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Abstract

The ability to predict clinically relevant exposure to potentially hazardous compounds that can leach from
polymeric components can help reduce testing needed to evaluate the biocompatibility of medical devices.
In this manuscript, we compare two physics-based exposure models: 1) a simple, one-component model
that assumes the only barrier to leaching is the migration of the compound through the polymer matrix and
2) a more clinically relevant, two-component model that also considers partitioning across the polymer–
tissue interface and migration in the tissue away from the interface. Using data from the literature, the
variation of the model parameters with key material properties were established, enabling the models
to be applied to a wide range of combinations of leachable compound, polymer matrix and tissue type.
Exposure predictions based on the models suggest that the models are indistinguishable over much of
the range of clinically relevant scenarios. However, for systems with low partitioning and/or slow tissue
diffusion, the two-component model predicted up to three orders of magnitude less mass release over the
same time period. Thus, despite the added complexity, in some scenarios it can be beneficial to use the
two-component model to provide more clinically relevant estimates of exposure to leachable substances
from implanted devices.

Keywords: biotransport; tissue diffusion; leachables; regulatory science; computational modelling;
partition coefficient; migration; FDA; medical device.

1. Introduction

Implanted polymeric medical devices can pose a risk to human health when they contain potentially
hazardous materials that leach into the body. Historically, extraction experiments and animal studies
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POLYMER-INTERFACE-TISSUE MODEL 383

have been used to estimate the amount of material released. Extraction studies conducted by companies
seeking Food and Drug Administration (FDA) clearance or approval for newmedical devices are product
specific and conducted under harsh, non-physiological conditions (Turner et al., 2020). While these
studies are useful in the assessment of toxicological risk, the highly conservative assumptions provide
little information to develop a generalizable understanding of the true clinical exposure to leachables
released from polymeric devices. However, these approaches are changing. Fueled by increases in
computational capabilities, computer models can now be used to predict the amount of material released
over time. These simulations can complement traditional extraction studies and yield several benefits
for regulatory science. First, the models can be used to simulate a more realistic environment than the
harsh conditions used in extraction studies. Second, because the models contain system-specific input
parameters, they can be easily adapted to other polymer types or leachable chemicals making it easy to
analyse a multitude of different systems. Third, once the models are developed and validated, simulations
can often be run in seconds saving the weeks or months needed for extraction studies. This may help
medical device companies to accelerate new product development enabling new devices to reach the
market faster, reduce animal use, decrease the effort needed to meet regulatory requirements and reduce
overall product development costs.

Some of the first mathematical models developed to characterize leaching of potentially hazardous
substances released from polymeric materials were conducted in conjunction with the Environmental
Protection Agency (Schwope et al., 1992). Leachable substances, including additives, catalyst residue,
unreacted monomers, oligomers, plasticizers, etc., can have detrimental effects when released into the
environment. The FDA is also concerned with leachable materials, which may be released into food from
its packaging (Gandek, 1986) or from medical devices in contact with biological tissue (Saylor et al.,
2019; Saylor et al., 2020).

Using data from extractables and leachables testing, mathematical models can be generated to
estimate exposure based on the total amount of leachable substance contained within the implant. This
approach requires assumptions to be made regarding the release rate of the leachable substance from
the device under the clinical conditions of use. For a device that is in contact with the body for a long
time such as an implanted medical device, one could assume an average daily release by dividing the
total amount of leachable substance by the total time the device is in contact with the body (Saylor
et al., 2020). However, for most combinations of leachable substances and polymers, the initial release
rate will be highest upon implantation and decrease over time. Thus, this simple, average rate model
could underestimate the actual daily exposure during the initial period following implantation. A more
conservative approach is to assume that the total amount of leachable substance contained within the
device is released on the first day (FDA, 2023). While this model is more protective than the first, it can
lead to exceedingly conservative and non-physical exposure estimates over longer timeframes.

To address this, physics-based models have been developed that include the properties that influence
the release rate from a polymeric material in contact with the body (Saylor et al., 2019; Saylor et al.,
2020). Movement of leachable substances contained within a polymeric implant may be modelled as
solid-state diffusion. When a concentration gradient exists within the polymer, net migration will occur
following the concentration gradient according to Fick’s law (Crank, 1975),

∂C (x, t)

∂t
= Dp∇2C (x, t) (1)

where the concentration of the leachable substance, C, is a function of the position within the polymer,
x, and time, t. Dp is the effective (macroscopic) diffusion coefficient of the leachable in the polymer. Dp
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384 M. L. TANAKA ET AL.

is scalar and independent of C, x and t. Using physics-based models, the FDA has developed regulatory
science tools for rapid risk assessments of additives in medical devices. These tools predict the amount
of material that may be released from an implanted polymeric medical device based on the model input
parameters entered.

In this research, models will be extended beyond a one-component system (implant only) to a two-
component system that includes the surrounding tissue. The mathematical models account for diffusion
of leachables through a polymeric material, migration across the polymer–tissue interface and diffusion
through the surrounding tissue. Physics-based models that better capture the complexities of this system
may yield more clinically relevant results and expand our understanding of these complex biodynamic
systems.

1.1. Mathematical models

1.1.1. Two-component model. A two-component mathematical model was developed to characterize
the migration of leachable substances from an implanted polymeric device, across the polymer–tissue
interface and through the surrounding tissue. The initial condition assumes that the leachable chemical
is homogeneously distributed throughout the implant and no leachable substance is in the tissue prior to
implantation. It also assumes that the polymeric implant will remain structurally intact throughout the
duration of the simulation. If the polymer were to degrade or swell (e.g. a hydrogel), this would change
the diffusion coefficient of the leachable within the polymer and would violate the model assumption
of constant diffusivity. Human tissue surrounding the implant is modelled as a homogeneous material
and assumed to be quasistatic with consistent material properties over the duration of the simulation.
Although human tissue undergoes a multitude of histological and morphological changes in response to
an implanted medical device and may include the formation of a fibrous capsule, these changes take time
to develop, and our model assumes these to be minimal during the first 24 hours following implantation.
Implants are modelled as a flat plate with a thickness of 2 L. Diffusion is one dimensional through
the thickness and diffusion through the edges is considered negligible. Tissue is on both sides of the
implanted device, so a symmetry boundary condition exists at the midplane.

The polymer-interface-tissue model is based on migration equations in Gandek’s PhD thesis
(Gandek, 1986), who studied the leaching of potentially hazardous materials from packaging into
food. He developed a modelling tree to characterize different migration conditions including fluids
with boundary layers, solids dominated by diffusive transport and well-mixed conditions. To model
an implanted medical device surrounded by tissue, the scenario was selected, which modelled a finite
polymer (the implant), infinite food (the tissue), and the case where movement of leachables in both
are controlled by diffusion. The finite polymer represents a polymeric implant with a finite quantity
of leachable contained within the device. The infinite tissue represents the relatively large mass of the
human body and its ability to remove leached substances from the peri-implant tissue over time.

Important model parameters includeDp, the diffusivity of a leachable substance in the polymer, Kp:t,
the polymer–tissue partition coefficient and Dt, the diffusivity of a leachable substance in the tissue. The
polymer–tissue partition coefficient is the ratio of the solubility of a leachable substance in the polymer
to its solubility in the tissue. Values of Kp:t �= 1 cause a discontinuity in leachable concentration across
the interface. To simplify and generalize the solution, dimensionless parameters were established. The
first dimensionless parameter, nτ , is a time parameter that is scaled by the diffusion coefficient, Dp, and
half the implant thickness, L.

τ = Dpt

L2 (2)
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The dimensionless parameter associated with migration across the polymer–tissue interface and the
relative migration rate within the polymer and tissue is:

β = 1

Kp:t

√
Dt
Dp

(3)

The amount of material released, M (τ ,β) , is given by,

M (τ ,β)

M0
=

(
β

1 + β

)
2
√

τ

(
1√
π

−
(

β

1 + β

)
2

∞∑
n=1

[(
1 − β

1 + β

)n−1

ierfc

(
n√
τ

)])
(4)

This equation (Gandek, 1986) is an infinite series that converges on the analytical solution with an
infinite number of terms. The number of terms necessary for convergence depends on the values of the
input parameters.

1.1.2. One-component model. A one-component model was also considered for comparison. This
model included only the implanted polymeric device and assumed a sink boundary condition at the
polymer–tissue interface. A sink boundary condition yields a maximum release rate because it assumes
that all leachable substances that reach the implant surface are instantly removed. Thus, there is no
resistance to migration at the polymer surface. Like the two-component model, the initial condition
assumes a homogeneous distribution of leachable substances within the polymeric implant and no
degradation or swelling of the polymer over the duration of the analysis.

Solutions for non-steady state diffusion in a plane sheet with a uniform initial distribution and a fixed
surface concentration were published by Crank (Crank, 1975). Two analytical solutions were provided,
one for short evolution times (Crank Equation 4.20),

M (τ )

M0
= 2

√
τ

(
1√
π

+ 2
∞∑
n=1

[
(−1)nierfc

(
n√
τ

)])
(5)

and one for long evolution times (Crank Equation 4.18),

M (τ )

M0
= 1 −

∞∑
n=0

8

(2n+ 1)2π2
exp

(
−τ(2n+ 1)2π2

4

)
(6)

Equation (5) requires fewer terms to converge when the dimensionless time parameter, τ , is small.
Equation (6) has the opposite property. It requires fewer terms to converge when the dimensionless time
parameter τ is large. By transitioning from equation (5) to equation (6) at τ = 0.2, sufficiently accurate
results can be achieved using only one term.

By substituting τ into equations (5) and (6) and taking only the first terms, an approximate solution
for the Crank equations was obtained,

M (τ )

M0
=

⎧⎨
⎩

2
√

τ
π

τ ≤ 0.2

1 − 8
π2 exp

(
− τ π2

4

)
τ > 0.2

(7)
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386 M. L. TANAKA ET AL.

Notice that equation 7 is only dependent upon the dimensionless time parameter, τ , while equation 4
has both, τ and β. Because β accounts for differences in the solubility and diffusivity between the
polymer and the tissue, it is not present in the one-component model that only considers diffusion through
the polymer. Moreover, the one-component model and the two-component model are equivalent in the
limit as β → ∞ (see Supplemental Information—Mathematical Proof, 2.3).

1.1.3. Numerical solution methods. Computational models to calculate the amount of mass released
were developed using MATLAB (R2021a, The MathWorks Inc., Natick, MA) based on equations (2–4,
7). The method is generally applicable and can be used to analyse a broad range of specific cases. Two
cases are analysed to illustrate the method.

For the first case, bisphenol A (BPA) in silicone was selected due to its high polymer diffusion
coefficient. BPA is a relatively small molecule that contributes to its high mobility and the silicone
matrix has relatively low migration resistance. For all calculations, the first 70 terms of the infinite series
were used to solve equation (4). This number of terms was determined to be sufficient for all input
parameter values within the analysis range (see Supplemental Information—Model Convergence, SI2).
Mass release was plotted as a function of time for the two-component model to observe model behaviour
over an evolution time of 1 day and 30 days. Results for the one- and two-component models were plotted
on the same graph for comparison.

For the second case, Irganox 1010 in high-density polyethylene (HDPE) was selected due to its low
polymer diffusion coefficient. Irganox 1010 is a relatively large molecule that contributes to its low
mobility and HDPE is semi-crystalline with a relatively high migration resistance. Mass release was
calculated using the one- and two-component models and plotted over an evolution time of 1 day and
30 days. From the findings of Gandek, it was expected that minimal differences would be observed when
β was greater than 10 and that resistance to migration would occur for smaller values of β leading to
lower mass release predictions using the two-component model.

The time required to release 99% of the total mass was also calculated using MATLAB. Using the
same equations (2–4, 7), the evolution time was extended until 99% of the initial mass of leachable
substance within the device had enough time to be released. Mass release was plotted as a function of
release time for both the one- and two-component models.

MATLAB code was also developed to estimate the mass release over the input parameter range to
compare the differences obtained using the one- and two-component models. First, mass release using the
two-component model was calculated and plotted as a colour-coded heat map over the input parameter
range for β and τ . Next, results for the one-component model were calculated and plotted as a function
of τ . The one-component model does not include β as a model parameter, so the results were plotted as
a log–log line plot.

There may be conditions where the results found using the simpler one-component model are
negligibly different than those found using the more complex two-component model. In order to
determine when this situation may occur, the result found using the one-component model (Crank) was
divided by the results for the same input parameter values using the two-component model (Gandek).
This relationship was defined as the Crank to Gandek ratio (CGR). The CGR was calculated and plotted
over the input parameter range for β and τ .

1.2. Model input parameters

Because the goal of the study is to provide a framework for a wide range of applications, a critical part
of this research is to approximate values for each of the important model parameters over a sufficiently
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POLYMER-INTERFACE-TISSUE MODEL 387

Figure 1 Diffusion coefficient of leachable substances in polymers at 37◦C. Each colour represents a category of polymer
chemistries with similar experimental diffusion coefficients. Rubbery polymers (e.g. PDMS, EPDM) have high diffusion
coefficients, while glassy polymers (e.g. PEEK, PET) have low diffusion coefficients. The solid lines show the median DP values
for polymers in each category estimated using empirical functional forms (Elder & Saylor, 2023)

large range. While model parameter data exist in published literature, it is not sufficiently organized or
processed to be applied directly in the mathematical models. In this section, methods used to obtain data
Dp, Kp:t and Dt are presented.

1.2.1. Estimating diffusion coefficients within a polymer. The rate that a leachable substance diffuses
through a polymer, Dp, is an important model input parameter for both the one-component and the two-
component models. The value of Dp depends upon the characteristics of the leachable substance and the
polymer matrix in which it is diffusing. Thus, a different value ofDp exists for each leachable—polymer
pairing.With thousands of leachable substances and dozens of commonly used implantable polymers, the
number of combinations is large. Experimental data exist for many of these combinations, but there are
many more that have not been experimentally measured. To address this lack of data, structure–property
relationships have been developed that used characteristics of the leachable substance (e.g. molecular
weight) and the characteristics of the polymer (e.g. crystallinity and glass transition temperature) to
predict values of Dp for combinations where experimental data do not exist (Saylor et al., 2019; Saylor
et al., 2020). Recent efforts have produced data sets that characterize the diffusion coefficient for over
1000 chemical–polymer combinations (Elder & Saylor, 2023).

Dp can be estimated using empirical functional forms (Elder & Saylor, 2023). In prior work,
we determined appropriate functional forms for a variety of polymers grouped into categories with
similar experimental diffusion coefficients. These categories are termed rubbers (R1–2), plastics (P1–
4) and glasses (G1–2). In our prior work, we used these functional forms and continuous probability
distributions to define upper bounds on Dp. In this work, we instead use quantiles (e.g. the median
or 50th quantile) to estimate Dp (Fig. 1). For the rubbers and plastics categories, we use the so-called

Piringer model (Piringer & Baner, 2008), which is an empirical relation between D (cm2/s),Mw (g/mol)
and T (K):

Dpir
(
Mw,T

) = 104 exp

[
AP − 0.1351M

2
3
w + 0.003Mw − EA

RT

]
(8)
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388 M. L. TANAKA ET AL.

Table 1 Median parameter values (Mw >50 g/mol)

Category Representative polymers Median parameters

R1 Silicone AP = 14.25
R2 EPDM, natural rubber AP = 12.46
P1 LDPE, polyurethane AP = 10.02
P2 Polypropylene, Teflon AP = 6.87
P3 HDPE, poly(vinyl acetate) AP = 4.36
P4 Nylon, poly(lactic acid) AP = 0.97
G1 Polystyrene, PEEK α = −13.18, β = −3.25
G2 PET, PMMA α = −8.95, β = −5.08

Table 2 Dp quantiles

Quantile 5% 25% Median 75% 95%

Value 1.9 × 10−15 3.4 × 10−10 3.2 × 10−8 4.9 × 10−7 1.2 × 10−5

where Dpir is the diffusion coefficient of the leachable in the polymer, Mw is the molecular weight of
the leachable, EA/R = 10,454 K is an activation energy normalized by the gas constant R and AP is a
category-specific empirical parameter. For the glasses categories, we use a different functional form, a
power law:

lnDpow
(
Mw

) = α + β lnMw (9)

where α and β are empirical category-specific parameters. The parameters that define the median value
for each category (AP for rubbers and plastics, α and β for glasses) are given in Table 1, which also
includes a partial list of polymers included in each category. Note that these parameters only apply for
Mw >50 g/mol, and different parameters are needed for Mw ≤50 g/mol. Additional methodological
details and parameters for lower and upper bounds are presented in the Supplemental Information
(Leachable Diffusivity in Polymers, SI1).

The data in Fig. 1 were analysed to determine the median diffusion coefficient for all polymers in
the dataset, the upper and lower quartiles and the 5% and 95% values (Table 2). Examination of these
data shows that using an input parameter range for Dp from 1.9 × 10−15 to 1.2 × 10−5 cm2/s captures
a large portion of polymer–leachable combinations.

1.2.2. Estimating migration across the interface. To determine the biotransport behaviour across the
polymer–tissue interface, the partition coefficient is needed. The polymer–tissue partition coefficient,
Kp:t, is a measure of the ratio of the concentration of a leachable within the polymer to the concentration
of a leachable within the tissue in equilibrium. Often a dominating factor influencing this parameter is the
hydrophilicity/hydrophobicity of a leachable substance. Hydrophobic substances tend to stay within the
polymer avoiding the polar water molecules present in most tissue. This can result in a discontinuity in
leachable concentration at the interface that may be modelled as a step function. Hydrophilic substances
being leached from an implanted device will readily leave the typically hydrophobic polymer and
pass across the interface into the tissue. Values of Kp:t �= 1 will result in a step function change in
concentration of the leachable across the boundary. Note that the two-component model assumes a solid
polymer to solid tissue interface. For scenarios where the device is in contact with a static (well-mixed)
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POLYMER-INTERFACE-TISSUE MODEL 389

liquid phase, more appropriate models can be adopted (Gandek, 1986). Alternatively, the two-component
model can be used with Dt > > Dp as a good approximation. If there is substantive advective flow
removing the leachable from the peri-implant environment, e.g. blood flow, the one component model
that assumes a sink boundary condition at the interface would provide a reasonable approximation.

Kp:t can be found by comparing the solubility of a leachable in a polymer, Sp, to the solubility of a
leachable in a tissue St, where

Kp:t = Sp
St

(10)

Thus, values for Kp:t can be determined if values for Sp and St can be obtained. Note that Sp depends
upon the specific type of leachable substance and the type of polymer in which it is dissolved. Similarly,
St depends upon the type of leachable substance and the type of tissue in which it is dissolved. As a
result, Kp:t is a function of all three materials, the type of leachable substance, the polymer type and the
tissue type.

To specify Kp:t, we start by recognizing that Sp = Kp:w × Sw, where Kp:w is the polymer–water
partition coefficient and Sw is the solute’s water solubility. Data for Kp:wand Sw were used to obtain
values for Sp. A polymer/solute solubility database was generated by conducting a literature search for
solubility measurements in any polymer, at any temperature, for any solute, and using any experimental
method. The database contains about 7600 data points for over 100 polymers, over 800 solutes and
nearly 2700 polymer/solute systems. Solubility data were also obtained from the commercially available
Dortmund Data Bank (Dortmund, 2023), which added about 4400 points, 50 polymers, 200 solutes and
1500 systems. The solubility of a solute in a polymer is reported in various forms, most commonly the
polymer–water partition coefficient, the infinite dilution activity coefficient (�∞ = 1/Sp) or the Henry’s
law constant (H = Sp/Psat, where Psat is the saturation vapour pressure) (Suné, 2006). Less commonly,
the solubility is reported directly as Sp, e.g. via sorption experiments (Maŕin et al., 1998; Chandrasekar
et al., 2018) or by creating binary polymer/solute mixtures with increasing solute concentrations
(Haddadin et al., 2009). Solubility data in any of these forms were collected and appropriate data were
used to convert them to Sp andKp:w. A literature review was conducted to find values for St. A systematic
search using SciFinder (ACS, 2022),Medline/PubMed (NIH, 2022b) andGoogle Scholar (Google, 2023)
was conducted using several keywords and phrases. While the solubility of leachable substances in
tissue was not readily available in the literature, information about plasma-tissue partition coefficients
was published and used to calculate tissue solubility. Utsey et al. (2020) discussed five mathematical
models based on mechanistic equations, the Poulin and Theil method (Poulin & Theil, 2000; Poulin
et al., 2001; Poulin & Theil, 2002), the Berezhkovskiy method (Berezhkovskiy, 2004), the Rogers and
Rowland method (Rodgers et al., 2005; Rodgers & Rowland, 2006), the Schmitt et al.method (Schmitt,
2008), and the PK-Sim standard method (Willmann et al., 2005; Lippert et al., 2019). While all of these
models have merit for specific applications, overall, none were shown to be clearly better than all others.
Thus, the original tissue characterization method developed by Poulin and Theil (Poulin & Theil, 2000)
was selected and used to develop an equation for St.

St = Sw

[
Kvo:w

(
Vnt + 0.3Vpht

) + (
Vwt + 0.7Vpht

)]
, (11)

where Swis the solubility of a leachable substance in water,Kvo:w is the vegetable oil water partition coef-
ficient, Vntis the volume fraction of neutral lipids in tissue, Vphtis the volume fraction of phospholipids
in tissue and Vwtis the volume fraction of water in tissue.
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390 M. L. TANAKA ET AL.

Figure 2 The polymer tissue partition coefficient shows that the data may be clustered into two general groups. Each polymer is
shown with a different colour. Solutes with Mw <50 g/mol are excluded.

The linear free energy relation (LSER) for the olive oil–water partition coefficient from Abraham
et al. (2010) was used to calculateKvo:w. Abraham parameters needed to employ the LSERwere obtained
for the solutes from the UFZ-LSER database (Ulrich et al., 2017). When available in the database,
experimentally determined Abraham parameters were used. Otherwise, quantitative structure property
relations provided by the UFZ-LSER database as described by Brown and coworkers (Brown et al., 2012;
Brown, 2014), were used to predict the parameters. Solutes that were outside the domain of applicability
were discarded.

Using equation (9), St was calculated using data found in published literature. The partition
coefficient was found for 57 chemicals (Poulin & Theil, 2000), the water solubility was found for each
of these chemicals on PubChem (NIH, 2022a) and go.drugbank.com (Drugbank.com, 2022) and the
volume fractions for nine different tissue types were evaluated (Poulin & Theil, 2000). In total, 513 data
points were evaluated. Examination of the results supports the use of a single standard tissue model as
a simplified approximation for most tissues (e.g. muscle, liver, lung, kidney, brain, etc.). In this study,
muscle tissue with the following properties (Utsey et al., 2020), Vnt= 0.013, Vpht= 0.0072, Vwt= 0.748,
were used to represent all tissue in the Kp:t calculations (Utsey et al., 2020).

Knowing Sp for a multitude of chemical–polymer combinations and St for the tissue standard
enables the calculation of Kp:t (Fig. 2). Leachable substances that are more hydrophilic seem to have
a linear relationship between log10Kp:t and log10Ko:w. In contrast, leachable substances that are more
hydrophobic seem to have a log10Kp:t value that is independent of log10Ko:w. Fitting the data resulted in
the relationship,

log10Kp:t =
{

(1.03 ± 0.03) log10Ko:w − 0.57 ± 0.03 log10Ko:w < 1.8

1.32 ± 0.01 log10Ko:w ≥ 1.8
(12)

where the values after ± are the standard errors of the fitting parameters, calculated as the square root
of the diagonal of the covariance matrix. The behaviour may be explained by considering the chemical
nature of polymers and tissues. Polymers used in medical devices tend to be highly hydrophobic unless
they are specifically designed to be hydrophilic (Schmidt, 2019). The single standard tissue model
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Table 3 Log10Kp:t quantiles

Quantile 5% 25% Median 75% 95%

Value −1.11 0.51 1.33 1.75 2.50

consists mostly of water (74.8%), but it also has about 2% hydrophobic lipids. For hydrophilic leachable
substances, it seems reasonable that Kp:t is proportional to the hydrophilicity because the leachable
substance will preferentially dissolve in the mostly water-based tissue. However, for hydrophobic
leachable substances that tend to stay within the polymer, there is a limit to how high Kp:t can go because
the tissue also has hydrophobic lipids, so the maximum ratio is about 50:1.

Data in Fig. 2 were analysed to determine the median polymer–tissue partition coefficient for all
polymers in the data set, the upper and lower quartiles and the 5% and 95% values (Table 3). Data that
spans the 5% to 95% range from log10Kp:t = −1.11to log10Kp:t = 2.50. This range was used to establish
the input parameter range for Kp:t.

1.2.3. Estimating diffusion coefficients within a tissue. A comprehensive literature review was
performed to acquire data to quantify the diffusion coefficients and the solubility of various solutes in
biological tissue. A systematic search using SciFinder (ACS, 2022), Medline/PubMed (NIH, 2022b) and
Google Scholar (Google, 2023) was conducted using several keywords and phrases. In addition, forward
and backward snowballing (Jalali & Wohlin, 2012) were used to identify studies that may have been
overlooked in the systematic search. Keywords included “tissue”, “diffusion”, “diffusion coefficient”
and other similar words searched both independently and together. Other keywords included specific
tissue types like “brain”, “skin”, “muscle” and units of diffusion like “cm2/s” or “m2 s−1”

The literature search revealed that many of the papers found when searching for tissue diffusion did
not contain quantitative values useful in this study. Many papers cited the apparent diffusion coefficient,
a measure of water diffusivity in tissue found using magnetic resonance imaging (Herneth et al.,
2003; Ren & Lu, 2019; Maynard et al., 2020; Surov et al., 2020). Others focused on the diffusion
of oxygen and other gases (Macdougall & Mccabe, 1967; Garrido et al., 2008; Pias, 2020). Some
examined plant tissue (Philip, 1958; Kolomazník et al., 2012; Wu & Zhang, 2019). This limited the
number of applicable articles. However, several researchers provided quantitative diffusion coefficients
for leachable substances in tissue obtained experimentally using a variety of methods. Tissue types
included dermatomed skin, the whole epidermis, the stratum corneum, the dermis layer (Ellison et al.,
2020), colon carcinoma cells (Pruijn et al., 2008), tumour cell cultures (Hicks et al., 2010), brain cortex
in living rats (Meulemans et al., 1989), endovascular and perivascular arterial parenchyma (Creel et al.,
2000) and bovine arteries transmural and parallel to the surface (Hwang & Edelman, 2002; Levin et al.,
2004; Kolachalama et al., 2013). Measurement methods included ABL diffusion resistance (Ellison
et al., 2020), multicellular layer (MCL) flux (Pruijn et al., 2008; Hicks et al., 2010), microelectrodes
(Meulemans et al., 1989), liquid scintillation spectroscopy (Creel et al., 2000; Levin et al., 2004;
Kolachalama et al., 2013) and fluorescence (Hwang & Edelman, 2002). A summary of these data is
shown in Table 4.

From these sources, tissue diffusion values were found for 307 different combinations of chemicals
and tissues (see Supplemental Information—Tissue Diffusion Data, SI4). These were grouped into
barrier tissues (red) and non-barrier tissues (blue) (Fig. 3) (Tanaka et al., 2023). Barrier tissues were
defined as tissues that function to resist the transmission of substances through their surface. Examples
include transmural transport through an artery wall and transmission across the stratum corneum or intact
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Table 4 Summary of tissue diffusion sources

Number of
chemicals

Tissue type Barrier
tissue

Temperature
(◦C)

Method Author Year

49 Dermatomed skin
(composite)

Yes 22 ABL diffusion
resistance

Ellison 2020

50 Whole epidermis
(composite)

Yes 22 ABL diffusion
resistance

Ellison 2020

49 Stratum corneum Yes 22 ABL diffusion
resistance

Ellison 2020

50 Dermis No 22 ABL diffusion
resistance

Ellison 2020

77 Colon carcinoma cells No 22 MCL flux Pruijn 2008
3 Various tumour cell

cultures
No 37 MCL flux Hicks 2010

5 Brain—cortex No 37 Microelectrodes
living rat brain

Meulemans 1989

3 Endovascular arterial
parenchyma

Yes 37 Liquid scintillation
spectroscopy

Creel 2000

3 Perivascular arterial
parenchyma

Yes 37 Liquid scintillation
spectroscopy

Creel 2000

5 Artery
wall—transmural

Yes 25 Fluorescence in
bovine arteries

Hwang 2002

5 Artery wall—parallel No 25 Fluorescence in
bovine arteries

Hwang 2002

3 Artery
wall—transmural

Yes 25 Liquid scintillation
calf arteries

Levin 2004

3 Artery wall—parallel No 25 Liquid scintillation
calf arteries

Levin 2004

2 Artery
wall—transmural

Yes 22 Liquid scintillation
porcine arteries

Kolachalama 2022

skin. Examples of non-barrier tissues include brain tissue, tumour cell cultures and arterial transmission
parallel to the surface. Curve fitting the tissue diffusion to molecular weight yielded the equation

log10Dt =
{
(−0.094 ± 0.126) log10Mw − 7.50 ± 0.30 barrier tissue
(−0.067 ± 0.112) log10Mw − 6.02 ± 0.28 nonbarrier tissue

(13)

Similarly, curve fitting the tissue diffusion to the octanol–water partition coefficient yielded the
equation

log10Dt =
{
(−0.060 ± 0.045) log10Ko:w − 7.62 ± 0.10 barrier tissue
(−0.042 ± 0.035) log10Ko:w − 6.16 ± 0.06 nonbarrier tissue

(14)

Table 5 shows the mean value by group and the two inner quartiles (25% and 75%). The 5% and
95% values were estimated from these inner quartiles.
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POLYMER-INTERFACE-TISSUE MODEL 393

Figure 3 Tissue diffusion data as a function of molecular weight (a) and octanol–water partition coefficient (hydrophobicity) (b).

Table 5 Diffusion for barrier and non-barrier tissues (×10−6 cm2/s)

Tissue type 5% 25% Mean 75% 95%

Barrier 0.0010 0.0057 0.020 0.061 0.34
Non-barrier 0.11 0.35 0.65 1.7 5.1

Considering all the different types of leachable substances and the many different tissue types, the
307 data points collected from the literature only represent a small fraction of the possible combinations.

Diffusion through barrier tissue is on the order of 10−7 to 10−9 cm2/s. Non-barrier tissue with
diffusion coefficients on the order of 10−6 to 10−7 cm2/s is about 10 to 100 times higher than barrier
tissue. In order to capture the full span of Dt, the range from 5% of barrier tissue to 95% of non-barrier
tissue was selected. This equated to an input parameter range for Dt from 10–9.0 to 10–5.3 cm2/s.

1.2.4. Estimating model input parameter ranges. Examination of equation (4) shows the quantity of
mass released in the two-component model to depend upon both dimensionless parameters, β and τ .
The one-component model, equation (7), which does not contain migration limiting elements across the
polymer–tissue interface due to the sink boundary condition or diffusion through the surrounding tissue,
depends on only one of the dimensionless parameters, τ . Thus, to calculate a suitable range to analyse
model behaviour, ranges for β and τ were needed.

Examination of equation (3) shows βto depend upon the partition coefficient,Kp:t, and the ratio of the
diffusion coefficient through each of the two components in the system (i.e. polymer and tissue). Using
the input parameter ranges for Kp:t, Dt and Dp the analysis range for βwas calculated. The minimum
value for β was estimated using equation (3) and applying the highest value within the range of Kp:t
and Dp, and the lowest value within the range of Dt. Similarly, the maximum value for β was calculated
using the other extremes of the input parameter value ranges.

Examination of equation (2) shows τ to depend upon the polymer diffusion coefficient, Dp, and the
distance over which diffusion occurs, L (i.e. half the thickness), and time. The time period of the analysis
of one day was used based on the current exposure estimation protocols. The diffusion distance, L, was
less clearly defined. Recall that the goal of the study is to develop a framework that produces a general
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Table 6 Summary of clinically relevant parameter value ranges

Parameter Minimum Maximum Range

Dp (cm2/s) 10–14.7 10–4.9 109.8

Kp:t 10–1.1 102.5 103.6

Dt (cm
2/s) 10–9.0 10–5.3 103.7

L (cm) 10–1.3 100.1 101.4

β 10–4.6 105.8 1010.4

τ (at one day) 10–10.0 102.6 1012.6

solution, and no specific implant was modelled. The thickness of an implanted polymeric product may
range from thin films (FILMS, 2023; GlobalSpec, 2023) to thick plates. Thus, a reasonable clinically
relevant diffusion distance was defined to be from 0.5 to 12.5 mm.

The model analysis range for the dimensionless parameters, βand τ , was calculated from the ranges
of input parameter values shown in Table 6. The range of βand τ spanned 14.7 and 15.8 orders of
magnitude, respectively.

2. Results

2.1. Mathematical modelling of daily and monthly mass release

2.1.1. Example 1: BPA in silicone. Consider an implanted medical device made from silicone that
is 5 mm thick and has a large enough aspect ratio that it may be considered as a thin sheet (e.g.
50 mm × 50 mm × 5 mm). Assume that BPA is homogeneously distributed throughout the implant
with an initial concentration of M0. Using the modified Piringer equation (8), the molecular weight of
BPA = 228 g/mol, and the AP value for silicone (Table 1: category R1), the diffusion coefficient of the
leachable in the polymer, was calculated to beDp = 4.7×10−7 cm2/s. Equation (12) was used to estimate
the value of the the polymer–tissue partition coefficient. Using the octanol–water partition coefficient
for BPA (log10Ko:w ≈ 3.5) from Borrirukwisitsak et al. (2012), the polymer–tissue partition coefficient
was estimated to be log10Kp:t= 1.32. Equation (13) was used to estimate the diffusion coefficient for
BPA in silicone. Using the molecular weight of BPA, and assuming a non-barrier tissue, the diffusion
coefficient of BPA in tissue was calculated to be Dt = 6.6 × 10−7 cm2/s. Using equation (14), the
octanol–water partition coefficient, and assuming a non-barrier tissue, the diffusion coefficient of BPA
in tissue was calculated to be Dt = 4.9 × 10−7 cm2/s. Averaging these two values results in a value of
Dt = 5.8 × 10−7 cm2/s, which is within 15% of the values obtained using each estimation method.

Given these input parameters, log10β = −1.27. Entering these numbers into equation (4) and solving
numerically, the mass release for the two-component model was solved as a function of time. The mass
release for the one-component model was found by applying these parameters to equation (7) and also
solving numerically. Both results are shown in Fig. 4a. For BPA in silicone, the dimensionless time
parameter, τ = 0.65, after an evolution time of 24-hour and τ = 19.5 after an evolution time of 30 days.
The base 10 log of these dimensionless times are log10τ = −0.187 and 1.29, respectively. Thus, these
cases are examples of highly evolved systems with large values of dimensionless time within the overall
range of clinically relevant parameter values (see Table 6).

For BPA in silicone the one-component model estimated complete mass release (M/M0 = 100%)
within about 8 hours, but the more complex two-component model only predicted 35.3% mass release
in 24 hours (Fig. 4a). Over a period of 30 days, mass released in the two-component model increased to
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POLYMER-INTERFACE-TISSUE MODEL 395

Figure 4 Comparison of model results for cumulative mass release of BPA in silicone (a) and the time required for 99% mass
release (b). Irganox 1010 in HDPE evaluated for cumulative mass release (c) and the time required for 99% mass release (d).

78.5%. These findings imply that using the more complex analysis could yield a more clinically relevant
outcome in some cases.

2.1.2. Example 2: Irganox 1010 in HDPE. Next, consider an implanted medical device made
from HDPE that has the same dimensions as the previous example. Assume that Irganox 1010 is
homogeneously distributed throughout the implant with an initial concentration of M0. Using equation
(8), the molecular weight of Irganox 1010 = 1178 g/mol, and the AP value for HDPE (Table 1: category
P3), the estimated diffusion coefficient, was calculated to beDp = 1.8×10−14 cm2/s. Equation (12) was
used to estimate the value of the polymer–tissue partition coefficient. Using the octanol–water partition
coefficient for Irganox 1010 (log10Ko:w ≈ 19.4) from PubChem (NIH, 2022a), and assuming a non-
barrier tissue, the polymer–tissue partition coefficient was estimated to be log10Kp:t= 1.32. Equation
(13) was used to estimate the diffusion coefficient for Irganox in HDPE. Using the molecular weight
of Irganox 1010, and assuming a non-barrier tissue, the diffusion coefficient of Irganox 1010 in tissue
was calculated to be Dt = 5.9 × 10−7 cm2/s. When approximating Dt using log10Ko:w, the value of
19.4 was outside the range of data used to generate the fitted line (Fig. 3b), so the upper limit of the data
(log10Ko:w ≈ 6.0) was used. Using equation (14), the octanol–water partition coefficient, and assuming a
non-barrier tissue, the diffusion coefficient of Irganox 1010 in tissue was calculated to beDt = 3.9×10−7

cm2/s. Averaging these two values results in a value of Dt = 4.9 × 10−7 cm2/s, which is within 21% of
the values obtained using each estimation method.
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Given these input parameters, log10β = 2.40. The mass release estimated for the one- and two-
component models were solved numerically and plotted (Fig. 4c). For these model parameters, the
dimensionless time parameter τ = 2.49 × 10−8 after an evolution time of 24-hour and τ = 7.46 ×
10−7after an evolution time of 30 days. The base 10 logs of these dimensionless times are log10τ = −7.60
and −6.13, respectively. In this case, the system is evolving very slowly as indicated by the tiny values
of dimensionless time.

For Irganox 1010 in HDPE the one-component model and two-component model have virtually
identical results with the first line being totally covered by the second. Both models predict a mass
release of 0.15% of the total mass in the first 24 hours. Over a period of 30 days, both models estimate
a mass release of 0.8%. In this case it may not be beneficial to apply the more complex model when the
simpler model predicts the same outcome. The reason for this similarity is that the low polymer diffusion
coefficient of Irganox 1010 in HDPE dominates the model behaviour, causing the two-component model
to approximate the sink boundary condition used in the one-component model.

2.2. Mathematical modelling of 99% mass release

The time required to release 99% of the total mass was determined using bothmodels. For BPA in silicone
(Fig. 4b), the one-component model predicts 99% mass release in 4.9 hours (0.20 days) while the two-
component model predicts 99% mass release in 43.6 years (15,900 days). Clearly, in this case including
the surrounding tissue in the model effected the time required for mass release. For Irganox 1010 in
HDPE (Fig. 4d), the one- and two-component model predict 99% mass release in 2940 and 3060 years,
respectively. Like in the previous set of images, no visible difference is observable between modelling
results for Irganox 1010 in HDPE. While the time required for 99% mass release is not identical, the
magnitude of the difference is small when compared to the difference in results when compared to BPA
in silicone.

2.3. Evaluation of models over the range of input parameters

In the above sections the quantity of mass released was calculated for two specific cases of input
parameter values. In this section the solution results will be expanded over the entire analysis range
of βand τ . Mass release is calculated for 1 day of exposure. Because this is a single scalar value for each
combination of βand τ , the results can be plotted as a heat map (Fig. 5a). Examination of the data shows
the lowest mass is released when the values of βand τ are the lowest. When both βand τ are large, M/M0
approaches one, indicating complete mass release. This can be seen on the upper right side of the heat
map. The one-component model is only controlled by one of the dimensionless parameters, τ . The plot
shows that when the value of tau is low, a very small percentage of the mass is released over a 24-hour
period (Fig. 5b). As the value of τ approaches one, M/M0 also approaches one, indicating complete mass
release.

The CGR over the input parameter range for β and τ is shown in Fig. 6. Results found using the
one-component model were similar to those found with the two-component model (i.e. CGR≈ 1) at
higher levels of β. The CGR became larger as β became smaller. It reached a maximum value of ∼4000
(103.6) when β was smallest. The magnitude of τ also influenced the CGR. When τ was small (<10−1),
the magnitude of τ had no noticeable effect on the CGR and contour lines were observed to be generally
horizontal. However, for τ > 1, increasing τ caused the CGR to become smaller. Furthermore, when the
governing equations are examined, the two-component model (Eq. 4) is identical to the one-component
model (Eq. 5) as β approaches infinity (see Supplemental Information—Mathematical Proof, SI). In
addition, both equations converge on M/M0 = 1as τ → ∞. This implies that for both models, as the
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POLYMER-INTERFACE-TISSUE MODEL 397

Figure 5 Mathematical model solutions over the range of input parameter values. Mass release for the two-component model is
shown as a 2D heat map (a) and for the one-component model as a log–log plot.

dimensionless time approaches infinity, all the mass of a leachable that was within the implanted medical
device will be released. This is because the one-component model has a sink boundary condition at the
implant–tissue interface and the tissue in the two-component model is infinite.

3. Discussion

The more complex two-component model always predicts a lower quantity of material released than
the more conservative one-component model over the same time period. While the one-component
model may be more appropriate to support routine estimation of toxicological risk because it is more
conservative, differences in predictions could imply that the two-component model could be adopted for
some combinations of input parameters depending on the purpose of the model. Examining the results
over the input parameter ranges for Kp:t, Dt and Dp revealed that conditions exist where little difference
in results is observed between the one- and two-component models (i.e. CGR≈ 1). In these cases, it
is better to use the simpler one-component model. Examination of Fig. 6 shows that the transition to
CGR≈ 1 occurs somewhere around β values of 100 and 101 for smaller values of τ . These findings are
consistent with Gandek who used a value of β > 10 to decide if the polymer food surface should be
considered well mixed or migration should be controlled by diffusive transport (Gandek, 1986).

When the value of β is low, using the two-component model could dramatically impact the estimated
value of material released. In this study, a mass release∼40,000 times lower was predicted for the most
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398 M. L. TANAKA ET AL.

Figure 6 CGR over the typical range of input parameter values. The CGR is shown for the (a) the entire range and (b) for a close-up
section.

extreme case, which equates to 4.6 orders of magnitude. Moreover, for about 20% of the evaluated
conditions, the one-component model predicts a mass release at least 100× greater than the two-
component model. Thus, if used as a mechanism to estimate mass release either at the early stages
of product design or as part of a regulatory submission, selecting the appropriate model may make the
difference between passing and failing to meet tolerable limits. It is important to note that the actual
amount of material released by a polymeric device does not change, only the complexity and level of
conservatism of the approximation.

Thus, it is important to determine which conditions lead to small values of β. Examining equation (3)
it is clear that β depends upon two factors. The first factor is the polymer tissue partition coefficient,Kp:t.
Because of the inverse relationship, β becomes smaller as Kp:t increases. By definition, higher values
of Kp:texist when a leachable substance is more soluble in the polymer than the tissue. Leachables that
satisfy this requirement tend to be hydrophobic, having higher solubility in the typically hydrophobic
polymer than the generally aqueous tissue. This concept is supported by the results shown in Fig. 2
where higher values of Kp:t are observed when the octanol water partition coefficient Ko:w is high.
However, the presence of hydrophobic lipids in the tissue will always allow some hydrophobic leachables
to be dissolved, limiting how high Kp:t can become. In the mathematical model, values of Kp:t >1
reduce the concentration gradient within the polymer and slows diffusive transport of leachables
from the interior of the implant to its surface. The second factor is the ratio of Dt to Dp. In other
words, it is a measure of the relative rate that a leachable travels through the second component
(tissue) to the first (polymer). Beta is low when the leachable travels more quickly through the
polymer than the tissue. If Dp exceeds Dt, leachables can travel to the surface faster than they can be
removed, which, like the influence of Kp:t, has the effect of reducing diffusive transport away from the
polymer.

Another potential use for these models is to put bounds on mass release estimates. Because the one-
component model tends to be conservative and overestimates mass release it is a good candidate to use for
the upper bound. It eliminates the need to estimate a partition coefficient or tissue diffusion coefficient
by using a sink boundary condition at the implant surface. Thus, there is no resistance to migration
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in this model beyond Fickian diffusion of the leachable through the polymer. The two-component
model takes into account more system parameters in the mass release estimation including the polymer–
tissue partition coefficient and diffusion through the tissue. These factors can influence the migration
of leachables, reducing the rate of release. Because the two-component model always predicts a lower
migration rate, it may be used as a lower bound estimation. While the upper bound is well defined based
on known polymer properties and leachable characteristics, the lower bound is not as clear. Its ability
to predict migration of leachables depends on the validity of the model assumptions and the behaviour
of complex heterogeneous biological systems. Using a quasistatic homogeneous tissue model to predict
leaching over longer periods should only be considered an initial approximation. This enabled the use
of time-independent parameter values for Kp:t, Dp and Dt, which simplified the modelling. However,
additional adaptations may be required to apply this model to capture changes in tissue properties that
may occur over time. It is well known that implanted foreign bodies can cause histomorphological
changes in tissue near the implant surface resulting in encapsulation (Sharkawy et al., 1998; Novak
et al., 2010; Damanik et al., 2014; Klopfleisch & Jung, 2017). These changes would cause Dt and Kp:t
to change as well. Thus, further investigation is needed to consider how changes in tissue properties over
time could impact the results. However, even with these limitations, the current models can reveal trends
in behaviour that may be present in more complex models.

Currently there is a lack of clinical data to validate these models. Data used for the model input
parameters were collected from a multitude of studies, each of which measured these parameters for
a different purpose. No experiments were conducted as part of this study to explicitly collect data for
use in the models. Fortunately, diffusion coefficients of leachables within polymers tended to be types
that are released from a medical device such as additives, contaminants and unprocessed oligomers.
Because of this, the diffusion coefficient within device-relevant polymers is well characterized (Elder
& Saylor, 2023). However, studies designed to measure diffusion through tissue tended to measure the
diffusion coefficient of drugs rather than medical device relevant leachables. Thus, there is less relevant
data available to characterize the diffusion coefficient in tissue. Experimental data used to calculate
the ranges for Kp:t, Dp and Dt are sparse, only representing a small fraction of the possible number of
combinations. However, even with these limitations, they were observed to span an adequate range of
molecular weight and hydrophobicity. Future experiments that measure all the input parameters, Kp:t,Dp
and Dt, for a specific leachable substance, in a specific polymer type, and diffusing through a specific
type of tissue would provide excellent data for model validation. Yet, even with the limitations and lack
of data for validation, the models provide an initial approximation to characterize the complex fate of
leachables contained within implanted medical devices and the influence of the polymer–tissue interface
and the tissue surrounding the implant.

4. Conclusion

Two mathematical models were used to characterize the mass release from a polymeric implant, a
more complex two-component model, and a simpler one-component model. The models included two
dimensionless parameters, β and τ , that controlled the results. When β was large, there was minimal
difference in the quantity of mass release estimated using either model, so in this case it would be better
to use the simpler one. However, when β was small, the difference in the model prediction could be
quite high, on the level of three orders of magnitude. In this case, use of the more complex model may
be warranted. While it is difficult to say if one model is better than the other, the two models can be
used together as an upper bound estimation (one-component model) and a lower bound estimation (two-
component model) for leaching of substances from an implanted polymeric medical device.
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