveness of the proposed Bi-CL algorithm

and a comparison with traditional MARL algorithms to solve

multi-robot coordination tasks.

Running Example: We conceptualize the proposed bi-level

approach using an example, as visualized in Fig. 1. Consider

multiple robots traversing an area with multiple adversaries.

During their traversal, each robot suffers risk or damage from

adversaries accumulated over time, if it enters their impact

range. Each robot has two decomposable actions: the action

of move and the action of guard, which are performed simul-

taneously. The move action changes the robot’s locations in

the environment. In each step, the relative positions of robots

to adversaries determine a base risk the robot accumulates.

The guard is an additional action each robot can choose to

perform against an adversary, which increases its own risk

but reduces the risks that this adversary poses to other robots.

Our goal is to minimize the accumulated risk and traveling

time for all robots to arrive at a target position, given each

robot only has local (partial) observation of the system.

The same scenario discussed above applies to a handful of

applications for multi-robot coordination, such as firefight-

ing considering fire as adversaries; battlefields considering

enemy robots as adversaries; and team car racing or football

games considering non-cooperative players as adversaries.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Formulation of a Bi-level Optimization

A regular centralized Markov Decision Process (MDP)

can be defined by a tuple (S,A, T , γ, R), including state,

action, state transition, discount factor, and reward. The goal

is to learn a policy π : S → A to maximize the expected

cumulative reward over the task horizon T , i.e.,

max
Ã

E
at∼Ã(·|st)

[
T∑

t=0

γtRt

]
, (1)

where at ∈ A and st ∈ S are the action and state of the

system at each step.

Let’s assume the actions of the system can be decomposed

as at = {xt,yt} ∈ X ×Y , and the system’s state transition

depends only on action xt such that T : S × X → S:

st+1 = T (st,xt). (2)
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Fig. 2: A Bi-level Coordination Learning (Bi-CL) Algorithm:

incorporating multi-agent reinforcement learning (MARL)

and imitation learning (MAIL), guided by a global optimizer.

However, the reward function depends on both actions:

Rt = U(st,xt,yt). (3)

If the structure of problem (1) satisfies (2) and (3), it can be

formulated into a bi-level problem:

max
Ã̂

E
xt∼Ã̂(·|st)

[
T∑

t=0

γtU(st,xt,y
∗
t (st,xt))

]
, (4a)

s.t. y
∗
t (st,xt) = argmax

yt

U(st,xt,yt). (4b)

In this paper, we make the following assumption:

Assumption 1. Problem (4a) is complex such that π̂ is solved

using a reinforcement learning (e.g. actor-critic method),

whereas problem (4b) can be solved explicitly and be de-

scribed as a mapping f : S × X → Y .

The assumption can be justified by the fact that (4a) is a

planning problem involving state transitions and rewards for

future T steps, while (4b) only involves a one-step reward.

Under Assumption 1, for the lower level problem (4b),

the optimal y
∗
t is solvable from f : S × X → Y , based

on the current st and the choice of xt. Bringing this

solution back to the upper level (4a), we only need to solve

a reduced-dimension MDP defined by (S,X , T , γ, R), to

obtain a policy π̂ : S → X that generates action xt.

During implementation, the policy π in problem (1) can be a

composition of π = π̂ ◦ f . We learn the policy π̂ to generate

xt from st, then use f to generate yt from {st,xt}.

B. Bi-level Formulation for Multi-robot Coordination Learn-

ing with Local Robot Observation

In this paper, we generalize the bi-level formulation into a

multi-robot system with local observation. Consider a multi-

robot system with a set of n = {1, · · · , n} robots. Suppose

the centralized actions and states in (1) are decomposed into

each robot’s state and action as st = {s1t , . . . , s
n
t } ∈ S and

at = {a1t , . . . , a
n
t } ∈ A. Assume each robot’s action can

be further written as ait = {xi
t, y

i
t}, where the action xi

t

determines the robot’s local state update sit+1 = T i(sit, x
i
t).

The multi-robot system shares a global reward determined by

all robots’ states, and their two actions: Rt = U(st,xt,yt).
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For many real-world applications, the deployment of a

multi-robot system faces communication and sensing con-

straints, where each agent may only have access to the states

of its neighbors through a network, denoted by set Ni. The

neighbors’ states are a subset of the full system state, denoted

by sNi

t ª st. Such local observation turns the problem into

a Dec-MDP. Under this constraint, the problem of interest

in this paper is to learn a local policy πi for each agent such

that:

max
Ãi

E
ai
t∼Ãi(·|s

Ni
t )

[
T∑

t=0

γtRt

]
. (5)

While solving Dec-MDP problems is known to be diffi-

cult [27], in this paper, we will generalize the idea of bi-level

optimization under the scheme of CTDE and use action space

reduction to alleviate the challenges in high-dimensional

parameter tuning for MARL. Note that such a generaliza-

tion is non-trivial and the main challenge lies in the local

observation and local decision-making of each robot using

incomplete information. As a consequence, compared with

the centralized case, the robots cannot solve an optimization

problem like (4b) to determine their secondary action yit.

III. MAIN APPROACH

As described in Sec. II-A, the centralized bi-level formula-

tion leverages the optimizer (4b) to reduce the dimensionality

of the action space, thereby enhancing training efficiency.

However, such optimization requires global information,

which is not accessible to robots during decentralized exe-

cution. Thus, robots cannot locally generate yit
∗
. To address

this issue, in this section, we introduce a new reformulation

to generalize the concept of bi-level optimization to a CTDE

setup.

To present our approach, we reformulate (5) into the

following Bi-level Coordination Learning (Bi-CL) problem,

∀i ∈ {1, · · · , n},

max
Ã̂i

E
xi
t∼Ã̂i(·|s

Ni
t )

[
T∑

t=0

γtU(st,xt,y
⋆
t (st,xt))

]
, (6a)

min
¸i

E
yi
t∼¸i(·|s

Ni
t ,x

Ni
t )

∥yit − yit
∗
(st,xt)∥

2, (6b)

s.t. y⋆
t (st,xt)=argmax

yt



U(st,xt,yt)−ck

n∑

i=1

Hi(y
i
t, η

i))

︸ ︷︷ ︸
alignment penalty




(6c)

In equations (6a) and (6b), we aim to train two local policies

for each robot: one policy, π̂i : SNi → X i, generates action

xi
t; another policy, ηi : SNi × XNi → Yi, generates action

yit. Note that the two policies are coupled since their inputs

rely on the outputs of each other. If training two policies

simultaneously, such coupling can pose a stability issue and

reduce training efficiency. To address this, our idea is to

introduce a global optimizer (6c) under the CTDE scheme

Algorithm 1: The Bi-CL Algorithm

1 Initialize local RL models π̂i(sNi |θÃ̂i) and IL

models ηi(sNi , xNi |θ¸i) for all robots. Initialize

centralized critic Q(s,x|θQ) if needed;

2 Initialize alignment penalty co-efficient ck;

3 for k = 0 to Tk do

4 Update coefficient ck = c
1+e−β(k−h) ;

5 for t = 0 to Tt do

6 for i = 1 to n do

7 Get action: xi
t by adding random

perturbation to π̂i(sNi

t |θÃ̂i);
8 Get action: ŷit = ηi(sNi

t , xi
t|θ¸i);

9 State update: sit+1 = T i(sit, x
i
t);

10 end

11 Solve argmaxyt
[U(st,xt,yt)− ck

∑n
i=1 Hi]

to obtain y
⋆
t ;

12 Observe reward Rt = U(st,xt,y
⋆
t );

13 Record (st,xt,y
⋆
t , Rt, st+1) to a fixed size

buffer B with first-in-first-out;

14 Sample (sÄ ,xÄ ,y
⋆
Ä , rÄ , sÄ+1) from B as a

random minibatch of size w;

15 Update critic network θQ using the minibatch,

if critic exist;

16 for i = 1 to n do

17 Update IL learning model θ¸i using the

minibatch;

18 Update RL learning model: θÃ̂i using the

minibatch;
19 end

20 end

21 end

to decouple and guide the training of both policies, as we

explain next and visualized in Fig. 2.

Bi-level optimization: First, we introduce optimization prob-

lem (6c) to solve y
⋆
t . If temporarily ignoring the alignment

penalty term, the equations (6a) and (6c) together represent

a CTDE version of the bi-level problem (4). During the cen-

tralized training process, we can utilize global information

for all robots’ states st and actions xt to solve y
⋆
t . Based

on y
⋆
t (st,xt), we train the local policy π̂i in (6a) for each

agent’s xi
t using a reinforcement learning scheme. π̂i has a

reduced-dimension action space because y
⋆
t is not learned.

On the other hand, while optimizer (6c) can be used in

centralized training to obtain action y
⋆
t for all robots, it

cannot be used by robots during decentralized execution due

to the local observations. Thus, we introduce (6b) to train a

local policy ηi to generate agent’s yit. The policy ηi can be

trained conveniently using an imitation learning (IL) scheme

that uses optimizer (6c) as the expert demonstration. Here,

the imitation loss in (6b) measures the difference between

the policy output yit using local information and the optimal

action solved from optimizer (6c) using global information.

Alignment of the two policies: We explain the alignment

term in (6c). Based on the above explanation, the policy π̂i
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is trained assuming the actions y
⋆
t = {y1t

∗
, · · · , ynt

∗} are

optimal for all robots, and the policy ηi seeks to generate

such optimal actions using only local information. Clearly,

during decentralized execution, the optimality of ηi can

hardly be guaranteed, thus creating a mismatch between the

policies π̂i and ηi. To address this, we introduce an alignment

penalty term ck
∑n

i=1 Hi(y
i
t, η

i)) in (6c), where ck > 0 and

Hi = E
ŷi
t∼¸i(·|s

Ni
t ,x

Ni
t )

∥yit − ŷit∥
2.

Here, ŷit is the output of the model ηi, then Hi evaluates

how well an action yit aligns with the policy ηi. Minimizing

this penalty helps to reduce the mismatch between the two

local policies. Mathematically, the value of Hi for each robot

equals the loss in (6b). Hence, ck is an important coefficient

and we shall remark on its choice during the training. If ck →
0, the reformulation (6) disregards the policy mismatch,

always opting for the solution that maximizes U to train π̂i.

Conversely, when ck → ∞, the penalty forces the training

of π̂i using the action chosen by ηi, making the two policies

fully coupled, and the IL (6b) no longer updates. To strike a

balance, our idea is to make sure the IL model is sufficiently

trained before the penalty is applied. For this purpose, we

define a modified logistic function:

ck =
c

1 + e−´(k−h)
with c > 0, β > 0, h > 0 (7)

where k is the training episode. We let ck start with zero

to ‘jump start’ the training of π̂i and ηi using the optimal

y
⋆
t for maximizing U . Afterwards, ck is gradually increased

to a sufficiently large value c to fine-tune π̂i, taking into

account the output of ηi and ensuring alignment between

the two policies, π̂i and ηi. The described training scheme

is summarized in Algorithm 1.

IV. NUMERICAL RESULTS

In this section, we employ the running example to verify

the proposed algorithm. We use simulated experiments to

demonstrate: (i) the effectiveness of the proposed bi-level

learning schemes, in particular, the alignment penalty term;

(ii) the advantage of the proposed approach in terms of train-

ing efficiency compared with alternative MARL algorithms.

Through this section, we use the accumulated reward (5) to

evaluate the proposed Bi-CL algorithm. To avoid ambiguity,

we distinguish the following metrics:

RL-Reward: refers to the reward of the reinforcement learn-

ing policy π̂i when solving (6a) during centralized training.

T-Reward: refers to an average reward obtained by executing

both the learned reinforcement learning policy π̂i and imita-

tion learning policy ηi in the environment for thirty times.

R-Gap: refers to the subtraction between the RL-Reward and

the T-Reward.

Remark 1. Note that RL-Reward and T-Reward are different

because they use different ways to choose robots’ action yit.

RL-Reward uses an ‘optimal’ solution y
⋆
t = {y1t

⋆
, · · · , ynt

⋆}
of (6c); T-Reward uses output of the learned policy ηi. Only

the T-Reward reflects the true performance of the policies

Fig. 3: Running Example (a): all robots travel along a route.

because it is achievable during decentralized execution, and

higher means better. Since R-Gap evaluates the difference,

smaller means better.

Running Example: We introduce a running example for co-

ordinated multi-robot route traversal, by assuming all robots

travel continuously through a route. Each robot can only

observe a subset of full system states through an underlying

communication network. Fig. 3 provides a visualization

of the environment. The testing environment we use is a

mathematical abstraction that may not exactly follow its

physical layout and the number of adversaries may change.

• Each robot i has a continuous move action (velocity)

xi
t ∈ [−vmax, vmax], and a discrete guard action yit ∈ M

where M is the set of all adversaries. The robot i’s state

transition (position) follows dynamics sit+1 = sit+xi
t. These

align with definition (2).

• Suppose adversary j ∈ M has an impacted area Bj . Each

time-step, if sit ∈ Bj , robot i accumulates a cost cj(s
i
t).

Besides, for any robot k, if skt ∈ Bj , it can perform guard

against adversary j, i.e., ykt = j. The guarding effect is

characterized by a discount factor on the costs created by

adversary j:

α
k,j
t (xk

t , y
k
t ) =

{
1− β

(vmax−xk
t )

vmax
ykt = j,

1 otherwise.

Such a discount is more effective when the robot admits at

a lower moving velocity xi
t. The total team cost in each step

is defined as:

Rt=U(st,xt,yt)=−
n∑

i=1

m∑

j=1

[
n∏

k=1

α
k,j
t (xk

t , y
k
t )c

i,j
t (sit)

]
−δ,

where δ is a constant time penalty. A one-time positive

reward is added when all robots arrive at the target. The

definition of U aligns with definition (3).

• The goal is to minimize the team accumulated cost in the

form of (5) before all robots arrive at the target position.

The alignment of the problem with (2) and (3) allows it

to be reformulated into (6) and then solved by our Bi-CL.

Effectiveness of Alignment Penalty: We first implement

the proposed Bi-CL in an environment with 4 robots and

4 adversaries (fire). In Bi-CL, the reinforcement learning of

π̂i uses an independent actor in each robot with centralized

critic [28, Sec. 2.4], following the structure of MADDPG [4]
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Fig. 4: Comparison of cumulative reward for different alignment penalties with four robots and four adversaries. The height

of red dash lines determines implementation performance.

but over reduced action space. Each robot only observes part

of the global information, i.e., its own state and the states of

a subset of other robots in the system The cost function cj
is an affine function that depends on the closeness between

the robot and the center of the adversary.

Fig. 4 illustrates the RL-Reward curves and T-Reward for

different ct by setting c = 0, c = 1, c = 5, c = 10, c = 50,

all with β = 2e − 3 and h = 3000. This, together with

(7), makes ck gradually increase in an ‘S’ shape from 0
to c. Upon examining the results, it is evident that the R-

Gap is large when c is small, and the gap diminishes as

c increases. This verifies the effectiveness of the proposed

alignment penalty term in (6c), as it motivates the policy π̂i
t

to be tuned using a yit
⋆

that is closer to the output of ηit. It

is also important to note that although the MARL training

reward appears high when c is small, this is misleading and

unattainable in decentralized execution due to the mismatch

between π̂i
t and ηit. The attainable reward (T-Reward) is much

lower with smaller c.

Finally, we observe in the last plot of Fig. 4 that a very

large c = 50 may negatively impact the training performance.

This is due to two reasons. First, as we discussed in the

algorithm development, larger ck reduces the training effi-

ciency of the imitation learning part of the algorithm. This

is reflected by the lower values on both RL-Reward and T-

Reward. Second, since ck impacts the computation of yit
⋆

during the training process, changing it too aggressively will

lead to instability in training. This is evidenced by the middle

part of the curve, where increased osculation is observed.

The same test is performed under various environment se-

tups and the results are shown in Table I. Here, Na Mb means

TABLE I: Average reward per episode of different ck values

Environments Metric ck = 0
β = 2e−3

c = 1 c = 5 c = 10 c = 50

N3 M3
T-Reward 51.83 53.01 53.44 53.17 52.13

R-Gap 1.34 0.73 0.26 -0.45 -0.23

N4 M4
T-Reward 42.10 42.03 44.05 47.38 43.56

R-Gap 3.98 1.55 -0.87 -0.39 -0.11

N5 M4
T-Reward 56.31 58.27 59.68 60.08 59.46

R-Gap 4.79 4.45 1.17 -0.04 -0.15

N5 M4*
T-Reward 50.67 53.39 54.09 54.60 54.20

R-Gap 6.54 3.84 1.82 -0.59 0.27
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Fig. 5: Performance Comparisons in Different Scenarios.

the environment has a robots and b adversaries. Especially,

in N5 M4*, each robot further reduces the number of other

robots’s states it can observe. The results in the table align

with our above analysis. In all cases where ck = c = 0,

i.e., without alignment penalty, the performance is the worst.

The R-Gap generally reduces when c grows large. Since T-

Reward is the core metric for performance, the best result

mostly occurs at c = 10 with only one exception and the

difference is small. Furthermore, to read the table column-

wise, environments with the same number of adversaries, i.e.,

M4 are comparable. From N4 M4 to N5 M4, the T-Rewards

generally increase because more coordination behaviors can

be generated. When comparing N5 M4* and N5 M4, the

T-Rewards generally decrease due to the reduced sensing

distances of the robots. This also leads to a larger R-Gap

when c = 0, necessitating the introduced alignment penalty.

Comparing Training Efficiency with Baselines: We also

compare the proposed Bi-CL algorithm with two well-

established MARL algorithms, MADDPG [4] and QMIX [7],

respectively. MADDPG and QMIX are implemented in

complete action space Ai = X i × Yi of each robot. The

same learning rates with Bi-CL are used. The comparison is

visualized in Fig. 5 for the four cases in the above discussion.

Here, we choose c = 10 as the R-Gaps are small. Thus,

the RL-Reward curve can represent the convergence of our

algorithm and can approximate the true reward our algorithm

can achieve. It can be observed that in all cases, Bi-CL can
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achieve similar final rewards compared with baselines, which

justifies the effectiveness of the proposed algorithm. The

efficiency of Bi-CL is evidenced by its faster convergence

speed compared with baselines. Furthermore, the starting

reward of our algorithm is significantly better because it uses

the optimization (6c) to boost and guide the policy training,

while other methods are purely based on exploration. For a

similar reason, we observe that both MADDPG and QMIX

suffer from training stability issues for complex scenarios,

while the proposed Bi-CL does not.

V. CONCLUSION

We presented a bi-level formulation for multi-robot coordi-

nation learning with local observation, wherein robots’ state

transitions and their cooperative behaviors are abstracted

and optimized on different levels, significantly enhancing

learning efficiency. A key enabler of our Bi-CL algorithm

was an alignment penalty that enables upper-level learning

to account for potential discrepancies arising from local

observations in lower-level optimization. We validated our

algorithm through a running example. Experimental results

demonstrated that our algorithm can effectively learn in the

environment. We evaluated the performance enhancement

of the Bi-CL using different alignment penalty parameters.

Comparative analysis with baselines verified the efficiency

of our algorithm.

For future work, we aim to explore the scalability of

our Bi-CL to accommodate larger multi-robot systems and

more complex environments, further refining the alignment

penalty mechanism to enhance its adaptability and efficiency.

Moreover, we intend to extend our way of handling robots’

information loss to effectively manage dynamic, stochastic,

and noisy scenarios, thereby enhancing its resilience and per-

formance in unpredictably evolving multi-robot coordination

environments.
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