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Abstract— We address the problem of designing an LQR
controller in a distributed setting, where )/ similar but not
identical systems share their locally computed policy gradient
(PG) estimates with a server that aggregates the estimates and
computes a controller that, on average, performs well on all
systems. Learning in a distributed setting has the potential
to offer statistical benefits — multiple datasets can be lever-
aged simultaneously to produce more accurate policy gradient
estimates. However, the interplay of heterogeneous trajectory
data and varying levels of local computational power introduce
bias to the aggregated PG descent direction, and prevents
us from fully exploiting the parallelism in the distributed
computation. The latter stems from synchronous aggregation,
where straggler systems negatively impact the runtime. To
address this, we propose an asynchronous policy gradient
algorithm for LQR control design. By carefully controlling
the “staleness” in the asynchronous aggregation, we show that
the designed controller converges to each system’s near-optimal
controller up to a heterogeneity bias. Furthermore, we prove
exact local convergence at a sub-linear rate.

I. INTRODUCTION

Policy gradient (PG) methods stand as one of the fun-
damental pillars underpinning the success of model-free
reinforcement learning (RL), offering a versatile framework
for learning parameterized policies directly from experience
[1], [2]. Within optimal control, in particular for the linear
quadratic regulator (LQR) problem, PG approaches and their
non-asymptotic performance guarantees have made the task
of learning optimal controllers (in a model-free setting),
both possible and systematic. In particular, the authors in
[3] demonstrated that despite the problem’s non-convexity, a
derivative-free PG method (i.e., where policy gradients are
estimated through simulation data) can converge to the global
optimal LQR solution. The rate of convergence is further
proved to be linear in [4].

Although policy gradient has shown to be effective in
learning near-optimal LQR controllers, in a model-free cen-
tralized setting [3]-[7], it is often assumed that a single
agent can access a sufficiently large simulation dataset to
produce accurate policy gradient estimates. However, esti-
mation variance may lead to sub-optimal solutions in a low
data regime. A recent line of work focused on distributed
learning for estimation [8]-[11] and control [12]-[16], con-
siders a multi-agent setting, where small contributions (of
for example estimated gradients [12], system models [8],
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task weights [10], among others) from each agent can be
leveraged to achieve statistical benefits. In particular, [12]
proposes a federated heterogeneous policy gradient approach
to solve the model-free LQR problem. This work shows that
by aggregating multiple systems’ policy gradient estimates,
the sample complexity enjoys a reduction proportional to
the number of collaborating systems. However, aggregating
heterogeneous PG estimates will inevitably introduce bias to
the policy gradient descent direction, as discussed in [12].

Critically, the work above implicitly assumes that the
policy gradient estimates from all participating agents are
promptly available at the beginning of each aggregation step.
However, network communication-induced constraints (e.g.,
rate-limited channels [17]) and agent drop-outs [18] may
lead to the presence of straggler agents whose late arrival
at the server could drastically affect the parallelism of the
distributed computation. Namely, an agent with high com-
putational power and/or a fast and reliable communication
channel will have its performance throttled as it waits for
the idle server (which is waiting for the slower agents) to
broadcast the new updated controller.

To circumvent this limitation, we propose an asynchronous
policy gradient approach, where only a batch of the fastest
reported estimates at each iteration step are aggregated. This
simple modification in the aggregation scheme will mitigate
the presence of straggler systems, i.e., by adapting the batch
size, fast agents will not be bothered by long delays incurred
by waiting for the slow ones to finish their estimates. The
trade-off is that the policy gradients produced by the slower
agents will be used in the next round of aggregation, they
are now out of date, or “stale”. This staleness may negatively
impact the convergence rate of the proposed approach.

Motivated by this, we aim to investigate how the conver-
gence of model-free distributed LQR design is affected by
the interplay between stale and heterogeneous PG estimates.
In particular, we aim to answer the following questions:
Can an asynchronous algorithm produce a controller
that is near-optimal — even in the presence of staleness
and heterogeneous system dynamics? 1f so, how does the
staleness affect the policy gradient convergence? Can we still
expect a linear convergence to hold in this setting?

A. Contributions

Our main contributions are summarized as follows:

o This is the first work to investigate how aggregating
stale PG estimates affects the convergence of an asyn-
chronous model-free distributed LQR design (Algo-
rithm 1). We highlight that in our setting, we are dealing
with multiple, different systems. We show that the
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staleness effect can be mitigated by carefully controlling
the step size in the PG updates. Moreover, in contrast
to a synchronous aggregation scheme, as proposed in
[12], our approach fully exploits the parallelism in
the distributed computation. In particular, it alleviates
straggler agents’ impact by selecting only a batch of
the fastest reported PG estimates at each iteration.

We establish the global convergence guarantees of Al-
gorithm 1. To achieve this, we derive an upper bound
for the staleness term (Lemma 4), which is approxi-
mately of the order of the magnitude of the current
iteration step’s PG. We prove that our asynchronous
algorithm produces a controller that is e-near optimal up
to a heterogeneity bias (Corollary 2). This bias arises
due to the heterogeneity among the M systems. We
demonstrate that staleness impedes global convergence;
in particular, the total number of iterations N to achieve
each system’s e-near optimal controller will be ampli-
fied by Tﬁlﬁ (Corollary 2), where Ty ax is the maximum
staleness across systems and PG steps.

We also provide local convergence guarantees for Algo-
rithm 1. Compared to the global convergence analysis,
the heterogeneity bias and the staleness effect disap-
pear when converging to a local stationary solution,
i.e., our algorithm can exactly locally converge even
under the asynchronous aggregation and heterogeneous
setting. However, it comes at the cost of a slower
convergence, i.e., Algorithm 1 sub-linearly converges to
such fixed point (Corollary 1). Notably, our tighter local
convergence bound demonstrates a linear speedup w.r.t.
the number of aggregated PG estimates. This improves
upon previous work [19], [20].

B. Related Work

Model-free LQR Design: The setting where a single agent
uses its data to estimate policy gradients and perform con-
troller updates to solve the model-free LQR problem has
been widely studied [3]-[7]. Although the results on the
global and linear convergence are positive and demonstrate
the effectiveness of the method, Ziemann et al. [21] show that
PG is very much affected by the limits of control, i.e., poor
controlability leads to arbitrarily noisy gradient estimates.
On the other hand, [12], [13], [15] have demonstrated the
value of collaboration, in a multi-agent setting, to reduce
the variance in the estimated gradient and achieve sample
efficiency when learning LQR controllers. Most relevant to
our work is [12], where the authors consider a synchronous
policy gradient approach to tackle the model-free LQR prob-
lem. In contrast to [12], our work considers an asynchronous
aggregation scheme where the impact of straggler agents is
mitigated and the effect of aggregating stale PG estimates is
thoroughly characterized in our local and global convergence
analysis.

Asynchronous Optimization: Asynchronous stochastic gra-
dient descent (SGD) has been a topic of study in stochastic
optimization over the past decade, where many papers [22]—
[24] investigate the connection of large batches and staleness
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in the ergodic convergence rate of such approach. Most
relevant to our work are the recent papers on asynchronous
distributed learning [19], [20], [25]-[27], where in contrast
to asynchronous SGD, the heterogeneity in the local data
distribution and local data privacy concerns are taken into
account. In contrast to this line of work, we consider an
asynchronous policy gradient approach to solve the LQR
optimal control problem. Here, not only are the convergence
guarantees characterized, but so is the per-iteration closed-
loop stability of the collaborating agents. Our theoretical
guarantees reveals a linear speedup with respect to the
number of aggregated policy gradient estimates in the local
convergence rate. We believe that these results can be used
to achieve tighter bounds in the more general work of [19],
[20] on asynchronous federated learning.

C. Notation

Let [M] denote the set of integers {1,...,M}. We
use J(K) to denote the LQR cost for an arbitrary
system with problem parameters (A, B, @, R). When re-
quired, 7 (K) denotes the LQR cost for a specific tuple
(A® BW QW R®), where i € [M]. The spectral radius
of a square matrix is p(-), and oyin(-) denotes the minimum
singular value. Unless otherwise stated, || - || is the spectral
norm. We use O(+) to omit constant factors in the argument.

II. PROBLEM FORMULATION

Let us begin with the standard setup of multi-agent LQR
design for heterogeneous systems [12], [13]. Consider M
discrete-time and linear time-invariant (LTI) dynamical sys-
tems over an infinite time-horizon, described by

O = A0 4 pOyD e (M), (1)

Lip1 = t

where A®) € RN, B(i) € R"=*"u are the system matri-
ces, and xy) € R, ugl) € R™ denote the state and control
input of system 7 at time instant ¢, respectively. The initial
state xél) of (1) is drawn from an arbitrary distribution Aj
that satisfies Assumption 1 below. We specifically account
for the fact that the M systems are not identical, i.e., in
general A £ AU and B® £ BU), We quantify the level
of heterogeneity at the end of this section.

From the perspective of the i*" system, the goal is to
design an optimal static state feedback controller K} €
K® = {K € Rw*me | p(A®) — BOK) < 1}, that
provides a control policy W) = K z :rgi) that, subject to (1),

t
minimizes the quadratic cost function
] , 2
where Q(*) € R"*" and R(Y € R™*™ denote the (pos-
itive semidefinite and definite, respectiv¢ly) cost matrices,
and the expectation is with respect to a:g) ~ Xp.
Assumption 1 (Initial state distribution): The initial state

distribution Xy satisfies E[xél)] = 0 (i.e., zero mean) with

covariance 3o = E[z{2$ 7] = uI,,, for some pu > 0.!

i xii)—r (Q(i) + KTR(i)K) xgi)
t=0

JIK):=E [

lAssumption 1 is a standard assumption in PG-LQR literature [3], [5],
[6] and guarantees that all stationary solutions are global optima.
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This work considers the model-free setting where the tuple
(A® B QW R®) is unknown and each system only
has limited access to simulation data. Thus, designing K*
through the well-established Riccati equation [28] is not
possible. As in [3], [5], we must resort to derivative-free
policy gradient approaches to optimize (2).

However, due to limited local trajectory data, accurate
policy gradient estimations in the single-agent setting may
require more data than is available. As proposed in [12],
instead of designing K} for each system i € [M], we
consider the problem of leveraging simulation data from
multiple (differing but “similar”) systems in order to compute
a controller K* € K := NK( that, i) stabilizes each system,
and ii) on average, performs well for all of them. Moreover,
such an approach should be sample efficient, in the sense
that a small data contribution from multiple systems can be
leveraged into a larger dataset to perform more accurate PG
estimates. With regards to ii), K* minimizes

M
{ PAL (K)} NE)
=1

subject to (1). To solve (3), we first consider an arbitrary
initial stabilizing controller K € K and step-size n € Rs,
and iteratively perform policy gradient updates of the form:

J(K) = %

K* :=argmin{ J
KeK

where V.7 (-) is an estimate of the true gradient V.7 (-).

In [12], at each iteration n € {0,1,2,...}, all M policy
gradient estimates generated by the systems, vI® (Ky),
are aggregated to produce V.7 (K, ), where K,, denotes the
controller at iteration n. This is then used to compute the
new policy K, ;. It is implicitly assumed that the policy
gradients are all available to produce V.J(K,). Such an
assumption (i.e., synchronous aggregation) does not take
into account network communication effects. While syn-
chronously aggregating such estimates may offer sample
efficiency [12]; however, the presence of straggler systems
will prevent full exploitation of the parallelism in the dis-
tributed computation. To alleviate this limitation, we consider
an asynchronous distributed LQR design, where, at each
iteration step n, only a subset [bs] C [M] of the first reported
PG estimates contribute to the update of K}H_l, ie.,

bs
vj(S) (Kn—‘rs (n) )a
=1

Ko =K, — “4)

S
S

where 7,(n) € N denotes the staleness in the controller that
system s € [bs] possesses when locally estimating its policy
gradient at step n. Due to heterogeneity, in the synchronous
setting [12], limsupK,, 1 # K}, and J@ (K,) —j(i)(K;‘)
is upper boun?l:do%y the dissimilarity across systems.
Intuitively, besides heterogeneity, aggregating over stale
estimates may also produce sub-optimal solutions to the LQR
design. Therefore, in this work, we analyze the interplay
between heterogeneity and the staleness in the convergence
of the policy update (4). Figure 1 illustrates the comparison
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Fig. 1. Illustrative schematic to compare the synchronous and asynchronous
PG approaches for the model-free LQR problem. Figure inspired by [26].

between the synchronous and asynchronous policy gradient
aggregation for the model-free LQR problem. As we can
see on the left-hand side, after the server communicates
the updated controller (step 1), it needs to wait (step 4),
for all systems to complete their estimates (step 2) and
communicate back to the server (step 3), before performing
the next controller update (step 5). On the other hand, in the
asynchronous setup, the server simply broadcasts the updated
controller as soon as it has by updates stored. This batch of
updates will likely include updates that were received too
late to be included in the previous broadcast. Obviously as
the batch size is decreased, the staleness increases.

Despite of the staleness in the updated controller (step la
or 1b) that a system may have when estimating the PG (step
2a or 2b), only the first by PG estimates reported back to
the server (step 3) are aggregated (step 4). The impact of
straggler systems is then alleviated by adapting b,.

Before presenting our algorithm that implements asyn-
chronous policy gradient updates, we first need to define the
sub-level set of stabilizing controllers S C K, an introduce
an assumption.

Definition 1: Let Ky and K} be the initial and optimal
stabilizing controllers of system i € [M], respectively. The
stabilizing sub-level set of K is S £ NSW | with

s = {K | 7O(K) = TO(K7) <148}

where AV 2 70(K,) — JO(K?) denotes the initial
distance to optimality, and v > 1 is an arbitrary scalar.

Assumption 2 (Initial stabilizing controller Ky): The ini-
tial controller K, stabilizes all systems, i.e. Ky €S.

The assumption on the initial stabilizing controller is
standard in policy gradient methods for LQR design [3], [4],
[6]. If K, is not stabilizing for all the systems (1), then
(4) will not produce a stabilizing controller, since J® (Kj)
is undefined for the corresponding unstabilized systems. In
addition, we emphasize that although K stabilizes (1) Vi, it
may provide a sub-optimal cost 7 (Ky) > J(K*).

III. ASYNCHRONOUS POLICY GRADIENT ALGORITHM

Our asynchronous policy gradient algorithm for hetero-
geneous model-free LQR control is described in Algorithm
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1 below. It implements the controller update in (4). The
subset [bs] C [M] of policy gradient estimates are com-
puted through a two-point zeroth-order gradient estimation
approach, as detailed in Algorithm 2. Upon initializing all
systems i € [M] with an initial stabilizing controller Ko,
(step 2 of Algorithm 1), in parallel, each system estimates
its own policy gradient using its local simulation data in
step 3. The zeroth-order estimation in Algorithm 2 performs
an empirical estimation of the first-order Gaussian Stein’s
identity [29]. That is, given a smoothing radius r, the current
controller K is perturbed by a random matrix U, such that
|U|lF = r, to produce K! = K+ U and K? = K — U.
Such smoothing controllers are then played by the i*" system
to collect simulation data and compute the costs J ) (K1),
and 7 (K?2). Then, by averaging over m samples, Algo-
rithm 2 returns a biased empirical estimation V.7 (K) of
E[VIO(K)] = E [%2(TO(K") — O (K)U].

Algorithm 1 Asynchronous LQR
1:

Input: Stabilizing controller Ky, step-size 7, batch size
bs, iterations N, smoothing radius r, and samples m.
Initialize the local controllers K; = K Vi € [M], batch
and iteration counters s = n :AO, and V < 0.

In parallel compute and send V; = ZO(K;,r,m) to the
server Vi € [M].

4: While n < N

5. If the server receives an eﬁtimate then

6: Accumulate V=V + V,;, s < s+ 1,

7. If s = b, then

8: I_(n+1zl?n—b%§,n<—n+1,§<—0,s<—0,
9: If system 7 € [M] is done, then K; K, 1 and
10: Compute V; = Z0(K;,r,m),

11: Setld V; to the server,
12: Output: Ky.

Once a system ¢ € [M] is done estimating its PG, it
sends the estimate to a server that accumulates them (step
6). A policy gradient update (4) is only performed when the
number of accumulated gradient estimates is equivalent to the
batch size b, (step 9), indicating that the by fastest reported
PG estimates at iteration n are ready to be aggregated. After
N iterations of steps 4-11, Algorithm 1 returns K. In
Section IV, we characterize the properties of /K based on
local and global convergence rates. We re-emphasize that
Algorithm 1 aggregates stale policy gradient estimates in step
8. In addition, due to the heterogeneity, such staleness in the
controller that each system access to perform its gradient
estimate is later assumed to be bounded® in Assumption 3.

Remark 1: We exploit a two-point gradient estimation ap-
proach since it offers a lower estimation variance compared
to the one-point counterpart [5]. Moreover, for simplicity and
by following [5], [7], in Algorithm 2, it is implicitly assumed
to have access to the true infinite horizon costs ) (K™)
and J (i)(K 2). However, since such quantities are lower

2This can be relaxed to unbounded staleness in the homogeneous asyn-
chronous distributed learning setting, as discussed in [30].
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bounded by any finite-horizon approximation, our results can
be readily extended to that setting as well [6].

Algorithm 2 7Z0: Two-point Zeroth-order Estimation

1: Input: Stabilizing controller /', number of samples m
and smoothing radius r.
2: for all samples [ € [m] do

3:  Draw U, € R™*"= gsuch that |U;||r =,

4:  Smooth controllers: Kl1 = K+U; and Kl2 =K-U,
5. Compute and store costs J(K}'), and J(K?),

6: end for

7: Return VJ (K) = g2 S (T(KD - T(K)U,

Assumption 3 (Bounded staleness): For any system ¢ €
[M] and iteration n, 7;(n) < Typax, fOr SOME Tiyax € [1, 00).

The above assumption is common in the convergence
analysis of asynchronous stochastic gradient descent algo-
rithms [19], [20], [31]. It guarantees that the asynchronous
aggregation in Algorithm 1 is performed within a finite time.

Before jumping to the convergence and stability analysis
of Algorithm 1, we first revisit some properties of the policy
gradient LQR [3] and heterogeneity bound [12] that are
instrumental in deriving the main results of this work.

Lemma 1 (Local smoothness): Given a pair of stabilizing
controllers K, K’ € S such that || K’ — K||r < oo, the LQR
gradient is hgr¢-Lipschitz, i.e.,

|77 (1) = VIO < Pl = K

where hgrag depends on the LQR problem parameters.

The proof of the LQR gradient’s local smoothness was
first introduced in [3], and the explicit expression of Ngraq
was further provided in [12, Appendix D.1].

Lemma 2 (Gradient dominance): Let K} be the LQR op-
timal controller associated with system ¢ € [M]. Given a
stabilizing controller K € S the squared norm of the LQR
gradient is lower bounded as follows:

VIO 2 A (TO®K) - IO (K) i€ [M],

where \ = 42 max Omin(R™")/||Sk+| denotes the gradient
dominance constant and Y+ = E[:vgi)x,(fﬁ] corresponds to
the closed-loop state covariance matrix incurred by playing
(1) with its corresponding optimal controller.

Lemmas 1-2 are paramount to prove the global conver-
gence of the policy gradient LQR in the single-agent setting
[3]. Even though, the gradient dominance property of each
J@(K) does not imply the same property to the the average
cost J(K), i.e., due system and cost heterogeneity. We can
still leverage such result when characterizing the distance
to optimality, i.e., AY = JO(Ky) — JO(KF), for all
systems ¢ € [M], in Section IV.

We now quantify the level of heterogeneity between the
M systems. Note that we could include a common bound on
the spectral norm difference among system and cost matrices
at the expense of less precise downstream results.
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Assumption 4: There exist positive scalars €4, €g, €Q, €R,
such that system and cost heterogeneity is bounded. That is,

max||A® — AV)|| < ey, max||[BY — BY|| < ep,
i£j i#£]
max|| Q" — QU] < eq, max||RY — RY| < e.

Lemma 3 (Gradient heterogeneity [13]): Given a pair of
distinct systems ¢ # j € [M], following the dynamics in (1),
and a stabilizing controller K € S. The following holds,

IVTD(K) = VT (K

where epe scales quadratically with the system and cost
heterogeneity levels (e4,€p, €g,€r) of Assumption 4.

The proof of the above lemma as well as the explicit
expression of ey is presented in [13, Appendix 6.2]. Note
that, for a small gradient heterogeneity level ey, this lemma
conveys that the PG descent directions of systems i # j €
[M] are close, which is then also close to the descent direc-
tion of the average cost. This lemma is crucial to quantify
the effect of heterogeneity in the convergence and stability
analysis of our asynchronous policy gradient aggregation.

)H?p < €het

IV. CONVERGENCE AND STABILITY ANALYSIS

We now present the main theoretical results of this work.
First, we show that Algorithm 1 can exactly converge to
a local optimum of (3) at a sub-linear convergence rate.
Second, we provide global convergence guarantees for our
proposed approach. In the global convergence analysis, due
to heterogeneity, our algorithm will converge to a ball that
contains each system’s optimal controller. The size of the
convergence ball depends on the heterogeneity level across
systems. We demonstrate that, even in the presence of a
staleness, this convergence is achieved at a linear rate with
respect to the tolerance level. Moreover, we establish a linear
convergence rate that has a dependence on the maximum
staleness T.x. We refer to our extended version [32] for the
proofs of our main results presented below.

A. Local convergence guarantees

The local convergence of Algorithm 1 is character-
1zed through the ergotic convergence rate, i.e., how
~ Z E||Vj (K,)||% scales with the number of itera-
tions IV, batch size b, heterogeneity epe; and staleness 7y ax.

Theorem 1: Let Assumptions 1-4 hold. Suppose the step-
size satisfies 77 < hgradMergodic- Then, it holds that

N—-1 A 2
1 = 7 2 2A¢ | Cdim€net (77+77 Tmax)
¥ ; EIVT(Ka)lF <7 b, Chias,
where Ag = E [J(Ko) — J(K*)], for some positive con-
stants cgim = O(n2) and cpips = O(r?), and
Vs 1

. 1
Tlergodic = 1N § =
{ 87 \/67_max’ Inax{\/ 3205tep7_maxv 2Cstep} } ’
2
with cgep = O (ni + Z—:)
With this theorem, we are now ready to state the conver-
gence of our Algorithm 1 to a first-order stationary point.
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Corollary 1: Let the arguments of Theorem 1 hold. Sup-
pose that the step-size is set such that n = O (, / ZI’V) Then,

5

Corollary 1 presents the local convergence guarantee §01)r
our proposed approach with respect to the total number of
iterations N and batch size bs. The main message of (5)
is that Algorlthm 1 achieves a local convergence ratg: of
O( \/—)—F(’)( ‘"ax) In particular, the second term O( 32x)
reveals the effect of the staleness, which becomes negligible
when N > b,. In the first dominant term O( m), we
demonstrate that our algorithm enjoys a linear speedup with
respect to the batch size bs. This result improves upon pre-
vious work in the asynchronous distributed learning setting
[19], [20], [31], where no speedup is established.

Ky € S satisfy the following ergodic convergence rate’:

N—-1
1 - €het | ToiaxChet
7§ EIVT(K,)|% <O max
N IV (Kl («/Nb Jr\/Nbs N

n=0

B. Global convergence guarantees

We characterize the global convergence of the proposed
asynchronous LQR design, by analyzing the interplay be-
tween staleness Tyax and heterogeneity epe in the optimality
gap AS\?, i.e., the cost difference between the designed
controller K and each system’s optimal controller K*. To
this end, let us first provide an upper bound on the staleness
effect throughout the iterations of Algorithm 1.

Lemma 41' Suppose that the step-size is set according to

n=0 (Tn_lfx) Then, it holds that?

E|Kipr — Kill} < 7 7maxO (enec+ E[VTO () 3)

VI € [n — Tmax,m — 1] and n € [N — 1].

The proof for the above lemma is detailed in Appendix
B of our extended version [32]. Further in this section,
we present the proof sketch of our theoretical convergence
guarantees, where the induction reasoning that leads to
Lemma 4 is discussed. By Lemma 4, we can conclude that
the staleness effect:

E| K= Eon )l < 1770 O (e + E[VT O

can be approximately upper bounded by the product of the
norm-squared policy gradient at the n-th iteration and the
step-size squared n?. By choosing a sufficiently small step-
size 7, the impact of the staleness can become negligible
since it is in the high-order terms with respect to . However,
the adoption of small step-sizes 71 to overcome the stragglers
will slow down the convergence. We rigorously characterize
such trade-off between 7y,,x and 7 in the following theorem.

Theorem 2 (Optimality gap): Let Assumptions 1-4 hold.
Suppose that the step-size is such that 7 < 1gp. Then, the

optimality gap A(i) =E [j(i)(K'N) — j(i)(K;)] satisfy:

A() <cN A(z ~(CdimEnet + Cbias)

cont

3We omit O(cpigs) in that bound, since = can be set sufficiently small
such that its contribution becomes negligible. See Appendix A of [32].
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2 e (0,

Tlgap = MIN  Tergodic;

where ceont = 1— 1) denotes the contraction rate and
1 1

3/2 ) N .
Pgrad max{87—max7\/§7—1i/ax} Tmax v/ 2Chias }

As stated in the above theorem, the optimality gap Ag\?, is
composed of a contraction term, with contraction rate cgont,
and an additive bias characterized by ene; and cpips. As the
number of iterations /N grows, the contraction shrinks to
zero. In addition, as ¢y is in the order of 72, the smoothing
radius can be set sufficiently small such that its contribution
becomes negligible in the bias term. However, e, is fixed
and dominates the unavoidable bias in the optimality gap. In

= /2 . This
condition demonstrates that as the staleness Tmaxmlﬁcreases
the step-size 1 needs to be reduced to preserve a global
convergence guarantee of Algorithm 1. Next, we highlight
the impact of T,,x on the number of iterations N to achieve
a controller that is e-close to its optimal controller.

Corollary 2 (Linear convergence): Let the arguments of
Theorem 2 hold. Suppose that the number of iterations N
of Algorithm 1 and the smoothing radius r of Algorithm 2

addition, the step-size 7 is in the order of O

satisfy: N > O (Té@ log (%)) ,7 < O(e), for a small
tolerance € € (0,1), where Ay := max;c[p A((f). Then, the

optimality gap satisfies: Agf,) < O (e+ €pet)-

Corollary 2 shows that by carefully controlling the step-
size 7, number of iterations N and smoothing radius r, the
designed controller K is e-close to each system’s optimal
controllers up to a heterogeneity bias. Note that the number
of iterations /N will increase with the maximum staleness —
which is of order 7-7%21. In other words, the staleness will
slow down the global convergence rate.

C. Proof sketch

We now discuss the main steps and reasoning to obtain the
theoretical convergence results presented in this work. First,
for the local convergence rate, we note that as long as Lemma
1 holds for any system ¢ € [M], it implies that the gradient
of the average LQR cost is also hgrag-Lipschitz. Therefore,
the gap in the average cost between two consecutive iter-

ations of Algorithm 1, ie., A, = J(K,11) — J(K,), is
approximately upper bounded as follows
~ = = _ 2
E[An] £ —nEIVI (Kl = 1E |V Tr(Knri o)

- Kn—n(n) ||i* +7](7‘2 + nehet)7

T] M —
+M;E||Kn

staleness term

where we use <to omlt constant factors in the expression,
and VJ,.(K) = EVJ (K). In addition, the staleness term
can be upper bounded as follows

n—1
E Hkn - KﬂfT,,(’ﬂ)Hi‘ =E Z [_(l-i-l - Rl
l=n—7;(n) F
n—1 B _
< Tmax Z EHKZ+1*KIHF3
l=n—7;(n)
(6)

then, by summing the above expression over the iterations
n, the staleness effect is shown to be in the following order.

N—-1 5
Z E HKn — Kn,ﬂ HF < maxN773T2 + max]l:[n €het
" N-1 o )
+ Thax’ Z E||IVI(Kn—rin) || 5
n=0
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which can be used in the expression of the expected average
gap, ie., E[A,], and with a proper selection of the step-
size 17 we can obtain the result presented in Theorem 1. We
emphasize that since the interplay between staleness 72,
and heterogeneity epe; is accompanied by 1?2, its contribution
in the local convergence rate should only appears in a high-

bs

N

On the other hand, what changes in the global convergence
guarantees is how the staleness effect is upper bounded. To
this end, we use the result in [32, Lemma 10]. The proof of
this lemma relies on an induction approach, where for any
two consecutive iterations of Algorithm 1, we have

order term when we set 7 = O

)

)

then, since the staleness term (6) is evaluated within the
interval | € [n — Tyax,n — 1], the bound in (7) combined
with an induction step implies in Lemma 4. Therefore,
by using lemma 4 with the local smoothness and gradient
dominance properties (i.e., Lemmas 1-2), we obtain the
global convergence results of Theorem 2 and Corollary 2.

EHKnJrl - Kn”%‘ S 7—mam772€het + Tmaxn2EHvt7(i)(Kn

D. Stability guarantees

An important requirement that policy gradient methods
need to satisfy within control tasks, is the ability of itera-
tively preserving the closed-loop stability of the collaborating
systems with respect to the designed controller, i.e., K,
should stabilize (1) for every iteration n. Note that, one
of the conditions to ensure such requirement, is to have
access to an initial stabilizing controller K, € S. However,
it is also necessary to impose conditions on the step-size 7,
smoothing radius r, and heterogeneity epe to ensure that big
steps, non-accurate PG estimates, and large heterogeneous
settings* will not produce unstabilizing policy updates. We
summarize such conditions in the following theorem.

Theorem 3 (Per-iteration stabilizing controllers): Let As-
sumptions 1-4 hold. Suppose that the step-size is set such
that 7 < 7)gp. In addition, suppose that the heterogenelty
and smoothing radius satisfy epe; < 7’\6A0 and 72 < g‘;\h%md
respectively. Then, Algorithm 1 produces a stabilizing con-
troller K,, € S for all iterations n € {0,1,...,N —1}.

The proof for this theorem is detailed in Appendix C of
[32], where given an initial stabilizing controller, we exploit
an induction approach along with Definition 1 to derive the
necessary conditions on the step-size 7, smoothing radius r

bl

4The authors in [12] discuss the necessity of a low heterogeneity regime
when designing stabilizing controllers in the multi-agent setting.
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Fig. 2. Optimality gap (with respect to the nominal system and cost
matrices) as a function of the wall clock counter, for the asynchronous
LQR design (Algorithm 1) and the synchronous LQR approach [12], both
in the presence of a single straggler system with Tmax = 20. We set
(ea =5.46,ep = 2.74,eq = 3.96,€ep = 2.82) x 10~2 and bs = 20.

and heterogeneity epe that ensure the design of stabilizing
controllers K,,, for all iterations n of Algorithm 1.

V. NUMERICAL EXPERIMENTS

We highlight the effect of the staleness 7,,,x, batch size
bs and heterogeneity level ey on the speed of convergence
and optimality gap of Algorithm 1. We also illustrate the
benefit of asynchronous aggregation over the synchronous
counterpart [12], when dealing with straggler systems in the
learning process. To this end, let us first consider nominal
system matrices:’

1.22  0.03 -0.02 -0.32 0.01  0.99
0.01 0.47 4.70 0.00 —3.44 1.66
0.02 —-0.06 0.40 0.00 |[’| —0.83 0.44 |’
0.01 —-0.04 0.72 1.55 —0.47 0.25
AWM B()
and cost matrices Q(l) = I, and R®M = I,. Therefore,

by applying random perturbations to (A", B QW) RM)),
with radius (e4,€p,€Q,€r), we generate M = 100 tuples
(A®D BW QW R®W), for i € [M], to characterize our
heterogeneous multi-agent LQR setting. See Appendix D of
[32] for more details on our experimental setup.

With M system and cost matrices in hands, we first
compare the proposed asynchronous LQR design of Algo-
rithm 1 over the synchronous federated LQR approach in
[12], both in the presence of a single straggler system with
Tmax = 20. Since, in Algorithm 1, the server performs
controller updates upon receiving the fastest b, PG estimates,
such quicker systems are not affected by straggler systems
when Tyax is sufficiently large. To illustrate this, Figure 2
shows how long, in terms of a wall clock counter, Algorithm
1 takes to design a controller K that achieves a certain
optimality gap compared to the synchronous LQR design.
This figure shows that due to the presence of stragglers, the
synchronous federated LQR approach [12] needs to wair a
long time for all of the M PG estimates to be reported to

5Code: https://github.com/jd-anderson/AsyncLOR.
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the server to then proceed with the controller update. On
the other hand, Algorithm 1 fully enjoys the parallelism
of distributed computation, even when dealing with slow
systems. However, as discussed, this comes with the price
of aggregating stale PG estimates. Figure 3 illustrates the
effect of T,ax in the optimality gap of Algorithm 1.

Figure 3 depict the optimality gap AS) as a function
of the iteration count n, for a varying: (a) staleness Ty ax,
(b) batch size bs, and (c) heterogeneity level €. Note
that, for convenience, we evaluate the global convergence
of Algorithm 1 on the nominal system and cost, i.e., ¢ = 1.
However, we emphasize that a similar result should also be
observed for any ¢ € [M]. Figure 3-(a) shows the impact
of Tmax 1n the number of iterations N needed to achieve
a certain optimality gap; it highlights that the number of
iterations required to design a controller K such that
Ag\}) < 0.3 is larger when Tyax = 3 and Tpax = 10
compared to T,ax = 1. Moreover, as predicted in Corollary
2, the staleness Timax only affects the speed of convergence
and does not impact the accuracy in the optimality gap AS\Z,).

Furthermore, in alignment with Corollary 1, Figure 3-
(b) illustrates the benefit of aggregating multiple system’s
PG estimates. As predicted, an increase in the batch size
bs leads to a faster convergence of Algorithm 1. Lastly,
as illustrated in Figure 3-(c), due to the heterogeneous
setting, Algorithm 1 returns an e-near optimal controller
up to a heterogeneity bias. Therefore, as ene increases, the
unavoidable bias (Corollary 2) also increases.

VI. CONCLUSIONS AND FUTURE WORK

To understand how aggregating stale policy gradient esti-
mates affect model-free LQR design, we characterized the
convergence and stability guarantees of an asynchronous
and heterogeneous PG method applied to the multi-agent
LQR problem. Despite straggler systems, the proposed asyn-
chronous aggregation scheme fully exploits the parallelism
in the distributed computation (see Figure 2). Nevertheless,
such parallelism comes with the price of aggregating stale
policy gradient estimates. Our analysis demonstrated that,
by carefully controlling the step-size, the staleness effect
remains limited to a high-order term of the ergodic conver-
gence rate (Corollary 1). Moreover, the optimality gap bound
remains untouched as in the synchronous case [12]. We
showed that the staleness impacts the speed of convergence
through a multiplicative factor (Corollary 2). We provided
numerical results to illustrate and validate our theory (i.e.,
Figure 3), where we also highlight the effect of the het-
erogeneity level ene and batch size bs to the convergence
of Algorithm 1. Future work may explore other aggregation
schemes, beyond a simple average, to alleviate the staleness
effect even more in the local and global convergence bounds.
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