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Abstract

We propose an operator-splitting scheme to approximate scalar conservation equations with
stiff source terms having multiple (at least two) stable equilibrium points. The scheme com-
bines a (reaction-free) transport substep followed by a (transport-free) reaction substep. The
transport substep is approximated using the forward Euler method with continuous finite
elements and graph viscosity. The reaction substep is approximated using an exponential
integrator. The crucial idea of the paper is to use a mesh-dependent cutoff of the reaction
time-scale in the reaction substep. We establish a bound on the entropy residual motivating
the design of the scheme. We show that the proposed scheme is invariant-domain preserv-
ing under the same CFL restriction on the time step as in the nonreactive case. Numerical
experiments in one and two space dimensions using linear, convex, and nonconvex fluxes
with smooth and nonsmooth initial data in various regimes show that the proposed scheme
is asymptotic preserving.

Keywords Stiff sources - Time-integration methods - Conservation equations - Asymptotic
preserving - Invariant domain

Mathematics Subject Classification 35165 - 65M12 - 65M60 - 76V05

B Alexandre Ern
alexandre.ern @enpc.fr

1 CERMICS, Ecole des Ponts, 77455 Marne-la-Vallée Cedex 2, France
2 Inria Paris, 48, rue Barrault, CS 61534, 75647 Paris Cedex, France
3 Department of Mathematics, Texas A&M University 3368 TAMU, College Station, TX 77843, USA

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-024-02628-9&domain=pdf

83 Page2o0f30 Journal of Scientific Computing (2024) 100:83

1 Introduction

The goal of the paper is to devise approximation schemes for scalar conservation equa-
tions with stiff reaction terms having multiple stable equilibrium points. More precisely, we
consider the following scalar-valued PDE:

qu + V- fu) = éR(ue) in Q, ()]

posed in the space-time cylinder Q := D x (0, T'), where D is an open bounded polyhedral
subset of R?, d > 1,and T > 0 is the observation time. The problem is equipped with
suitable initial data, ug, and boundary conditions. Here, the R9_valued function f is the
flux, and the real-valued function R is the reaction term. In many situations, a fundamental
property of (1) is that the entropy solution takes values in a bounded interval B C R, which
we henceforth call invariant domain. The set B typically depends on the initial and boundary
conditions and on the equilibrium points of R. The property of B being invariant, also called
maximum principle, means that

u*eB  inQ. (@)

Without loss of generality, we assume that B := [0, 1]. More precise statements on the model
problem (1) are given in §2.

The stiffness of the system is quantified by the time scale € > 0. We are interested in
the stiff regime ¢ <« min(7, B~'¢p), where £p := diam(D) is a reference length and
B = Lipg(f) a reference speed. Since u€ takes values in the bounded set B, it is possible
to identify a limit solution as € — 0, say u® = lime_ o u€, at least in the weakx L°°-
topology. (The limit solution u° : Dx (0, T) — B should not be confused with the initial
data ug : D — B for the problem (1).) Typically, one expects that the limit solution u° takes
values in the subset

&:= R0} c B, (3)

which contains the equilibrium (or stationary) points of the problem. We henceforth assume
that £ is composed of a least three states, two or more being stable equilibria. In this situation,
one expects that the limit solution #® consists of several constant states in £ separated by
shocks moving at different (a priori unknown) speeds. The shock speeds generally differ from
those known in the nonreactive case. One crucial issue in the numerical approximation is to
predict the correct shock speeds. Albeit simplified, the model problem (1) is representative
of some of the difficulties encountered in the numerical simulation of nonequilibrium gas
dynamics in hypersonic flows and other combustion problems. We also emphasize that the
situation considered in the paper with multiple equilibrium points is more challenging than
the setting with a single equilibrium point (as, e.g., in dissipative systems and relaxation
problems).

Asdiscussed in Colellaetal. [6], LeVeque and Yee [21], devising numerical approximation
schemes for the model problem (1) that work well in the limit € — 0 is quite challenging.
Many standard methods yield wrong shock speeds in the reaction dominant regime when
the mesh is not fine enough. Our goal is to design approximation schemes endowed with
the following two key properties. The first one is to be invariant-domain preserving (IDP),
i.e., to deliver a discrete solution uz (the subscript & refers to the mesh size used for the
discretization, see §3) such that

up €B inQ. 4)
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The second one is to ensure the so-called asymptotic preserving (AP) property:

lim lim « = «® = lim lim u¢. 5)
e—>0h—0 h—0e—0
The left equality simply means that the scheme is convergent, whereas the right equality
means that the limit solution u° can be captured in the under-resolved regime as well, i.e.,
the scheme is consistent with the limit equation as € — 0. The reader is referred to Jin [16]
for a review on AP schemes.

We propose in the paper a time-stepping scheme that is observed to be AP and is proved
to be IDP with the same CFL restriction as in the nonreactive case. The AP property is based
on numerical observations, whereas the IDP property is based on theoretical arguments.
We follow the well-established paradigm of operator-splitting schemes, i.e., we perform,
at each time step, a forward Euler, nonreactive transport substep followed by a transport-
free reaction substep. Many schemes are available in the literature to perform the transport
substep: finite differences, finite volumes, discontinuous or continuous finite elements. We
focus here on continuous finite elements with graph viscosity, as in [11, 12]. A natural
idea for the reaction substep consists of employing an implicit scheme, or, often better, an
exponential-like integrator (see Hochbruck and Ostermann [14] for a review). This approach
has been successful for dissipative systems, kinetic equations, and systems with relaxation;
see, among others Chalabi [5], Chainais-Hillairet and Champier [4], Pareschi and Russo
[22], Filbet and Rambaud [10], Bulteau et al. [3], Hu and Shu [15]. However, in the present
situation, using an implicit scheme or an exponential integrator is not AP, as these schemes
usually predict shocks moving with the wrong speed as € — 0. This phenomenon has been
discussed in LeVeque and Yee [21]; see also Colella et al. [6, 7, 17]. The key reason for
this odd behavior is that stiffness makes the discrete solution too sensitive to the smeared
representation of discontinuities separating equilibrium states.

In order to temper stiffness and achieve the AP property without sacrificing too much
accuracy, the main idea of the paper is to introduce a mesh-dependent cutoff on the reaction
time-scale when performing the reaction substep. The resulting operator-splitting scheme
satisfies the following properties: (i) It is IDP by design; (ii) It satisfies discrete entropy
inequalities; (iii) It yields optimal accuracy in the resolved regime; (iv) It is observed to be
AP thorough numerical experiments in one and two space dimensions using linear, convex,
and nonconvex fluxes.

The literature on IDP-AP schemes for the present problem is relatively scarce. To our
knowledge, the few (IDP-)AP schemes available in the literature somehow exploit the knowl-
edge of the limit equation or work only in special situations. Two salient examples are the
random projection scheme devised in Bao and Jin [1, 2] and the IMEX scheme proposed in
Svird and Mishra [23]. The projection scheme works for discontinuous (shock-type) initial
data and convex flux, and the IMEX scheme is tailored to situations for which the location of
the discontinuities can be predicted by the solution to the homogeneous problem (see §6 for
other details). In contrast, the scheme proposed in the paper does not require any knowledge
on the limit equation and can handle a wide range of situations, including nonconvex fluxes,
general initial data, and discontinuities propagating at a priori unknown speeds.

The rest of the paper is organized as follows. The model problem is presented in §2. The
discrete setting together with the proposed scheme are discussed in §3. The main results of this
section are Proposition 3.1 and Theorem 3.3, which establish, respectively, that the scheme
is IDP and that it satisfies entropy inequalities with a residual decaying to zero under some
assumptions. Numerical results are presented in §4, §5, §6. All the numerical experiments are
conducted with the help of the Gridap. j1 library developed by Verdugo and Badia [24] in
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the julia programming language. In §4, we study the cutoff parameters and identify an all-
purpose cutoff strategy ensuring that the AP property holds for all our numerical experiments.
In §5, we assess the cutoff strategy on challenging test cases. In particular, we highlight that
the mesh-dependent cutoff strategy introduced herein allows one to capture the correct shock
location even in the under-resolved regime (recall that the presence of multiple equilibrium
points causes the shocks to travel at speeds that differ from the nonreactive case). In §6,
we finally compare the proposed method to existing schemes from the literature. The main
conclusion is that the proposed mesh-dependent cutoff strategy leads to operator-splitting
schemes that perform better than existing schemes from the literature when simulating scalar
conservation equations with stiff source terms and multiple equilibrium points. Finally, §7
contains the proof of Theorem 3.3.

2 Model Problem

We consider the PDE (1) posed in the space-time cylinder D x (0, T') together with the initial
condition ug € L*°(D; B) with B := [0, 1]. The flux and the source term are assumed to be
smooth with

fec'B;RY), ReclB[-1,1)). 6)

Since the time scale € > 0 is used to quantify the strength of the source term, we assume
without loss of generality that R takes values in [—1, 1]. We assume that there are 0 < ¥y <
% < 1 such that

aB=1{0,1} C¢, R(v) <0Vv e (0,9), R(v)>0Vve(,l)), (@)

meaning that both 0 and 1 are stable equilibrium points. The values O and 1 are chosen
for normalization purposes without loss of generality. In general situations, these two values
must be replaced by the smallest and largest values of the stable equilibrium points associated
with R. The intermediate value theorem then implies that there is at least another equilibrium
point @ € (0, 1). The simplest setting is when £ = {0, «, 1} and « is an unstable equilibrium
point. The following prototypical example considered by LeVeque and Yee [21] meets the
above assumptions:

R() =Ry (v) :=v(1 —v)(v — o), Yv e [0, 1]. ®)

To avoid distracting technicalities with the boundary conditions, we assume that: (i) either
the initial data ug is compactly supported in D and the observation time 7 is short enough so
that the solution u€ remains compactly supported at all times ¢ € [0, T']; (ii) or a zero boundary
condition is enforced at all times at any inflow boundary and the solution u€ vanishes in a
neighborhood of the inflow boundary at all times. Both assumptions are reasonable since 0
is a stable equilibrium point.

For any fixed € > 0, the Cauchy problem admits a unique entropy solution (see e.g.,
Kruzkov [19, Thm. 2]). Specifically, for any convex entropy n € W (B; R) with entropy
flux q(u) := f(;’ n'(v) f/(v)dv, and for any test function ¥ € WOI’OO(D x [0, T]; Ry), the
unique entropy solution in L>°(Q; R) is such that the following holds:

/D n(u (x, 7))y (x, T)dx — /D n (o)) ¥ (x, 0)dx

1
—/Q{n(ue)azwqu(ue)-Vl//}dxdt S/an/(ue)R(ue)lﬁdxdt. ®
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A characterization of the limit solution u° as € — 0 is available in one space dimension

(d = 1) for convex fluxes. In this case, and assuming that the reaction term is given by (8)
(the result can be extended to more general reaction terms), it is shown in Fan et al. [9,
Thm. 1.1] that u° takes values in {0, 1} (as expected), with shocks moving at speed w
when the left and right states are (1, 0) and at speed f/(«a) when the left and right states are
(0, 1). Notice that in the first case, the shock speed coincides with that given by the Rankin—
Hugoniot relation just like for the nonreactive problem. In the second case, the solution to
the nonreactive problem is a rarefaction wave, whereas the limit solution u for the reactive
problem features a shock whose speed does not satisfy the Rankin—Hugoniot relation (since,
in general, f'(a) # f(ll)%(];(o)). To the best of our knowledge, the characterization of the
limit solution remains an open problem in more general situations.

3 Discrete Scheme

In this section, we present our scheme and establish that, under some assumptions, the scheme
is IDP and that it satisfies an entropy inequality with a residual decaying to zero as the mesh
is refined, uniformly in €.

3.1 Discrete Setting

The time discretization is defined by using the collection of discrete time nodes " for all
n € N :={0:N}, with 1 =0and N = T. The time step t” is defined as " := el g
and we set I, := [t", ") foralln € N := {O:N — 1}. To simplify the notation, we omit
the superscript n and denote the time step by t.

To stay general, we do not specify the space discretization scheme yet; more details are
given in §3.3 in the context of continuous finite elements. Possible space discretization meth-
ods are, e.g., finite volumes, finite differences, discontinuous or continuous finite elements.
At this stage, we just assume that the space discretization is based on a mesh 7, that belongs
to a quasi-uniform mesh sequence. Here, & denotes the mesh size, i.e., the largest diam-
eter of the mesh cells. The space discretization is characterized by a collection of degrees
of freedom (dofs) which we enumerate with the index set V. The set V is partitioned as
VY = V° U VY, where V° collects the interior dofs and 1 the (inflow) boundary dofs. We
denote [ := card(V).

The operator-splitting scheme is composed of a (reaction-free) transport substep followed
by a (transport-free) reaction substep at each time step n € N:

transport reaction

(UNiev Wt ey (UMhey, (10)

where (U});cy is obtained from the previous time step if » > 1 or by a suitable approximation
of the initial condition if n = 0. For both transport and reaction substeps, boundary conditions
can be enforced by requiring that U' ™ = W1 = U? = 0 forall i € V7.

We henceforth assume that the transport substep is IDP under a CFL restriction on the
time step: There exists a real number t* depending on 8 and 4 so that for all

T <T1¥ (11

the following holds true:

(u" = (UN)iey € B’) — (W"+1 = Wy € B’). (12)
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We briefly show in §3.3 how (12) is achieved using continuous finite elements.

3.2 Details on the Reaction Substep and IDP Property

We describe in this section a method to perform the reaction substep in (10). The central
idea of the paper is to regularize the stiffness parameter € in the reaction substep by using a
mesh-dependent cutoff. Recall that there are two reference times, T and 8~ ¢ . For the sake
of simplicity, we assume that both times are of the same order of magnitude, and we use T
as the reference time. Up to straightforward modifications, everything that is said hereafter
remains valid if one replaces T by min(7, ,B‘IED) in (13).

We define a regularized stiffness time using two user-dependent parameters (6, y), both
in (0, 1], as follows:

d¢ 9 1= max (e, yT(ﬁiT)g). (13)

The time scale T and the velocity scale 8 are introduced for dimensional consistency; in the
nondimensional setting, one simply obtains ®. , ¢ := max(e, yh?), which better highlights
that the two parameters available to tune the cutoff are y and 6. How to choose the parameters
(@, y) is thoroughly discussed in §4. Setting

1
heyo =BT (57)7, (14)
h

hs,y.&
h < heypo and in the under-resolved regime when h 2 he 0. Hence, ®., 9 = € in

we have @, , 9 := € max(l, ( %), We say that we are in the resolved regime when

the resolved regime and ®¢, 9 = yT(ﬂh—T)G in the under-resolved regime. Selecting the
parameters (0, ) deserves some attention. Ideally, one would like to pick € close (or equal)
to one to make the resolved regime as large as possible (i.e., when A < % Be). However,
numerical experiments reported in §4 show that it may happen that lim, .o lim._ ¢ uj, # u®
(see (5)) when 6 > %, which means that the scheme is not AP when 6 > % On the other
hand, numerical experiments suggest that the scheme is indeed AP for 6 € (0, %]. Moreover,
we establish in §3.4 a bound on the entropy residual for which 6 < % is a sufficient condition
for the residual to decay to zero.

The reaction substep is based on the general idea of exponential integrators with two
salient differences with respect to what is usually done in the literature. First, the part of the
source term that is integrated exactly is quadratic and is based on the two equilibrium states
{0, 1} composing the boundary of the invariant domain 5. Second, and more importantly, the
time integration is not performed over the time interval [0, E] but over the (generally) shorter
time interval [0, ¢ 9] with

T

s)

Te,y,0 = .
Y, Dey0
Vs

R()
v(1—v)
on (0, 1) and is continuously extended to B = [0, 1] using I’Hopital’s rule: I§(0) = R'(0),
R(1) = —R/(1)). For instance, when R is defined by (8), we have R(v) = v — « for all
v € B. The next step is to consider the ODE

We start by defining the function R v) = forall v € B (this function is well-defined

d -
El?(v, s) =v;s)(1 —(;s)R), s=>0, (16)

9 (v;0) =v eB.
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Finally, the reaction substep in (10) is defined by setting
Urtt =g Witz L 0),  Vie V. (17)
As the solution to (16) is ¥ (v; s) = v exp(s]i’(v))/(l + v(exp(slﬂé(v)) — 1), we obtain

{1+1 — W:'H_] exp (TQV,@IQ(WZ‘H-]))
: 1+ W/t (exp (te,y 0 RW!TH) — 1)

VieV. (18)

Notice that for the boundary dofs, the above expression gives U/ = W/*! = 0 since
9(0; s) =0 forall s > 0.

Proposition 3.1 (IDP) Assume that the CFL restriction (11) holds. Let the reaction step be
defined in (17). Then, the operator-splitting scheme (10) is IDP.

Proof Assume that U" € B. The property (12) holds owing to the CFL restriction (11), and
we infer that W*t! e B!, Furthermore, the solution 9 (v; s) of the ODE (16) stays in B for
all s > 0 whenever v € B, whence U?H € Bforalli € V. Thus, U"t! € B! ie., the
operator-splitting scheme (10) is IDP. O

Remark 3.2 (Alternative) An alternative to the reaction substep defined in (18) is to use a
forward Euler substep with an additional clipping on the time step to ensure that the update
is IDP. Specifically, we observe that there is x > 0 such that

veB = v+ pRWw) €eB, Vpe[—x,xl
For instance, one can take y = min(é 1 ) < 2when R(v) := v(1 —v)(v — «). Then, the

* T—a
reaction substep is defined by setting

UMt = Wt fomin(y, e, 0) RWITY,  Vie .

By construction, Ul'.’+1 € B whenever W;H'l € B, and therefore the operator-splitting
scheme (10) is IDP under the CFL restriction (11). Note, however, that the clipping of the
time step can become a hindrance if x is very small.

3.3 Finite-Element Transport Substep

The discretization of the transport step using continuous finite elements can be done in many
ways. We follow here the technique described in [11, 12]; see also [8, Chaps. 79-83] for
an easy introduction to the method. Recall that the mesh 7, belongs to a quasi-uniform
mesh sequence. We assume that the mesh is composed of (affine) simplices. We focus, for
simplicity, on continuous, piecewise affine finite elements. Thus, the dofs are the values at
the mesh vertices, and the boundary dofs are the values at the mesh vertices located at the
inflow boundary. The global shape functions are denoted by {¢;};c). The stencil associated
with the dof i € V is defined as

@) :={j € VlIgip; # 0}, 19)

The notion of stencil is symmetric, i.e., j € Z(i) iff i € Z(j). The global shape functions
satisfy the following partition of unity property: ", .y, @i (x) = 1, for all x € D. The matrix
with entries m;; := f p %i(x)gj(x)dx, for all i, j € V is called the consistent mass matrix.
The lumped mass matrix has entries equal to m; := Zjeﬂi) mij = fD @i (x)dx > 0, for all
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i €V.Foralli € Vandall j € Z(i)\{i}, we define the vectors ¢;; := fD i(x)Vo;(x)dx €
_Cij

ol € R9. Finally, we also define the first-order graph-viscosity coefficients

R4 andn;; := T
df; = max(Amax (U7, U, mij)llcijll2, Amax (U, Uf m i) llejill2), (20

where Amax(U” U;‘ n;;) is any upper bound on the maximum wave speed in the Riemann
problem with data (U7, U") and flux f-n;;.

With the above deﬁnltlons the finite element realization of the transport substep reads as
follows: For alln € N,

with =y — mi, | Z | {fWUD-cij —dj;(U —UD},  VieV, 1)
JELO\{i}
where U" = (U);¢y is either known from the previous time step if n > 1 or prescribed by
the initial condition (e.g., U? = mi’ fD uo(x)<p,- (x)dx, for all i € V). Recall that owing to
the assumptions made on the initial data and the boundary conditions, the update (21) also
holds true for the boundary dofs and gives W;”l =U!=0.
A crucial property of the transport substep (21) is that it is IDP (i.e., (12) holds true)
under the CFL restriction
T <7t*: _mmL Vn e N. (22)
ieve 22161(1)\ }d

3.4 Bound on Entropy Residual

The main result of this section is that, under reasonable assumptions, the above scheme
satisfies entropy inequalities with a residual that decays to zero with the mesh size. The proof
is postponed to §7. For all n € {0:N}, we reconstruct from the dofs (U;l)iev a continuous
function that is piecewise affine in space by setting

up(x) = > Ulgi(x). VxeD. (23)
iey
Then, we reconstruct a piecewise constant function in time by setting

uj, (x, Djn i1y 1= up(x), Vn e N, uy, (x, T) := u, N (x). (24)

The Lagrange interpolant is defined as Z,(v)(x) = >, <y v(@)g;(x), for any function
v € C%D) and all x € D, where a; denotes the mesh vertex associated with the global
shape function ¢;. The same definition is used componentwise for vector-valued fields.

Theorem 3.3 (Bound on entropy residual) Let the transport substep be defined in (21). Let
the reaction substep be defined in (17). Assume that the CFL restriction (11) holds true.
Then, there exists a constant C independent of h, T, and €, but that can depend on the
mesh shape-regularity, the functions R, n, and v, and the cutoff parameters (0, y), such
that, for any convex entropy n € C*(1B; R) with associated flux q, and for any test function
Y e WOI’OO(D x [0, T]; R;), we have

/D (i) )y (x, T)dx — /D T (n @) () (x, 0)dx 25)

- /Q {1 o +a i) vy + ———n' )Ry fxdr < CA),

1
q)e,yﬂ
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where
h h h?
A(h) = 7||uf,||L1 + <7 + 7>||Vu7 10y (26)
ng)z,y,g Q) q>6,]/,9 ﬂ@éy’e n Q)

Remark 3.4 (A(h)) Notice that ||uj, | L1(g) 1s bounded since uj, takes values in the bounded
set B. If a uniform bound is available on || Vu; || 11 ) (26) shows that, in the under-resolved
regime where @, ¢ ~ h?, we have A(h) ~ h'=2? and this quantity decays to zero if
0 € (0, %) (the first term in (26) is the dominant one). A more realistic assumption is
[ Vus, o) < Ch_% (this bound is a consequence of the L?-estimate, but a sharper BV-

estimate is possible in 1D). In this case, one has A(h) ~ h 3 ~9, which again decays to zero if
0 € (0, %) (the second term in (26) now becomes dominant). Finally, in the resolved regime,

one obtains A (h) ~ 3 /€. The half-order decay in /& with fixed € is typical of the nonreactive
case.

4 Numerical Study on the Cutoff Parameters

The goal of this section is to numerically study the impact of the cutoff parameters (6, ) on
the computational performance of the scheme, and therefore propose a rationale for choosing
these parameters. We proceed in three steps. First, we show that it is indeed beneficial to use a
cutoff on the source term. Second, we find optimal values for the cutoff parameters (6, y) on
a series of test cases. However, we shall see that these values depend on the flux type (linear,
convex, nonconvex) and the form of the reaction term (quantified by the parameter «, see (8)),
whereas the dependence on the smoothness of the initial condition appears to be marginal.
The third step consists of selecting all-purpose values of the cutoff parameters. Although
optimal values of the cutoff parameters are problem-dependent, our numerical experiments
indicate that it is still possible to identify all-purpose values for these parameters that produce
results that are reasonably close to those produced by the optimal ones.

4.1 Overview of the Test Cases

We consider 1D test cases, all posed on the interval D := (—1, 1), and we are going to explore
linear, convex (Burgers), and nonconvex (sine) fluxes, defined respectively as follows:

1 1
f):=w, f):= —v2, f () ;== — sin(2wv). 27
2 2
We select the source term to be that defined in (8), and we are going to explore o €
{0.5,0.7,0.9}. We are also going to explore three types of initial data:
e IC1 (smooth (C?) IC)

x+1, ifxe(-1,0),
up(x) = 28
0@ 1, otherwise. 28)

e IC2 (nonsmooth IC with one shock)

2+ 1), ifxe(=1,-9),
up(x) = {1, ifxe(-3.2), (29)
0, otherwise.
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e IC3 (nonsmooth IC with two shocks)

24+ 1), ifxe(=1,-3),
uo(x) = 10.95, ifx e (-4, 3, (30)
0.3, otherwise.

In all cases, the reference velocity is 8 := 1, and we set the final time to 7 := 0.5. The time
step is defined by

m;

) €1V}

7:=Ce Ml —————
i€vi 23 jezini G

and, unless stated otherwise, we use Cep = % in the simulations.

Errors are measured in the relative L!-norm at the final time (i.e., normalized by the
L'-norm of the exact solution). For the linear flux, the exact solution is computed by
the method of characteristics and an implicit Runge—Kutta integrator along the character-
istics. For the nonlinear fluxes, the exact solution is obtained on a fine grid with mesh
size hpes = 0.1x2713 &~ 1.2x1075. We consider two values for the stiffness parameter
€ € {1072, 1073}. For these values, and since 7 = 0.5, the difference between u€ and u°
measured in the relative L!-norm is of the order of the machine precision for the linear flux,
whereas it scales like O(¢) for the nonlinear fluxes; for instance, this difference is in the
range [1, 5] x 1073 fore = 1073,

The mesh sizes sampled are /; := 0.1 x 277 for j e {0:10}, thus we mainly focus on
the under-resolved regime. The mesh size hrr we use to approximate the exact solution is
eight times smaller than the smallest mesh size /1o explored. As the cutoff (13) makes the
source term in the numerical scheme independent of € in the under-resolved regime (i.e.,
heyo < h), and |luj — u€ll 1 p) ~ [luj, — MOHL](D) for very small values of €, we expect
that the error [luj, — u€|| .1 (p) varies very little with respect to € in the under-resolved regime
when ¢ is smaller than 1073, We have numerically tested this statement, and observed that it
is indeed the case. We do not report these tests for brevity. In conclusions, we do not report
tests done with values of ¢ smaller than 1073,

4.2 On the Benefits of Using a Cutoff in the Source Term

Recall that we are in the resolved regime when & < h¢ ;¢ and in the under-resolved regime
when & 2 he y.0, With ke, ¢ defined in (14). For the linear flux, we expect the asymptotic
convergence rate to be of order 1 for the initial condition IC1 and of order % for the initial
conditions IC2 and IC3. For the nonlinear fluxes, the asymptotic convergence rate is expected
to be between % and 1 for the three initial conditions. Recall, however, that we are mainly
considering mesh sizes in the under-resolved regime.

Figure 1 shows tests with the stiffness parameter ¢ = 10~ for the problems defined
in §4.1. The relative L'-errors at the final time are represented as a function of the mesh
size for three values of the cutoff parameter 6 € {0.2, 0.4, 0.8}, the choice y = 0.1, and
the three initial conditions. Each panel corresponds to one value of the reaction parameter
a € {0.5,0.7,0.9} (from left to right) and to one flux (from top to bottom: linear, convex,
nonconvex). In each panel, the red dashed curve corresponds to the numerical results without
cutoff, i.e., setting ®, , g := € (plain exponential integrator, labeled ® = ¢ in the legend).
Vertical lines in each panel indicate the value of the mesh size corresponding to the transition
from the under-resolved to the resolved regime; the color of the vertical line corresponds to
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Fig. 1 L!_errors as a function of the mesh size for € = 10_3, three values of the cutoff parameter (¢ = 0.8 in
blue, & = 0.4 in brown, 6 = 0.2 in green), y = 0.1, and three ICs (IC1: o, IC2: x, IC3: x). From left to right:
o = 0.5« =0.7, and @ = 0.9. From top to bottom: linear, convex, and nonconvex fluxes. The red dashed
line labeled ‘® = €’ is obtained without any cutoff (plain exponential integrator) (Color figure online)

the value of 8. We observe in Fig. 1 that the resolved regime can be reached only for 8 = 0.8
with the mesh sizes considered here. The red and blue curves overlap for mesh sizes smaller
than the value indicated by the vertical blue line.

Several observations can be made from the results displayed in Fig. 1. Let us focus first
on the reaction parameters o € {0.7, 0.9} (central and right columns).

e The errors with no cutoff are generally larger than those obtained with cutoff. The errors
level off on the coarser meshes if no cutoff is used.

e Choosing 6 = 0.8 is always less effective than choosing 6 < % A plateau is observed on
the coarser meshes for & = 0.8. This observation is consistent with the main conclusion
of Theorem 3.3 which recommends to select 6 < %

e The most effective choice of 0 in {0.2, 0.4} depends on the flux type. The value 6 = 0.4
generally performs better for the nonlinear fluxes, whereas the value 6 = 0.2 generally
performs better for the linear flux.

Regardless of the error levels, the above conclusions are fairly independent of the initial
conditions. The errors obtained with the smooth initial condition IC1 are smaller than those
obtained with the nonsmooth initial conditions IC2 and IC3. The differences on the results
obtained with the initial data IC2 and IC3 are marginal.

Perhaps a bit surprisingly, the conclusions are less clear cut for @« = 0.5 (left column in
Fig. 1). The most salient observation is that for the linear flux, the scheme without cutoff (i.e.,
setting ®, , 9 := €) generally leads to lower errors. It is, however, still beneficial to use a
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Fig. 2 Llerrors as a function of the mesh size for ¢ = 1072 and IC1, « € {0.5,0.7,0.9} (from
left to right), and linear, convex, and nonconvex fluxes (from top to bottom). The cutoff parameters are
6 €{0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0} and y = 1. The red dashed line labeled ‘® = €’ is obtained without
any cutoff (Color figure online)

cutoff for the nonlinear fluxes in the under-resolved regime. Some clarifications about these
observations are given in §4.3.

4.3 Optimizing the Cutoff Parameters

The above results lead us to wonder whether it is possible to devise an optimal strategy
to define the cutoff parameters (6, y). For this purpose, we fix y = 1 and we perform a
sampling of 6 in the interval [0.3, 1.0] with step 660 = 0.1. We explore again the three
reaction coefficients @ € {0.5, 0.7, 0.9} and the three fluxes (linear, convex, and nonconvex)
defined in §4.1. For brevity, we focus on the initial condition IC1, the results for the initial
conditions IC2 and IC3 being essentially similar.

We first discuss the results for e = 1073 and with by =yT (h/,B T)e instead of (13).
The results are reported in Fig.2. For comparison, all the panels in Fig.2 also include the
errors corresponding to the plain exponential integrator (®¢ ,, 9 = €, red dashed curve labeled
® = ¢ in the legend). As before, vertical lines indicate the start of the resolved regime for
each value of 6. The most striking observation is that, in most situations, there is an interval
of mesh size in the under-resolved regime, say [y, hy], where the error curves corresponding
to various values of 6 reach smaller errors than the curve corresponding to ®¢ ,, 9 = €. In
particular, for those values of 6, the error has two different behaviors as & spans [hy, hy]:
There is first a super-convergence phase, then the error stagnates until the resolved regime is
reached (as indicated by the vertical lines). As expected, the error levels off in the resolved
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Fig.3 1D linear transport with € = 103 and IC1: solution profiles corresponding to the symbols (star, circle)
shown in Fig.2b

regime since using ®, , 9 = )/T(h/,BT)e, instead of ®, , ¢ := €, is not consistent. We
loosely refer to the above behavior as a resonance phenomenon. The resonance phenomenon
is clearly visible for the three fluxes and o € {0.7, 0.9}. It is also visible for the nonlinear
fluxes when o = 0.5 (up to some oscillations of the reference solution corresponding to
CDE’V’@ =€ )

To gain some insight into the resonance phenomenon, we report in Fig.3 some solution
profiles for the linear flux with o« = 0.7 and & = 0.6. We consider four mesh sizes identified
by circle and star symbols in Fig.2b. We observe that the super-convergent phase of the
under-resolved regime (star symbols) corresponds to a swift reduction of the smearing of the
discrete solution near the shock, whereas the stagnation phase (circle symbols) corresponds
to the stabilization of the shock position at an incorrect location. As expected, the shock
eventually moves to its correct location in the resolved regime (i.e., when ®, ) g = ¢€).

For each triple consisting of a flux, a value of « and an initial condition, we construct a
list {(6;, hi)}ic where for each index i in this list, 6; is such that a resonance occurs in the
under-resolved regime and the value A; is the mesh size giving the smallest error. Plotting
these points in a graph (not shown for brevity), we find that a good fit is obtained in the form
0; ~ a + b(log(h;/B 7))~ (recall that, in all the cases, we have ST = %). In other words,
multiplying by log(h; /BT) and taking the exponential, the above fit implies that

(hi /BT ~ e (h;/BT)". (32)

This, in turn, implies that the optimal expression of the cutoff function & , ¢ is indeed of
the form max (e, yoptT(ﬂLT)e"p‘) as proposed in (13) with yop := €” and o, := a. These
optimal values are reported in Table 1 for the linear, convex, and nonconvex flux, respectively.
Entries with a dash in the tables mean that optimal values were not found, i.e., resonance
did not occur in the under-resolved regime. For € = 1073, this is only the case for the linear
flux and @ = 0.5. In this case, we observe in Fig.2a that the resonance phenomenon only
occurs in the resolved regime.

The numerical experiments discussed above for € = 1073 are repeated for e = 10~2. The
results are reported in Fig. 4. The main observations regarding the presence of a resonance
phenomenon and the possibility to devise optimal values for the cutoff parameters remain
unchanged. The only relevant difference is that the value of the reaction parameter @ = 0.5
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Table 1 Optimal cutoff parameters 6opt and yopt

€ o 0.5 0.7 0.9
IC IC1 1C2 IC3 IC1 IC2 1C3 IC1 IC2 1C3
Linear
1072 0 - - - 0.05 0.1 0.1 0.1 0.1 0.05
y - - - 0.05 0.1 0.1 0.05 0.1 0.05
10~3 0 - - - 0.05 0.1 0.1 0.1 0.1 0.05
y - - - 0.05 0.1 0.1 0.05 0.1 0.05
Burgers
1072 0 - - - 0.3 0.3 0.3 0.3 0.3 0.3
y - - - 0.15 0.15 0.15 0.15 0.15 0.15
1073 0 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
y 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.2 0.2
Sine
1072 0 - - - 0.15 0.15 0.15 0.2 0.15 0.15
y - - - 0.05 0.05 0.05 0.05 0.05 0.05
1073 0 0.4 0.4 0.4 0.25 0.25 0.25 0.3 0.4 0.4
y 0.03 0.03 0.03 0.05 0.05 0.05 0.03 0.1 0.1
s == — = ==
sy wte | T e cais S 87
wt Rz B, e s o O Sl B 2 24 ”
A" = vy ey < g
s | A R e g = AL LAY =
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(g) nonconvex, a = 0.5

(h) nonconvex, o = 0.7
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Fig. 4 Ll errors as a function of the mesh size for ¢ = 1072 and ICl, @ € {0.5,0.7,0.9} (from
left to right), and linear, convex, and nonconvex fluxes (from top to bottom). The cutoff parameters are
6 €{0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0} and y = 1. The red dashed line labeled ‘® = €’ is obtained without

any cutoff
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Fig. 5 L1 errors as a function of the mesh size for e = 1073 and « € {0.5,0.7,0.9}. From top to bottom:
linear, convex, and nonconvex fluxes. From left to right: IC1, IC2, and IC3. Comparison between optimal values
(star symbols, %) and all-purpose values (circle symbols, e) of the cutoff parameters. The errors obtained with
®¢,y,9 = € are reported using dashed lines with color matching the value of o (Color figure online)

now eludes the possibility of devising optimal cutoff parameters for the three fluxes (see the
panels (a,d,g) in Fig.4). The reason is that the resonance phenomenon is observed in the
resolved regime for the linear flux and the nonconvex flux, and the resonance phenomenon
fails to deliver lower errors than those obtained with ®, , g = € for the convex flux. The
optimal cutoff parameters for € = 102 are again collected in Table 1 for the linear, convex,
and nonconvex flux, respectively.

4.4 Selection of All-Purpose Cutoff Parameters

The next step in our investigation is to propose pairs of all-purpose cutoff parameters (0, y)
that perform reasonably well uniformly over all the test cases. The inspection of Table 1
suggests to use

0.1,0.05) linear flux,
0,y) = ( ) (33)

(0.4,0.1) nonlinear (convex and nonconvex) fluxes.

Slightly different values can be chosen without significantly impacting the computational
performance of the cutoff procedure. Figure 5 compares the errors obtained using the optimal
cutoff parameters (star symbols, x) with the errors obtained using the all-purpose cutoff
parameters defined above (circle symbols, e). For these tests, we have set € = 1073 and used
o € {0.5,0.7, 0.9}, the three fluxes, and the three initial conditions. The main observation
is that using the all-purpose cutoff parameters instead of the optimal ones only leads to a
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marginal deterioration of the errors. This fortunately indicates that despite the diversity of the
behaviors observed when varying the flux, the initial conditions, and the reaction parameter,
reasonable all-purpose values of the cutoff parameters can be found. The results for e = 1072
are similar to those displayed in Fig. 5 and are omitted for brevity.

In conclusion, the all-purpose values for the cutoff parameters indicated in (33) will be
used in the rest of the paper.

5 Tests with All-Purpose Cutoff Parameters

In this section, we focus on the nonlinear fluxes (convex and nonconvex) and we test the
proposed scheme with the all-purpose cutoff parameters identified in (33), i.e., we set
@, y) =(0.4,0.1). We consider two 1D test cases and two 2D test cases.

5.1 High-Order Viscosity

To improve the performance of the scheme, we now make use of a high-order graph viscosity
instead of the low-order one defined in (20). Following [13], [8, §82.2], we replace di"j in

the transport substep by the quantity d;“j’" = di”j max (¥ (o)), w(a;‘)), for alli € V and
all j € Z(i), where o is a local, linearity preserving, smoothness indicator based on the
discrete solution (U?);cy (see, e.g., [8, Eq. (82.24)]) and ¢ : [0, 1] — [0, 1] is any smooth
increasing function satisfying ¥ (0) = 0 and ¥ (1) = 1 (we set ¥ (t) = 2 in our numerical
experiments). When the flux is nonconvex, we actually set dZ‘/.’" = dl"/ for any pair (i, j) such
that an inflexion point of the flux lies between U} and U;?. Moreover, we now set C;, = 0.1

in 31).

5.2 1D Tests with Nonlinear Fluxes

This section is devoted to 1D tests.

5.2.1 Convex (Burgers) Flux

We consider nonlinear transport with Burgers flux, € = 1073, and @ = 0.9. The initial
condition is

0, ifx € (=1, -0.9),
up(x) =11, ifx € (=0.9, -0.5), (34)

0.3, otherwise.

The limit solution #° in the time interval (0, 1) is composed of the two equilibrium states
{0, 1} separated by two moving shocks. The shock originating at x = —0.9 travels at speed
f/(a) = 0.9, and the shock originating at x = —0.5 travels at speed f(ll)%g(o) = % The two
shocks meet attime 7 = 1, and the limit solution is identically zero thereafter. To illustrate the
importance of using a high-order graph viscosity, we compare in Fig. 6 the solutions obtained
using low-order and high-order viscosity at T = 0.5. Three solutions using the mesh sizes
h € {0.39,1.6,6.3} x 1073 are shown (we are still in the under-resolved regime since
heyo ~ 2.9% 1073, see ( 14)). We observe that the higher-order solutions are significantly
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(a) low-order graph viscosity (b) high-order graph viscosity

Fig. 6 1D Burgers with € = 1073, @ = 0.9 and IC (34). Solution profiles at 7 = 0.5 with mesh sizes
h € {0.39, 1.6, 6.3} x 1073, Left: first-order graph viscosity; right: high-order graph viscosity

more accurate that the low-order ones. Using the high-order graph viscosity allows us to
capture well the two shocks (recall that the speed of the first shock is reaction-dependent).

5.2.2 Nonconvex (sine) Flux

We now consider the nonconvex flux (sine) with € = 1072 and & = 0.7. The initial condition
is

- L1yl
uo(x)={1’ ifxeL-Hhud,n, %)

0, otherwise.

Figure 7 shows the profiles at times 7" € {0.1, 0.2, 0.4, 1.0} of the exact solutions of the
nonreactive (¢ = 0o0) and limit (¢ = 0) equations. We observe that u® develops composite
waves combining shocks and rarefaction waves; this is the expected behavior. The limit «°
takes values in {0, 1} with three shocks moving at the same speed, s &~ —0.216. This speed
is the value of the derivative of both the upper concave and the lower convex envelopes of
the flux f evaluated at . Thus, the fact that a shock separating two states corresponding to a
rarefaction wave moves at the speed f’(«) when the flux f is convex, as shown in Fan et al.
[9], carries over to the present nonconvex case. This can be seen by adapting the arguments
in [9], whereby f is replaced by its suitable envelope. Another interesting observation drawn
from Fig.7 is that the shocks in the nonreactive and reactive solutions move at the same
speed at short times (T € {0.1, 0.2}), but the speeds differ as soon as shocks originating from
different locations start to interact in the nonreactive case.

Figure 8 shows the profiles at T € {0.1, 0.2, 0.4, 1.0} of approximate solutions obtained
with the mesh sizes i € {0.39, 1.6, 6.3} x 1073 and the high-order graph viscosity. The three
shock positions are well captured on all meshes at the short times 7' € {0.1, 0.2}, and that
this is still the case for the longer times 7 € {0.4, 1.0} on the finer meshes.

We close this section with a more challenging situation where the source term leads to
five equilibrium states:

R

3
iz

W) =4 - Hw-Hw-H-v). (36)

The states {0, %, 1} are stable, whereas the states {%, %} are unstable. We still consider the
nonconvex flux f(v) = # sin(27v), but we now use the smooth initial condition

uo(x) = 0.5(1 + sin(x (x + 0.5))). (37)
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Fig. 7 1D test with nonconvex flux (sine), IC (35), and @ = 0.7. Comparison of nonreactive (¢ = co) and
limit (¢ = 0) solutions at times 7 € {0.1, 0.2, 0.4, 1.0}
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Fig. 8 1D test with nonconvex flux (sine), IC (35), and « = 0.7. Discrete solutions at times T €

{0.1,0.2, 0.4, 1.0} with mesh sizes h € {0.39, 1.6, 6.3} x 1073
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Fig. 9 1D nonconvex flux (sine), IC (37), and source term (36): Discrete solution profiles at 7 = 0.1 using

the mesh sizes h € {1.25,2.5,5.0} x 10~2; the horizontal dashed orange (resp., violet) line materializes the
unstable (resp., stable) values of « (Color figure online)

We consider the short observation time 7 := 0.1 so as to allow the solution to take inter-
mediate values in [0, 1]. The profiles of the limit solution x° and the approximate solutions
using the mesh sizes & € {1.25, 2.5, 5.0} x 1072 are reported in Fig.9. The limit solution
takes values in the set {0, % 1} as expected. The four shocks are well captured by the discrete
solutions, even using relatively coarse meshes, thereby giving again credence to the cutoff
strategy proposed in the paper.

5.3 2D Numerical Tests

This section is devoted to 2D numerical tests. As, to our knowledge, there is no mathematical
theory identifying the limit solution in this setting, these 2D results should be considered as
illustrative of the capacity of the present scheme to capture reasonable solutions.

5.3.1 Convex (Burgers-Like) Flux

In this section, we consider the reactive Burgers equation in the square D := (—0.25, 1.75)2
with the flux function f(v) := (%vz, %vz), and the following initial condition:

Lo if e = (1, DTl < 3,
up(x) =44 . *o2 (38)
—7. otherwise.
This test, considered in [13, §6.1] in the nonreactive regime, is challenging since it exhibits
sonic points. The nonreactive solution is given by Eqs. (52)—(53) therein.
The invariant set is now B = [a, b] := [—%, 1]. Defining the linear map ¢ : B — [0, 1]

with ¢ (v) := Z:Z (and ¢~ '(z) = (b — a)z + a), we consider the reaction terms:

R{(v) := Ra(p(v)),  RY ;(v):=R;
44 4

(p(v)), Yv € B, 39)

3
!
with R, defined in (8) and R 13 defined in (36). Thus, RY gives two stable equilibrium states

{a, b} = {—%, 1} and one unstable equilibrium state {9~ " (a)}. In what follows, we choose

o= = %, so that ¢! (a) = 0, which corresponds to the sonic point for Burgers
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Fig. 10 2D Burgers equation with IC (38). From left to right: a nonreactive solution; b reactive solution with
two stable equilibria; ¢ reactive solution with three stable equilibria

flux. The source RY , gives three stable equilibrium states {—%, é 1} and two unstable
E¥y

equilibrium states { —15—6, 116}. Finally, recalling that the solution to the ODE (16), ¥ (v; s),
maps [0, 1] to [0, 1], we formulate the reaction substep by using the change of variable

[a,b] 5 v z:=@(v) € [0, 1]. We obtain

Ut = o (0 (W™ (0 — a)tey0)), VeV, (40)
n+1_
which gives, with Z/ ! := p(W'*1) = WiTa” and R¥ denoting either Ry or R‘; 3
7" exp ((b — a)t, R¥ (!
Ut —a+ (b —a) e (b= ey o RYET)) VieV. (41)

1+ 27 (exp (0 — 0ty 0 ROZD) = 1)

Figure 10 shows isocontours of the nonreactive solution (left panel), the reactive solution
with R (center panel), and the reactive solution with RY , (right panel). The computations
T3

are done with € = 1073 on a fine mesh composed 4007 grid points. The nonreactive solution
matches well with the analytical solution given in [13]. In the reactive case with two stable
equilibrium states, the shocks separating the two states are very well resolved. The shocks
propagate differently than the nonreactive shocks. In the reactive case with three stable
equilibrium states, the numerical solution takes the three values in the set {— %, %, 1}. Notice
that the level set {u = 1} is different when considering two or three stable equilibrium states.

5.3.2 Nonconvex Flux

For the second 2D test case, we set D := (=2, 2) x (—2.5, 1.5), with the nonconvex flux
f(v) := (sin(v), cos(v)), and the initial condition
157 : T
=5, iflx = (05,052 <1,
up(x) =4 * _ (42)
T otherwise.
The nonreactive solution to this problem, proposed by Kurganov et al. [20], is a composite
wave composed of a shock followed by a rarefaction wave. This solution is shown in Fig. 11a
atT = 1.
The invariant domain associated with the initial condition is B = [a, b] := [%, IST”]. We

proceed as in (39) to define the reaction terms Ry and RY ; on B. Here, we set @ = 197”.

i3
Figure 11b shows isocontours of the reactive solution with two stable equilibrium states. The
computation is done with € = 1073 on a fine mesh composed of 4002 grid points. As above,
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(a) nonreactive solution (b) two stable equilibria

Fig. 11 2D KPP test case with IC (42). Solution isocontours at 77 = 1. Left: nonreactive solution. Right:
reactive solution with two stable equilibria, € = 1073

(a)e=10"3,T=1 (b) e=10,T =4

Fig. 12 2D KPP test case with IC (42) and three stable equilibria. Left: solution isocontours for € = 1073
and T = 1. Right: solution isocontours for ¢ = 10 and 7' = 4

we observe a sharp resolution of the shocks separating the stable equilibrium states. Here
again, the shocks in the reactive case propagate differently from the nonreactive case. Finally,
Fig. 12 shows isocontours of the solution with the source term giving three stable equilibrium
states. The left panel corresponds to € = 1073 and 7' = 1. The right panel corresponds to
€ = 10 and T = 4. In the first case, we observe that the intermediate equilibrium state is
absent, whereas it can be observed in the second case where the stiffness parameter € is much
milder. This illustrates the complex interaction between shock dynamics and reaction terms.

6 Comparison to Other Schemes

We now compare the proposed algorithm with methods published in the literature. The tests
are done in one space dimension with the three-state reaction term R, defined in (8).

6.1 Other IMEX-Based Schemes

We first compare the present scheme to three IMEX-based methods from the literature.
The reaction substep for the first method consists of using an exponential integrator, i.e.,
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—present ——present — present
plain exp. int. plain exp. int. plain exp. int.
additive . additive o additive
plain IMEX { plain IMEX plain IMEX
g0 scisag0

B

025 { 025 025
| {
i 000 | nan'

To%0 E¥D 500 B3 050 ET) EXT 000 23 050 ET E¥ 000 025 050

(a) a=0.5 (b) a=0.7 (¢) a=0.9

Fig. 13 1D linear transport with IC (43) and € = 1073: solution profiles with mesh size 7 = 3.9 x 1074,
Left: « = 0.5; center: « = 0.7; right: « = 0.9

setting ®¢ , o = € in (17). The reaction substep for the second method consists of using
the implicit Euler scheme with the nonlinear equation for each dof solved using Newton’s
method. Finally, the third scheme is inspired from the additive schemes proposed in Kennedy
and Carpenter [18] for convection-diffusion equations. In the present setting, it amounts to
writing the reaction substep as

Ut =Wt yoUeln —Ur, Viev. @

Notice that the exponential integrator is used in (43), but with the initial data U? instead of
W?H as in (17). Another significant difference is that there is no cutoff on the time step, i.e.,
Z is used instead of 7.y ¢ as in (17). Notice in passing that neither the plain IMEX scheme
nor the additive scheme are IDP.

We solve the 1D linear transport with the discontinuous initial data

0 ifx < —1
up(x) =14’ 2 44
0(®) {1, otherwise. “4)

Figure 13 compares solution profiles at 7 = 0.5 obtained with the above schemes and the
present one with € = 1073, « € {0.5,0.7,0.9}. The mesh size is & = 3.9 x 10~*. We
observe that, for « € {0.7, 0.9} (central and right panels), the three IMEX-based schemes
fail to locate the correct shock position (the predicted shock location actually falls outside the
figure for the plain IMEX scheme), whereas the present scheme correctly locates the shock.
As already mentioned above, correctly capturing the shock location is less challenging when
a = 0.5 (left panel); in particular, the plain exponential integrator and the additive scheme
now work well, whereas the plain IMEX scheme still fails.

6.2 Another AP Scheme

A scheme to approximate the model problem (1) has been proposed by Svird and Mishra
[23]. The method is tested therein for scalar conservation laws with convex fluxes and for the
compressible the Euler equations coupled with a scalar conservation equation for a reactive
species with a dissipative source term, i.e., 0 is the only equilibrium state.

To discuss the scheme (henceforth referred to with the letters SM), we focus on the
reaction term defined in (8) and introduce the projector I1, : B — B such that I1,(v) = 0
if v € [0,), IIy(e) = «, and Iy(v) = 1if v € (o, 1]. The key idea in [23] is to
simultaneously approximate (1) and the nonreactive problem (¢ = 00). An IMEX scheme is
used to advance in time the reactive equation, and an explicit Euler scheme is used for the
nonreactive equation. The IMEX scheme for the reactive equation gives a nonlinear problem

@ Springer



Journal of Scientific Computing (2024) 100:83 Page230f30 83

“ll—h=6.3e-03| | ' " |—h=6.3e-03 B
—h=1.6e-03 —h=1.6e-03
o |—h=3.9e-04 o |—h=3.9e-04
...... ue 3 | R
|
(a) present scheme (b) SM scheme

Fig. 14 1D Burgers with € = 1073, @ = 0.9 and IC (34). Solution at T = 0.5 with mesh sizes h €
{0.39, 1.6, 6.3} x 1073, Left: present scheme; right: SM scheme
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(a) present scheme, T'= 0.4
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Fig.15 1D sine flux withe = 1073, = 0.7 and IC (35). Solution profiles at 7 = 0.4 (toprow) and 7' = 1.0
(bottom row) with mesh sizes 1 € {0.39, 1.6, 6.3} x 1073, Left column: present scheme; right column: SM
scheme

at every dof, which is solved using a Newton method initialized using the image by I1, of
the dof corresponding to the nonreactive solution.

The SM scheme captures well the reactive solution in the under-resolved regime in various
situations. This happens when the nonreactive solution has shocks or rarefactions, possibly
many of them but not interacting, and in some cases, when the exact solution features com-
posite waves. More precisely, the nonreactive solution, #°°, is informative about the shocks
appearing in the reactive solution, u€, as € — 0, if the following holds true:

My ™) = u”. (45)

(This condition appears not to be explicitly identified in [23].) Although a bit unexpected at
first sight, the condition (45) turns out to be satisfied in several situations. For instance, it is
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the case for Burgers equation, as long as the shocks and rarefaction waves present in #* do
not interact. The SM scheme performs well in these situations, and actually better than the
present scheme on coarse meshes since it does not have any cutoff. On the other hand, the
SM scheme behaves poorly when #® is composed of two shocks moving at different speeds,
which eventually interact.

We now illustrate the above argumentation with the 1D Burgers equation with € = 1073,
R, with « = 0.9, and the initial condition (34), as in §5.2.1. Figure 14 presents solution
profiles at 7 = 0.5 on the three mesh sizes & € {0.39, 1.6, 6.3} x 1073, The solution
obtained with the present scheme is shown in the left panel (this is the same as in Fig. 6b).
The solution obtained with the SM scheme is shown in the right panel. The present scheme
predicts well the shock locations on the considered mesh sizes (recall that we focus on the
under-resolved regime). We also observe that the SM scheme captures (at least part of) the
subset {# = 1} only on the finest mesh.

We further illustrate the method by considering the 1D nonconvex flux (sine), with € =
1073, @ = 0.7, and the initial condition (35), as in §5.2.2. Figure 15 shows solution profiles
at T = 0.4 (top row) and T = 1.0 (bottom row) using the same mesh sizes as above.
The solution obtained with the present scheme are shown in the left column. The solutions
obtained with the SM scheme are shown in the right column. We draw the same conclusions
as above. The present scheme achieves a much sharper prediction of the shock locations
than the SM scheme in the under-resolved regime, and the SM scheme meets with some
difficulties in capturing the first connected component of the subset {u = 1} on the coarser
meshes.

7 Proof of Theorem 3.3
Recall that we want to prove that, for any test function v € WOl (D x[0,T]; R4), we have
/D i (n(up)) )y (x, T)dx — /D i (n(u3) (6)¥ (x, 0)dx (46)

1
— [ fnins +awiy v + iR faxar < caa,
9] €,7.,0

where

A = | +( o )||V€||
== uh Ll D Y uh L! .
ﬂq)z,ng (Q) d)G,]/,Q ﬂqDEVV’g (Q)

The symbol C denotes a generic positive real number whose value can change at each
occurrence as long as it is independent of &, t, and €. The value of C can, in particular,
depend on the norm |||l L0y + T 10: ¥ |l Lo (o) + BT |V |l (@), as well as bounds over
BB on the functions R, 7, /S_lq, and their derivatives. Notice also that the CFL condition (11)
on the time step with t* defined in (22) amounts to

< B 'h. (47)
Proof (1) It is well-known (see, e.g., [8, Theorem 81.12]) that the update Wl“l from the
transport substep satisfies the following discrete entropy inequality: For all n € N and all
eV,
nW; ™ —n(Uy)
mi————— —
T

[ Blawi)edx = 3 a0 ) <o.

JELW)
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Moreover, we can rewrite the reaction substep as

UM =W o) Ry oW, Rey o (v) = (9 (3 Tey0) — v) Y € B.

Te,y,0
(48)
Recalling that 7.y, ¢ := ﬁye, the convexity of 7 then implies that
n(w:’l"rl) > n(ui’l-‘rl) + n/(u?—}—l)(w;’l-‘rl _ U;’H—l)
T
= (Ut — ——n' (U TR o (W,
cpe,yﬁ
We infer that
n(U*th —nUp
m; ————————= — f T (q(u}))-Veidx
T D
m
= 2 (U —nU)) = == U Re, (Wi < 0. (49)
JET() &0

(2) Letus set ¥y, (x) 1= D, oy, W/ g; (x) with W} := mi, fD Y (x)@; (x)dx and ¥ (x) :=
Y (x,t") for all x € D. Multiplying the inequality (49) by TW! > 0 and summing over
n € N andi € V, we infer that

Eip+Eyp+ E3zjp+ Eqp <0, (50)

where

Eip:

3 / (T (1 ™) ~ T (nw)) " Jra,

neN

Y« / {Ih(qwz))-wz}(x)dx,
nen 7D
Espi=) t), Z df (n(U7) — n(UD) (W' — W),

neN ieVy /eI(z)

Eqpi=— Z /

Eyp:

B @D Ry )y frax,
Dy,

where we used the symmetry of dfj to re-arrange the expression of E3 ;, and where we have
set wZH (x) ==Y iev W;’J’]ga(x). Moreover, denoting LHS the left-hand side of (46), we
have

LHS = Ey 4+ Eop + Eqp,
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with
Eipi= /D {Zn(n@p)) ¥ }x)dx — /D {Zn (n @) O} (x)dx
—/Q{n(u,i)azw}dxdt,

Eyp = —/Q{q(ufl)-vw}dxdt,

— 1
Eqp = _/ c1> {n' (uf) R(uj5)y fdxdr.
0 Yey.0

Since Ey, + E2p + E3 5 + E4, < 0, we have
LHS = Elyh -l—Ez,h +f4,h
=Ein+En+E3p+ Esp
+(E1n— E1p) + (Exn — Eap) — Esp+ (Eap — Eap)
<|Evn — Evnl+ |E2n — Expl + |E3nl 4+ |Eqpn — Eapl.

Hence, to prove that LHS < CA(h), it suffices to establish that |E3 | < CA(h) and
|Ek.n — Exnl < CA(h) forallk € {1,2,4}.
(3)Bound on |E , — Eq p]. Let us set

iy, (X, )| gn g1y 1= uZH(x), VneN, ujx,0):= u?l(x).
Since i}, is piecewise constant in time, we infer that
| maaviars = 3 [ zmqh)wm - v
Q neN
= /D {Zh(n@i))p" }eo)dx — /D {Zn (n(i) ¥} (x)dx
-y f Wp™h) = Zn(ny))) v} (x)dx.

neN

This gives
Eij—Eiy = /Q { @@ = nwp)aw | +{ @ () = nwi)ay Jaxar.

We bound the right-hand side using the triangle inequality. The second term on the right-hand
side is bounded by C A (h) using the approximation properties of Z and since 7 is of class
C?. Invoking the L'-stability of Z;, and the smoothness of 7, the first term is bounded as

’/ { Ih n(uh) - n(uh)))arlﬁ}dth’ <CcT! Z Zmz Un+1 U"|
neN ievy

Using m; ~ he, lleijllgz ~ e, Amax (U7, U;'-, n;j) < B together with the CFL restric-
tion (47), we obtain

D omiWit — Ut < ChIVuR L ). (51)
ieV
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Recalling (48), observing that | R, , g (v)| < Cvforallv € B, and using the triangle inequality
together with (51), the reaction substep gives

1 1 1
> om U =Wt < Cre gl T )
ieV

< C'(Bey.0) "h(lufllp oy + HIVUR L1 D)), (52)

where we used the definition (15) of ¢ ;¢ and the CFL restriction (47). In conclusion, we
have

71y ey m Ut -y

neN ievy
< C(T_lh”VMZHLl(Q) + (,BTq)e,y,O)_]h(”u;||L1(Q) + h”VM;”Ll(Q))) < C'Ah),

where the last bound follows from ®. , g < T'. Putting everything together, we obtain
|E1n — Ernl < CAh).

(4) Bound on |Ez’h — E> p|. We have Ez,h —Eyp = A1+ Az + A3 3 with

toi= Y o [ |@lawi) - awp)-vupfwax,
neN 7D

Arp==3" r/ [vaupwy v,
neN YD

toa== Y« [ {Vaupw” - wwar.
neN 7P

Using the approximation properties of the Z;, the smoothness of i, and the CFL restric-
tion (47), we infer that

|E2n — Eonl < CT7'(h + BOIVuliLig) < C'T  hlIVusliLig)-

(5)Bound on |E3 | We have [n(UF) —n(U)| < C|U} —Uj| and | ¥} —W7| < CBT) 'h
foralli € Vandall j € Z(i). Since di”j < CBh?!, we infer that

Exnl < D 1), D dijluf —UjIey — ]

neN i€V jeI(i)
<C Y Y > TR - < CTT R VUGl o)
neN i€V jeI(i)

where we used the shape-regularity of the mesh sequence in the last bound.
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(6) Bound on |E4j, — E4j,|. We observe that E4 , — E4), = — > kef1:5) A4k with

A41:—Z/
Asp —ZT

neN

A43 —ZT

neN e, v.0

A44 —Z‘L’

neN Pe, v.0

A45 —Z‘L’

neN e, v.0

/ 0 (ujy (0)) R (ufy (0) (Y (x) — ¥" (x, 1) Jdxdr,

eyO

/D (7 YRGE) — T (o W) RGL)) " )dedr,

— [ 17— ) R faxar,

/ {Zn (' @y (R — R ™))y fdxdt,

/D T (' @Y (R ™) = Reyo(wyth))y" fdxdr.

Using the smoothness of W in time and the CFL restriction (47) gives
Aqil < Co_ ot HufliLico) < €@, 4h(BT) ™ 1 g)-
Using the approximation properties of Z; we obtain
|Aa2l < CO_ hlIVug L1 (g)-

The shape-regularity of the mesh sequence and the triangle inequality yield

[Aasl+1Asal = C )t mi (W™ = Up| + U7 — wirHh)).
neN Dey.6 ieV

Recalling inequalities (51) and (52), and invoking the CFL restriction (47), this gives
| 443l + 1Agal < CO_L (D) 0B hllgll 1) +h(1+ DL o8~ WIVufliLi(g))-

Setting ¢ (v) := v(1 — v), we have, for all v € B,

Te,y.6 -
R(v) = Repov) = /0 (¢ 9)) — () R(v)ds.

€,y,0
Since ¢ is Lipschitz in 3, we infer that ’R(v) —Reyp (v)’ < Crt|v|. As a result, invoking
again the CFL restriction (47), we obtain

|Aasl < COZ B h(lluf gy + RIVIGI L))

Putting everything together and since ®, ,, 9 < T, we infer that

B — Eapl < c(ﬂqﬂ i1y + (s + W IV i)

(7) Combining the bounds established in Steps (3)—(6) and using ®, , g9 < T to simplify
the upper bound completes the proof. O
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