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We present the first hard-constraint neural network model for predicting activity coefficients (HANNA),

a thermodynamic mixture property that is the basis for many applications in science and engineering.

Unlike traditional neural networks, which ignore physical laws and result in inconsistent predictions, our

model is designed to strictly adhere to all thermodynamic consistency criteria. By leveraging deep-set

neural networks, HANNA maintains symmetry under the permutation of the components. Furthermore,

by hard-coding physical constraints in the model architecture, we ensure consistency with the Gibbs–

Duhem equation and in modeling the pure components. The model was trained and evaluated on

317 421 data points for activity coefficients in binary mixtures from the Dortmund Data Bank, achieving

significantly higher prediction accuracies than the current state-of-the-art model UNIFAC. Moreover,

HANNA only requires the SMILES of the components as input, making it applicable to any binary mixture

of interest. HANNA is fully open-source and available for free use.

Introduction

Neural networks (NNs) have recently revolutionizedmany elds,

including image analysis,1 speech recognition,2 predicting

protein folding,3,4 and language modeling.5,6 These models are

universal and highly exible function approximators,7 which

perform best if they have large amounts of training data. NNs

are also gaining more and more attention in chemical

engineering8–12 but face two signicant challenges preventing

them from exploiting their full potential in this eld: sparse

training data and inconsistent predictions. Like in other elds

of science and engineering, data sparsity is ubiquitous in

chemical engineering due to the high effort and costs related to

experimental data collection, making predictions with purely

data-driven NNs difficult. Furthermore, since NNs are a priori

agnostic about physical laws and boundaries, there is no guar-

antee that their predictions obey these rules, frequently leading

to physically inconsistent results and predictions.13 This, in

turn, is detrimental to the trust in NN-based models and

a severe obstacle to their adoption and use in practice.

The most promising solution to these challenges is to

incorporate explicit physical knowledge into NNs to support

their training beyond using only the limited available data.

Most prominently, Physics-Informed Neural Networks (PINNs)14

have been successfully applied in different elds,10,13,15–20

primarily to solve partial differential equations (PDE) efficiently.

PINNs incorporate the governing physical equation or boundary

conditions into the loss function of an NN by adding a term that

penalizes solutions deviating from the constraint (e.g., the

compliance of a PDE).21 PINNs are inherently so-constraint

methods that do not enforce exact compliance with the given

constraints, which is a well-known limitation of penalty

methods in general22,23 and has potential drawbacks. Speci-

cally, while approximately complying with physical laws and

boundaries might be sufficient in some cases, this is unac-

ceptable in many applications; for instance, thermodynamic

models that yield physically inconsistent predictions will not be

accepted and used in chemical engineering practice.

Hard-constraint models, which strictly enforce physical

relations and constraints in NNs, are generally considered

challenging to develop.21,23–26 Thermodynamics is the ideal eld

for designing such hard-constraint models with its extensive

treasure of explicit physical knowledge on the one hand and the

high demand for strict compliance of predictive thermody-

namic models with physical laws and constraints on the other.

In this work, we introduce the rst hard-constraint NN-based

model for thermodynamic property prediction, which opens

up an entirely new way of thermodynamic model development

but also holds the promise to advance model development in

other elds of chemical engineering and beyond.

Predicting the thermodynamic properties of pure compo-

nents and mixtures is fundamental in many elds of science

and engineering. In chemical engineering, knowledge of ther-

modynamic properties is the basis for process design and
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optimization. However, experimental data on thermodynamic

properties are scarce. The problem is particularly challenging

for mixtures, where missing data are prevalent due to the

combinatorial complexity involved.

One of the most critical thermodynamic properties is the

activity coefficient of a component in a mixture. Activity coeffi-

cients are the key to modeling the chemical potential in liquid

mixtures, one of the most central properties in physical chem-

istry and chemical engineering. Activity coefficients are essen-

tial for correctly describing chemical equilibria,27 reaction

kinetics,28 phase equilibria,29 and many other properties of

mixtures, such as electrochemical properties.30,31 Since activity

coefficients cannot be measured directly, they are usually

determined indirectly by evaluating phase equilibrium experi-

ments. Since these experiments are time-consuming and

expensive, experimental data on activity coefficients are oen

lacking, and many physical prediction methods have been

developed and are widely applied in industry.29

Physical methods for predicting activity coefficients model the

molar Gibbs excess energy gE as a function of temperature T and

mixture composition in mole fractions x, from which the loga-

rithmic activity coefficients ln gi are obtained by partial differ-

entiation.29 The two most widely used gE models are NRTL32 and

UNIQUAC.33 These models generalize over state points, i.e.,

temperature and mole fractions, but cannot extrapolate to

unstudied mixtures. In contrast, gE models based on quantum-

chemical descriptors, such as COSMO-RS34 and COSMO-

SAC,35–37 or group-contribution models, such as the different

versions of UNIFAC38,39 (with modied UNIFAC (Dortmund)

being the most advanced39,40) also allow to generalize over

components andmixtures. However, even though they have been

continuously developed and rened for decades, the state-of-the-

art models show signicant weaknesses for certain classes of

components. The consequential inaccuracies in predicting

activity coefficients result in wrongly predicted phase equilibria,

leading to poor process modeling and simulation.41,42 On the

upside, the theoretical foundation of the established physical

models allows for good extrapolation performance, and, even

more importantly, they exhibit strict compliance with thermo-

dynamic laws, boundaries, and consistency criteria.

Recently, machine-learning (ML) methods have gained

attention for predicting activity coefficients43–45 and other ther-

modynamic properties.46–52 Even though these models are

purely data-driven, they surpassed the physical thermodynamic

models in prediction accuracy. However, they were all limited to

specic state points and could, e.g., not describe the composi-

tion dependence of activity coefficients.

To improve the ML models further, various hybridization

approaches53 were developed that combine the exibility of ML

methods with physical knowledge. This was, e.g., done by aug-

menting the training data with synthetic data obtained from

physical prediction methods.42,54 Other recently developed

hybridization approaches55–57 have broadened the application

range of physical thermodynamic models. In these approaches,

an ML method is embedded in a physical thermodynamic

model to predict the physical model's parameters. By retaining

the framework of the physical models, these hybrid models are

intrinsically thermodynamically consistent. On the downside,

these models are subject to the same assumptions and simpli-

cations taken during the development of the original model,

limiting their exibility. Consequently, they have a restricted

value range of predictable activity coefficients,58 limiting the

description of certain phase behaviours.59–62

Rittig et al. recently developed a PINN13 and a hard-constraint

approach63 considering the Gibbs–Duhem equation; however,

their study was limited to synthetic data and the Gibbs–Duhem

equation as only one of the relevant physical boundary condi-

tions. Hybrid models for activity coefficient prediction that fully

exploit the exibility of NNs while guaranteeing consistency with

all thermodynamic constraints have not been available until now.

This work has addressed this gap.

Specically, we have developed the rst hard-constraint NN

model for the Gibbs excess energy gE of a mixture, which allows

us to predict activity coefficients ln gi in any binary mixture of

arbitrary components at any state point. We name our method

HArd-constraint Neural Network for Activity coefficient predic-

tion (HANNA) in the following. We restrict ourselves here to

binary mixtures. All physical models of mixtures are based on

pair interactions, which can, and practically always are, trained

on data for binary mixtures. Therefore, predictions for binary

activity coefficients obtained fromHANNA could be used to t the

parameters of a physical model based on pair-interactions, which

can then be used for predictions of multicomponent mixtures.

However, it would also be very interesting to study the general-

ization of HANNA to multicomponent mixtures in future work.

Development of HANNA

HANNA combines a exible neural network with explicit physical

knowledge. At its heart, it predicts the Gibbs excess energy gE of

amixture, fromwhich subsequently the activity coefficients of the

mixture components, typically given in the natural logarithm

ln gi, can be derived. The Gibbs excess energy gE and conse-

quently the activity coefficients ln gi, are typically expressed as

functions of temperature T, pressure p, and the composition in

mole fractions x of the components. In the following, we will

express gE and the activity coefficients ln gi in binary mixtures as

functions of T, p, and x1. For liquid mixtures, the inuence of the

pressure is small and is oen neglected, which is also the case for

our model. However, for the sake of clarity, all thermodynamic

derivations are written here without this assumption.

The predictions of HANNA strictly comply with all relevant

thermodynamic consistency criteria, which are listed for binary

mixtures as follows.

(1) The activity coefficients of pure components are unity:

lim
xi/1

ln giðT ; p; xiÞ ¼ 0 (1)

(2) The activity coefficients of the components in a mixture

are coupled by the Gibbs–Duhem equation, which reads

for the binary mixture:

x1

�

v ln g1

vx1

�

T ;p

þ ð1� x1Þ

�

v ln g2

vx1

�

T ;p

¼ 0 (2)
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(3) The activity coefficients in a pseudo-binary mixture A + B

where A = B are always unity:

ln gi(T,p,xi) = 0 (3)

(4) Upon changing the order of the components in the input

of amodel for predicting the activity coefficients ln g1 and

ln g2 in a binary mixture, the values of the predicted

activity coefficients must not change, only their order.

Mathematically, this is called permutation-equivariance

and can be expressed as:

g(P(x)) = P(g(x)) (4)

where g is the vector containing the (logarithmic) activity

coefficients of the mixture components, x is the vector con-

taining the information on the components in the input,

including their descriptors and mole fractions, and P is

a permutation operator.

In Fig. 1, we visualize how HANNA strictly enforces these

constraints for predicting activity coefficients, leading to the

novel class of hybrid NNs developed in this work. The central

idea is to learn the molar excess Gibbs energy gE of the mixture

rather than the individual activity coefficients (g1 and g2)

directly. The values of g1 and g2 can then be obtained from gE by

the laws of thermodynamics, ensuring strict thermodynamic

consistency. HANNA consists of four parts:

(1) Pure-component embeddings from pretrained

ChemBERTa-2

We use SMILES64 strings to represent the components and

preprocess them with ChemBERTa-2,65 a language model

pretrained on an extensive database of molecules for

learning “pure component embeddings” of the molecules

from the respective SMILES.

(2) Rening pure-component embeddings for thermodynamic

property prediction

Since the embeddings of ChemBERTa-2 were not explicitly

trained on thermodynamic properties, we “ne-tune” them

to predict thermodynamic properties in a two-step process.

We rst feed them into a “component embedding network”

fq to get a lower dimensional representation of each

component i. Then, the information on the standardized

temperature T* (see Section Data splitting, training, and

evaluation of the model for the denition) and the composi-

tion (here: mole fraction x1 of component 1) are concate-

nated to each of the component embeddings. The result of

this step is a rened embedding for each component i,

represented as vector Ci, tailored for thermodynamic

mixture property prediction.

(3) Learning mixture embeddings and preliminarly prediction

The component embeddings Ci are then individually pro-

cessed by the “mixture embedding network” fa, whose outputs

are then aggregated using the sum operation to yield Cmix.

This step guarantees permutation invariance, i.e., indepen-

dence of the order of the components, an idea inspired by

deep-set models,66,67 and ensures that eqn (4) is fullled.

Subsequently, the sum is fed into another “property predic-

tion” network ff whose output gENN is a scalar that can be

understood as a preliminary prediction of the molar Gibbs

excess energy gE of the mixture.

(4) Enforcing all physical consistency criteria

In this step, gENN is further processed to guarantee the

compliance of HANNA's predictions with the remaining

consistency criteria, cf. eqn (1)–(3). Step 4 basically corrects

the preliminary gENN to hard-constrain the nal predicted

molar Gibbs excess energy gE on physically consistent solu-

tions. Specically, gE of the mixture of interest is calculated

by:

gE

RT
¼ gENN$x1$ð1� x1Þ$ð1� cosðf qðE1Þ; f qðE2ÞÞÞ (5)

where

1� cosðf qðE1Þ; f qðE2ÞÞ ¼ 1�
f qðE1Þ$f qðE2Þ

kf qðE1Þk2kf qðE2Þk2
(6)

Fig. 1 Scheme of HANNA, the first hard-constraint NN for predicting activity coefficients in binarymixtures. Technical details on the architecture

are given in Section Data splitting, training, and evaluation of the model.
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denotes the cosine distance between the two component

embeddings fq(E1) and fq(E2), R is the ideal gas constant, and T

is the absolute temperature in Kelvin. The term x1$(1 − x1) in

eqn (5) ensures that gE becomes zero in the case of pure

components (x1 = 1 or x1 = 0), thereby enforcing strict

consistency with regard to eqn (1). The cosine distance, cf. eqn

(6), ensures that if the two component embeddings are iden-

tical, i.e., the studied “mixture” is, in fact, a pure component

(cosine distance equals zero), gE always becomes zero to guar-

antee consistency regarding eqn (3).

Finally, the logarithmic activity coefficients ln gi are derived

in a thermodynamically consistent way from gE by partial

differentiation, which reads for a binary mixture:29,68

ln g1 ¼
gE

RT
þ ð1� x1Þ

�

vgE

vx1

�

T ;p

RT

ln g2 ¼
gE

RT
� x1

�

vgE

vx1

�

T ;p

RT

(7)

For this purpose, the auto-differentiation function “auto-

grad” from pytorch69 is used to calculate ln gi following eqn

(7). This last step intrinsically ensures the Gibbs–Duhem

consistency of the predicted activity coefficients, cf. eqn (2).

Furthermore, since gE is enforced to be permutation-

invariant in step 3, the differentiation in eqn (7) always

yields permutation-equivariant predictions for ln gi.

HANNA was trained end-to-end and evaluated on 317 421

data points for ln gi in 35 012 binary systems from the Dort-

mund Data Bank (DDB),70 cf. Section Data for details. The data

set was randomly split system-wise in 80% training, 10% vali-

dation, and 10% test set. Technical details on HANNA and the

optimization procedure are given in Section Data splitting,

training, and evaluation of the model. We also trained and vali-

dated a version of HANNA on 100% of the data with the nal set

of hyperparameters. This version is not discussed or used to

evaluate the predictive performance of HANNA in this work but

will be provided together with this paper as an open-source

version. This nal version of HANNA should be used if activity

coefficients in any binary mixture need to be predicted. The only

inputs needed are the SMILES of the components, their mole

fractions, and the temperature.

Results

In the following, we discuss the performance of HANNA for

predicting activity coefficients from the test set, which were not

Fig. 2 System-specific MAE of the predicted logarithmic activity

coefficients ln gi from HANNA and UNIFAC. Left: results for those data

from the test set that can also be predicted with UNIFAC (UNIFAC

horizon). Right: results for the complete test set (complete horizon).

Fig. 3 Histograms and cumulative fractions (lines) showing the system-specific MAE for predicting logarithmic activity coefficients ln gi. Left:

comparison of HANNA with UNIFAC on those test data that can be predicted with UNIFAC (UNIFAC horizon). The shown range covers 98.1% of

the predictions of HANNA and 93.2% of the predictions of UNIFAC. Right: results of HANNA on the complete test set. The shown range covers

97.9% of the predictions.
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Fig. 4 From left to right: Gibbs excess energies
gE

RT
; resulting logarithmic activity coefficients ln gi, and isothermal vapor–liquid phase diagrams

for five systems from the test set plotted as a function of x1 as predicted with HANNA (lines) and comparison to experimental test data from the

DDB70 (symbols). No data for any of the depicted systems were used for training or hyperparameter optimization.

© 2024 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2024, 15, 19777–19786 | 19781
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used for training or hyperparameter optimization. For

comparison, we also include the results of modied UNIFAC

(Dortmund),39,40 referred to simply as UNIFAC in the following.

The UNIFAC training set has not been disclosed. However, since

the groups developing UNIFAC and maintaining the DDB are

essentially the same, one can assume that a large share of the

data considered here was also used for training UNIFAC. Hence,

contrary to the results of HANNA, the results obtained with

UNIFAC cannot be considered true predictions. This generates

a strong bias of the comparison in favor of UNIFAC.

We compare the performance of the models using a system-

wise error score. Specically, we calculate system-specic mean

absolute errors (MAE) by averaging the absolute deviations of

the predicted logarithmic activity coefficients from the experi-

mental data for each system from the test set. This procedure

ensures equal weighting of all systems irrespective of the

number of data points and prevents overweighting well-studied

systems like water + ethanol. All 3502 systems in the test set can

be predicted with HANNA, but due to missing parameters, only

1658 can be modeled with UNIFAC. Therefore, both models are

compared on the smaller shared horizon, called the “UNIFAC

horizon” in the following.

Fig. 2 shows the system-specic MAE of the predicted loga-

rithmic activity coefficients in boxplots; the whisker length is 1.5

times the interquartile range. Outliers are not depicted for

improved visibility. The le panel of Fig. 2 shows the results for

the UNIFAC horizon, i.e., for the data points that can be predicted

with both models. HANNA signicantly outperforms UNIFAC,

with a mean MAE reduced to approximately a third of UNIFAC's,

particularly indicating a reduced number of very poorly predicted

data points. Furthermore, the signicantly reduced median MAE

(from 0.09 to 0.05) indicates higher overall accuracy than UNI-

FAC. Fig. 2 (right) shows that the performance of ourmodel on all

test data (“complete horizon”), including those that cannot be

predicted with UNIFAC, is similar to the UNIFAC-horizon

performance. In Fig. S.7 in the ESI,† we show the robustness of

HANNA over different random seeds for data splitting.

As each data point in the test set corresponds to a binary

system, three different cases can occur:

(1) Only the combination of the two components is new, i.e.,

the respective system was not present in the training or

validation data. However, for both components, some

data (in other systems) were used for training or

validation.

(2) One component is unknown, i.e., only for one of the

components, some data (in other systems) were used

during training or validation.

(3) Both components are unknown, i.e., no data for any of the

components (in any system) were used during training or

validation.

While we do not differentiate between these cases in Fig. 2,

we demonstrate in Fig. S.6 in the ESI† that HANNA signicantly

outperforms UNIFAC in extrapolating to unknown components.

In Fig. 3, the results for the test set are shown in a histogram

representation of the system-specic MAE. Furthermore, the

cumulative fraction, i.e., the share of all test systems that can be

predicted with an MAE smaller than the indicated value, is

shown in Fig. 3. Again, in the le panel, the predictions of

HANNA are compared to those of UNIFAC on the UNIFAC

horizon; in the right panel, the predictions of HANNA for the

complete test set are shown. The results underpin the improved

prediction accuracy of HANNA compared to UNIFAC, e.g., while

approximately 78% of the test systems on the UNIFAC horizon

can be predicted with anMAE < 0.1 with HANNA, which is in the

range of typical experimental uncertainties for activity coeffi-

cients, this is the case for only approximately 54% with UNIFAC.

Fig. 4 shows detailed results for ve isothermal systems of

the test set. In addition to the predicted activity coefficients as

a function of the composition of the mixtures (middle panel),

the corresponding Gibbs excess energies are plotted (le panel),

which are internally predicted in HANNA, cf. Fig. 1. Further-

more, the respective vapor–liquid phase diagrams obtained

with the predicted activity coefficients are shown (right panel),

cf. Section Data for computational details. In all cases, HANNA's

predictions (lines) are compared to experimental test data

(symbols) from the DDB.

The shown systems were chosen randomly from the test set,

aiming to cover various phase behaviours from low-boiling

azeotropes (top), through approximately ideal systems

(middle), to high-boiling azeotropes (bottom). In all cases,

excellent agreement is found between the predictions and the

experimental data. The results also demonstrate the thermo-

dynamic consistency of HANNA: gE= 0 and ln gi= 0 for the pure

components, and the Gibbs–Duhem equation is fullled

throughout.

In Section Ablation studies in the ESI,† results of ablation

studies for which different parts in HANNA have been removed

are presented. These results demonstrate the importance of

hard-coding physical knowledge in the architecture of HANNA,

not only regarding the thermodynamic consistency of the

predictions but also regarding the predictive accuracy. Overall,

the results clearly underpin the power of the hybrid approach,

which combines the strengths of exible NNs with that of

physical knowledge. Given that our space of possible binary

mixtures is easily in the millions, even if we only take compo-

nents with experimental data on activity coefficients into

account, it is remarkable that HANNA can generalize well based

on only a fraction of about 1% of the binary systems.

Conclusion

This work introduces a novel type of thermodynamic models:

a hard-constraint neural network (NN) model combining the

exibility of NNs with rigorous thermodynamics. We demon-

strate this for an essential thermodynamic modeling task: pre-

dicting activity coefficients in binary mixtures. The new hybrid

model, HANNA, incorporates thermodynamic knowledge

directly into the NN architecture to ensure strict thermody-

namic consistency. HANNA was trained end-to-end on

comprehensive data from the Dortmund Data Bank (DDB).

HANNA enables thermodynamically consistent predictions

for activity coefficients in any binary mixture whose compo-

nents can be represented as SMILES strings. It is fully disclosed

and can be used freely. The predictive capacity of HANNA was

19782 | Chem. Sci., 2024, 15, 19777–19786 © 2024 The Author(s). Published by the Royal Society of Chemistry
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demonstrated using test data from the DDB that were not used

in model development and training. HANNA clearly outper-

forms the best physical model for predicting activity coeffi-

cients, modied UNIFAC (Dortmund), not only in terms of

prediction accuracy but also regarding the range in which it can

be applied, which is basically unlimited for HANNA but

restricted for UNIFAC by the availability of parameters. Only

about 50% of the mixtures in the test data set could be modeled

with UNIFAC, while all could be predicted with HANNA.

Now that the path for developing hard-constraint NNs in

thermodynamics is clear, many exciting options exist. As the

framework presented here is based on the Gibbs excess energy,

the Gibbs–Helmholtz equation is implicitly considered so that

HANNA can be easily extended to also include excess enthalpies,

which is expected to improve the description of the temperature

dependence of the activity coefficients. Furthermore, not only

enthalpies of mixing could be incorporated, but other types of

thermodynamic data could also be used, e.g., activity coeffi-

cients determined from liquid–liquid equilibria. The approach

described here could also be extended to multicomponent

mixtures. However, this can already be achieved by using

HANNA to predict the binary subsystems and employing

established physical models based on pair interactions for

extrapolating to multicomponent mixtures.

Finally, the approach described here for Gibbs excess energy

models can also be transferred to other thermodynamic

modeling approaches, e.g., equations of state based on the

Helmholtz energy. More broadly, it could be adapted to merge

physical theory with NNs in other scientic elds.

Methods
Data

Experimental data on vapor–liquid equilibria (VLE) and activity

coefficients at innite dilution in binary mixtures were taken

from the Dortmund Data Bank (DDB).70 In preprocessing, data

points labeled as poor quality by the DDB were excluded.

Furthermore, only components for which a canonical SMILES

string could be generated with RDKit71 frommol-les from DDB

were considered.

From the VLE data, activity coefficients were calculated with

extended Raoult's law:

gi ¼
pyi

pSi xi

(8)

where gi is the activity coefficient of component i in the mixture,

xi and yi are the mole fractions of component i in the liquid and

vapor phase in equilibrium, respectively, p denotes the total

pressure, and pSi is the pure-component vapor pressure of i,

which was computed using the Antoine equation with param-

eters from the DDB. The vapor phase was treated as a mixture of

ideal gases in all cases. Furthermore, the pressure dependence

of the chemical potential in the liquid phase was always

neglected. Consequently, VLE data points at total pressures

above 10 bar were excluded. The activity coefficients at innite

dilution, also normalized according to Raoult's law, were

adopted from the DDB. The VLE diagrams in Fig. 4 were

predicted using eqn (8) with the activity coefficients from

HANNA and pure-component vapor pressures from the DDB.

The nal data set aer preprocessing comprises 317 421 data

points and covers 35 012 binary systems and 2677 individual

components.

ChemBERTa-2 embeddings

The numerical embeddings of the components were generated

from a pretrained language model called ChemBERTa-2,65

which was trained on a large database of SMILES. We used the

“77M-MTR” model that is openly available on Huggingface.72

The “77M-MTR” model used 77 million SMILES to train

ChemBERTa-2 in a multiregression task using the CLS token

embedding.65 We use the CLS token embedding of the last layer

of ChemBERTa-2, which results in a 384-dimensional input

vector Ei for each pure component i, cf. Fig. 1. The maximum

number of tokens, i.e., the individual SMILES building blocks

used by ChemBERTa-2, was set to 512. The tokenization process

of the original ChemBERTa-2 was slightly adapted here as

explained in detail in Section Improved tokenization of Chem-

BERTa-2 in the ESI† due to an error in the default tokenizer.

Data splitting, training, and evaluation of the model

For training and evaluating the hybrid model HANNA, the data

set was split randomly system-wise as follows: all data points for

80% of the binary systems (28 009) were used for training, all

data points for another 10% of the systems (3501) were used for

validation and hyperparameter optimization, and all data

points for the remaining 10% of the systems (3502) were used to

test the model. The data split was carried out system-wise, i.e.,

all data points for an individual system are only present in

a single set (training, validation, or test). This procedure

ensures a fair evaluation of our model on truly unseen systems

in the test set. The splitting of the systems to the different sets

was completely random. In Fig. S.7 in the ESI,† we demonstrate

the robustness of HANNA for different random splittings of the

data set.

All models and training and evaluation scripts were imple-

mented in Python 3.8.18 using PyTorch 2.1.2.69 Themodels were

trained on one A40 GPU using the AdamW73 optimizer with an

initial learning rate of 0.0005 or 0.001, a learning rate scheduler

with a decay factor of 0.1, and a patience of 10 epochs based on

the validation loss. The training was stopped if the validation

loss (cf. below) was not improving for 30 epochs (early stopping),

and the model with the best validation loss was chosen. Typical

training times for the model were between 30 and 60 minutes.

The pure-component embedding network fq and the prop-

erty network ff consist of one hidden layer, whereas the mixture

embedding network fa consists of two hidden layers, cf. Fig. 1.

In all cases, the Sigmoid Linear Unit (SiLU) function with

default PyTorch settings was used as the activation function.

The models are using the same number of nodes in each

layer, except for the mixture embedding network fa, where the

input size is increased by two to include the standardized

temperature and mole fraction of the respective component.

© 2024 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2024, 15, 19777–19786 | 19783

Edge Article Chemical Science

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 3

1
 O

ct
o
b
er

 2
0
2
4
. 
D

o
w

n
lo

ad
ed

 o
n
 1

0
/3

/2
0
2
5
 1

0
:0

0
:4

1
 P

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
 3

.0
 U

n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online



Also, the output dimension of the property network ff is always

one.

The embeddings of ChemBERTa-2 and the temperature in

the training set were standardized using the StandardScaler

from scikit-learn 1.3.0,74 whereas the mole fractions remained

unchanged. The loss function SmoothL1Loss from PyTorch69

was used to mitigate the effect of experimental outliers of the

activity coefficients. The hyperparameter b that controls the

change between the L2 and L1 loss in the SmoothL1Loss was set

to 0.25 and not varied. A batch size of 512 was used. The AdamW

optimizer was used to update the NN weights during training.

Besides the early stopping, the validation loss was used for

hyperparameter tuning. The only varied hyperparameters were

the weight decay parameter l in the AdamW optimizer, the

number of nodes in each network, and the initial learning rate,

cf. above. Based on the results of the validation set, l = 0.01 and

96 nodes with an initial learning rate of 0.001 were chosen. In

the ESI† in Section Hyperparameter optimization, we discuss the

inuence of the different hyperparameters and present the

validation loss results.

We provide a “nal” version of HANNA with this paper that

was trained as described above, except that no test set was used,

i.e., 90% of all systems were used for training and 10% for

validation.

Data availability

All data were taken from the Dortmund Data Bank.70 The nal

version of HANNA, which was trained and validated on 100% of

the data (without using a test set), is available on Github

(https://github.com/tspecht93/HANNA) and distributed under

the MIT license.
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