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Quantitative simulation of electronic structure of solids requires treating local and non-local electron correla-
tions on an equal footing. We present a new ab initio formulation of Green’s function embedding which, unlike
dynamical mean-field theory that uses non-interacting bath, derives bath representation with general two-particle
interactions in a systematically improvable manner. The resulting interacting-bath dynamical embedding theory
(ibDET) utilizes an efficient real-axis coupled-cluster solver to compute the self-energy, approaching the full
system limit at much reduced cost. When combined with the GW theory, GW+ibDET achieves good agreement
with experimental spectral properties across a range of semiconducting, insulating and metallic materials. Our
approach also enables quantifying the role of non-local electron correlation in determining material properties
and addressing the long-standing debate on the bandwidth narrowing of metallic sodium.

Introduction. Predictive description of material-specific
electronic properties remains a significant challenge in compu-
tational physics and chemistry [1]. The main reason is the need
for quantitative treatment of electron correlation effects and
simulating in the thermodynamic limit simultaneously. Quan-
tum embedding theories offer a promising route to solve this
problem [2]. For dynamical quantities, dynamical mean-field
theory (DMFT) has been the most popular choice, leading to
advances in the understanding of correlated electron physics
in lattice models and real materials [3–5].

Despite its success in treating strong local electron interac-
tions, extending DMFT to accurately capture non-local elec-
tron correlation remains challenging [6]. This capability is
crucial for describing various quantum many-body phenom-
ena, such as the pseudogap phase and stripe orders in high-
temperature cuprate superconductors [7–9]. Cluster exten-
sions in real (cluster DMFT [10–12]) or reciprocal (DCA
and DΓA [13–15]) spaces have been proposed, but these for-
malisms are mostly designed for short-range quantum fluctu-
ations, and CDMFT is known to break translational invari-
ance [16]. To account for band structure and long-range inter-
actions in real materials, density functional theory (DFT) [17]
or many-body perturbation theory (GW) [18–21] is normally
adopted as the low-level theory for DMFT. Although much
progress has been made in the downfolded DFT+DMFT [5]
and GW+DMFT [22–25] formalisms, their predictive capa-
bility is limited by uncontrolled errors that are often difficult
to quantify. The impurity problem usually comprises a few
correlated orbitals, but DMFT results could depend sensitively
on the choice and construction of these impurity orbitals [26].
The derivation of effective interactions and approximation to
their frequency dependence also introduce numerical uncer-
tainties [27]. Moreover, DFT+DMFT calculations could suf-
fer from the double counting error [28, 29].

To avoid these numerical ambiguities, one of us recently de-
veloped a full cell GW+DMFT formalism [30–32], where the
impurity problem comprises all local orbitals of atoms within
a chosen supercell. General bare Coulomb interactions within
impurity orbitals are employed and solved by efficient quan-
tum chemistry solvers [33, 34], removing the need for down-
folding. However, full cell GW+DMFT inevitably inherits
certain limitations from cluster DMFT, such as the breaking

of translational invariance. While the impurity space is sig-
nificantly larger, the non-local electron correlation beyond the
selected supercell is at best captured at the GW level. The ne-
glect of long-range interactions stronger than those captured
by GW is known to yield errors in a variety of settings [24, 35].

A common origin of this challenge in DMFT is the non-
interacting nature of its bath representation through the hy-
bridization function. Despite a natural choice for continuous-
time quantum Monte Carlo (CTQMC) solvers [36], the non-
interacting bath parametrization does not fully leverage the
power of Hamiltonian-based solvers, such as exact diago-
nalization (ED) [37], density matrix renormalization group
(DMRG) [34, 38], configuration interaction (CI) [39], and
coupled-cluster (CC) theory [33, 40–42], as there is no clear
mapping between the full Hamiltonian and fictitious bath
states. In this Letter, we develop a new ab initio Green’s
function embedding formulation with interacting bath, which
enables direct projection of the full interacting Hamilto-
nian into large embedding problems, solved by a coupled-
cluster Green’s function (CCGF) solver truncated at the single-
reference singles and doubles level [33]. Unlike DMFT, this
formulation utilizes self-energy corrections to both impurity
and bath states for describing dynamical quantities, allowing
the computation of coupled-cluster spectra at substantially re-
duced cost. Because we do not derive bath parameters by fit-
ting the hybridization function, this method is, strictly speak-
ing, no longer DMFT, and we term it interacting-bath dynam-
ical embedding theory (ibDET).

Method. Given a periodic crystal, we start with a mean-
field solution at the Hartree-Fock (HF) or DFT level using
crystalline Gaussian atomic orbitals. To define the impurity
problem, we construct the orthogonal atom-centered local or-
bital basis employing an intrinsic atomic orbital plus projected
atomic orbital (IAO+PAO) scheme [43, 44]. We choose all lo-
cal orbitals on a single atom as the impurity and then gradually
expand the bath space by selecting orbitals that entangle most
strongly with impurity orbitals from the environment. To re-
cover the self-energy of the full crystal, multiple embedding
problems need to be formulated, each centered on an impurity
atom in the unit cell.

The key step is then to perform algebraic construction of
bath orbitals that allow projection from full Hamiltonian to
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FIG. 1. Illustration of the ibDET formalism, where each embedding
space includes all local orbitals of an impurity atom (“𝐼”) in the unit
cell coupled to large interacting bath (“𝐵”). An example of an occu-
pied embedding space in SrTiO3 (Ti as impurity) is shown.

the embedding space (Fig. 1). Here, we construct bath or-
bitals responsible for capturing short- and long-range electron
correlations respectively. The first set 𝐵DM is derived by a
Schmidt decomposition, i.e., using the singular value decom-
position (SVD) of the mean-field off-diagonal one-particle re-
duced density matrix (1-RDM) between the impurity and re-
maining lattice [44], the same as in density matrix embed-
ding theory [45]. 𝐵DM ensures that impurity 1-RDM is ex-
actly reproduced in the embedding calculation at the mean-
field level [46]. The second set 𝐵GF is obtained by performing
SVD of the imaginary part of mean-field off-diagonal Green’s
function 𝑔(𝜔𝑛) on a uniform real-frequency grid, to capture
the frequency-dependent entanglement between impurity and
environment [47], a role similar to that of the hybridization
function in DMFT. To keep the number of 𝐵DM and 𝐵GF or-
bitals tractable, we couple bath orbitals only to valence im-
purity orbitals (i.e., IAOs) and adopt an additional projection
to orthogonalize the embedding space and remove redundant
𝐵GF orbitals. 𝐵DM and 𝐵GF, however, do not capture elec-
tron correlation beyond short range, so we derive a third set of
cluster-specific natural bath orbitals 𝐵NO inspired by local cor-
relation methods in quantum chemistry, particularly the local
natural orbital coupled-cluster (LNO-CC) theory [48]. Sim-
ilar idea was recently introduced to quantum embedding by
Nusspickel and Booth [49] and periodic CC theory [50] for
ground-state properties. The key is to select natural orbitals
from the environment that correlate strongly to the existing
embedding cluster (𝐼

⨁

𝐵DM
⨁

𝐵GF, where 𝐼 stands for the
impurity space), estimated by a cheap direct second-order per-
turbation theory (dMP2) calculation. Furthermore, to better
describe the delocalized conduction states in gapped systems,
we incorporate a few low-lying canonical virtual orbitals into
the bath space [51].

The Hamiltonian for each embedding problem is

𝐻emb =
emb
∑

𝑖𝑗
𝐹𝑖𝑗𝑎

†
𝑖 𝑎𝑗 +

1
2

emb
∑

𝑖𝑗𝑘𝑙
(𝑖𝑗|𝑘𝑙)𝑎†𝑖 𝑎

†
𝑘𝑎𝑙𝑎𝑗 (1)

where (𝑖𝑗|𝑘𝑙) is the general two-particle bare Coulomb interac-
tion matrix defined on all impurity and bath orbitals, obtained
through a projection with rotation matrix 𝑅 (see Fig. 1 for the
definition of 𝑅). The one-particle interaction matrix is defined
as

𝐹𝑖𝑗 = 𝐹 emb
𝑖𝑗 −

emb
∑

𝑘𝑙
𝛾emb
𝑘𝑙 [(𝑖𝑗|𝑙𝑘) − 1

2
(𝑖𝑘|𝑙𝑗)]. (2)

Here, 𝐹 emb = 𝑅†𝐹 full𝑅, where 𝐹 full is the Fock matrix of the
full system computed using HF (even when we start from the
DFT density), and 𝛾emb is the 1-RDM rotated to the embed-
ding space. The HF contribution to the self-energy is exactly
removed in Eq. 2, so there is no double counting in ibDET.

The CCGF solver at the EOM-CCSD level [33] is adopted
to solve the embedding Hamiltonians (Eq. 1) on the real axis.
We choose the CCGF solver because of its good performance
for various lattice models and real materials [52–56], as well
as high computational efficiency. Meanwhile, we emphasize
that ibDET can utilize any Hamiltonian-based solvers, such
as quantum chemistry DMRG [38] and selected configuration
interaction [57] that are more robust for stronger correlation.
The self-energy computed within the embedding space is ro-
tated back to the full Hilbert space

Σfull,𝐽 (𝜔) = 𝑅Σemb,𝐽 (𝜔)𝑅†, (3)

where 𝐽 means the 𝐽 -th embedding problem. The self-energy
matrices {Σfull,𝐽 (𝜔)} from all embedding calculations are then
assembled using a democratic partitioning scheme and Fourier
transformed to the momentum space, to obtain the full self-
energy of the crystal ΣibDET(𝐤, 𝜔). Similar to GW+DMFT,
ibDET can be easily combined with the GW theory to capture
any small long-range correlation effects missed by ibDET, and
the resulting GW+ibDET self-energy is

ΣGW+ibDET = ΣGW,full + ΣCC,ibDET − ΣGW,ibDET, (4)

where ΣGW,full is the GW self-energy of the full system. Dif-
ferent from common DFT+DMFT and GW+DMFT calcula-
tions that require self-consistency, all results in this work are
obtained from one-shot ibDET.

Results. We first demonstrate numerical convergence of ib-
DET results on silicon (Si) and two-dimensional hexagonal
boron nitride (2D BN), where full EOM-CCSD calculations
are possible. For Si and 2D BN, GTH-cc-pVTZ/GTH-DZVP
basis sets [58, 59] and GTH-HF-rev/GTH-PADE pseudopo-
tentials [60, 61] were employed, together with 4 × 4 × 4/6 ×
6 × 1 k-point sampling. For Si, it is not feasible to run full
EOM-CCSD calculation, thus we used a composite correc-
tion scheme [62] to estimate band gaps. All calculations were
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FIG. 2. Benchmark of ibDET on Si and 2D BN against EOM-CCSD.
(a) Convergence of GW+ibDET band gaps of Si as the number of
embedding orbitals is increased, compared to full cell GW+DMFT
values [30]. (b) DOS of 2D BN from HF+ibDET and GW+ibDET
(HF reference), compared to the HF+DMFT spectrum [31].

conducted using the PySCF quantum chemistry software pack-
age [63, 64].

In Fig. 2a, we show the convergence of GW+ibDET predic-
tions of silicon band gaps against the full system limit, which is
challenging for quantum embedding methods due to the long-
range nature of the screened interaction [30, 31, 65]. Although
one-shot G0W0 approximation on top of PBE [66] predicts
accurate band structure for Si, this success benefits from er-
ror cancellations, indicated by the large difference between
G0W0@PBE (1.15 eV) and G0W0@HF (1.86 eV) Γ-X band
gaps. The GW+ibDET predicted band gaps quickly converge
to the full EOM-CCSD limit as the embedding space grows.
At around 210 embedding orbitals (6% of the total number of
orbitals, 𝑁tot), the GW+ibDET (PBE reference) Γ-X and X-
X band gap errors are both only 0.04 eV. Furthermore, since
the long-range electron correlation is mostly captured by the
CCGF solver within ibDET, the starting-point dependence is
significantly reduced from 0.71 eV to 0.08 eV (Γ-X gap) when
using PBE vs. HF reference, which is also smaller than in
full cell GW+DMFT with similar embedding size (0.48 eV,
𝑁emb = 170).

ibDET also predicts accurate photoemission spectrum on
2D BN (Fig. 2b). Previous full cell HF+DMFT simulation
with a BN unit cell as the impurity yields accurate band gaps,
but the spectrum shape shows some discrepancies, especially
in the valence part [31], an indication of broken translational
symmetry. In contrast, the density of states (DOS) predicted
by HF+ibDET (200 orbitals in each embedding space) is in
good agreement with full EOM-CCSD, suggesting the treat-
ment of non-local electron correlation is substantially im-
proved and the translational symmetry is preserved. The va-
lence spectrum is near perfect, although the band gap is over-
estimated due to the large error in HF. GW+ibDET (HF ref-
erence) further improves over HF+ibDET and achieves quan-

titative agreement with EOM-CCSD over a wide frequency
range.

(a)

(b)

FIG. 3. Band structure of MgO and SrTiO3 computed by GW+ibDET
(heat map) and 𝐺0𝑊0@PBE (white dashes).

We then apply GW+ibDET to study two metal oxides (MgO
and SrTiO3) with large k-point sampling (6×6×6) impossible
for standard EOM-CCSD implementation. MgO has an exper-
imental band gap of 7.98∼8.19 eV [62, 67], but G0W0@PBE
underestimates the band gap (7.43 eV[20]) and quasiparticle
self-consistent GW largely overestimates (9.33 eV[21]). We
performed GW+ibDET (PBE reference) calculation using all-
electron cc-pVTZ basis set, with 230 orbitals in each embed-
ding space (2% of 𝑁tot). As presented in Fig. 3a and Table S6,
GW+ibDET greatly improves over G0W0@PBE and predicts
the band gap to be 8.22 eV, which is also consistent with recent
EOM-CCSD benchmark (8.34 eV[62]).

For the moderately correlated insulator SrTiO3, the exper-
imental indirect band gap is 3.25 eV [68]. Although SrTiO3
has no open-shell 3𝑑 electrons, its lowest conduction bands are
dominated by localized Ti-3𝑑 orbitals, causing severe underes-
timation of the band gap by PBE (1.82 eV). G0W0@PBE over-
estimates the band gap (3.62 eV), while various self-consistent
GW schemes yield even larger overestimation errors [69, 70].
We conducted GW+ibDET calculations using all-electron
def2-TZVP/def2-SVP basis sets [71] for Ti and O, and GTH-
DZVP-MOLOPT-SR/GTH-HF-rev basis/pseudopotential for
Sr. As seen in Fig. 3b and Table S7, with around 210 orbitals
in each embedding space (1% of 𝑁tot), GW+ibDET (PBE ref-
erence) predicts the R-Γ and Γ-Γ band gaps to be 3.24 eV
and 3.74 eV, in excellent agreement with experimental values.
Comparing the G0W0@PBE and GW+ibDET band structures,
we find that GW+ibDET predicts broader valence band spec-
trum due to the shift of O-dominant peaks by 1∼2 eV.

Finally, we demonstrate the applicability of ibDET to metal-
lic systems, using sodium (Na) as an example. Although

Na is usually considered as near-free-electron weakly corre-
lated, DFT with LDA or GGA functionals severely overesti-



4

(a) (b) (c)

FIG. 4. GW+ibDET results for metallic sodium. (a) Band structure computed by GW+ibDET (heat map), compared against PBE, G0W0@PBE,
and ARPES experiments by Plummer [72] and Fink [73]. (b) DOS(“Local”) − DOS(“Full”), computed by applying self-energy correction
(ΣCC −ΣGW) to the full system (“Full”) or only to the diagonal block within each Na atom (“Local”). (c) 3𝑠-3𝑠 non-local self-energy correction
(ΣCC − ΣGW) between Na atoms as the Na-Na distance increases.

mates the occupied bandwidth of Na (e.g., 3.41 eV from PBE)
compared to those measured by angle-resolved photoemission
spectroscopy (ARPES) experiments (2.65∼2.78 eV) [72, 73],
which leads to long-standing debate over the nature of elec-
tron correlation in Na [24, 74–78]. Adding non-local static
exchange in hybrid functionals yields even worse results [75].
The GW approximation is also insufficient, as G0W0 only
slightly improves over LDA and GGA (e.g., G0W0@PBE
value is 3.20 eV). Single-site DFT+DMFT and self-consistent
GW+EDMFT have been applied to this problem, where the
impurity is a single Na-3𝑠 orbital. LDA+eDMFT predicted
a bandwidth of 2.84 eV [75], which resulted in the conclu-
sion that only local electron correlation within single Na atom
needs to be captured beyond DFT. However, Ref. [24] showed
contradictory result (3.2∼3.3 eV, no improvement over GW)
from GW+EDMFT, which suggested treating Na-Na non-
local correlation beyond GW is important. Such discrepancy
is likely due to the use of different effective interaction param-
eters within the downfolding scheme.

We thus apply ibDET, which is free of downfolding param-
eters and treats significantly larger embedding space (225 or-
bitals), to address this puzzle. The CCGF solver was previ-
ously shown to agree well with DMRG on the spectral function
of a small uniform electron gas model at the relevant Wigner-
Seitz radius 𝑟𝑠 = 4 [74]. Our GW+ibDET (PBE reference)
simulation employed GTH-cc-pVTZ basis set [58] and GTH-
HF-rev pseudopotential and 8 × 8 × 8 k-mesh. In Fig. 4a, we
find that GW+ibDET achieves excellent agreement with the
ARPES spectra [72, 73] and predicts an occupied bandwidth
of 2.84 eV, significantly better than G0W0@PBE and PBE.

Now that we have established the accuracy of GW+ibDET,
we further analyze the nature of electron correlation in metal-
lic sodium. Specifically, we ask if the same good bandwidth
prediction can be obtained with only local self-energy approx-
imation, by limiting the ΣCC − ΣGW self-energy correction
to the diagonal block within each Na atom (this approxima-

tion is similar to single-site DFT+DMFT and GW+EDMFT).
In Fig. 4b, we find that, without non-local inter-atomic self-
energy correction beyond GW, the bandwidth predicted by
“local” GW+ibDET is 3.11 eV, only slightly improved over
G0W0@PBE (3.20 eV) and much worse than that predicted
by full GW+ibDET (2.84 eV). Furthermore, GW+ibDET al-
lows us to quantify the magnitude of real-space long-range
electron correlation. In Fig. 4c, we find that the real part of
inter-atomic 3𝑠-3𝑠 self-energy correction (ΣCC − ΣGW) does
not decay to zero until 6th nearest neighbour in distance, indi-
cating the electron correlation is quite delocalized in metallic
sodium. Thus, to quantitatively simulate spectral properties of
sodium, we argue it is crucial to account for long-range elec-
tron correlation at a many-body level beyond DFT and GW, as
seen in GW+ibDET.

Conclusion. We have developed a new Green’s function
embedding formulation, interacting-bath dynamical embed-
ding theory, for capturing local and non-local electron cor-
relations on an equal footing in many-body simulation of
solids. The main strength of this method is that it avoids
uncontrolled errors associated with small impurity subspace
and empirical truncations, while fully leveraging the power
of advanced quantum chemistry solvers for treating long-
range electron correlation effects. We have demonstrated that
the GW+ibDET approach achieves quantitative description
of spectral properties across a wide range of materials and
preserves the translational invariance. In particular, ibDET
provides a capability to examine the effect of non-local (and
even long-range) electron correlation in determining material-
specific electronic properties. GW+ibDET is thus a promising
tool for tackling material problems in which non-local electron
correlation plays a significant role.
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