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Abstract

We propose an operator-splitting scheme to approximate scalar conservation equations with

stiff source terms having multiple (at least two) stable equilibrium points. The scheme com-

bines a (reaction-free) transport substep followed by a (transport-free) reaction substep. The

transport substep is approximated using the forward Euler method with continuous finite

elements and graph viscosity. The reaction substep is approximated using an exponential

integrator. The crucial idea of the paper is to use a mesh-dependent cutoff of the reaction

time-scale in the reaction substep. We establish a bound on the entropy residual motivating

the design of the scheme. We show that the proposed scheme is invariant-domain preserv-

ing under the same CFL restriction on the time step as in the nonreactive case. Numerical

experiments in one and two space dimensions using linear, convex, and nonconvex fluxes

with smooth and nonsmooth initial data in various regimes show that the proposed scheme

is asymptotic preserving.
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1 Introduction

The goal of the paper is to devise approximation schemes for scalar conservation equa-

tions with stiff reaction terms having multiple stable equilibrium points. More precisely, we

consider the following scalar-valued PDE:

∂t u
ε + ∇· f (uε) =

1

ε
R(uε) in Q, (1)

posed in the space-time cylinder Q := D × (0, T ), where D is an open bounded polyhedral

subset of R
d , d ≥ 1, and T > 0 is the observation time. The problem is equipped with

suitable initial data, u0, and boundary conditions. Here, the R
d -valued function f is the

flux, and the real-valued function R is the reaction term. In many situations, a fundamental

property of (1) is that the entropy solution takes values in a bounded interval B ⊂ R, which

we henceforth call invariant domain. The set B typically depends on the initial and boundary

conditions and on the equilibrium points of R. The property of B being invariant, also called

maximum principle, means that

uε ∈ B in Q. (2)

Without loss of generality, we assume that B := [0, 1]. More precise statements on the model

problem (1) are given in §2.

The stiffness of the system is quantified by the time scale ε > 0. We are interested in

the stiff regime ε � min(T , β−1�D), where �D := diam(D) is a reference length and

β := LipB( f ) a reference speed. Since uε takes values in the bounded set B, it is possible

to identify a limit solution as ε → 0, say u0 := limε→0 uε , at least in the weak� L∞-

topology. (The limit solution u0 : D×(0, T ) → B should not be confused with the initial

data u0 : D → B for the problem (1).) Typically, one expects that the limit solution u0 takes

values in the subset

E := R−1({0}) ⊂ B, (3)

which contains the equilibrium (or stationary) points of the problem. We henceforth assume

that E is composed of a least three states, two or more being stable equilibria. In this situation,

one expects that the limit solution u0 consists of several constant states in E separated by

shocks moving at different (a priori unknown) speeds. The shock speeds generally differ from

those known in the nonreactive case. One crucial issue in the numerical approximation is to

predict the correct shock speeds. Albeit simplified, the model problem (1) is representative

of some of the difficulties encountered in the numerical simulation of nonequilibrium gas

dynamics in hypersonic flows and other combustion problems. We also emphasize that the

situation considered in the paper with multiple equilibrium points is more challenging than

the setting with a single equilibrium point (as, e.g., in dissipative systems and relaxation

problems).

As discussed in Colella et al. [6], LeVeque and Yee [21], devising numerical approximation

schemes for the model problem (1) that work well in the limit ε → 0 is quite challenging.

Many standard methods yield wrong shock speeds in the reaction dominant regime when

the mesh is not fine enough. Our goal is to design approximation schemes endowed with

the following two key properties. The first one is to be invariant-domain preserving (IDP),

i.e., to deliver a discrete solution uε
h (the subscript h refers to the mesh size used for the

discretization, see §3) such that

uε
h ∈ B in Q. (4)
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The second one is to ensure the so-called asymptotic preserving (AP) property:

lim
ε→0

lim
h→0

uε
h = u0 = lim

h→0
lim
ε→0

uε
h . (5)

The left equality simply means that the scheme is convergent, whereas the right equality

means that the limit solution u0 can be captured in the under-resolved regime as well, i.e.,

the scheme is consistent with the limit equation as ε → 0. The reader is referred to Jin [16]

for a review on AP schemes.

We propose in the paper a time-stepping scheme that is observed to be AP and is proved

to be IDP with the same CFL restriction as in the nonreactive case. The AP property is based

on numerical observations, whereas the IDP property is based on theoretical arguments.

We follow the well-established paradigm of operator-splitting schemes, i.e., we perform,

at each time step, a forward Euler, nonreactive transport substep followed by a transport-

free reaction substep. Many schemes are available in the literature to perform the transport

substep: finite differences, finite volumes, discontinuous or continuous finite elements. We

focus here on continuous finite elements with graph viscosity, as in [11, 12]. A natural

idea for the reaction substep consists of employing an implicit scheme, or, often better, an

exponential-like integrator (see Hochbruck and Ostermann [14] for a review). This approach

has been successful for dissipative systems, kinetic equations, and systems with relaxation;

see, among others Chalabi [5], Chainais-Hillairet and Champier [4], Pareschi and Russo

[22], Filbet and Rambaud [10], Bulteau et al. [3], Hu and Shu [15]. However, in the present

situation, using an implicit scheme or an exponential integrator is not AP, as these schemes

usually predict shocks moving with the wrong speed as ε → 0. This phenomenon has been

discussed in LeVeque and Yee [21]; see also Colella et al. [6, 7, 17]. The key reason for

this odd behavior is that stiffness makes the discrete solution too sensitive to the smeared

representation of discontinuities separating equilibrium states.

In order to temper stiffness and achieve the AP property without sacrificing too much

accuracy, the main idea of the paper is to introduce a mesh-dependent cutoff on the reaction

time-scale when performing the reaction substep. The resulting operator-splitting scheme

satisfies the following properties: (i) It is IDP by design; (ii) It satisfies discrete entropy

inequalities; (iii) It yields optimal accuracy in the resolved regime; (iv) It is observed to be

AP thorough numerical experiments in one and two space dimensions using linear, convex,

and nonconvex fluxes.

The literature on IDP-AP schemes for the present problem is relatively scarce. To our

knowledge, the few (IDP-)AP schemes available in the literature somehow exploit the knowl-

edge of the limit equation or work only in special situations. Two salient examples are the

random projection scheme devised in Bao and Jin [1, 2] and the IMEX scheme proposed in

Svärd and Mishra [23]. The projection scheme works for discontinuous (shock-type) initial

data and convex flux, and the IMEX scheme is tailored to situations for which the location of

the discontinuities can be predicted by the solution to the homogeneous problem (see §6 for

other details). In contrast, the scheme proposed in the paper does not require any knowledge

on the limit equation and can handle a wide range of situations, including nonconvex fluxes,

general initial data, and discontinuities propagating at a priori unknown speeds.

The rest of the paper is organized as follows. The model problem is presented in §2. The

discrete setting together with the proposed scheme are discussed in §3. The main results of this

section are Proposition 3.1 and Theorem 3.3, which establish, respectively, that the scheme

is IDP and that it satisfies entropy inequalities with a residual decaying to zero under some

assumptions. Numerical results are presented in §4, §5, §6. All the numerical experiments are

conducted with the help of the Gridap.jl library developed by Verdugo and Badia [24] in
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the julia programming language. In §4, we study the cutoff parameters and identify an all-

purpose cutoff strategy ensuring that the AP property holds for all our numerical experiments.

In §5, we assess the cutoff strategy on challenging test cases. In particular, we highlight that

the mesh-dependent cutoff strategy introduced herein allows one to capture the correct shock

location even in the under-resolved regime (recall that the presence of multiple equilibrium

points causes the shocks to travel at speeds that differ from the nonreactive case). In §6,

we finally compare the proposed method to existing schemes from the literature. The main

conclusion is that the proposed mesh-dependent cutoff strategy leads to operator-splitting

schemes that perform better than existing schemes from the literature when simulating scalar

conservation equations with stiff source terms and multiple equilibrium points. Finally, §7

contains the proof of Theorem 3.3.

2 Model Problem

We consider the PDE (1) posed in the space-time cylinder D ×(0, T ) together with the initial

condition u0 ∈ L∞(D; B) with B := [0, 1]. The flux and the source term are assumed to be

smooth with

f ∈ C1(B; R
d), R ∈ C1(B; [−1, 1]). (6)

Since the time scale ε > 0 is used to quantify the strength of the source term, we assume

without loss of generality that R takes values in [−1, 1]. We assume that there are 0 < ϑ0 <

ϑ1 < 1 such that

∂B = {0, 1} ⊂ E, R(v) < 0 ∀v ∈ (0, ϑ0), R(v) > 0 ∀v ∈ (ϑ1, 1), (7)

meaning that both 0 and 1 are stable equilibrium points. The values 0 and 1 are chosen

for normalization purposes without loss of generality. In general situations, these two values

must be replaced by the smallest and largest values of the stable equilibrium points associated

with R. The intermediate value theorem then implies that there is at least another equilibrium

point α ∈ (0, 1). The simplest setting is when E = {0, α, 1} and α is an unstable equilibrium

point. The following prototypical example considered by LeVeque and Yee [21] meets the

above assumptions:

R(v) = Rα(v) := v(1 − v)(v − α), ∀v ∈ [0, 1]. (8)

To avoid distracting technicalities with the boundary conditions, we assume that: (i) either

the initial data u0 is compactly supported in D and the observation time T is short enough so

that the solution uε remains compactly supported at all times t ∈ [0, T ]; (ii) or a zero boundary

condition is enforced at all times at any inflow boundary and the solution uε vanishes in a

neighborhood of the inflow boundary at all times. Both assumptions are reasonable since 0

is a stable equilibrium point.

For any fixed ε > 0, the Cauchy problem admits a unique entropy solution (see e.g.,

Kružkov [19, Thm. 2]). Specifically, for any convex entropy η ∈ W 1,∞(B; R) with entropy

flux q(u) :=
∫ u

0 η′(v) f ′(v)dv, and for any test function ψ ∈ W
1,∞
0 (D × [0, T ]; R+), the

unique entropy solution in L∞(Q; R) is such that the following holds:
∫

D

η
(

uε(x, T )
)

ψ(x, T )dx −

∫

D

η
(

u0(x)
)

ψ(x, 0)dx

−

∫

Q

{

η(uε)∂tψ + q(uε)·∇ψ
}

dxdt ≤

∫

Q

1

ε
η′(uε)R(uε)ψdxdt . (9)
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A characterization of the limit solution u0 as ε → 0 is available in one space dimension

(d = 1) for convex fluxes. In this case, and assuming that the reaction term is given by (8)

(the result can be extended to more general reaction terms), it is shown in Fan et al. [9,

Thm. 1.1] that u0 takes values in {0, 1} (as expected), with shocks moving at speed
f (1)− f (0)

1−0
when the left and right states are (1, 0) and at speed f ′(α) when the left and right states are

(0, 1). Notice that in the first case, the shock speed coincides with that given by the Rankin–

Hugoniot relation just like for the nonreactive problem. In the second case, the solution to

the nonreactive problem is a rarefaction wave, whereas the limit solution u0 for the reactive

problem features a shock whose speed does not satisfy the Rankin–Hugoniot relation (since,

in general, f ′(α) �=
f (1)− f (0)

1−0
). To the best of our knowledge, the characterization of the

limit solution remains an open problem in more general situations.

3 Discrete Scheme

In this section, we present our scheme and establish that, under some assumptions, the scheme

is IDP and that it satisfies an entropy inequality with a residual decaying to zero as the mesh

is refined, uniformly in ε.

3.1 Discrete Setting

The time discretization is defined by using the collection of discrete time nodes tn for all

n ∈ N := {0:N }, with t0 = 0 and t N = T . The time step τ n is defined as τ n := tn+1 − tn ,

and we set In := [tn, tn+1) for all n ∈ N := {0:N − 1}. To simplify the notation, we omit

the superscript n and denote the time step by τ .

To stay general, we do not specify the space discretization scheme yet; more details are

given in §3.3 in the context of continuous finite elements. Possible space discretization meth-

ods are, e.g., finite volumes, finite differences, discontinuous or continuous finite elements.

At this stage, we just assume that the space discretization is based on a mesh Th that belongs

to a quasi-uniform mesh sequence. Here, h denotes the mesh size, i.e., the largest diam-

eter of the mesh cells. The space discretization is characterized by a collection of degrees

of freedom (dofs) which we enumerate with the index set V . The set V is partitioned as

V = V◦ ∪ V∂ , where V◦ collects the interior dofs and V∂ the (inflow) boundary dofs. We

denote I := card(V).

The operator-splitting scheme is composed of a (reaction-free) transport substep followed

by a (transport-free) reaction substep at each time step n ∈ N :

(Un
i )i∈V

transport
−−−−−−−−−−→ (Wn+1

i )i∈V

reaction
−−−−−−−−−−→ (Un+1

i )i∈V , (10)

where (Un
i )i∈V is obtained from the previous time step if n ≥ 1 or by a suitable approximation

of the initial condition if n = 0. For both transport and reaction substeps, boundary conditions

can be enforced by requiring that Un+1
i = W

n+1
i = U

n
i = 0 for all i ∈ V∂ .

We henceforth assume that the transport substep is IDP under a CFL restriction on the

time step: There exists a real number τ ∗ depending on β and h so that for all

τ ≤ τ ∗, (11)

the following holds true:
(

U
n := (Un

i )i∈V ∈ B
I
)

�⇒
(

W
n+1 := (Wn+1

i )i∈V ∈ B
I
)

. (12)
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We briefly show in §3.3 how (12) is achieved using continuous finite elements.

3.2 Details on the Reaction Substep and IDP Property

We describe in this section a method to perform the reaction substep in (10). The central

idea of the paper is to regularize the stiffness parameter ε in the reaction substep by using a

mesh-dependent cutoff. Recall that there are two reference times, T and β−1�D . For the sake

of simplicity, we assume that both times are of the same order of magnitude, and we use T

as the reference time. Up to straightforward modifications, everything that is said hereafter

remains valid if one replaces T by min(T , β−1�D) in (13).

We define a regularized stiffness time using two user-dependent parameters (θ, γ ), both

in (0, 1], as follows:

�ε,γ,θ := max
(

ε, γ T
(

h
βT

)θ
)

. (13)

The time scale T and the velocity scale β are introduced for dimensional consistency; in the

nondimensional setting, one simply obtains �ε,γ,θ := max(ε, γ hθ ), which better highlights

that the two parameters available to tune the cutoff are γ and θ . How to choose the parameters

(θ, γ ) is thoroughly discussed in §4. Setting

hε,γ,θ := βT
(

ε
γ T

)
1
θ , (14)

we have �ε,γ,θ := ε max(1, ( h
hε,γ,θ

)θ ). We say that we are in the resolved regime when

h � hε,γ,θ and in the under-resolved regime when h � hε,γ,θ . Hence, �ε,γ,θ = ε in

the resolved regime and �ε,γ,θ = γ T
(

h
βT

)θ
in the under-resolved regime. Selecting the

parameters (θ, γ ) deserves some attention. Ideally, one would like to pick θ close (or equal)

to one to make the resolved regime as large as possible (i.e., when h � 1
γ
βε). However,

numerical experiments reported in §4 show that it may happen that limh→0 limε→0 uε
h �= u0

(see (5)) when θ > 1
2

, which means that the scheme is not AP when θ > 1
2

. On the other

hand, numerical experiments suggest that the scheme is indeed AP for θ ∈ (0, 1
2
]. Moreover,

we establish in §3.4 a bound on the entropy residual for which θ < 1
2

is a sufficient condition

for the residual to decay to zero.

The reaction substep is based on the general idea of exponential integrators with two

salient differences with respect to what is usually done in the literature. First, the part of the

source term that is integrated exactly is quadratic and is based on the two equilibrium states

{0, 1} composing the boundary of the invariant domain B. Second, and more importantly, the

time integration is not performed over the time interval [0, τ
ε
] but over the (generally) shorter

time interval [0, τε,γ,θ ] with

τε,γ,θ :=
τ

�ε,γ,θ

. (15)

We start by defining the function R̃(v) := R(v)
v(1−v)

for all v ∈ B (this function is well-defined

on (0, 1) and is continuously extended to B = [0, 1] using l’Hôpital’s rule: R̃(0) = R′(0),

R̃(1) = −R′(1)). For instance, when R is defined by (8), we have R̃(v) = v − α for all

v ∈ B. The next step is to consider the ODE
§

¨

©

d

ds
ϑ(v; s) = ϑ(v; s)(1 − ϑ(v; s))R̃(v), s ≥ 0,

ϑ(v; 0) = v ∈ B.

(16)

123



Journal of Scientific Computing (2024) 100 :83 Page 7 of 30 83

Finally, the reaction substep in (10) is defined by setting

U
n+1
i = ϑ(Wn+1

i ; τε,γ,θ ), ∀i ∈ V. (17)

As the solution to (16) is ϑ(v; s) = v exp(s R̃(v))/(1 + v(exp(s R̃(v)) − 1), we obtain

U
n+1
i =

W
n+1
i exp

(

τε,γ,θ R̃(Wn+1
i )

)

1 + W
n+1
i

(

exp
(

τε,γ,θ R̃(Wn+1
i )

)

− 1)
) , ∀i ∈ V. (18)

Notice that for the boundary dofs, the above expression gives U
n+1
i = W

n+1
i = 0 since

ϑ(0; s) = 0 for all s ≥ 0.

Proposition 3.1 (IDP) Assume that the CFL restriction (11) holds. Let the reaction step be

defined in (17). Then, the operator-splitting scheme (10) is IDP.

Proof Assume that Un ∈ B I . The property (12) holds owing to the CFL restriction (11), and

we infer that Wn+1 ∈ B I . Furthermore, the solution ϑ(v; s) of the ODE (16) stays in B for

all s ≥ 0 whenever v ∈ B, whence U
n+1
i ∈ B for all i ∈ V . Thus, Un+1 ∈ B I , i.e., the

operator-splitting scheme (10) is IDP. ��

Remark 3.2 (Alternative) An alternative to the reaction substep defined in (18) is to use a

forward Euler substep with an additional clipping on the time step to ensure that the update

is IDP. Specifically, we observe that there is χ > 0 such that

v ∈ B �⇒ v + ρR(v) ∈ B, ∀ρ ∈ [−χ, χ].

For instance, one can take χ = min( 1
α
, 1

1−α
) ≤ 2 when R(v) := v(1 − v)(v − α). Then, the

reaction substep is defined by setting

U
n+1
i = W

n+1
i + min(χ, τε,γ,θ )R(Wn+1

i ), ∀i ∈ V.

By construction, U
n+1
i ∈ B whenever W

n+1
i ∈ B, and therefore the operator-splitting

scheme (10) is IDP under the CFL restriction (11). Note, however, that the clipping of the

time step can become a hindrance if χ is very small.

3.3 Finite-Element Transport Substep

The discretization of the transport step using continuous finite elements can be done in many

ways. We follow here the technique described in [11, 12]; see also [8, Chaps. 79-83] for

an easy introduction to the method. Recall that the mesh Th belongs to a quasi-uniform

mesh sequence. We assume that the mesh is composed of (affine) simplices. We focus, for

simplicity, on continuous, piecewise affine finite elements. Thus, the dofs are the values at

the mesh vertices, and the boundary dofs are the values at the mesh vertices located at the

inflow boundary. The global shape functions are denoted by {ϕi }i∈V . The stencil associated

with the dof i ∈ V is defined as

I(i) := { j ∈ V | ϕiϕ j �= 0}, (19)

The notion of stencil is symmetric, i.e., j ∈ I(i) iff i ∈ I( j). The global shape functions

satisfy the following partition of unity property:
∑

i∈V ϕi (x) = 1, for all x ∈ D. The matrix

with entries mi j :=
∫

D
ϕi (x)ϕ j (x)dx, for all i, j ∈ V is called the consistent mass matrix.

The lumped mass matrix has entries equal to mi :=
∑

j∈I(i) mi j =
∫

D
ϕi (x)dx > 0, for all
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i ∈ V . For all i ∈ V and all j ∈ I(i)\{i}, we define the vectors ci j :=
∫

D
ϕi (x)∇ϕ j (x)dx ∈

R
d and ni j :=

ci j

‖ci j ‖2
∈ R

d . Finally, we also define the first-order graph-viscosity coefficients

dn
i j := max(λmax(U

n
i ,Un

j , ni j )‖ci j‖2, λmax(U
n
j ,U

n
i , n j i )‖c j i‖2), (20)

where λmax(U
n
i ,Un

j , ni j ) is any upper bound on the maximum wave speed in the Riemann

problem with data (Un
i ,Un

j ) and flux f ·ni j .

With the above definitions, the finite element realization of the transport substep reads as

follows: For all n ∈ N ,

W
n+1
i = U

n
i −

τ

mi

∑

j∈I(i)\{i}

{

f (Un
j )·ci j − dn

i j (U
n
j − U

n
i )

}

, ∀i ∈ V, (21)

where U
n = (Un

i )i∈V is either known from the previous time step if n ≥ 1 or prescribed by

the initial condition (e.g., U
0
i := 1

mi

∫

D
u0(x)ϕi (x)dx, for all i ∈ V ). Recall that owing to

the assumptions made on the initial data and the boundary conditions, the update (21) also

holds true for the boundary dofs and gives Wn+1
i = U

n
i = 0.

A crucial property of the transport substep (21) is that it is IDP (i.e., (12) holds true)

under the CFL restriction

τ ≤ τ ∗ := min
i∈V◦

mi

2
∑

j∈I(i)\{i} dn
i j

, ∀n ∈ N . (22)

3.4 Bound on Entropy Residual

The main result of this section is that, under reasonable assumptions, the above scheme

satisfies entropy inequalities with a residual that decays to zero with the mesh size. The proof

is postponed to §7. For all n ∈ {0:N }, we reconstruct from the dofs (Un
i )i∈V a continuous

function that is piecewise affine in space by setting

un
h(x) :=

∑

i∈V

U
n
i ϕi (x), ∀x ∈ D. (23)

Then, we reconstruct a piecewise constant function in time by setting

uε
h(x, t)|[tn ,tn+1) := un

h(x), ∀n ∈ N , uε
h(x, T ) := uN

h (x). (24)

The Lagrange interpolant is defined as Ih(v)(x) :=
∑

i∈V v(ai )ϕi (x), for any function

v ∈ C0(D) and all x ∈ D, where ai denotes the mesh vertex associated with the global

shape function ϕi . The same definition is used componentwise for vector-valued fields.

Theorem 3.3 (Bound on entropy residual) Let the transport substep be defined in (21). Let

the reaction substep be defined in (17). Assume that the CFL restriction (11) holds true.

Then, there exists a constant C independent of h, τ , and ε, but that can depend on the

mesh shape-regularity, the functions R, η, and ψ , and the cutoff parameters (θ, γ ), such

that, for any convex entropy η ∈ C2(B; R) with associated flux q, and for any test function

ψ ∈ W
1,∞
0 (D × [0, T ]; R+), we have

∫

D

Ih

(

η(uN
h )

)

(x)ψ(x, T )dx −

∫

D

Ih

(

η(u0
h)

)

(x)ψ(x, 0)dx (25)

−

∫

Q

{

η(uε
h)∂tψ + q(uε

h)·∇ψ +
1

�ε,γ,θ

η′(uε
h)R(uε

h)ψ

}

dxdt ≤ C�(h),
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where

�(h) :=
h

β�2
ε,γ,θ

‖uε
h‖L1(Q) +

(

h

�ε,γ,θ

+
h2

β�2
ε,γ,θ

)

‖∇uε
h‖L1(Q). (26)

Remark 3.4 (�(h)) Notice that ‖uε
h‖L1(Q) is bounded since uε

h takes values in the bounded

set B. If a uniform bound is available on ‖∇uε
h‖L1(Q), (26) shows that, in the under-resolved

regime where �ε,γ,θ ∼ hθ , we have �(h) ∼ h1−2θ , and this quantity decays to zero if

θ ∈ (0, 1
2
) (the first term in (26) is the dominant one). A more realistic assumption is

‖∇uε
h‖L1(Q) ≤ Ch− 1

2 (this bound is a consequence of the L2-estimate, but a sharper BV-

estimate is possible in 1D). In this case, one has �(h) ∼ h
1
2 −θ , which again decays to zero if

θ ∈ (0, 1
2
) (the second term in (26) now becomes dominant). Finally, in the resolved regime,

one obtains �(h) ∼ h
1
2 /ε. The half-order decay in h with fixed ε is typical of the nonreactive

case.

4 Numerical Study on the Cutoff Parameters

The goal of this section is to numerically study the impact of the cutoff parameters (θ, γ ) on

the computational performance of the scheme, and therefore propose a rationale for choosing

these parameters. We proceed in three steps. First, we show that it is indeed beneficial to use a

cutoff on the source term. Second, we find optimal values for the cutoff parameters (θ, γ ) on

a series of test cases. However, we shall see that these values depend on the flux type (linear,

convex, nonconvex) and the form of the reaction term (quantified by the parameter α, see (8)),

whereas the dependence on the smoothness of the initial condition appears to be marginal.

The third step consists of selecting all-purpose values of the cutoff parameters. Although

optimal values of the cutoff parameters are problem-dependent, our numerical experiments

indicate that it is still possible to identify all-purpose values for these parameters that produce

results that are reasonably close to those produced by the optimal ones.

4.1 Overview of the Test Cases

We consider 1D test cases, all posed on the interval D := (−1, 1), and we are going to explore

linear, convex (Burgers), and nonconvex (sine) fluxes, defined respectively as follows:

f (v) := v, f (v) :=
1

2
v2, f (v) :=

1

2π
sin(2πv). (27)

We select the source term to be that defined in (8), and we are going to explore α ∈

{0.5, 0.7, 0.9}. We are also going to explore three types of initial data:

• IC1 (smooth (C0) IC)

u0(x) =

{

x + 1, if x ∈ (−1, 0),

1, otherwise.
(28)

• IC2 (nonsmooth IC with one shock)

u0(x) =

§

⎪

¨

⎪

©

2(x + 1), if x ∈ (−1,− 1
2
),

1, if x ∈ (− 1
2
, 2

5
),

0, otherwise.

(29)
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• IC3 (nonsmooth IC with two shocks)

u0(x) =

§

⎪

¨

⎪

©

2(x + 1), if x ∈ (−1,− 1
2
),

0.95, if x ∈ (− 1
2
, 2

5
),

0.3, otherwise.

(30)

In all cases, the reference velocity is β := 1, and we set the final time to T := 0.5. The time

step is defined by

τ := C
cfl

min
i∈V◦

mi

2
∑

j∈I(i)\{i} dn
i j

, (31)

and, unless stated otherwise, we use C
cfl

= 1
2

in the simulations.

Errors are measured in the relative L1-norm at the final time (i.e., normalized by the

L1-norm of the exact solution). For the linear flux, the exact solution is computed by

the method of characteristics and an implicit Runge–Kutta integrator along the character-

istics. For the nonlinear fluxes, the exact solution is obtained on a fine grid with mesh

size href := 0.1×2−13 ≈ 1.2×10−5. We consider two values for the stiffness parameter

ε ∈ {10−2, 10−3}. For these values, and since T = 0.5, the difference between uε and u0

measured in the relative L1-norm is of the order of the machine precision for the linear flux,

whereas it scales like O(ε) for the nonlinear fluxes; for instance, this difference is in the

range [1, 5] × 10−3 for ε = 10−3.

The mesh sizes sampled are h j := 0.1 × 2− j for j ∈ {0:10}, thus we mainly focus on

the under-resolved regime. The mesh size href we use to approximate the exact solution is

eight times smaller than the smallest mesh size h10 explored. As the cutoff (13) makes the

source term in the numerical scheme independent of ε in the under-resolved regime (i.e.,

hε,γ,θ ≤ h), and ‖uε
h − uε‖L1(D) ≈ ‖uε

h − u0‖L1(D) for very small values of ε, we expect

that the error ‖uε
h − uε‖L1(D) varies very little with respect to ε in the under-resolved regime

when ε is smaller than 10−3. We have numerically tested this statement, and observed that it

is indeed the case. We do not report these tests for brevity. In conclusions, we do not report

tests done with values of ε smaller than 10−3.

4.2 On the Benefits of Using a Cutoff in the Source Term

Recall that we are in the resolved regime when h � hε,γ,θ and in the under-resolved regime

when h � hε,γ,θ , with hε,γ,θ defined in (14). For the linear flux, we expect the asymptotic

convergence rate to be of order 1 for the initial condition IC1 and of order 1
2

for the initial

conditions IC2 and IC3. For the nonlinear fluxes, the asymptotic convergence rate is expected

to be between 1
2

and 1 for the three initial conditions. Recall, however, that we are mainly

considering mesh sizes in the under-resolved regime.

Figure 1 shows tests with the stiffness parameter ε = 10−3 for the problems defined

in §4.1. The relative L1-errors at the final time are represented as a function of the mesh

size for three values of the cutoff parameter θ ∈ {0.2, 0.4, 0.8}, the choice γ = 0.1, and

the three initial conditions. Each panel corresponds to one value of the reaction parameter

α ∈ {0.5, 0.7, 0.9} (from left to right) and to one flux (from top to bottom: linear, convex,

nonconvex). In each panel, the red dashed curve corresponds to the numerical results without

cutoff, i.e., setting �ε,γ,θ := ε (plain exponential integrator, labeled � = ε in the legend).

Vertical lines in each panel indicate the value of the mesh size corresponding to the transition

from the under-resolved to the resolved regime; the color of the vertical line corresponds to
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Fig. 1 L1-errors as a function of the mesh size for ε = 10−3, three values of the cutoff parameter (θ = 0.8 in

blue, θ = 0.4 in brown, θ = 0.2 in green), γ = 0.1, and three ICs (IC1: ◦, IC2: �, IC3: ×). From left to right:

α = 0.5, α = 0.7, and α = 0.9. From top to bottom: linear, convex, and nonconvex fluxes. The red dashed

line labeled ‘� = ε’ is obtained without any cutoff (plain exponential integrator) (Color figure online)

the value of θ . We observe in Fig. 1 that the resolved regime can be reached only for θ = 0.8

with the mesh sizes considered here. The red and blue curves overlap for mesh sizes smaller

than the value indicated by the vertical blue line.

Several observations can be made from the results displayed in Fig. 1. Let us focus first

on the reaction parameters α ∈ {0.7, 0.9} (central and right columns).

• The errors with no cutoff are generally larger than those obtained with cutoff. The errors

level off on the coarser meshes if no cutoff is used.

• Choosing θ = 0.8 is always less effective than choosing θ < 1
2

. A plateau is observed on

the coarser meshes for θ = 0.8. This observation is consistent with the main conclusion

of Theorem 3.3 which recommends to select θ < 1
2

.

• The most effective choice of θ in {0.2, 0.4} depends on the flux type. The value θ = 0.4

generally performs better for the nonlinear fluxes, whereas the value θ = 0.2 generally

performs better for the linear flux.

Regardless of the error levels, the above conclusions are fairly independent of the initial

conditions. The errors obtained with the smooth initial condition IC1 are smaller than those

obtained with the nonsmooth initial conditions IC2 and IC3. The differences on the results

obtained with the initial data IC2 and IC3 are marginal.

Perhaps a bit surprisingly, the conclusions are less clear cut for α = 0.5 (left column in

Fig. 1). The most salient observation is that for the linear flux, the scheme without cutoff (i.e.,

setting �ε,γ,θ := ε) generally leads to lower errors. It is, however, still beneficial to use a
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Fig. 2 L1-errors as a function of the mesh size for ε = 10−3 and IC1, α ∈ {0.5, 0.7, 0.9} (from

left to right), and linear, convex, and nonconvex fluxes (from top to bottom). The cutoff parameters are

θ ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} and γ = 1. The red dashed line labeled ‘� = ε’ is obtained without

any cutoff (Color figure online)

cutoff for the nonlinear fluxes in the under-resolved regime. Some clarifications about these

observations are given in §4.3.

4.3 Optimizing the Cutoff Parameters

The above results lead us to wonder whether it is possible to devise an optimal strategy

to define the cutoff parameters (θ, γ ). For this purpose, we fix γ = 1 and we perform a

sampling of θ in the interval [0.3, 1.0] with step δθ = 0.1. We explore again the three

reaction coefficients α ∈ {0.5, 0.7, 0.9} and the three fluxes (linear, convex, and nonconvex)

defined in §4.1. For brevity, we focus on the initial condition IC1, the results for the initial

conditions IC2 and IC3 being essentially similar.

We first discuss the results for ε = 10−3 and with �ε,γ,θ := γ T
(

h/βT
)θ

instead of (13).

The results are reported in Fig. 2. For comparison, all the panels in Fig. 2 also include the

errors corresponding to the plain exponential integrator (�ε,γ,θ = ε, red dashed curve labeled

� = ε in the legend). As before, vertical lines indicate the start of the resolved regime for

each value of θ . The most striking observation is that, in most situations, there is an interval

of mesh size in the under-resolved regime, say [h�, h�], where the error curves corresponding

to various values of θ reach smaller errors than the curve corresponding to �ε,γ,θ = ε. In

particular, for those values of θ , the error has two different behaviors as h spans [h�, h�]:

There is first a super-convergence phase, then the error stagnates until the resolved regime is

reached (as indicated by the vertical lines). As expected, the error levels off in the resolved
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Fig. 3 1D linear transport with ε = 10−3 and IC1: solution profiles corresponding to the symbols (star, circle)

shown in Fig. 2b

regime since using �ε,γ,θ := γ T
(

h/βT
)θ

, instead of �ε,γ,θ := ε, is not consistent. We

loosely refer to the above behavior as a resonance phenomenon. The resonance phenomenon

is clearly visible for the three fluxes and α ∈ {0.7, 0.9}. It is also visible for the nonlinear

fluxes when α = 0.5 (up to some oscillations of the reference solution corresponding to

�ε,γ,θ = ε).

To gain some insight into the resonance phenomenon, we report in Fig. 3 some solution

profiles for the linear flux with α = 0.7 and θ = 0.6. We consider four mesh sizes identified

by circle and star symbols in Fig. 2b. We observe that the super-convergent phase of the

under-resolved regime (star symbols) corresponds to a swift reduction of the smearing of the

discrete solution near the shock, whereas the stagnation phase (circle symbols) corresponds

to the stabilization of the shock position at an incorrect location. As expected, the shock

eventually moves to its correct location in the resolved regime (i.e., when �ε,γ,θ = ε).

For each triple consisting of a flux, a value of α and an initial condition, we construct a

list {(θi , hi )}i∈L where for each index i in this list, θi is such that a resonance occurs in the

under-resolved regime and the value hi is the mesh size giving the smallest error. Plotting

these points in a graph (not shown for brevity), we find that a good fit is obtained in the form

θi ≈ a + b(log(hi/βT ))−1 (recall that, in all the cases, we have βT = 1
2

). In other words,

multiplying by log(hi/βT ) and taking the exponential, the above fit implies that

(hi/βT )θi ≈ eb(hi/βT )a . (32)

This, in turn, implies that the optimal expression of the cutoff function �ε,γ,θ is indeed of

the form max
(

ε, γoptT
(

h
βT

)θopt
)

as proposed in (13) with γopt := eb and θopt := a. These

optimal values are reported in Table 1 for the linear, convex, and nonconvex flux, respectively.

Entries with a dash in the tables mean that optimal values were not found, i.e., resonance

did not occur in the under-resolved regime. For ε = 10−3, this is only the case for the linear

flux and α = 0.5. In this case, we observe in Fig. 2a that the resonance phenomenon only

occurs in the resolved regime.

The numerical experiments discussed above for ε = 10−3 are repeated for ε = 10−2. The

results are reported in Fig. 4. The main observations regarding the presence of a resonance

phenomenon and the possibility to devise optimal values for the cutoff parameters remain

unchanged. The only relevant difference is that the value of the reaction parameter α = 0.5
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Table 1 Optimal cutoff parameters θopt and γopt

ε α 0.5 0.7 0.9

IC IC1 IC2 IC3 IC1 IC2 IC3 IC1 IC2 IC3

Linear

10−2 θ – – – 0.05 0.1 0.1 0.1 0.1 0.05

γ – – – 0.05 0.1 0.1 0.05 0.1 0.05

10−3 θ – – – 0.05 0.1 0.1 0.1 0.1 0.05

γ – – – 0.05 0.1 0.1 0.05 0.1 0.05

Burgers

10−2 θ – – – 0.3 0.3 0.3 0.3 0.3 0.3

γ – – – 0.15 0.15 0.15 0.15 0.15 0.15

10−3 θ 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

γ 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.2 0.2

Sine

10−2 θ – – – 0.15 0.15 0.15 0.2 0.15 0.15

γ – – – 0.05 0.05 0.05 0.05 0.05 0.05

10−3 θ 0.4 0.4 0.4 0.25 0.25 0.25 0.3 0.4 0.4

γ 0.03 0.03 0.03 0.05 0.05 0.05 0.03 0.1 0.1

Fig. 4 L1-errors as a function of the mesh size for ε = 10−2 and IC1, α ∈ {0.5, 0.7, 0.9} (from

left to right), and linear, convex, and nonconvex fluxes (from top to bottom). The cutoff parameters are

θ ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} and γ = 1. The red dashed line labeled ‘� = ε’ is obtained without

any cutoff
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Fig. 5 L1-errors as a function of the mesh size for ε = 10−3 and α ∈ {0.5, 0.7, 0.9}. From top to bottom:

linear, convex, and nonconvex fluxes. From left to right: IC1, IC2, and IC3. Comparison between optimal values

(star symbols, �) and all-purpose values (circle symbols, •) of the cutoff parameters. The errors obtained with

�ε,γ,θ = ε are reported using dashed lines with color matching the value of α (Color figure online)

now eludes the possibility of devising optimal cutoff parameters for the three fluxes (see the

panels (a,d,g) in Fig. 4). The reason is that the resonance phenomenon is observed in the

resolved regime for the linear flux and the nonconvex flux, and the resonance phenomenon

fails to deliver lower errors than those obtained with �ε,γ,θ = ε for the convex flux. The

optimal cutoff parameters for ε = 10−2 are again collected in Table 1 for the linear, convex,

and nonconvex flux, respectively.

4.4 Selection of All-Purpose Cutoff Parameters

The next step in our investigation is to propose pairs of all-purpose cutoff parameters (θ, γ )

that perform reasonably well uniformly over all the test cases. The inspection of Table 1

suggests to use

(θ, γ ) :=

{

(0.1, 0.05) linear flux,

(0.4, 0.1) nonlinear (convex and nonconvex) fluxes.
(33)

Slightly different values can be chosen without significantly impacting the computational

performance of the cutoff procedure. Figure 5 compares the errors obtained using the optimal

cutoff parameters (star symbols, �) with the errors obtained using the all-purpose cutoff

parameters defined above (circle symbols, •). For these tests, we have set ε = 10−3 and used

α ∈ {0.5, 0.7, 0.9}, the three fluxes, and the three initial conditions. The main observation

is that using the all-purpose cutoff parameters instead of the optimal ones only leads to a
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marginal deterioration of the errors. This fortunately indicates that despite the diversity of the

behaviors observed when varying the flux, the initial conditions, and the reaction parameter,

reasonable all-purpose values of the cutoff parameters can be found. The results for ε = 10−2

are similar to those displayed in Fig. 5 and are omitted for brevity.

In conclusion, the all-purpose values for the cutoff parameters indicated in (33) will be

used in the rest of the paper.

5 Tests with All-Purpose Cutoff Parameters

In this section, we focus on the nonlinear fluxes (convex and nonconvex) and we test the

proposed scheme with the all-purpose cutoff parameters identified in (33), i.e., we set

(θ, γ ) = (0.4, 0.1). We consider two 1D test cases and two 2D test cases.

5.1 High-Order Viscosity

To improve the performance of the scheme, we now make use of a high-order graph viscosity

instead of the low-order one defined in (20). Following [13], [8, §82.2], we replace dn
i j in

the transport substep by the quantity d
∗,n
i j := dn

i j max(ψ(αn
i ), ψ(αn

j )), for all i ∈ V and

all j ∈ I(i), where αn
i is a local, linearity preserving, smoothness indicator based on the

discrete solution (Un
i )i∈V (see, e.g., [8, Eq. (82.24)]) and ψ : [0, 1] → [0, 1] is any smooth

increasing function satisfying ψ(0) = 0 and ψ(1) = 1 (we set ψ(t) = t2 in our numerical

experiments). When the flux is nonconvex, we actually set d
∗,n
i j := dn

i j for any pair (i, j) such

that an inflexion point of the flux lies between U
n
i and U

n
j . Moreover, we now set C

cfl
= 0.1

in (31).

5.2 1D Tests with Nonlinear Fluxes

This section is devoted to 1D tests.

5.2.1 Convex (Burgers) Flux

We consider nonlinear transport with Burgers flux, ε = 10−3, and α = 0.9. The initial

condition is

u0(x) =

§

⎪

¨

⎪

©

0, if x ∈ (−1,−0.9),

1, if x ∈ (−0.9,−0.5),

0.3, otherwise.

(34)

The limit solution u0 in the time interval (0, 1) is composed of the two equilibrium states

{0, 1} separated by two moving shocks. The shock originating at x = −0.9 travels at speed

f ′(α) = 0.9, and the shock originating at x = −0.5 travels at speed
f (1)− f (0)

1−0
= 1

2
. The two

shocks meet at time T = 1, and the limit solution is identically zero thereafter. To illustrate the

importance of using a high-order graph viscosity, we compare in Fig. 6 the solutions obtained

using low-order and high-order viscosity at T = 0.5. Three solutions using the mesh sizes

h ∈ {0.39, 1.6, 6.3} × 10−3 are shown (we are still in the under-resolved regime since

hε,γ,θ ≈ 2.9×10−5, see (14)). We observe that the higher-order solutions are significantly
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Fig. 6 1D Burgers with ε = 10−3, α = 0.9 and IC (34). Solution profiles at T = 0.5 with mesh sizes

h ∈ {0.39, 1.6, 6.3} × 10−3. Left: first-order graph viscosity; right: high-order graph viscosity

more accurate that the low-order ones. Using the high-order graph viscosity allows us to

capture well the two shocks (recall that the speed of the first shock is reaction-dependent).

5.2.2 Nonconvex (sine) Flux

We now consider the nonconvex flux (sine) with ε = 10−3 and α = 0.7. The initial condition

is

u0(x) =

{

1, if x ∈ (− 1
2
,− 1

5
) ∪ ( 1

5
, 1),

0, otherwise.
(35)

Figure 7 shows the profiles at times T ∈ {0.1, 0.2, 0.4, 1.0} of the exact solutions of the

nonreactive (ε = ∞) and limit (ε = 0) equations. We observe that u∞ develops composite

waves combining shocks and rarefaction waves; this is the expected behavior. The limit u0

takes values in {0, 1} with three shocks moving at the same speed, s ≈ −0.216. This speed

is the value of the derivative of both the upper concave and the lower convex envelopes of

the flux f evaluated at α. Thus, the fact that a shock separating two states corresponding to a

rarefaction wave moves at the speed f ′(α) when the flux f is convex, as shown in Fan et al.

[9], carries over to the present nonconvex case. This can be seen by adapting the arguments

in [9], whereby f is replaced by its suitable envelope. Another interesting observation drawn

from Fig. 7 is that the shocks in the nonreactive and reactive solutions move at the same

speed at short times (T ∈ {0.1, 0.2}), but the speeds differ as soon as shocks originating from

different locations start to interact in the nonreactive case.

Figure 8 shows the profiles at T ∈ {0.1, 0.2, 0.4, 1.0} of approximate solutions obtained

with the mesh sizes h ∈ {0.39, 1.6, 6.3}×10−3 and the high-order graph viscosity. The three

shock positions are well captured on all meshes at the short times T ∈ {0.1, 0.2}, and that

this is still the case for the longer times T ∈ {0.4, 1.0} on the finer meshes.

We close this section with a more challenging situation where the source term leads to

five equilibrium states:

R 1
4 , 3

4
(v) := 44v(v − 1

4
)(v − 1

2
)(v − 3

4
)(1 − v). (36)

The states {0, 1
2
, 1} are stable, whereas the states { 1

4
, 3

4
} are unstable. We still consider the

nonconvex flux f (v) = 1
2π

sin(2πv), but we now use the smooth initial condition

u0(x) = 0.5
(

1 + sin(π(x + 0.5))
)

. (37)
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Fig. 7 1D test with nonconvex flux (sine), IC (35), and α = 0.7. Comparison of nonreactive (ε = ∞) and

limit (ε = 0) solutions at times T ∈ {0.1, 0.2, 0.4, 1.0}

Fig. 8 1D test with nonconvex flux (sine), IC (35), and α = 0.7. Discrete solutions at times T ∈

{0.1, 0.2, 0.4, 1.0} with mesh sizes h ∈ {0.39, 1.6, 6.3} × 10−3
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Fig. 9 1D nonconvex flux (sine), IC (37), and source term (36): Discrete solution profiles at T = 0.1 using

the mesh sizes h ∈ {1.25, 2.5, 5.0} × 10−2; the horizontal dashed orange (resp., violet) line materializes the

unstable (resp., stable) values of α (Color figure online)

We consider the short observation time T := 0.1 so as to allow the solution to take inter-

mediate values in [0, 1]. The profiles of the limit solution u0 and the approximate solutions

using the mesh sizes h ∈ {1.25, 2.5, 5.0} × 10−2 are reported in Fig. 9. The limit solution

takes values in the set {0, 1
2
, 1} as expected. The four shocks are well captured by the discrete

solutions, even using relatively coarse meshes, thereby giving again credence to the cutoff

strategy proposed in the paper.

5.3 2D Numerical Tests

This section is devoted to 2D numerical tests. As, to our knowledge, there is no mathematical

theory identifying the limit solution in this setting, these 2D results should be considered as

illustrative of the capacity of the present scheme to capture reasonable solutions.

5.3.1 Convex (Burgers-Like) Flux

In this section, we consider the reactive Burgers equation in the square D := (−0.25, 1.75)2

with the flux function f (v) := ( 1
2
v2, 1

2
v2), and the following initial condition:

u0(x) =

{

1, if ‖x − (1, 1)T‖∞ ≤ 1
2
,

− 3
4
, otherwise.

(38)

This test, considered in [13, §6.1] in the nonreactive regime, is challenging since it exhibits

sonic points. The nonreactive solution is given by Eqs. (52)–(53) therein.

The invariant set is now B = [a, b] := [− 3
4
, 1]. Defining the linear map ϕ : B → [0, 1]

with ϕ(v) := v−a
b−a

(and ϕ−1(z) = (b − a)z + a), we consider the reaction terms:

Rϕ
α (v) := Rα(ϕ(v)), R

ϕ
1
4 , 3

4

(v) := R 1
4 , 3

4
(ϕ(v)), ∀v ∈ B, (39)

with Rα defined in (8) and R 1
4 , 3

4
defined in (36). Thus, R

ϕ
α gives two stable equilibrium states

{a, b} = {− 3
4
, 1} and one unstable equilibrium state {ϕ−1(α)}. In what follows, we choose

α := − a
b−a

= 3
7

, so that ϕ−1(α) = 0, which corresponds to the sonic point for Burgers
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Fig. 10 2D Burgers equation with IC (38). From left to right: a nonreactive solution; b reactive solution with

two stable equilibria; c reactive solution with three stable equilibria

flux. The source R
ϕ
1
4 , 3

4

gives three stable equilibrium states {− 3
4
, 1

8
, 1} and two unstable

equilibrium states {− 5
16

, 7
16

}. Finally, recalling that the solution to the ODE (16), ϑ(v; s),

maps [0, 1] to [0, 1], we formulate the reaction substep by using the change of variable

[a, b] � v �→ z := ϕ(v) ∈ [0, 1]. We obtain

U
n+1
i = ϕ−1

(

ϑ(ϕ(Wn+1
i ); (b − a)τε,γ,θ )

)

, ∀i ∈ V, (40)

which gives, with Z
n+1
i := ϕ(Wn+1

i ) =
W

n+1
i −a

b−a
and Rϕ denoting either R

ϕ
α or R

ϕ
1
4 , 3

4

,

U
n+1
i = a + (b − a)

Z
n+1
i exp

(

(b − a)τε,γ,θ Rϕ(Zn+1
i )

)

1 + Z
n+1
i

(

exp
(

(b − a)τε,γ,θ Rϕ(Zn+1
i )

)

− 1)
) , ∀i ∈ V. (41)

Figure 10 shows isocontours of the nonreactive solution (left panel), the reactive solution

with R
ϕ
α (center panel), and the reactive solution with R

ϕ
1
4 , 3

4

(right panel). The computations

are done with ε = 10−3 on a fine mesh composed 4002 grid points. The nonreactive solution

matches well with the analytical solution given in [13]. In the reactive case with two stable

equilibrium states, the shocks separating the two states are very well resolved. The shocks

propagate differently than the nonreactive shocks. In the reactive case with three stable

equilibrium states, the numerical solution takes the three values in the set {− 3
4
, 1

8
, 1}. Notice

that the level set {u = 1} is different when considering two or three stable equilibrium states.

5.3.2 Nonconvex Flux

For the second 2D test case, we set D := (−2, 2) × (−2.5, 1.5), with the nonconvex flux

f (v) := (sin(v), cos(v)), and the initial condition

u0(x) =

{

15π
4

, if ‖x − (0.5, 0.5)T‖2 ≤ 1,
π
4
, otherwise.

(42)

The nonreactive solution to this problem, proposed by Kurganov et al. [20], is a composite

wave composed of a shock followed by a rarefaction wave. This solution is shown in Fig. 11a

at T = 1.

The invariant domain associated with the initial condition is B = [a, b] := [π
4
, 15π

4
]. We

proceed as in (39) to define the reaction terms R
ϕ
α and R

ϕ
1
4 , 3

4

on B. Here, we set α = 10π
4

.

Figure 11b shows isocontours of the reactive solution with two stable equilibrium states. The

computation is done with ε = 10−3 on a fine mesh composed of 4002 grid points. As above,
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Fig. 11 2D KPP test case with IC (42). Solution isocontours at T = 1. Left: nonreactive solution. Right:

reactive solution with two stable equilibria, ε = 10−3

Fig. 12 2D KPP test case with IC (42) and three stable equilibria. Left: solution isocontours for ε = 10−3

and T = 1. Right: solution isocontours for ε = 10 and T = 4

we observe a sharp resolution of the shocks separating the stable equilibrium states. Here

again, the shocks in the reactive case propagate differently from the nonreactive case. Finally,

Fig. 12 shows isocontours of the solution with the source term giving three stable equilibrium

states. The left panel corresponds to ε = 10−3 and T = 1. The right panel corresponds to

ε = 10 and T = 4. In the first case, we observe that the intermediate equilibrium state is

absent, whereas it can be observed in the second case where the stiffness parameter ε is much

milder. This illustrates the complex interaction between shock dynamics and reaction terms.

6 Comparison to Other Schemes

We now compare the proposed algorithm with methods published in the literature. The tests

are done in one space dimension with the three-state reaction term Rα defined in (8).

6.1 Other IMEX-Based Schemes

We first compare the present scheme to three IMEX-based methods from the literature.

The reaction substep for the first method consists of using an exponential integrator, i.e.,
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Fig. 13 1D linear transport with IC (43) and ε = 10−3: solution profiles with mesh size h = 3.9 × 10−4.

Left: α = 0.5; center: α = 0.7; right: α = 0.9

setting �ε,γ,θ = ε in (17). The reaction substep for the second method consists of using

the implicit Euler scheme with the nonlinear equation for each dof solved using Newton’s

method. Finally, the third scheme is inspired from the additive schemes proposed in Kennedy

and Carpenter [18] for convection-diffusion equations. In the present setting, it amounts to

writing the reaction substep as

U
n+1
i = W

n+1
i + ϑ(Un

i ; ε−1τ) − U
n
i , ∀i ∈ V. (43)

Notice that the exponential integrator is used in (43), but with the initial data U
n
i instead of

W
n+1
i as in (17). Another significant difference is that there is no cutoff on the time step, i.e.,

τ
ε

is used instead of τε,γ,θ as in (17). Notice in passing that neither the plain IMEX scheme

nor the additive scheme are IDP.

We solve the 1D linear transport with the discontinuous initial data

u0(x) =

{

0, if x < − 1
2
,

1, otherwise.
(44)

Figure 13 compares solution profiles at T = 0.5 obtained with the above schemes and the

present one with ε = 10−3, α ∈ {0.5, 0.7, 0.9}. The mesh size is h = 3.9 × 10−4. We

observe that, for α ∈ {0.7, 0.9} (central and right panels), the three IMEX-based schemes

fail to locate the correct shock position (the predicted shock location actually falls outside the

figure for the plain IMEX scheme), whereas the present scheme correctly locates the shock.

As already mentioned above, correctly capturing the shock location is less challenging when

α = 0.5 (left panel); in particular, the plain exponential integrator and the additive scheme

now work well, whereas the plain IMEX scheme still fails.

6.2 Another AP Scheme

A scheme to approximate the model problem (1) has been proposed by Svärd and Mishra

[23]. The method is tested therein for scalar conservation laws with convex fluxes and for the

compressible the Euler equations coupled with a scalar conservation equation for a reactive

species with a dissipative source term, i.e., 0 is the only equilibrium state.

To discuss the scheme (henceforth referred to with the letters SM), we focus on the

reaction term defined in (8) and introduce the projector �α : B → B such that �α(v) = 0

if v ∈ [0, α), �α(α) = α, and �α(v) = 1 if v ∈ (α, 1]. The key idea in [23] is to

simultaneously approximate (1) and the nonreactive problem (ε = ∞). An IMEX scheme is

used to advance in time the reactive equation, and an explicit Euler scheme is used for the

nonreactive equation. The IMEX scheme for the reactive equation gives a nonlinear problem
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Fig. 14 1D Burgers with ε = 10−3, α = 0.9 and IC (34). Solution at T = 0.5 with mesh sizes h ∈

{0.39, 1.6, 6.3} × 10−3. Left: present scheme; right: SM scheme

Fig. 15 1D sine flux with ε = 10−3, α = 0.7 and IC (35). Solution profiles at T = 0.4 (top row) and T = 1.0

(bottom row) with mesh sizes h ∈ {0.39, 1.6, 6.3} × 10−3. Left column: present scheme; right column: SM

scheme

at every dof, which is solved using a Newton method initialized using the image by �α of

the dof corresponding to the nonreactive solution.

The SM scheme captures well the reactive solution in the under-resolved regime in various

situations. This happens when the nonreactive solution has shocks or rarefactions, possibly

many of them but not interacting, and in some cases, when the exact solution features com-

posite waves. More precisely, the nonreactive solution, u∞, is informative about the shocks

appearing in the reactive solution, uε , as ε → 0, if the following holds true:

�α(u∞) = u0. (45)

(This condition appears not to be explicitly identified in [23].) Although a bit unexpected at

first sight, the condition (45) turns out to be satisfied in several situations. For instance, it is
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the case for Burgers equation, as long as the shocks and rarefaction waves present in u∞ do

not interact. The SM scheme performs well in these situations, and actually better than the

present scheme on coarse meshes since it does not have any cutoff. On the other hand, the

SM scheme behaves poorly when u∞ is composed of two shocks moving at different speeds,

which eventually interact.

We now illustrate the above argumentation with the 1D Burgers equation with ε = 10−3,

Rα with α = 0.9, and the initial condition (34), as in §5.2.1. Figure 14 presents solution

profiles at T = 0.5 on the three mesh sizes h ∈ {0.39, 1.6, 6.3} × 10−3. The solution

obtained with the present scheme is shown in the left panel (this is the same as in Fig. 6b).

The solution obtained with the SM scheme is shown in the right panel. The present scheme

predicts well the shock locations on the considered mesh sizes (recall that we focus on the

under-resolved regime). We also observe that the SM scheme captures (at least part of) the

subset {u = 1} only on the finest mesh.

We further illustrate the method by considering the 1D nonconvex flux (sine), with ε =

10−3, α = 0.7, and the initial condition (35), as in §5.2.2. Figure 15 shows solution profiles

at T = 0.4 (top row) and T = 1.0 (bottom row) using the same mesh sizes as above.

The solution obtained with the present scheme are shown in the left column. The solutions

obtained with the SM scheme are shown in the right column. We draw the same conclusions

as above. The present scheme achieves a much sharper prediction of the shock locations

than the SM scheme in the under-resolved regime, and the SM scheme meets with some

difficulties in capturing the first connected component of the subset {u = 1} on the coarser

meshes.

7 Proof of Theorem 3.3

Recall that we want to prove that, for any test function ψ ∈ W
1,∞
0 (D ×[0, T ]; R+), we have

∫

D

Ih

(

η(uN
h )

)

(x)ψ(x, T )dx −

∫

D

Ih

(

η(u0
h)

)

(x)ψ(x, 0)dx (46)

−

∫

Q

{

η(uε
h)∂tψ + q(uε

h)·∇ψ +
1

�ε,γ,θ

η′(uε
h)R(uε

h)ψ

}

dxdt ≤ C�(h),

where

�(h) :=
h

β�2
ε,γ,θ

‖uε
h‖L1(Q) +

(

h

�ε,γ,θ

+
h2

β�2
ε,γ,θ

)

‖∇uε
h‖L1(Q).

The symbol C denotes a generic positive real number whose value can change at each

occurrence as long as it is independent of h, τ , and ε. The value of C can, in particular,

depend on the norm ‖ψ‖L∞(Q) + T ‖∂tψ‖L∞(Q) + βT ‖∇ψ‖L∞(Q), as well as bounds over

B on the functions R, η, β−1q, and their derivatives. Notice also that the CFL condition (11)

on the time step with τ ∗ defined in (22) amounts to

τ � β−1h. (47)

Proof (1) It is well-known (see, e.g., [8, Theorem 81.12]) that the update W
n+1
i from the

transport substep satisfies the following discrete entropy inequality: For all n ∈ N and all

i ∈ V ,

mi

η(Wn+1
i ) − η(Un

i )

τ
−

∫

D

Ih

(

q(un
h)

)

·∇ϕi dx −
∑

j∈I(i)

dn
i j

(

η(Un
j ) − η(Un

i )
)

≤ 0.
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Moreover, we can rewrite the reaction substep as

U
n+1
i = W

n+1
i + τε,γ,θ Rε,γ,θ (W

n+1
i ), Rε,γ,θ (v) :=

1

τε,γ,θ

(

ϑ(v; τε,γ,θ ) − v
)

∀v ∈ B.

(48)

Recalling that τε,γ,θ := τ
�ε,γ,θ

, the convexity of η then implies that

η(Wn+1
i ) ≥ η(Un+1

i ) + η′(Un+1
i )(Wn+1

i − U
n+1
i )

= η(Un+1
i ) −

τ

�ε,γ,θ

η′(Un+1
i )Rε,γ,θ (W

n+1
i ).

We infer that

mi

η(Un+1
i ) − η(Un

i )

τ
−

∫

D

Ih

(

q(un
h)

)

·∇ϕi dx

−
∑

j∈I(i)

dn
i j

(

η(Un
j ) − η(Un

i )
)

−
mi

�ε,γ,θ

η′(Un+1
i )Rε,γ,θ (W

n+1
i ) ≤ 0. (49)

(2) Let us set ψn
h (x) :=

∑

i∈V �n
i ϕi (x) with �n

i := 1
mi

∫

D
ψn(x)ϕi (x)dx and ψn(x) :=

ψ(x, tn) for all x ∈ D. Multiplying the inequality (49) by τ�n
i ≥ 0 and summing over

n ∈ N and i ∈ V , we infer that

E1,h + E2,h + E3,h + E4,h ≤ 0, (50)

where

E1,h :=
∑

n∈N

∫

D

{

(

Ih

(

η(un+1
h )

)

− Ih

(

η(un
h)

))

ψn
}

(x)dx,

E2,h := −
∑

n∈N

τ

∫

D

{

Ih

(

q(un
h)

)

·∇ψn
h

}

(x)dx,

E3,h :=
∑

n∈N

τ
∑

i∈V

∑

j∈I(i)

1

2
dn

i j (η(Un
i ) − η(Un

j ))(�
n
i − �n

j ),

E4,h := −
∑

n∈N

τ

∫

D

1

�ε,γ,θ

{

Ih

(

η′(un+1
h )Rε,γ,θ (w

n+1
h )

)

ψn
}

(x)dx,

where we used the symmetry of dn
i j to re-arrange the expression of E3,h and where we have

set wn+1
h (x) :=

∑

i∈V W
n+1
i ϕ(x). Moreover, denoting LHS the left-hand side of (46), we

have

LHS = E1,h + E2,h + E4,h,
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with

E1,h :=

∫

D

{

Ih

(

η(uN
h )

)

ψ N
}

(x)dx −

∫

D

{

Ih

(

η(u0
h)

)

ψ0
}

(x)dx

−

∫

Q

{

η(uε
h)∂tψ

}

dxdt,

E2,h := −

∫

Q

{

q(uε
h)·∇ψ

}

dxdt,

E4,h := −

∫

Q

1

�ε,γ,θ

{

η′(uε
h)R(uε

h)ψ
}

dxdt .

Since E1,h + E2,h + E3,h + E4,h ≤ 0, we have

LHS = E1,h + E2,h + E4,h

= E1,h + E2,h + E3,h + E4,h

+ (E1,h − E1,h) + (E2,h − E2,h) − E3,h + (E4,h − E4,h)

≤ |E1,h − E1,h | + |E2,h − E2,h | + |E3,h | + |E4,h − E4,h |.

Hence, to prove that LHS ≤ C�(h), it suffices to establish that |E3,h | ≤ C�(h) and

|Ek,h − Ek,h | ≤ C�(h) for all k ∈ {1, 2, 4}.

(3) Bound on |E1,h − E1,h |. Let us set

ūε
h(x, t)|(tn ,tn+1] := un+1

h (x), ∀n ∈ N , ūε
h(x, 0) := u0

h(x).

Since ūε
h is piecewise constant in time, we infer that

∫

Q

{

Ih

(

η(ūε
h)

)

∂tψ
}

dxdt =
∑

n∈N

∫

D

{

Ih

(

η(un+1
h )

)

(ψn+1 − ψn)
}

(x)dx

=

∫

D

{

Ih

(

η(uN
h )

)

ψ N
}

(x)dx −

∫

D

{

Ih

(

η(u0
h)

)

ψ0
}

(x)dx

−
∑

n∈N

∫

D

{(

Ih

(

η(un+1
h )

)

− Ih

(

η(un
h)

))

ψn
}

(x)dx.

This gives

E1,h − E1,h =

∫

Q

{

(

Ih

(

η(ūε
h) − η(uε

h)
))

∂tψ

}

+
{

(

Ih

(

η(uε
h)

)

− η(uε
h)

)

∂tψ

}

dxdt .

We bound the right-hand side using the triangle inequality. The second term on the right-hand

side is bounded by C�(h) using the approximation properties of Ih and since η is of class

C2. Invoking the L1-stability of Ih and the smoothness of η, the first term is bounded as

∣

∣

∣

∫

Q

{

(

Ih

(

η(ūε
h) − η(uε

h)
))

∂tψ

}

dxdt

∣

∣

∣
≤ CT −1

∑

n∈N

τ
∑

i∈V

mi |U
n+1
i − U

n
i |.

Using mi ∼ hd , ‖ci j‖�2 ∼ hd−1, λmax(U
n
i ,Un

j , ni j ) ≤ β together with the CFL restric-

tion (47), we obtain

∑

i∈V

mi |W
n+1
i − U

n
i | ≤ Ch‖∇un

h‖L1(D). (51)
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Recalling (48), observing that |Rε,γ,θ (v)| ≤ Cv for all v ∈ B, and using the triangle inequality

together with (51), the reaction substep gives

∑

i∈V

mi |U
n+1
i − W

n+1
i | ≤ Cτε,γ,θ‖w

n+1
h ‖L1(D)

≤ C ′(β�ε,γ,θ )
−1h

(

‖un
h‖L1(D) + h‖∇un

h‖L1(D)

)

, (52)

where we used the definition (15) of τε,γ,θ and the CFL restriction (47). In conclusion, we

have

T −1
∑

n∈N

τ
∑

i∈V

mi |U
n+1
i − U

n
i |

≤ C
(

T −1h‖∇uε
h‖L1(Q) + (βT �ε,γ,θ )

−1h
(

‖uε
h‖L1(Q) + h‖∇uε

h‖L1(Q)

))

≤ C ′�(h),

where the last bound follows from �ε,γ,θ ≤ T . Putting everything together, we obtain

|E1,h − E1,h | ≤ C�(h).

(4) Bound on |E2,h − E2,h |. We have E2,h − E2,h = A2,1 + A2,2 + A3,3 with

A2,1 =
∑

n∈N

τ

∫

D

{

(

Ih

(

q(un
h)

)

− q(un
h)

)

·∇ψn
h

}

(x)dx,

A2,2 = −
∑

n∈N

τ

∫

D

{

∇·q(un
h)(ψn

h − ψn)

}

(x)dx,

A2,3 = −
∑

n∈N

τ

∫

D

{

∇·q(un
h)(ψn − ψ)

}

(x)dx.

Using the approximation properties of the Ih , the smoothness of ψ , and the CFL restric-

tion (47), we infer that

|E2,h − E2,h | ≤ CT −1(h + βτ)‖∇uε
h‖L1(Q) ≤ C ′T −1h‖∇uε

h‖L1(Q).

(5) Bound on |E3,h |. We have |η(Un
i )−η(Un

j )| ≤ C |Un
i −U

n
j | and |�n

i −�n
j | ≤ C(βT )−1h

for all i ∈ V and all j ∈ I(i). Since dn
i j ≤ Cβhd−1, we infer that

|E3,h | ≤
∑

n∈N

τ
∑

i∈V

∑

j∈I(i)

dn
i j |U

n
i − U

n
j ||�

n
i − �n

j |

≤ C
∑

n∈N

τ
∑

i∈V

∑

j∈I(i)

T −1hd |Un
i − U

n
j | ≤ C ′T −1h‖∇uε

h‖L1(Q),

where we used the shape-regularity of the mesh sequence in the last bound.
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(6) Bound on |E4,h − E4,h |. We observe that E4,h − E4,h = −
∑

k∈{1:5} A4,k with

A4,1 :=
∑

n∈N

∫

I n

1

�ε,γ,θ

∫

D

{

η′(un
h(x))R(un

h(x))(ψ(x) − ψn(x, t))
}

dxdt,

A4,2 :=
∑

n∈N

τ
1

�ε,γ,θ

∫

D

{(

η′(un
h)R(un

h) − Ih

(

η′(un
h)R(un

h)
))

ψn
}

dxdt,

A4,3 :=
∑

n∈N

τ
1

�ε,γ,θ

∫

D

{

Ih

((

η′(un
h) − η′(un+1

h )
)

R(un
h)

)

ψn
}

dxdt,

A4,4 :=
∑

n∈N

τ
1

�ε,γ,θ

∫

D

{

Ih

(

η′(un+1
h )

(

R(un
h) − R(wn+1

h )
))

ψn
}

dxdt,

A4,5 :=
∑

n∈N

τ
1

�ε,γ,θ

∫

D

{

Ih(η′(un+1
h )

(

R(wn+1
h ) − Rε,γ,θ (w

n+1
h )

)

)ψn
}

dxdt .

Using the smoothness of � in time and the CFL restriction (47) gives

|A4,1| ≤ C�−1
ε,γ,θτT −1‖uε

h‖L1(Q) ≤ C ′�−1
ε,γ,θ h(βT )−1‖uε

h‖L1(Q).

Using the approximation properties of Ih we obtain

|A4,2| ≤ C�−1
ε,γ,θ h‖∇uε

h‖L1(Q).

The shape-regularity of the mesh sequence and the triangle inequality yield

|A4,3| + |A4,4| ≤ C
∑

n∈N

τ
1

�ε,γ,θ

∑

i∈V

mi

(

|Wn+1
i − U

n
i | + |Un+1

i − W
n+1
i |

)

.

Recalling inequalities (51) and (52), and invoking the CFL restriction (47), this gives

|A4,3| + |A4,4| ≤ C�−1
ε,γ,θ

(

�−1
ε,γ,θβ

−1h‖un
h‖L1(Q) + h(1 + �−1

ε,γ,θβ
−1h)‖∇un

h‖L1(Q)

)

.

Setting ζ(v) := v(1 − v), we have, for all v ∈ B,

R(v) − Rε,γ,θ (v) =
1

τε,γ,θ

∫ τε,γ,θ

0

(

ζ(ϑ(v; s)) − ζ(v)
)

R̃(v)ds.

Since ζ is Lipschitz in B, we infer that
∣

∣R(v) − Rε,γ,θ (v)
∣

∣ ≤ Cτ |v|. As a result, invoking

again the CFL restriction (47), we obtain

|A4,5| ≤ C�−2
ε,γ,θβ

−1h
(

‖un
h‖L1(Q) + h‖∇un

h‖L1(Q)

)

.

Putting everything together and since �ε,γ,θ ≤ T , we infer that

|E4,h − E4,h | ≤ C
(

h

β�2
ε,γ,θ

‖uε
h‖L1(Q) +

(

h
�ε,γ,θ

+ h2

β�2
ε,γ,θ

)

‖∇uε
h‖L1(Q)

)

.

(7) Combining the bounds established in Steps (3)–(6) and using �ε,γ,θ ≤ T to simplify

the upper bound completes the proof. ��
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