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ABSTRACT
We present round complexity results in the CONGEST model for
Replacement Paths (RPaths), Minimum Weight Cycle (MWC), and
All Nodes Shortest Cycles (ANSC). We study these fundamental
problems in both directed and undirected graphs, weighted and
unweighted. Many of our results are optimal to within a polylog
factor: For an =-node graph⌧ we establish near linear lower and
upper bounds for RPaths if⌧ is directed andweighted, and forMWC
and ANSC if ⌧ is weighted, directed or undirected; near

p
= lower

and upper bounds for undirected weighted RPaths; and⇥(⇡) bound
for undirected unweighted RPaths. We also present lower and upper
bounds for approximation: a (2 � (1/6))-approximation algorithm
for undirected unweighted MWC that runs in $̃ (p= + ⇡) rounds,
improving on the previous best bound of $̃ (p=6+⇡) rounds, where
6 is the MWC length, and a (1 + n)-approximation algorithm for
directed weighted RPaths and (2 + n)-approximation for weighted
undirected MWC, for any constant n > 0, that beat the round
complexity lower bound for an exact solution.
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1 INTRODUCTION
Consider a communication network with two special nodes B and
C , and with information transmitted between them along a shortest
path %BC between B and C in the network. In the distributed setting,
it can be important to maintain communication in the event that a
link (i.e., edge) on this path %BC fails. This is the Replacement Paths
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Table 1: Exact Weight/Size for a Graph ⌧ on = nodes.
⇡ = undirected diameter, ⌘BC = number of edges in %BC . (((% and
�%(% are round complexity of weighted SSSP and APSP. †Denotes
deterministic results, all other results are randomized.

Problem Lower Bound Upper Bound
Directed Weighted Graphs

RPaths ⌦
⇣

=
log=

⌘
$ (�%(%) = $ (=)

MWC, ANSC ⌦
⇣

=
log=

⌘
$̃ (=)

Directed Unweighted Graphs
RPaths ⌦

⇣ p
=

log= + ⇡
⌘

$̃ (min(=2/3 +
p
=⌘BC + ⇡,

(((% · ⌘BC ))
MWC, ANSC ⌦

⇣
=

log=

⌘
$ (=)†

Undirected Weighted Graphs
RPaths ⌦
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RPaths ⌦ (⇡) $ (⇡)†
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⇣ p

=
log=

⌘
[3, 6] $ (=)† [4]

(RPaths) problem, where for each edge 4 on %BC , we need to �nd a
shortest path from B to C that avoids 4 . This problem has been exten-
sively studied in the sequential setting [5, 12]. Another fundamental
graph problem related to shortest paths is the Minimum Weight
Cycle (MWC) problem, where we need to compute a shortest sim-
ple cycle in a given graph. The All Nodes Shortest Cycle (ANSC)
problem, where we want to compute a shortest cycle through each
node in a given graph, is also relevant to the distributed setting.

Upper and lower bounds in the CONGEST model are known
for the round complexity of several fundamental graph problems.
However, we are not aware of any nontrivial results for RPaths,
MWC or ANSC except for undirected unweighted MWC. In this
paper we present lower bounds and algorithms for these problems
in the CONGEST model for directed and undirected graphs, both
weighted and unweighted. For several of the variants we consider,
our upper and lower bounds are within a polylog factor of each
other, giving near optimal bounds. Our main results are listed in
Table 1, and we present a summary of select results below. In the full
paper [8] we give details of all results listed in Table 1, together with
several approximation upper and lower bounds, e�cient algorithms
for distributed construction of replacement paths and cycles, and
some additional results. We also defer an overview of related work
to the full version [8].
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1.1 Techniques and Results
1.1.1 Model and Notation. The CONGEST Model. We use the stan-
dard CONGEST model [9], where communication links are always
bi-directional and unweighted, and can send and receive ⇥(log=)
bits along an edge in each round — other details of the model are
in the full version [8].
Notation. Let ⌧ = (+ , ⇢) be a directed or undirected graph with
|+ | = = and |⇢ | = <. Let edge (D, E) have non-negative integer
weightF (D, E) according to a weight assignment functionF : ⇢ !
{0, 1, . . ., }, where, = ?>;~ (=). Let XBC denote the weight of a
shortest path %BC from B to C and⌘BC denote the number of edges (hop
length) on this shortest path. We de�ne the undirected diameter ⇡
as the maximum shortest path distance between any two vertices
in the underlying undirected unweighted graph of ⌧ .

1.1.2 CONGEST Upper Bounds. We use a variety of techniques to
establish upper bounds for RPaths and MWC. For directed weighted
RPaths, adapting the sequential algorithm directly to the CONGEST
model may require up to = SSSP computations, which is not e�-
cient. Instead, our CONGEST algorithm uses a reduction to APSP,
which has a $̃ (=)-round CONGEST algorithm [2]. For directed un-
weighted RPaths, we give two algorithms, each of which is e�cient
for di�erent values of ⌘BC and ⇡ (which are determined at runtime).
One of these algorithms uses sampling to �nd replacement paths
that are long, and BFS to �nd short replacement paths. This gives
us an algorithm with sublinear round complexity when ⌘BC and ⇡
are >̃ (=).

We use sampling and approximate bounded-hop shortest paths
in our (1+n)-approximation algorithm for directedweighted RPaths.
We use sampling in conjunctionwith source detection in our $̃ (p=+
⇡)-round (2 � (1/6))-approximation algorithm for undirected un-
weighted MWC. The starting point of our algorithm is the ran-
domized (2 � (1/6))-approximation algorithm in [10] that runs in
$̃ (p=6+⇡) rounds in a graph with MWC length 6. We signi�cantly
improve this round complexity by removing the dependence on 6,
and our algorithm compares favorably to the ⌦̃(p=) lower bound
for computing a (2 � n)-approximation. Using this unweighted al-
gorithm, along with a weight scaling technique and sampling, we
present a (2 + n)-approximation algorithm for undirected weighted
MWC which has sublinear round complexity when ⇡ is >̃ (=3/4).

1.1.3 CONGEST Lower bounds. Many of our lower bounds use
reductions from Set Disjointness, and other graph problems with
known CONGEST lower bounds. Our reduction from Set Disjoint-
ness for the ⌦̃(=) CONGEST lower bound for directed weighted
RPaths is inspired by a construction in a sparse sequential reduction
from MWC to RPaths in [1]. Other lower bounds that we present
with reductions from Set Disjointness include those for directed
MWC and undirected weighted MWC to get near linear lower
bounds, as well as lower bounds for (2 � n)-approximation algo-
rithms. Using reductions from graph problems such as B-C Subgraph
Connectivity and Weighted B-C Shortest Path that have been shown
in [11] to have an unconditional lower bound of ⌦

⇣ p
=

log= + ⇡
⌘
, we

prove lower bounds for directed unweighted RPaths and undirected
RPaths.

Figure 1: DirectedweightedRPaths lower bound construction

2 REPLACEMENT PATHS
2.1 Directed Weighted RPaths Lower Bound
We prove a lower bound of ⌦(=/log=) for computing RPaths and
2-SiSP in directed weighted graphs. Our proof is a reduction from
Set Disjointness using the graph construction ⌧ = (+ , ⇢) given
in Figure 1. Consider an instance of the Set Disjointness problem
where the players Alice and Bob are given :2-bit strings (0 and (1 ,
and the problem is to determine whether (0\(1 = q , i.e., that for all
indices 1  8  :2 either (0 [8] = 0 or (1 [8] = 0. We will reduce the
Set Disjointness problem to computing the second simple shortest
path in the constructed graph⌧ such that the sets not being disjoint
would lead to a shorter replacement path than when the sets are
disjoint. This intuition is formally captured in Lemma 2.1.

L���� 2.1. If (0 \ (1 < q , the shortest replacement path from
vertex ?0 to vertex ?: in⌧ has weight at most (4:2+9:�1) . Otherwise,
the shortest replacement path has weight at least (4:2 + 12:).

To complete the reduction from Set Disjointness, assume that
there is a CONGEST algorithmA that takes'(=) rounds to compute
the weight of replacement paths in a directed weighted graph on
= vertices. Consider the graph partition ⌧0 , ⌧1 in Figure 1. Any
edge of⌧ going from a vertex in⌧0 to⌧1 is considered to be in the
cut separating the partition, and this cut has 4: edges. Note that
⌧0 is completely determined by the string (0 and⌧1 is completely
determined by (1 . Alice and Bob will communicate to simulate
running algorithm A on ⌧ . Alice simulates ⌧0 and Bob simulates
⌧1 , and they communicate any information sent across a cut edge.
Since there are 4: cut edges, and A can send$ (log=) bits through
each edge per round, Alice and Bob can communicate up to $ (4: ·
log=) bits per round to simulate A for a total of $ (4: · log= ·
'(=)) bits. Alice and Bob and determine if their sets are disjoint
by checking if the shortest replacement path computed by A has
weight more than (4:2 + 9: � 1). Any communication protocol for
Set Disjointness must use at least ⌦(:2) bits and = = ⇥(:), and
hence '(=) is ⌦

⇣
=

log=

⌘
.

2.2 Directed Unweighted RPaths Upper Bound
Algorithm 1 computes replacement paths in a directed unweighted
graph in $̃ (=2/3+

p
=⌘BC +⇡) rounds. In the full version, we also give

an algorithm that runs in $ ((((% · ⌘BC ) = $
⇣
(p=⇡1/4 + ⇡) · ⌘BC

⌘
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rounds, which is more e�cient for certain ranges of ⌘BC . Combining
the two, we have an algorithm that runs in >̃ (=) rounds unless either
⇡ or ⌘BC is ⌦̃(=).

Algorithm 1 Directed Unweighted RPaths

1: Let ? = =1/3 if ⌘BC < =1/3 and ? =
p
=⌘BC if ⌘BC � =1/3, and let

⌘ = =/? .
2: Sample each vertex E 2 ⌧ into set ( with probability ⇥

⇣
log=
⌘

⌘
.

3: for vertex E 2 %BC [ ( , perform BFS starting from E on ⌧ � %BC
up to ⌘ hops to compute unweighted shortest paths 30 (E,D).
Broadcast {30 (E,D) | D 2 (}.

4: for vertex E0, E1 2 %BC , compute the best detour (short or long)
from E0 to E1 : ⇡ (E0, E1 ) = min

�
30 (E0, E1 ),

minD,E2( (30 (E0, E) + 30 (E,D) + 30 (D, E1 ))
�

5: Compute best replacement path for edge 4 on %BC as
min0,1 XBE0 + ⇡ (E0, E1 ) + XE1C for E0 before 4 and E1 after 4 .

We compute short detours, detours with hop length at most ⌘, by
performing a BFS of ⌘ hops from each vertex on %BC on the graph
⌧ � %BC . This takes$ (⌘BC +⌘) rounds. To compute the long detours
with hop length at least ⌘, we sample each vertex with probability
⇥ ((log=)/⌘) so that we get a vertex set ( of size $̃ (=/⌘) = $̃ (?)
with high probability. Also w.h.p., every path of ⌘ hops, including
all long detours, contains at least one vertex from ( . We perform a
BFS of ⌘ hops from each vertex in ( on the graph ⌧ � %BC , which
takes $̃ (? + ⌘) rounds. Each node E 2 ( broadcasts the values
30 (E,D), 30 (E0, E) and 30 (E, E1 ) 8D 2 (, E0, E1 2 %BC to all other
nodes. A total of $̃ (?2 + ? · ⌘BC ) weights are broadcasted, which
takes $̃ (?2 +? ·⌘BC +⇡) rounds. With this information, each vertex
on the path %BC can locally compute the best long detour ⇡ (E0, E1 ),
and compute the best replacement paths for each edge locally. This
gives a total round complexity of $̃ (?2 + ? · ⌘BC + ⌘ + ⇡), and
combining the two parameter choices in the algorithm we get an
algorithm with a round complexity of $̃ (=2/3 +

p
=⌘BC + ⇡).

2.3 Approximate Undirected MWC
A CONGEST algorithm in [10] computes a (2 � 1

6 )-approximation
of MWC length (or girth) in$ (p=6+⇡) rounds, where 6 is the girth.
We signi�cantly improve this result by removing the dependence
on 6 to give an $̃ (p= + ⇡) round algorithm (Algorithm 2).

First, we argue correctness: Consider the case when all vertices in
a minimum weight cycle ⇠ are contained in the

p
=-neighborhood

of some vertex E in ⇠ . When computing the
p
=-neighborhood

of E , an edge of ⇠ furthest from E is a non-tree edge and ⇠ is
computed as one of the candidate cycles — the MWC length is
computed exactly. In the other case where no vertex E in ⇠ whosep
=-neighborhood contains⇠ , our algorithm computes a (2� (1/6))-

approximation. This
p
=-neighborhood of E must have size

p
= and

contain a sampled vertex F at a hop distance at most b6/2c. The
BFS from this vertexF detects cycle⇠ as a candidate cycle of length
at most 26. By a more re�ned argument for even-length cycles, we
show a (2 � (1/6))-approximation guarantee.

In line 1 we use an (' + ⌘)-round algorithm in [7] to compute
for each vertex its ' closest neighbors within ⌘ hops (the source
detection problem); here we have ' =

p
= and ⌘ = ⇡ so line 1 runs

Algorithm 2 Undirected Unweighted MWC 2-Approximation

0: Sample each vertex E 2 ⌧ into set ( with probability ⇥
⇣
log=p

=

⌘
1: for each vertex E 2 ⌧ , �nd

p
= closest vertices to E . For each

non-tree edge in the partial shortest path tree computed, record
a candidate cycle.
2: for vertexF 2 ( , perform BFS starting fromF . For each non-
tree edge in the BFS tree, record a candidate cycle.
3: Return the minimum among all recorded candidate cycles.

in $ (p= + ⇡) rounds. The set ( computed in line 2 has size $̃ (p=)
w.h.p. in = and we perform a |( |-source BFS, which takes $̃ (p=+⇡)
rounds. The global minimum computation in line 3 takes $ (⇡)
rounds, giving a total round complexity of $̃ (p= + ⇡).

We use this algorithm along with a weight scaling technique
to compute a (2 + n)-approximation of undirected weighted MWC
in $̃

⇣
min(=3/4⇡1/4 + =1/4⇡,=3/4 + =0.65⇡2/5 + =1/4⇡,=)

⌘
rounds.

This algorithm has sublinear round complexity when ⇡ is >̃ (=3/4)
and compares favorably with our ⌦̃(=) lower bound for (2 � n)-
approximation of undirected weighted MWC. This algorithm, and
other approximation results, are presented in the full version [8].
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