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Abstract. We present a detailed study of a scalar differential equation with threshold
state-dependent delayed feedback. This equation arises as a simplification of a gene
regulatory model. There are two monotone nonlinearities in the model: one describes
the dependence of delay on state, and the other is the feedback nonlinearity. Both in-
creasing and decreasing nonlinearities are considered. Our analysis is exhaustive both
analytically and numerically as we examine the bifurcations of the system for various
combinations of increasing and decreasing nonlinearities. We identify rich bifurcation
patterns including Bautin, Bogdanov—Takens, cusp, fold, homoclinic, and Hopf bifur-
cations whose existence depend on the derivative signs of nonlinearities. Our analysis
confirms many of these patterns in the limit where the nonlinearities are switch-like
and change their value abruptly at a threshold. Perhaps one of the most surprising
findings is the existence of a Hopf bifurcation to a periodic solution when the nonlin-
earity is monotone increasing and the time delay is a decreasing function of the state
variable.
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1 Introduction

In considering mathematical models for the dynamics of biological feedback systems, the
occurrence of delays is almost ubiquitous and this leads to very interesting biological, mathe-
matical, and modeling problems. These delays arise because of the time required to propagate
feedback signals in biological systems. For physiological examples one need only think of the
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conduction time of action potentials in a neural feedback circuit [2,38], the time required to
complete DNA synthesis, mitosis and cytokinesis in cell replication [12], the significant time
required to produce mature cells in the hematopoietic system [10,16], as well as a myriad
of others [19]. Examples in engineering and physical settings are rich and abundant rang-
ing from control of ships [44], vibration control [45], and the delays due to the relativistic
propagation of signals at the speed of light [11, 66,67].

In this paper we study the dynamics of the positive solutions of the scalar state-dependent
delay differential equation (DDE)

ey pa—pr(ry . 9(x(t)))
X' (t) = pe )mé’(x(t —1(t))) —vx(t) (1.1)

where for t > 0 the delay 7(t) is defined by the threshold condition

0 t
a= v(x(t+s))ds = / v(x(s))ds. (1.2)
—1(¢) t—1(t)
We assume that the constants 8, 4,y and a are all positive.
We will consider the system (1.1),(1.2) with both smooth and piecewise constant functions
v(x) and g(x). In the smooth case, we take the functions to be Hill functions

g 0z + grx"

v 0N + ot x™
8(x) = 0y + x" o gam

;o u(x) = T (1.3)

where the exponents m and n are strictly positive real numbers. We also assume that v(x) is
strictly positive and bounded away from zero:

0 <9y <o(x) <oy, where vy = min{v",0v"}, vy =max{v 0"} (1.4)

This ensures that the delay defined by (1.2) satisfies 7(t) € [a/vy,a/vo], and is thus both
bounded and bounded away from zero. Moreover, applying Leibnitz’s rule to (1.2) with
v(x) > vy > 0 shows that £ (t — 7(t)) > vg/oy > 0 so t — T(t) is a strictly monotonically
increasing function of t. Consequently to pose (1.1)-(1.2) as an initial value problem (IVP) it
is sufficient to provide an initial function x(t) = ¢(t) for t € [—7(0),0] where 7(0) is defined
by (1.2). We will take the function g to be non-negative and bounded with

0<go<g(x)<gu,  where go=min{g ,¢"}, gu=max{g ,g"}. (1.5)

We are interested in the dynamics when the Hill coefficients m, n are small or large, and
also consider the case of piecewise constant functions obtained by taking the limits of v(x)
and g(x) as m and n — oo. In that case we take the limiting functions to be set-valued at the
threshold points with

g, x < 0
g(x) =14 [go.gul, x=106 (1.6)
gt, x>0

v, x < 0,
v(x) =4 [vo,vul, x =6 (1.7)
o', x>0,
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Equation (1.6) is derived from (1.3) by regarding the curve {x,¢(x)} as a subset of R? and
taking the limit as n — oo using the Hausdorff metric, and (1.7) is derived similarly. There
is a long history of incorporating set-valued functions into differential equations, resulting in
differential inclusions for ordinary differential equations [3,4], and in DDEs. Mallet-Paret and
Nussbaum ([40,41]) consider set-valued limiting solutions in their study of slowly oscillating
periodic solutions.

As shown in Appendix A, the system (1.1)—(1.2) arises as a quasi-steady state reduction of
the state-dependent delayed extension of the Goodwin [21] operon model studied in [18, 63,
65]. Thus the model is taken to describe the regulation of a bacterial operon in which the cells
are growing exponentially at a rate y and have finite transcriptional and translational velocities
that are potentially dependent on the state of the system. Then the function g denotes the
production flux of messenger RNA (mRNA) while v is the velocity of translation/transcription
of the mRNA strand to produce the end product (protein). x represents the dimensionless
effector concentration.

The function g(x) in (1.3) is monotone increasing when g~ < g, which we refer to as a
positive feedback case. In the operon context ([21]) this corresponds to an inducible operon.
The classical example would be the lac operon regulating bacterial utilization of lactose as an
energy source. Conversely, when g~ > ¢ the function g(x) is monotone decreasing, which
we refer to as a negative feedback case, and in the operon setting it would correspond to a
repressible operon. The immediate example that comes to mind is the tryp operon regulating
the production of the amino acid tryptophan.

In [18] it is argued that the transcription velocity for an operon should be an increasing
function when g is a decreasing function, and vice versa, while the translation velocity should
always be monotonically decreasing. In the current study, we do not make this assumption
and instead consider the different possible combinations of increasing/decreasing/constant
g and v to explore potential dynamics. To avoid confusion we use g 1 to indicate that the
function ¢ is monotonically increasing or equivalently that ¢~ < ¢*. Then g | denotes that g
is monotonically decreasing or equivalently that g~ > ¢, while we use g <> to denote that
¢~ = ¢ and so g is a constant function. With analogous definitions for the function v we
denote different cases of these pairs of functions by (¢ 1,0 1), (¢ T,v }), (¢ T,v ), etc.

Smith [55,56] showed that a DDE with a threshold delay can be converted through a
time transformation to a distributed delay DDE with a constant delay, so the theory of those
equations is applicable to this model. Some authors have used this transformation to study
threshold models as distributed constant delay DDEs (see for example [33,58]), but other times
the existence of the time transformation to constant delay DDE has been used as an excuse to
just ignore the threshold delay and treat the delay as if constant. We will demonstrate that the
model (1.1) with the threshold delay (1.2) can display very different dynamics than the same
model (1.1) with a constant discrete delay.

In this work we will tackle (1.1) with the threshold delay (1.2) directly without trans-
forming to a constant delay DDE. We do this because we are also interested in problems
with multiple delays. For a problem with multiple threshold delays defined by different in-
tegrands, or even for a problem with a single threshold delay and a single constant delay, it
is not possible to use a time transformation to convert it to a constant delay DDE. We also
point out that when p # 0, the term e #7 in (1.1) would cause the time transformed equation
to be a distributed DDE with constant delay, and not a discrete delay DDE (see [64]). Finally,
we believe it is interesting that the analysis and numerics of these problems can be tackled
directly for the problem as originally formulated.
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The outline of this paper is as follows. Section 2 discusses the semiflow generated by
(1.1)—(1.2). The following Section 3 considers issues related to the positivity of solutions and
the existence of a global attractor, and then Section 4 examines the linearization of the system
at one of the steady states and the stability of the steady state.

Sections 5 and 6 contain a detailed investigation of the rich dynamics generated by the
system (1.1)-(1.2). We combine the verification of essential necessary conditions for local
bifurcations from stationary points with numerical studies of one- and two-parameter bifur-
cations. Our numerical techniques are extensively documented in [18,63,65], and summarised
in Appendix C. Concerning Theorems 5.3, 5.4, 5.6 and 5.9 about fold- and Hopf-bifurcations
the reader should be aware that for most statements we limit ourselves to proving only those
parts which make the result plausible and serve as a basis for numerical investigation. In par-
ticular, we do not verify non-degeneracy conditions for the bifurcations. Theorems on Hopf
bifurcation for differential equations with state-dependent delay can be found in [14,30,53].

We begin in Section 5 by examining the simpler situation in which there is only one non-
linearity, with one of g or v being constant. In Sections 5.1 and 5.2 we consider the constant
delay cases (g |, v «<») and (g 1,0 <) respectively. Then in Sections 5.3 and 5.4 we consider
(¢ «»,v ) and (g <»,v 1). In these two cases v and thus T are varying, resulting in state-
dependent delays. We find that the dynamics are considerably richer and more surprising in
the state-dependent delay cases, with qualitative differences in the dynamics depending on
whether the growth rate, y, or the decay rate, v, is larger.

We continue in this vein in Section 6 but considering both nonlinearities, ¢ and v. In
Section 6.1 we begin by considering the case where 0, # 0,. In principle there should be four
cases to consider: (¢ 1,v 1), (§T,v4),(g,v 1) and (g |, v |), but in practice we find that the
dynamics is determined by the cases studied in Section 5. For example with (g 1,v 1,0, # 6,)
we find that the dynamics and bifurcations from the steady state ¢ are given by the previously
studied cases (g 1,v <+) for § = 0, and by (g «+,v 1) for { ~ 0,. Consequently, we illustrate
just two of these cases, (g |,v 1,0, # 6,) and (g 1,0 1,0, # 6,) to show how the dynamics
relates to the previous examples of Section 5. The case (g 1,v 1,6, # 6,) is interesting as it
can result in up to five co-existing steady states, three of which are stable.

If |, — 60,] < 1 then both functions ¢ and v influence the dynamics, so in Section 6.2 we
consider the dynamics when 6, = 60,. In the cases (g 1,v 1) and (g |,v |) both functions
are increasing or decreasing, and no new dynamics arise, beyond what was already seen in
Section 5. However, the cases (g 1,7 |,0; = 6,) and (g |,v 1,0, = 6,) reveal surprising
dynamics in limiting cases.

Section 7 contains summary remarks as well as comments on possible extensions of this
work.

Finally, as noted above the appendices contain the reduction of the model of [18] to the
situation we consider here (Appendix A) as well as a brief elaboration in Appendix B of five
previously published models that fall within the context of this paper, along with a summary
and references for our numerical techniques (Appendix C).

2 The semiflow of differentiable solution operators generated by the
system (1.1)—(1.2)

For delay differential equations a familiar state space is given by the space of continuous
functions on a compact interval, see e.g. [13,28]. In case of variable, state-dependent delays,
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however, there is a specific lack of smoothness which means that in general the initial value
problem is not well-posed for only continuous initial data, not to speak of, say, smoothness of
solutions with respect to initial data and linearization ([29, 59]).

Recall the definition of the segment x; of a map x : I — R for which the domain I contains
the interval [t —r,t] with t € Rand r > 0: x; is the map [—7,0] — R given by x(s) = x(t +5)
for —r < 's < 0. In other words, the restriction of x to [t — r,t] is shifted to the interval [—r,0].
In this section we reformulate the system (1.1), (1.2) as a delay differential equation

X() = G(x1) 1)

with a functional G : C! — R on the Banach space C! = C!([-r,0],R) of continuously
differentiable maps [—7,0] — R, for some r > 0 which is to be determined. The norm on C!
is given by

|¢l1 = max |p(t)]+ max [¢'(t)],

—r<t<0 —r<t<0

We will also need the Banach space C O C! of continuous maps [—r,0] — R, with the
norm given by

|9l = max [¢p(£)].

—r<t<0

We shall verify the hypotheses from [29, 59, 60] which guarantee the existence, uniqueness,
and differentiability, with respect to initial data, of solutions to an initial value problem which
is associated with (2.1) in a submanifold of the space C.

We make the following assumptions. The function ¢ : R — (0, c0) is continuously differ-
entiable with

0 < inf g(R) < sup g(R) = gu.

The function v : R — [vg,00), with vy > 0, is continuously differentiable. We fix a number
r > a/vg and notice that r is an a priori bound for 7(¢) in Eq. (1.2).

Next we rewrite the system Eq. (1.1), (1.2) in a form which is more convenient for our
purpose. Using segment notation, Eq. (1.2) becomes

0
a= v(x(s))ds (2.2)
—1(¢)
with the segment x; € C. More generally, we consider the equation
0
a= v(¢(s))ds (2.3)

—Uu

foru € [0,r] and ¢ € C. Using positivity of the function v and the Intermediate Value Theorem
we infer that for every ¢ € C there is a uniquely determined solution u = §(¢) € (0,r) of
Eq. (2.3). This yields amap ¢ : C — (0, r).

Proposition 2.1. The map ¢ : C — (0,r) is continuously differentiable with

L P (@(s))x(s)ds
o(p(—3(9)))

Dé(¢)x =

In case ¢(s) = ¢ forall s € [—r,0],

and
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Before giving the proof recall from [59, page 47] or [29, page 466] that the evaluation map
eve : Cx [—r,0] 5 (x,u) — x(u) € R.

is continuous (but not locally Lipschitz continuous, let alone differentiable), and that the
restricted evaluation map

ev: Cl x (=7,0) > (¢,u) — ¢(u) € R

is continuously differentiable with

Dev(¢p,u)(p, 1) = Diev(¢p, u)d + Daev(¢p,u)it = d(u) + ¢’ (u)d, (2.4)

where D; and D, denote partial derivatives with respect to the argument in C! and in (—r,0),
respectively. The substitution operator

ViCo¢pr—rovogpeC
is continuously differentiable with

(DV(9)p)(s) = ' (¢(s))P(s) forall ¢€C, se[-r0]
see for example [13, Appendix IV, Lemma 1.5].

Proof of Proposition 2.1. For every ¢ € C the value u = 6(¢) is the unique solution of the
equation h(u,¢) = 0, where I : (0,7) x C — R is given by

Ht9) = a— [ o(g(s))ds = a— eo(1(V (), )

—u

with the continuous linear integration operator I : C — C! defined by

0
(1)) = [ 9
The map h is continuously differentiable with

th(u, )1 = —v(Pp(-u)) <0

and

Dah(u, ) x = —Direv(I(V(¢)), —u)DI(V(¢)) DV (¢)x = —(DI(V(¢)) DV () x)(—u)
0

—(I(DV(9)x))(—u) = —/ V' (¢(s))x(s)ds.

—u

The Implicit Function Theorem applies at every (6(¢), ¢) € (—r,0) x C and yields that locally,
J is given by a continuously differentiable map. Differentiation of the equation h(5(¢),¢) = 0
gives

Doh(3(p), 9)x  Jostg) V' (9(5))x(s)ds

(
DoDIX= =D h5(g), )1 < < 59))

)
In the case ¢ is constant with value ¢ € R, Eq. (2.3) gives a = §(¢)v(¢), and by the previous
formula,

O o
DI = 55 L MO
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Using the delay functional § : C — (0,r) the system (1.1),(2.2) is reduced to the equation
v(0) = pe o) A gn(e = 0()) — () 25)
with segments x; € C. Eq. (2.5) is of the form x/(t) = G¢(x¢) € R with the map G¢ : C — R

given by

Ge(p) = pe @ ”("’(O”)))gw(—a(@)) —9(0) 26)

v(p(—o(¢
We observe that G is continuous. The restriction G of G¢ to C! is continuously differentiable
because, for ¢ € C! C C, we have evc (¢, —3(¢)) = ev(p, —6(¢)). Here ev : C! x (0,7) — Ris
continuously differentiable, the map ¢ is continuously differentiable, and the evaluation map
evp : C 3 x — x(0) € R is linear and continuous.

To simplify the calculations below we now introduce the continuous map

Ec:C— R, Ec((j)) = el)c((i), —5(¢)),
and the continuously differentiable map
E:C' =R, E(¢p)=-ev(p,—5(¢)),

with the derivative at ¢ € C! given by

DE(¢)¢ = Diev(g, —6(9))§ + D2ev(d, —5(¢)) D(—0)(9)¢
= ¢(=3(¢)) — ¢'(=6(¢)) D ()¢

for all ¢ € C!. Notice that the right hand side of the previous equation makes sense also for
arguments x € C instead of ¢§ € C!. Thus they define linear extensions D.E(¢) : C — R
of DE(¢) : C! — R. Using the continuity of the map evc, and the fact that differentiation
C! > ¢ — ¢' € C is linear and continuous we obtain the next result.

Proposition 2.2. The map C' x C > (¢, x) — D.E(¢)x € R is continuous.

Incidentally, in the case ¢ € C! is constant with value ¢ € R we have

E(¢) =¢, DE(¢)§ = d(—a/v(0)).

With the linear continuous evaluation map evp : C > ¢ — $(0) € R we obtain for the
restriction G of G¢

_ g - ué(g) 0(e0¢)
G(g) = peT W) e 5y 8 E@) — Tevng. (2.7)

In the sequel we will show that the initial value problem
x'(t) =G(x;) for t>0, xp=4¢ (2.8)

is well-posed on the set
Xo={peCl:¢'(0)=G(p)}

which is a continuously differentiable submanifold of codimension 1 in the space C!. This
result follows from results in [29,59,60] provided that the following two assertions are verified:
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1. Xg # @; and
2. G has the property that

each derivative DG(¢) : C! — R, ¢ € C', has a linear extension D,G(¢) : C — R, and the
map
C'xC >3 (¢,¢) — D.G(¢)p € R

1S continuous.

Property (2) is a version of being almost Fréchet differentiable from [42]. In case the delay
functional ¢ : C — (0, r) is bounded away from zero, which happens to be true for v bounded
also from above as in the subsequent sections, the manifold X is simply a graph in the space
C!, given by a continuously differentiable map from an open subset of the closed hyperplane
{¢p € CL:¢'(0) = 0} into a complementary line in C!, see [62, Theorem 2.4].

We now proceed to the proof of properties (1) and (2). We first show that Xg # @. The
continuous map
[0,00) 3 & pe#/?@) —yzeR

is positive at ¢ = 0 and tends to —co for { — oo. Therefore the Intermediate Value Theorem
yields a zero ¢ > 0 of this map. The constant function ¢ € C! with value { satisfies ¢'(0) =
0 = G(¢), so it belongs to the set X. This finishes the proof of property (1).

To prepare for the proof of the extension property (2) we compute the derivatives DG(¢),
¢ € Cl. For 6 : C — R we use the fact that restrictions of differentiable maps m : C — R
to C! remain differentiable, with derivatives D(m|C!)(¢) : C' — R being restrictions of the
derivatives Dm(¢) : C — R, ¢ € C! C C. It follows that

(ﬁ:—w (0) +
{ > [9/(9(0))$(0) - v(E(¢)) — 0(¢(0))0' (E(¢))DE($)$] e # @) g(E(¢p))

Yoo
* e

Now we are ready to verify property (2). In the formula for DG(¢)¢, replace the real number
DE(¢)¢ by D.E(¢)x with x € C, replace the function ¢ by x, and replace ¢(0) by x(0). This
defines D,G(¢)x € R for ¢ € C! and x € C so that the maps D,G(¢) : C — R, ¢ € C!, are
linear. Using the continuous differentiability of 4 : C — R and Proposition 2.1 one shows that
the map C! x C 5 (¢, x) — D.G(¢)x € R is continuous. This finishes the proof of property
).

With (1) and (2) verified, results from [29,59,60] apply and yield the following.

The set X; is a continuously differentiable submanifold of the Banach space C!, with
codimension 1. Each ¢ € X uniquely determines a maximal continuously differentiable
solution x : [—r,ty) — R, 0 < ty < oo, of the initial value problem (2.8). That is, x is
continuously differentiable and satisfies xo = ¢ and /() = G(x;) for all t € (0,ty), and any
other continuously differentiable function y : [—7, ty) — R, 0 < t, < co, which satisfies yp = ¢
and y'(t) = G(y;) for all t € (0, t,) is a restriction of x. All segments x;, 0 < t < oo, belong to
X (because of Eq. (2.8)). Write x? = x and tp = tx. Let

Do) 5(E@)) +¢ Vg (E@)DE@] | 29)

Qc ={(t,¢) €[0,00) x Xg :0 <t < ty}.
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The equation
Sc(t,¢) = xf,
defines a continuous semiflow S : Qg — Xg. For each t > 0 the set
QG’t:{4)€XG2t<t¢}
is an open subset of X (possibly empty), (0o = X, and each map

Sci: Qg2 ¢ SG(t,QD) € Xg, t>0,

on a non-empty domain is continuously differentiable.

Moreover, the restriction of the semiflow Sg to the open subset {(t,¢) € Qg : r < t} of the
manifold R x X is continuously differentiable [60].

3 Positivity, dissipativity, global attractor

In addition to the assumptions made in Section 2, we assume in this section that the function
v is also bounded from above by a real number v;; > vy. Using Eq. (2.3) we infer

a a
2 < < =
oy S0 =

forall ¢ € C.

Proposition 3.1. For every ¢ > 0 there exists ¢’ > 0 such that for all ¢ € X¢ with |p(t)] < c on
[—r,0] and for all t € [—r,tg) we have |x?(t)| < .

Proof. Let ¢ € Xg with |¢(t)| < ¢ on [—r,0] be given, and set x = x?. The first term on the
right hand side of Eq. (2.5) is positive and bounded by the constant

The variation-of-constants formula yields

|x(8)] =

ot b s Bo(x(s)) — 6 (xs —5(x S
1O 7 4 Lot | SO e nivg(as - (x))) |
u

u
§c—|—e7td,y (e'”—l) gc—l—i for 0 <t <ty.

Setc =c+ %. With |x(f)| = [¢(t)| < c on [—7,0] we obtain |x(t)| < ¢’ forall t € [-7,tp). O

Observe that for any (continuously differentiable) solution x : [—7,ty) — R of Eq. (2.5) and
for any t € [0, t) the first term on the right hand side of Eq. (2.5) belongs to the interval

@, d1) = | B/ 0go, By =L |
u 00

and in the case u

x(t) > d{y we have «/(t) <d"¥ —yx(t) <0,
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while for L
x(t) < C'ZY we have x/(t) > d* — yx(t) > 0.
Set iU
== | cR
o= |57 %]
and

R={peC:¢([-r,0) cQ}
Proposition 3.2 (Global existence, absorption and positive invariance, positivity).
(i) Forall € Xg, ty = 0.

(ii) For every neighbourhood N of Q in R and for each ¢ € X there exists t(¢p, N) € [0,00) with
x?(t) € N forall t > (¢, N).

(iii) If € Xg N R then x?(t) € Q forall t > 0.
(iv) If ¢ € X is strictly positive then x?(t) > 0 for all t > —r.

Proof. 1. On (i). Let ¢ € X; be given. From Proposition 3.1 the solution x = x? is bounded.
Using this and Eq. (2.5) we infer that x” is bounded. It follows that x is Lipschitz continuous.
Assume now ty < c0. Then Lipschitz continuity yields that x has a limit { € R at t = ¢ty and
x extends to a continuous map £ : [—7,ts] — R. From uniform continuity on the compact
interval [—7, t4,] it follows that the curve [0, t¢] > t — % € Cis continuous. Using this and the
equation

x'(t) = G(x¢) = Ge(%) for 0<t <ty

with the continuous map G¢ : C — R, we also conclude that x” has a limit 7 € R at t = #,. It
follows that £ is continuously differentiable (with £'(t,) = #), and £'(ty) = Gc(%t,) = G(%&,)-
In particular, ¢ = J% belongs to X, and defines a maximal solution x¥ o [0, tq)) — R of
Eq. (2.1), with 0 < t; < co. From the semiflow properties, it follows that when t;, = co we
have ty, = oo, in contradiction to the assumption above, while in the case t;, < o we get
tp > ty + ty, which contradicts ty > 0.

2. On (ii). Let a neighbourhood N of Q in R and ¢ € X be given. Set x = x?. There exists

€ > 0 so that for
dt au
de=——€ and dyc=—+¢€
Y Y

we have d_. > 0and N D [d_.,d+¢]|.

2.1. Proof that when x(t) < d. for some t > 0 we have
x(s) <die forall s>t

Otherwise x(s) > di. = % + € for some s > t. For the smallest u € [t,s] with x(u) = x(s) we
have 0 < x/(u) and, on the other hand,

x'(u) <d¥ —qyx(u) =d¥ —yx(s) < —ey <0.
2.2. Proof that when x(s) > d. for some s > 0 there exists t > s with

X(t) S d+e.
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Otherwise x(t) > die = % + € on [s,0). Hence
X'(t) <dY —qx(t) < —ey <0 on [s,0),

and consequently x(f) — —oo as t — 00, in contradiction to the assumption.

2.3. It follows that there exists t* > 0 with
x(f) <dje forall t >t
Similarly one finds t(¢, N) > t* with
x(t) >d_ forall t>t(¢p,N).
Hence
x(t) € [d_¢,dye] C N forall t>t(¢,N).

3. The proof of assertion (iii) begins with the assumption that for a given ¢ € X N R there

exists s > 0 with x?(s) > %, and is then accomplished by a simplified version of arguments
as in Part 2.1.

4. On (iv). Let ¢ € X; be given with ¢(t) > 0 for all t € [—r,0]. Set x = x?. The
assumption x(t) < 0 for some t > 0 leads to a smallest t > 0 with x(t) = 0. Necessarily,
x'(t) < 0 while Eq. (2.5) yields x'(¢) > 0. It follows that x(t) > 0 for all > —r. O

The solution manifold X is a closed subset of the space C!, and thereby a complete metric
space with respect to the metric given by the norm on C!. The next result implies that the
semiflow S¢ on the complete metric space X¢ is point dissipative as defined in [27].

Corollary 3.3. There is a bounded open subset Bg of the submanifold Xg C C!, with
¢(t) >0 forall ¢ € Bg, te][-r0],
such that for every ¢ € X¢ there exists t(¢) > 0 with

Sg(t,¢) € Bg forall t>t(¢).

Proof. Choose ¢ > 0so that N = (0, ¢) is a neighbourhood of Q. Set R = {¢ € C' : ¢([-1,0]) C
N}. Let ¢ € X¢ be given. Choose t(¢, N) according to Proposition 3.2 (ii). From Eq. (2.5)
we see that the map G sends the set R (which is not a bounded subset of C') into a bounded
subset of R, say, into (—b,b) for some b > 0. It follows that for all t > t(¢, N) 4+ r we have
|(x?)(£)| < b. For t > t(¢,N) + 2r we obtain x! € {¢ € XgNR : |¢/| < b} = Bs. The
set Bg is an open and bounded subset of X, with 0 < ¢(t) for all ¢ € Bg, t € [—r,0]. Set
) = t(p, N) + 2r. O

Recall from [27] the definition of a global attractor of a semiflow, which in the case of our
semiflow S¢ is equivalent to saying that a subset Ag C X is a global attractor if it is

® compact,

* invariant in the sense that for every ¢ € A there exists an entire flowline' ¢ : R — Xg
with ¢(0) = ¢ and ¢(R) C Ag, and

I An entire flowline is a curve ¢ : R — Xg with &(t +s) = Sg(t,&(s)) forallt > 0 and s € R
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¢ if A; attracts every bounded set B C X in the sense that given an open neighbourhood
U D Ag of Ag in X there exists tp; > 0 such that

SG([tB,UIOO) X B) C Uu.

Theorem 3.4.8 of [27] guarantees the existence of such a global attractor provided the
semiflow is point-dissipative and there exists t; > 0 so that the semiflow S¢ is completely
continuous for t > t1. The property of being completely continuous (for t > t;) is explained
after Lemma 3.2.1 in [27]. It means that for every ¢ > t; and for every bounded set B with
Sc(]0,t] x B) bounded the set Sg({t} x B) is precompact.

To prove the latter property, it is sufficient to verify the slightly stronger property that for
every bounded set B C X

(i) there exists t; > 0 so that for every t > t; the set Sg({t} x B) is precompact.

Theorem 3.4. The semiflow S has a global attractor Ag C Xg, with ¢(t) > 0 forall ¢ € Ag, t €
[—r,0].

Proof. 1. We first show that for every bounded subset B C X there exists cg > 0 with
x?(t)] <cp and |[(x?)'(t)]<cp forall ¢ €B and t> —r.

Let B C X be bounded (with respect to the norm of the space C!). Proposition 3.1 guarantees
the existence of a constant cgo with |x? ()| < cpp for all ¢ € B, t > —r. Then (2.7) shows that
the set {G(xf)) €R:¢ € B,t >0} is bounded, and Eq. (2.1) gives that the set {(x?)'(t) € R :
¢ € B,t > 0} is bounded. Also the set {¢'(t) € R: ¢ € B, —r < t < 0} is bounded.

2. Claim: For every bounded subset B C X the set Sg({r} x B) C X¢ has compact closure
in CL.

Proof: (a) Let B C X be a bounded subset of C!. Due to Part 1 the sets {x?(t) € R: ¢ €
B,—r<t<r}and {(x?)(t) € R: ¢ € B,—r < t < r} are bounded. Using the Mean Value
Theorem we see that in particular the set Sg({r} x B) is equicontinuous. As it also is bounded
in C, the Ascoli-Arzela Theorem implies that its closure in C is compact.

(b) We turn to the set {Sg(r,¢)" € C : ¢ € B} of derivatives, which is bounded in C, and
proceed to show that it is also equicontinuous. As in Part (a) one sees that the closure K of
the set

{Sg(t,p) € C:¢9 € B,0<t<r}

in the space C is compact. The map G : C! — R is the restriction of the continuous map
Gc : C — R which is uniformly continuous on the compact set K C C. Using the boundedness
of the set {(x?)'(t) € R: ¢ € B,—r < t < r} and the Mean Value Theorem one finds that the
curves

[0,7] >t Sg(t,¢) € C, ¢ € B,

are uniformly Lipschitz continuous, hence equicontinuous. Now let ty € [0,7] and € > 0 be
given. There exists &' > 0 with

|Ge(¢p) — Ge(p)| <e forall ¢, in Sg([0,r] x B) with [p—9| <&,
due to uniform continuity of G¢ on K. Due to equicontinuity there exists 7 > 0 with

1Sc(t,¢) — Sg(to,¢)| <&’ forallp € Bandt € [0, r] with [t — to| < 7.
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Hence

[(x?)' () = (x)'(t0)] = IG(Sc(t,¢)) — G(Sc(to, §))|
= |Gc(Sc(t, @) — Ge(Sc(to, ¢))| <e

forall ¢ € Band t € [0,r] with |t — o] < 7.

(c) The Ascoli-Arzela Theorem implies that the closure of {Sg(r,¢)’ € C: ¢ € B} in C
is compact. For the closure of Sg({r} x B) in C! to be compact it is sufficient to show that
every sequence of points ¢; € Sg({r} x B), j € N, has a subsequence which converges in
Cl. Let a sequence (¢;)7° in Sg({r} x B) be given. Part a) implies that there is a subsequence
which converges in C to some ¢ € C. Part b) shows that the subsequence has a secondary
subsequence so that the derivatives of the latter subsequence converge in C to some ¢ € C.
It follows that ¢ € C! with ¢’ = ¢, which in turn yields convergence of the secondary
subsequence to ¢ € C! as k — co.

3. We now show that for every bounded subset B C X and for every t > r the set
Sc({t} x B) C X¢ has compact closure in C!. Let B C X¢ be bounded and let t > r. For every
¢ € B,

Sc(t,¢) = St —1,5c(r.9)),
hence

Sc({t} x B) = Sc(t —r,-)(Sc({r} x B)).

Use that the closure of Sg({r} x B) in C! is compact and belongs to X (since X is a closed
subset of C!), and that the map Sc(f —r,-) is continuous, and conclude that the closure of
Sc({t} x B) in C! is contained in a compact subset of Xz C C.

4. Point dissipativity from Corollary 3.3 in combination with condition (i) from the pre-
vious Part 3 of the proof yield existence of a global attractor, see the remarks preceding
Theorem 3.4.

5. Finally we show that for all ¢ € Ag and t € [—r,0] we have ¢(t) > 0. Let ¢ € Ag
be given. There exists a solution x : R — R of Eq. (2.5) with xg = ¢ and all segments x;,
s € R, in the compact set Ag. It suffices to deduce x(t) > 0 for all + € R. Proof of this: First,
observe that x is bounded. Assume x(t) < 0 for some t € R. In case x(t) = 0 Eq. (2.5) yields
x'(t) > 0—yx(t) = 0. It follows that x(u) < 0 for some u € (—oo,t). In case x(t) < 0 set
u = t. For every s < u the variation-of-constants formula yields

x(u) > x(s)e =) 10,

hence
x(s) < x(u)e"=s) (— —o0 as s — —o),

and we arrive at a contradiction to the boundedness of x. O

4 Linearization

We now turn to linearization. At a point ¢ € X the tangent space of the manifold X is given
by
TpXe ={x € C': x/'(0) = DG(¢)x}-
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For ¢ € Qg the derivative
DSG,t(‘P) : T(pXG — Tsc,t((P)XG

is given by
DSc,1(9)x = w"™

where w#X = w is the unique continuously differentiable solution [—r,ty) — R of the IVP

w'(t) = DG(Sg(t,¢))w; for t >0, (4.1)
wo = x € TpXc. (4.2)

Equation (4.1) is called the linear variational equation along the solution x? or along the
flowline

SG(',(P) : [O,t(p) St SG<t,¢> € Xg.

Suppose that ¢ € X is a stationary point of the semiflow Sg, thatis, t, = coand Sg(t,¢) =
¢ for all t > 0. Then ¢ is constant since for every t > 0, x?(t) = x¥(0) = Sg(t,¢)(0) = ¢(0),
hence

¢(s) = Sg(r,¢)(s) = D(s)=xP(r+s) = ¢$(0) for eachs € [—r,0].

Let ¢ € R denote the value of ¢. Then x?(t) = ¢ for all t > —r. To obtain the linear
variational equation along this constant solution in terms of g,v,a,, 4,y we compute the
values DG(¢)p, ¢ € C! from the formula (2.9). Using Proposition 2.1 (for the values and for
the derivatives of the map 4 in case of constant arguments) and the calculation of DE(¢)¢
right after Proposition 2.1 (in case of constant arguments), we find

Dcwmﬁz—v¢m>+ﬁ{@émz@%a@mW@v—v@wx@¢«ﬂ/w@ﬂeﬂ”“ﬁﬂ@

+ |:_Vel4u/v(§) <_Z)’((§)) /0 q%(s)dS) g(é) +eIlﬂ/U(é)g/(g)gﬁ(_a/v(é’))] }

% —a/o(g)
= —7$(0) + AP(0) + A Om o s+ (e Og'(@) = 4) (—a/o(2)) (43)
i 0'(8) —paso(@)
A= poe " Og() (4.4)
The variational equation (4.1) along the constant solution x? : [—r,00) 3 t — ¢ € R becomes

W (£) = = yw(t) + Aw(t) + (Be /g (§) = A) w(t —a/v(2))
0 ) (4.5)
+uA w(t+s)ds
: —a/v(g) (
The derivatives Tg; = DSg(¢), t > 0, form a strongly continuous semigroup on the
closed hyperplane TyX¢ of the space C'. This semigroup is given by Tg:x = Tg.:x, where
TG : C — C is the solution operator associated with the classical initial value problem

w'(t) = D,G(¢p)w; for t >0, (4.6)
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with the continuous linear functional L : C -+ R, L = D,G(¢), as in the monographs, e.g.,
[13,28]. Recall that by definition the solution w : [—r,00) — R of the initial value problem (4.6),
(4.7) is only continuous, with the restriction w|,) continuously differentiable and satisfying
Eq. (4.6).

The extended derivative D,G(¢) : C — R in the case just considered (where ¢ € X is a
stationary point with value ¢) is given by (4.3), now for ¢ € C. Therefore the equation (4.6)
coincides with Eq. (4.5), considered for continuous maps [—7, ) — R whose restrictions to
[0, 00) are differentiable and satisfy Eq. (4.5) for all t > 0.

The stability of the zero solution of the linear variational equation (4.5) is determined
by the spectrum ¢ C C of the generator of the semigroup (Tg,)i>0 on TpXg C C!, which
coincides with the spectrum ¢, C C of the generator of the semigroup on C.

The spectrum ¢, consists of the solutions A € C of the characteristic equation, which is
obtained from the ansatz R > t +— e** € C for a complex-valued solution of Eq. (4.5) as
follows. We write down Eq. (4.5) for w : t — ¢, multiply by e~*, and obtain the equation

0
A=—y+A+ (,B e H/e @) (F) — A) e M) 4y A etsds,
—a/v(g)

or equivalently,

O=A+y—A—- (/3 e Halv) ol (7) — A) e M/ A ' etsds. (4.8)
—a/v(¢)
To investigate the stability of steady states in different special cases, we make explicit
various forms of (4.8).
If we study the case with a constant delay, i.e. v is a constant function with v(¢) = v~ = o™
in (1.3) and (1.7), then v = 0 and hence A = 0. The characteristic equation reduces to

A= —y+Betg (). 4.9)

Similarly, if we study the case with g constant by setting g~ = ¢™ in (1.3) and (1.6), then
¢'(&) = 0 and the characteristic equation is of the form

0
A= —y+A—Ae M0 4 A eMods = —y+ A(L—e @) (14 8) . @10
—~a/0(g) A

We remark that when yA # 0 in (4.8), the integration of the solution eM over the delay
interval results in a term p/A term as appears in (4.10). Division by A does not arise in
the characteristic functions of discrete delay DDEs, and so even if (1.1) looks at first glance
like a discrete delay DDE, when combined with the threshold delay condition (1.2) it is a
distributed delay DDE. This accords with the results of Smith [55,56] who showed that a DDE
with a single threshold delay can be converted through a time transformation to a distributed
delay DDE with a constant delay.

When we study the limiting case where both ¢ and v are piecewise constant as defined in
(1.6) and (1.7), then there are intervals where A = ¢v/(&) = 0. For a steady state ¢ in such an
interval, the characteristic equation simplifies to

A=—v, (4.11)

where there is a unique negative real characteristic root and the steady state is stable.
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5 Dynamics with one Hill function

At a steady state x(t) = ¢ € R, equation (1.2) reduces to

T = , 5.1
©=17 G

so the delay is still state-dependent. Equation (1.1) becomes
0= h(g) = pe™g(g) = 7€ (5:2)

at a steady state. With ¢(x) and v(x) defined by (1.3) we have that
g™ = h(0) = pe /g™ >0, h(x) < pe Mgy — x < pgu — x.

Consequently any steady state satisfies ¢ € [0, fgu/7y], and there is always at least one such
steady state.

The steady states occur at the zeros of (&), which from (5.2) occur at the intersections of
Be #(€)¢(Z) and & Thus the number of steady states depends on the behavior of the term
e &) g(&) in (5.2).

We begin by considering the simplified setting where either g or v is a constant function,
while the other one is either a Hill function defined in (1.3), or a piecewise constant function
(1.6) or (1.7). This leads to the four cases discussed below.

With v* := v~ = v* in (1.3) and (1.7) we obtain v(&) = v* independent of the value of ¢
and consequently a constant delay T = a/v*, and equation (1.1) reduces to

X'(t) = pe Mg (x(t — 1)) —yx(t), (53)

which is a constant delay DDE with a monotone feedback nonlinearity. We consider this case
first for decreasing and increasing ¢ in Sections 5.1 and 5.2, respectively. The results which
we obtain correspond to semi-local properties of equilibria which are familiar for the constant
delay equation (5.3) with a sufficiently smooth nonlinearity g. If g is strictly decreasing then
there is a single equilibrium solution, from which periodic solutions bifurcate off in a sequence
of Hopf bifurcations when a parameter multiplying g grows to infinity. These periodic solu-
tions can be distinguished by their oscillation frequencies. Stable periodic orbits occur only
at the lowest possible frequency, for so-called slowly oscillating periodic solutions [31]. If g is
increasing then multiple equilibria are possible. Hopf bifurcations from these equilibria yield
periodic orbits which are all unstable. For more detailed information about the numerous
local and global results on solutions of autonomous delay differential equations which were
achieved during the past decades see, for example, the survey [61].

Sections 5.1 and 5.2 contain results which are not covered by the existing theory. We
consider the limiting cases as the smooth function g approaches a piecewise constant function,
as these help to understand better the changes which occur in the dynamics when certain
parameters grow to infinity. This also affords us the opportunity to present, in the simpler
setting of constant delays, the methods we will subsequently use when the delays are state-
dependent in Sections 5.3 and 5.4.

With ¢© = ¢" in (1.3) and (1.6), g is a constant function, while v~ # ov" results in a
state-dependent delay. We consider the two cases of v decreasing or increasing in Sections 5.3
and 5.4, respectively. The general case where ¢ and v are both non-constant is studied in
Section 6.
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5.1 Constant delay with decreasing g (g J,v <)

In this section we study (1.1)—(1.2) with a constant delay T and decreasing g. The DDE reduces
to (5.3) with T = a/v* on setting v* = v~ = v in (1.3) or (1.7). We require g~ > ¢* in (1.3)
or (1.6) to ensure that g is decreasing.

Pe g

petTg”

Og

Figure 5.1: Steady states of (1.1), given by (5.2), occur at the intersections of { —
Be #7g(¢) and ¢ — ¢. These are illustrated for various 7 in the limiting case of (1.6)
and (1.7) with v* = v~ = v*, so the delay T = a/v™ is constant, and g~ > ¢*, so g is
monotonically decreasing: (g |, v ).

As noted above, if h(0) > 0 with ¢ decreasing we have h'(§) = pe *7¢'(¢) —v < 0.
Therefore, with smooth ¢ defined in (1.3), for any fixed values of the parameters there is
always exactly one steady state {. We note for later use that rearranging (5.2), for any fixed
value of ¢ > 0, there is also a unique value of y for which ¢ is a steady state.

Figure 5.1 illustrates the uniqueness of the steady state with a piecewise constant ¢ defined
by (1.6) as 7y varies. At the ‘corners’, the steady state { = 6, satisfies (5.2) with ¢ = ¢t and
g = g respectively, which gives rise to

_ petrgt

pe g
o Lk - S (5.4)

and 7y = 7
8

T

We refer to the steady state where e #7¢(&) and ¢ intersect on the vertical line segment of
the curve as a singular steady state. The singular steady state exists for v € (1, y2), where the
bounds on 7 are given by (5.4).

Next, we consider the stability of the steady state for the piecewise constant function
g defined in (1.6). If v € (0,91) U (2, +0), the intersection occurs on the horizontal line
segments. Then A = ¢/(¢) = 0 and the characteristic equation (4.8) reduces to (4.11), and
hence the steady state must be stable. This implies that in the limiting case only a singular
steady state may be unstable. However, the characteristic equation is not defined in this
situation and we therefore consider the smooth nonlinearity g defined in (1.3) for large n. As
a consequence of the choices made in this section, A = 0 and ¢'(¢) < 0 with n > 0.

It follows immediately from (4.9) that there are no real non-negative characteristic values
when ¢'(¢) < 0. So, suppose A = a +iw, w > 0 is a solution of the characteristic equation
(4.9). Then for A = a + iw we have

a+iw = —y + Be P (&)e” (HWT = _y 4 BeHTo! (F)e ™ [cos(wT) — isin(wT)].
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Equating real and imaginary parts respectively, we obtain

a+y=Be "¢ (&)e ™" cos(wT), (5.5)
w = —Pe "¢ (Z)e T sin(wT). (5.6)
Now suppose that A = & + iw is a root of the characteristic equation with « > 0. Then
v <aty < pe e g (§) cos(wT)| < peTIS(E)].
Consequently, if
7> e I(9)] (5.7)

then o < 0 for all the characteristic values and the steady state is asymptotically stable. Notice,
that since (5.2) is also satisfied at a steady state, equation (5.7) is equivalent to

‘ ¢8'(¢)
8(¢)
We arrive at a sufficient condition for stability of the unique steady state: when (5.8) is satisfied
at a steady state, the steady state is asymptotically stable.

The function ¢ — {¢'(&)/g(¢) plays a central role in the analysis, so we study its properties
here. Differentiating g in (1.3) gives

’ -1 (5.8)

ndy (gt —g)g !

g = CEND: (5.9)
and hence
28'(%) _ n(g" -8 )(5/6;)" (5.10)
g(6)  (1+(3/0)") (8~ +gt(5/0)") '
Now, let
fx,pr)= ( p{ —r)a? (5.11)

1+ xP)(r+ xP)

and note from (5.10) that f(&/0¢, 1,8~ /8") = ¢8'(¢)/g(&). The following proposition will be
essential in this and following sections.

Proposition 5.1. Let f(x,p,r) : R3, — R be defined by (5.11) then
1. For fixed p > 0,r >0,
lim f(x, p,r) = lim f(x,p,r) = 0.
2. For fixed r > 0 with r # 1 we have lim, .o | (1, p,7)| = 0o, with

_p(l—r)
f(l,p,?’) - 2(1+T)’

and |f(1,p,7)] < p/2.
3. For fixed r > 0 and fixed x > 0 with x # 1,
lim f(x,p,r) =0.

p—00

Moreover, for fixed r > 0 and any fixed x~ € (0,1) and x* > 1

lim( max}\f(x,p,r)\) = lim( max \f(x,p,r)]) =0.

p—00 \xe0,x~ p—r00 \xe[xT,00)
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4. For fixed r > 0 with r # 1 and fixed p > 0, regarding |f(x,p,r)| as a function of x only,
|f(x, p,7)| has a unique global maximum at x = r'/2F with

1—rl/2
f?,p,r) = p<1 T2 )

and | f(r'/?,p,r)| < p.
Proof. Follows using elementary differentiation and algebra. O

Proposition 5.1 shows that ¢ — ¢¢'(&)/g(¢) is a unimodal function which approaches
zero uniformly as n — 0, but which resembles a delta-function with its peak at { =
0,(g~/g)V/* — 0, as n — 0.

Now (5.8) and Proposition 5.1(1) show that if { < 6, or for { > 6, the steady state must
be asymptotically stable. From (5.8), a necessary condition for the steady state to be unstable
is that |¢¢'(&)/g(&)| > 1, but from Proposition 5.1(4) we have

5'(2) | it
S| = e =1

where r = r, = ¢~ /g". Thus a necessary condition for the steady state to be unstable is that
|f(r'/2",n,r)| > 1. For g decreasing, the value r, = ¢~ /g™ > 1, and this necessary condition
for instability becomes n > 1 and

_ 2
_8& S 2
rp=tr2 <1+n_1> . (5.12)

Since the steady state is unique, a steady state bifurcation cannot occur, and we therefore
investigate the existence of Hopf bifurcations. At a Hopf bifurcation, A = Fiw, and (5.5) and
(5.6) reduce to

v = Be "8 () cos(wT), (5.13)
w = —Pe "¢ (&) sin(wT). (5.14)

As B,v,w,e " > 0 and ¢'(&) < 0, we must have cos(wT) < 0 < sin(wT), and hence wt €
(7t/2 + 2km, w+ 2km) for k € IN. We denote by wy any solution of (5.13) and (5.14) with the
property that wyT € (71/2 + 2km, T 4 2km) for k € IN.

Note that at a Hopf bifurcation, in addition to (5.13) and (5.14), equation (5.2) must also
be satisfied. These three equations can be rearranged as

v = gemg(é), (5.15)

w cot(wT) = —7, (5.16)
2 2

90 = (517)

We will consider these equations sequentially to show that v and w can be regarded as
functions of ¢, resulting in a single equation to solve for ¢. First note that for a smooth non-
linearity ¢(¢), and for arbitrary ¢ > 0, equation (5.15) gives a unique value of ¥ = (&) > 0.
Moreover, since g is monotonically decreasing, we also obtain that ¢ — 7(¢) is monotonically
decreasing. Because of the remarks following Proposition 5.1 we will be particularly interested
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in the cases where ¢ = 0, and ¢ = 0,(g~ /g+)1/2". Using (5.15), (5.4) and (1.3) it is easy to see
that y(6g) = (714 712)/2 and y(04(8~ /¢ 7)) = /1172/(g~/g")1/*". This shows that the
7 value corresponding to the extremum of ¢¢'(&)/g(&) converges to the geometric mean of 7;
and 7 as n — oo, while the -y value corresponding to ¢ = 0, is equal to the arithmetic mean
of 71 and 7, independent of the value of n.

Next, for a given y > 0, it follows from the properties of the cotangent function that the
equation (5.16) gives a sequence of solutions {wy };>o with wxt € (71/2 + 2k, 7t + 2k7r) for
k =0,1,2,..., with each w; uniquely defined as a function of . Recall that 7 is constant
because we are considering v~ = v = v. Thus the values w; — o as k — oo. It follows
that solutions wy of the equation (5.16) for fixed 7 must satisfy cot(wy7) — 0 and hence
W T — 1/2+ 2k as k — oo.

Since g is decreasing, the last equation (5.17) then becomes

r),Z +CU2
gE=— " (5.18)

pe i

Notice here that through (5.15) we have <y as a function of ¢, while from (5.16) we can regard
each wy as an implicitly defined function of 7y and hence of ¢. Thus it remains only to solve
(5.18) for ¢, or more precisely, we need to solve for a j for every wy.

Combining (5.13) and (5.15) we see that at a Hopf bifurcation

i‘fgg) cos(wT) = 1. (5.19)

Thus, the function ¢ — &g'(&)/g(¢) also plays a role for Hopf bifurcations. Consequently,
instead of solving (5.18) directly for ¢, we proceed by combining (5.15) and (5.18) which leads

to
Be T = 6 _7\/724_“]’%
(%) (3
and hence

88— \fix @i (520
Combining (5.20) and (5.10), it remains to find ¢ that solves
n(gh—g ) E/8)" :
(1+(8/6)") (g~ +87(5/0,)") \/m (5.21)

We already considered the behaviour of the left-hand side of (5.21) in Proposition 5.1. The
behaviour of the right-hand side is considered in the following proposition.

Proposition 5.2. Let s(&) = /1 + (wi/7y)? where v = (&) is defined by (5.15) and wy satisfies
wiT € (11/2+ 2k, T+ 2k7t) and is a function of v and hence of ¢ through (5.16). Then

1. (1 + (W)Z(:Z); =mp(&) < sk(8) < Mi(8) = (1 i (ggk;2>2€2>;

2.1 <s(8) <1+ r(2kt1) ¢ forall ¢ > 0.

Bre™"go
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Proof. Using (5.15)

2\ 2
(6) = (” () 52) |

Recalling (1.5) and also using the bounds on wy T, the inequalities in Proposition 5.2(1), and the
expressions for the bounds m (&) and M (&) follow easily, while Proposition 5.2(2) is weaker
than Proposition 5.2(1). O

Recall that for a Hopf bifurcation, we need to solve (5.20) for ¢, but this is the same as
solving f(/0,n,8~/8") = —sk({), where the relevant properties of f and s are stated in
Propositions 5.1 and 5.2. Propositions 5.2(1) defines bands [m (&), My (¢)] within which each
sk(¢) lies. Since |si(8)| > 1 and limg_,o f(&/04,1,8 /8") = limgo f(E/04,m,8/87) =0,
for all ¢ sufficiently large or small we have f({/0,,1,87/8") > —s¢(¢). On the other hand,
considering § = 6, by Proposition 5.1(2), f(1,n,§/¢") — —o0 as n — oo while s;(6,) <
My (6g) is bounded. Consequently, for n sufficiently large f(1,1,8/¢") < —sk(). It follows
that there are at least two points &, < 0, < & for which f(&F/0,,1,87/g") = —s(&), and
hence which solve (5.21). With the corresponding values of ¢ and wj defined by (5.15) and
(5.16) this defines two solutions of (5.15)-(5.17).

We already noted that the steady state must be stable, and hence cannot undergo a Hopf
bifurcation for ¢ sufficiently small or large. On the other hand, Hopf bifurcations must occur
for n sufficiently large, as for large enough 7 the function f will pierce through the band
sk(8) € [mp(8), Mg(§)] for & ~ 1. In particular, a sufficient (but not necessary) condition for
this to occur is that My(6;) < —f(1,1n,¢~/g"), or equivalently that

(g /g%) +1 76e(2K + 1)\ 2 *

This condition follows from evaluation of the function f at x = 1. A more complicated but
tighter bound can be derived using the maximum of f. Therefore another sufficient condition
to ensure that the k-th Hopf bifurcation occurs is that

Mi(0g(g~ /)Y ) < —f((g7 /8@, n,g7/g").

While there is a unique steady state ¢ for the case of decreasing ¢ with constant 7, the
location and properties of this steady state will depend on the values of the other parameters.
The following theorem collects together our results for this case.

Theorem 5.3. Let § be the steady state of the DDE (1.1), (1.2) with constant delay T and nonlinearity
g defined by (1.3) with g monotonically decreasing (so g~ > ¢*). Then:

1. If | %| < 1, then the steady state ¢ is asymptotically stable.

2. Ifn<1l,orn>1landrg = % < (1+ %)2, then the steady state ¢ is asymptotically stable.

3. Forany fixedn > 1, and for 0 < ¢ < 0g or & > 0, or equivalently for y > vy 0r 0 < ¢ < 7y,
the steady state is asymptotically stable.

4. For any fixed & # 0g, let v = y(n, ) be the value of <y such that (5.2) is satisfied and hence ¢ is
a steady state. Or, for any fixed v with 0 < v < 1 or v > 7y let ¢ = §(n,y) satisfy (5.2) and
hence be a steady state. Then § is asymptotically stable for all n sufficiently large.
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5. Let (5.22) be satisfied for fixed n > 2 and fixed k > 0. Then as <y is varied

(a) There are two families of (at least) k + 1 Hopf bifurcations. One exists for v <
V172/ (87 /81)Y?" and the other for v > (1 + 72)/2. In the first family, the charac-
teristic values A = iw; satisfy w;T € (7w/2+ 2jm, 7w+ 2jm) for j = 0,1,...,k and cross
the imaginary axis from left to right as <y is increased, while in the second family they cross
the imaginary axis from right to left.

(b) For & € [0g,05(g~/g") @] or equivalently for v € [y172/(87/87)Y?", (m +
v2) /2] the steady state is unstable with at least k + 1 pairs of complex conjugate characteris-

tic values Aj = w; + iw; with a; > 0 and w;t € (71/2+ 2jm, w+2jm) for j =0,1,... k.

6. Let v € (7y1,72) be fixed. Then as n is increased there is an infinite sequence of Hopf bifurcations
where the real part of Ay = ay % iwy becomes positive with wyt € (71/2 + 2k, T + 2k7t) for
k=0,12,...

Proof. (1) and (2) were already shown immediately after the proof of Proposition 5.1.

The first part of (3) then follows from Proposition 5.1(1), since limg_,o f(§/0¢,1,8/8") =
limg oo f(£/60,m,8~/g*) = 0 implies &g/ (&) /g(&)] < 1 < si(€) and &¢'(2)/8(8) = —si(©)
cannot hold for ¢ sufficiently small (0 < ¢ < 6;) or large (¢ > 0,). The second part follows
from (5.15) on noting that ¢ monotonically decreasing implies that (&) is monotonically
decreasing with limg_,o ¥(&) = +o0 and limg_, (&) = 0.

For the first part of (4), consider a steady state at a fixed value of ¢ as 7 is varied, with the
other parameters fixed except for v = y(n,¢) which is determined by (5.2). The result then
follows directly from the first part of Proposition 5.1(3). To prove the second part of (4) note
that when ¢~ > ¢ from (1.3) we have g~ > ¢(&) > ¢ which using (5.4) is equivalent to

e
72>569g@)>7L
g

Fix v > 0 and using (5.15), we further rewrite this as

e om (5.23)

Y eg Y
Consequently, for § = ¢(n,v) satisfying (5.2), if ¥ < 1 then we have § > 6,v1/7 > 6
while v > 7, implies { < 6,72/ < 0;. The result then follows from the second part of
Proposition 5.1(3).
For (5), equation (5.22) implies that

—f(L,n,g/8") > Mi(6g) > Mi_1(65) > ... > My(by).

However, s;(¢) > 1 for all { € R and limy o f(x,n,8/g") = lim, 0 f(x, 1,87 /g") = 0.
Consequently for each j € {0,1,...,k} there are at least two values of ¢ which solve
—f(&/0g,m,g7/g") = s;(¢). The largest such ¢ with ¢ > 6,(g~/g")/?") and the small-
est with { < 6, define the required Hopf bifurcations. Since, as already noted, y(¢) de-
fined by (5.15) is a monotonically decreasing function of § with y(6;) = (71 +72)/2 and
v(05(g= /)@Y = /2 / (g7 /gF)/?", the result follows.

For (6) we consider the behaviour of the Hopf bifurcation points as n — oo. Apply-
ing Proposition 5.1 (and recalling that g— > g, because g is decreasing), the function
16¢'(€)/g(Z)] takes its maximum at & = 6,(g~/¢")/*" > 6, while also |0,¢'(6,)/g(0,)] =
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Figure 5.2: Bifurcations of (1.1)—~(1.2) for (g },v <») with parameters p = 14, u = 0.2,
g =1, g+ =1/2,0;=1,vy=a=1,andv=0v" = vt = 2. (a) The limiting case with
g defined by (1.6) showing the stable (green solid line) and singular (black dashed line)
steady states. (b) With smooth nonlinearity g defined by (1.3) and n = 50. Solid lines
denote stable objects including the stable steady state (green) and a stable limit cycle
(represented by maximum and minimum of x(t) on the periodic solution). Dashed lines
represent unstable steady states which have two eigenvalues with positive real part (in
black). (c) As in (b) but with n = 23. (d) Two-parameter continuations in n and 7 of
the Hopf bifurcations defined by (5.15)—(5.17) with the other parameters as above. Solid
curves indicate the parts of the branch where there are no characteristic values with
positive real part (and hence a stability change at the bifurcation), and dashed lines
indicate the parts of the branch where there are already unstable characteristic values.
The outermost curve of Hopf bifurcations is associated with the stability change seen
in (b). The dash-dotted vertical black lines denote v = 1 and v = 7, the locations of
the Hopf bifurcations in the limiting case as n — co. (e) Profiles of the stable periodic
orbits from the outermost curve of Hopf bifurcations in (d) at v = 1 for different values
of the continuation parameter n. (f) The same periodic orbits as in (e), but now shown
as a projection onto the plane (x(t), x(t — 7)) where T = 0.5. The arrow indicates the
direction of the flow. The square denotes the singular steady state in the limiting case.
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|f(1,n,8§7/8")| > 1. Consequently for fixed k the two Hopf bifurcation points, ¢, and ¢,
satisfy & < 0, < (g~ /g")1/?" < &. Using Proposition 5.1(3) we conclude that & — 6, as
n — oo.

Also for fixed k, as n — oo, the value of wy < (2k + 1)7t/T remains bounded, as does y by
(4). Consequently for (5.18) to be satisfied it follows that g'(¢) must also remain bounded as
n — co. Then in the limit as n — oo the Hopf bifurcations must converge to the “corners” of
g(¢) where § = 6, and ¢ = 97 or 7 = 72. Consequently for any fixed y € (71,72) asn —
there is an infinite sequence of Hopf bifurcations. O

Figure 5.2 illustrates the behaviour of (1.1)—(1.2) for (¢ |,v «»). Panels (b)-(f) were com-
puted numerically using ddebiftool as described in Appendix C.

Figure 5.2(a) and (b) show the similarities between the dynamics with the piecewise con-
tinuous nonlinearity (1.6) and the smooth Hill function g defined in (1.3) with n = 50. The
singular steady state in (a) becomes an unstable steady state in the smooth case, with a bubble
of stable periodic orbits existing between the pair of Hopf bifurcations where the steady state
changes stability. The stable periodic orbits at v = 1 for increasing values of n are shown
as profiles in Figure 5.2(e) and projected onto the (x(t), x(t — T))-plane in Figure 5.2(f). The
apparent limiting behaviour that is revealed is the topic of [31].

When the value of n is decreased, the interval of  values between the Hopf bifurcations
shrinks, until for n sufficiently small the steady state is always stable, as seen in Figure 5.2(c).
Interestingly, even though there is no bifurcation in this case, the graph in Figure 5.2(c) still
has a plateau around where the singular steady states exist in Figure 5.2(a).

Figure 5.2(d) shows two-parameter continuations in the (7, n) plane of the Hopf bifur-
cations. This reveals the Hopf bifurcations associated with wy for k = 0,1, ...,4, with each
successive Hopf bifurcation only existing for progressively larger values of 1, as implied by
(5.22). In particular there is no Hopf bifurcation for n < 24 and a second Hopf bifurcation is
only seen if n > 100. This is why no Hopf bifurcation is seen in Figure 5.2(c) with n = 23, and
only one pair of Hopf bifurcations is seen in Figure 5.2(b) with n = 50.

Figure 5.2(d) also illustrates Theorem 5.3 (points 5 and 6) where the additional Hopf bifur-
cations occurring as n increases approach the vertical asymptotes ¢y = 1 and v = 7, in the
limit as n — co. Notice also the existence of Hopf bifurcations with ¢ > v, in Figure 5.2(d);
so it is possible for the steady state to be unstable outside the interval ¥ € [y1, 2], albeit only
for a finite range of values n by Theorem 5.3 (point 3).

5.2 Constant delay with g increasing (g 1,v <)

In this section we study (1.1)-(1.2) with constant delay again, but in contrast to the previous
section we assume that g is increasing. We thus assume ¢~ < g¢* in (1.3) and (1.6), with
v~ = v" = v* so the delay T = a/v™ is constant, independent of ¢.

When g is increasing, it is possible for multiple steady states to coexist. For example,
considering the limiting case where g is given by (1.6), as shown in Figure 5.3, there are up
to three coexisting steady states, including a singular steady state, as the slope of the line y¢
changes. The corners defined by (5.4) give rise to fold bifurcations due to a change in the
number of steady states. Since these bifurcations involve a singular steady state they are not
truly fold bifurcations but we use this term since, as we show below, they reflect the presence
of true fold bifurcations for the smooth nonlinearity g defined by (1.3) with g’(¢) > 0. This is
illustrated in Figure 5.4(a) where there are two fold bifurcations between stable and singular
steady states, with the outer steady states stable, and the middle steady state is singular.
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Figure 5.3: Illustration of how the number of steady states of (1.1) given by (5.2) changes
with the intersections of ¢ — Be #7¢({) and ¢ — . These are shown in the limiting
case with v* = v~ = v* so T = a/v* is constant, and ¢~ < ¢* in (1.6) so g is piecewise
constant and monotonically increasing: (g 1,7 ).

® a = b
( ) ( ) —— Stable
— — Unstable=1
47 47 Unstable=3
o Fold
3t 3t * Hopf
2 2
O | O | b
0 72 05 1 1 15 1

60 |

40|

20|

% mos 1 15 m 7

Figure 5.4: Bifurcations of (1.1)~(1.2) with (g 1,v <) and parameters p = 2, u = 0.02,
g =01,4¢"=1, bp=1,7v=1,a=2andv=0v" = v' = 2. (a) The limiting case with
g defined by (1.6). Stable steady states are shown as green solid lines, and the singular
steady state as a black dashed line. (b) With a smooth nonlinearity g defined by (1.3)
with n = 30. (c) Two-parameter continuations in # and <y of the fold (blue) and the
Hopf (black) bifurcations with the other parameters as above. The dashed vertical lines
denote v = 71 and 7y = 9, the location of the fold bifurcations in the limiting case as
n — oco. The red dash-dotted curve denotes the bound on the fold bifurcations given by
(5.28).
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With ¢ defined by the piecewise constant function (1.6), as in Section 5.1, for the non-
singular steady states we have A = ¢’(¢) = 0. The characteristic equation is again of the form
(4.11), so these steady states must be stable. Only the singular steady state may be unstable,
and since it coexists with two stable steady states, it is natural to regard it as unstable even
though the dynamical system is infinite dimensional and the characteristic equation is not
defined at the singular steady state. The bifurcation diagram for this case is illustrated in
Figure 5.4(a).

For the smooth nonlinearity g(¢) defined by (1.3), from (4.9) the characteristic function is
given by

AN) = A+ — Be T (E)e . (5.24)
Considering A € R first, note that A(A) is asymptotic to A + 1y for A > 0. On the other hand,
using (5.2) we find
Cg’(é))
AO) =~ (1- . (5.25)
=7 ( 8(¢)
Consequently when
¢g'(¢)
>1 (5.26)
8(¢)

there is always a real characteristic value A > 0 and the steady state is unstable. Moreover
there is a characteristic value A = 0 if and only if

cg'(g)
GRE 1, (5.27)

and the results developed in Section 5.1, and in particular Proposition 5.1, can be applied to
the fold bifurcations. Thus for n > 0 there will be two fold bifurcations &* ~ fe: one with
¥ ~ 71 and the other with v = 7,, where 7; and 7, are defined by (5.4) with 7, < 1 since g
is increasing.

To find the fold bifurcations, equations (5.27) and (5.15) must be solved together. We first
do this numerically. Figure 5.4(b) shows the resulting bifurcation diagram for the smooth
nonlinearity g(¢) defined by (1.3) with n = 30, revealing, as expected, two smooth fold bi-
furcations, with an intermediate branch of unstable steady states between the stable steady
states.

To further investigate when multiple steady states arise for smoothly increasing g, note
that a necessary condition for multiple coexisting steady states is that maxg>o{h'(¢)} > 0.
This imposes a constraint on the parameters as follows. The function g has a single point of
inflection x with ¢”(%) = 0, which can be computed by differentiating g twice to find

) n—1 1/n
x—Bg(n+1> .

Note that ¥ > 0 requires the restriction n > 1. With X, we can compute the maximal value of
the derivative

14+1/n _ 1-1/n
M0} = () = i 17¢ () —y = (" — g ) I

Therefore, if there are multiple steady states, the parameters must satisfy

1+1/n _ 1-1/n
g < pott(gh— gyl m ) T (5.28)
4n68
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Figure 5.4(c) shows a two-parameter continuation of the fold bifurcations for increasing
g. For large n the folds approach the asymptotes v = 1 and vy = 7, defined by the limiting
case. As n decreases the two fold bifurcations move closer together until they collide in a
cusp bifurcation. At the cusp, the three steady states coincide, and at this point /(&) is a
monotonically decreasing function of ¢ with a zero of multiplicity three at the steady state ¢.
Consequently not only is h(&) = K (¢) = 0 at this point, but also the function /(&) attains
its maximum at ¢ and the cusp point lies on the bounding curve defined by (5.28), as seen in
Figure 5.4(c).

The analysis of Hopf bifurcations from Section 5.1 can be repeated with only minor
changes for the case of increasing g. Characteristic values again satisfy (5.5) and (5.6), and
at a Hopf bifurcation (5.13) and (5.14). Since ¢'(¢) > 0, we require sin(wt) < 0 < cos(wT)
and hence

wt € (2k+3/2)m, (2k+2)7), ke N.

Equations (5.15), (5.16) and (5.17) can again be considered sequentially, and reduced to a single
equation to solve for ¢, where for increasing g, equation (5.17) becomes

o A
g'(¢) = T Beit (5.29)

This last equation is most easily considered by combining it with (5.15) to obtain

cg'(¢
5 (é)) = /14 (we/7)?, (5.30)

where ¢¢'(&)/g(¢) is still given by (5.10) and Propositions 5.1 and 5.2 both apply.

We conclude that as 7 is varied there is a sequence of Hopf bifurcations parameterized by
a frequency wy — oo satisfying wit € ((2k+3/2) 7, (2k +2) ) for k € IN, where for each fixed
k there is a minimal n at which this bifurcation exists. Furthermore, this minimal n grows with
k. Additionally, for any fixed k as n — oo the bifurcation points satisfy v — y1 and v — 72.
Figure 5.4(b) shows that the steady states lose stability at the fold bifurcation and the resulting
unstable steady state undergoes a Hopf bifurcation. This indicates that the resulting periodic
orbits are unstable and thus not consequential for the asymptotic dynamics in contrast to the
case of decreasing g. The two-parameter continuation of the first Hopf bifurcation is shown
in Figure 5.4(c).

We collect our results from this section together in the following theorem. While there are
many similarities between Theorems 5.3 and 5.4, the presence of fold bifurcations introduces
some important differences. Note also that since g is increasing, in this section we have
r¢ =8 /8" <landalso v > 7».

Theorem 5.4. Let ¢ be a steady state of the DDE (1.1), (1.2) with constant delay T and nonlinearity g
defined by (1.3) with ¢ monotonically increasing (so g~ < g*). Then

1. The steady state ¢ is asymptotically stable if ngé@)‘) < 1, and unstable if Cgég) > 1.

2. For any fixed ¢ # 6 let v = y(n,¢) be the value of vy such that (5.2) is satisfied and hence ¢ is
a steady state. Or, for any fixed v with 0 < v < vy or v > 71 let & = {(n,y) satisfy (5.2) and
hence be a steady state. Then ¢ is asymptotically stable for all n sufficiently large.

3. Ifn<l,orn>landry = % > (1- %H)Z, then the steady state ¢ is asymptotically stable.
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4. Ifn > land r = g—; < (1- %H)Z, then there exists £~ < 0,(g~/g")V/*" < &F and

(&) < 2/ (g /gH)Y* < y(E") such that as vy is varied, there is one branch of
stable steady states with ¢ < ¢~ and vy > (&™) and another stable branch with § > {* and
v < y(&"). Fory € (v(&7),v(&")) the two stable branches of steady states co-exist with a
branch of unstable steady states which exists between fold bifurcations at (&,v) = (&, v(&7))

and (&,7) = (&, 7(&"))-
5. Let fixed n > 2 and fixed k > 0 satisfy

1

1+ (g /gh) 27l (k+1)\*\
n>20— o0 (e /¢ (1 + (r,m_wgo ) . (5.31)

Then as -y is varied

(a) There are two families of (at least) k + 1 Hopf bifurcations from the unstable steady-state.
One exists for v < \/7y172/ (8~ /g+)Y/?" and the other for v > (71 + 72)/2. In the first
family, the characteristic values A; = «; & iw; with w;T € (37w/2 + 2jm, 27 + 2j7) for
j =0,1,...,k cross the imaginary axis from left to right as <y is increased, while in the
second family they cross the imaginary axis from right to left.

(b) For & € [05(g~/g")®"),0,], or equivalently for v € (\/y172/(87/87)Y*, (11 +
Y2)/2), the unstable steady state has one positive real characteristic value and at least
k +1 pairs of complex conjugate characteristic values A\; = a; + iw; with aj > 0 and
w;T € (37/2+2jm, 2+ 2jm) for j=0,1,...,k

6. Let v € (7y2,71) be fixed. Then as n is increased there is an infinite sequence of Hopf bifurcations
on the branch of unstable equilibria where the real part of Ay = wy = iwy becomes positive with
wiT € (371/2 + 2k, 27w 4 2k7).

Proof. The first part of (1) follows from (5.8), while the second part follows from (5.24)—(5.26).

The proof of the first part of (2) is identical to the proof of the first part of (4) of The-

orem 5.3. To show the second part of (2), note that when g© > ¢~ from (1.3) we have
¢ > g(&) > g~ which, using (5.4), is equivalent to
pe "3(¢)

m>—p— >0
8

Fix v > 0 and using (5.15), we further rewrite this as

Hence, for ¢ = {(n,7) satisfying (5.2) if v > ;1 then § < 0,71/7 < 6. On the other
hand, if v < 72 then ¢ > 072/ > 6;. The result follows from (1) and the second part of
Proposition 5.1(3)

Statement (3) is shown similarly to the corresponding result in Theorem 5.3, noting that
since g is increasing r, = ¢~ /¢ < 1, which results in a different inequality than the one
found in (5.12).

To show (4) consider the curve of steady states (&, v(¢)) for ¢ > 0 where (¢) is defined
by (5.15). Using Proposition 5.1, the conditions of (4) imply that ¢’ (&) /<(&) has a maximum
value larger than 1 at & = 0,(g~/¢™)'/?". Let ¢~ < 0,(g/g")!/?" < &T be the points where
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Figure 5.5: Steady states of (1.1) are given by (5.2), and hence occur at the intersections
of § — ﬁe_W(‘:) g and ¢ — C. These are illustrated for various v > 0 in the limiting
case of (1.6) and (1.7) with ¢& = ¢~ = ¢T, so g(¢) = ¢~ is a constant function, and
v~ > vT, so v is piecewise constant and monotonically decreasing : (g <+, v |). Then
T(¢) = a/v() is state-dependent; T(¢) =1~ =a/v™ for ¢ < 0, T(¢) =17 =a/ov" for
¢ > 0, and T(Z) is set-valued when ¢ = 6,,.

& ¢(&7)/g(&7) = ¢&¢/(¢7)/¢(&T) = 1. Then the steady state is stable for { < ¢~ and
¢ > ¢, and unstable for ¢ € ({7, ¢"). Now differentiating (5.15) we find that

B By B [0 () [©)
V(0 =~ 5@ + fe g @) gze%g@)[g@ 1} ; [g@ 1].<5.3z>

Thus (¢) is a decreasing function of { when the steady state is stable, and an increasing
function when it is unstable. From this (4) follows.

The proofs of (5) and (6) are similar to the proof of Theorem 5.3, with the main difference
being that for a Hopf bifurcation from the unstable steady state we require wyt € (371/2 +
2k, 27t 4 2krt), while for g increasing a sufficient condition to obtain a solution of (5.30) is
that Mi(6;) < f(1,n,8/8"). O

It would be interesting if the Hopf and fold bifurcations could exchange positions on the
branch, so that the steady state lost stability in a Hopf bifurcation instead of a fold bifurcation.
However, this cannot happen with a constant delay because, as the theorem shows, stability
is always lost when ¢¢'(¢)/g(&) = 1 at which point there is a zero characteristic value giving
rise to a fold bifurcation.

5.3 State-dependent delay with v decreasing and g constant (g <>,v |)

To understand the dynamics of (1.1)—(1.2) with a state-dependent delay, we impose ¢* :=

¢~ =g " in (1.3) and (1.6), so g(¢) = g~ is a constant function. We first consider a decreasing
function v with v~ > o™ in (1.3) and (1.7).
It is convenient to let 77 := a/v™ and 7~ := a/v~. Then at a steady state ¢ with v~ > o™,

equation (5.1) implies 7(&) is an increasing function of & with 7~ < 7(&) < 1, so e "7 is
a decreasing function of ¢. Under these circumstances, k() is monotonically decreasing and
equation (5.2) has exactly one solution, and so there is always a unique steady state.

Figure 5.5 illustrates the uniqueness of the steady state in the limiting case when v defined
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by (1.7) is piecewise constant. The steady states at the corners are associated with

B ﬁgiefy'ﬁ

+,—ut”
; pgre ™ (5.33)
v

and 4 = 7
v

3
As discussed in Section 5.1, the steady state is stable if v € (0,73) U (774,00) as then A =
¢'(&) = 0 and the characteristic equation (4.8) reduces to (4.11) with exactly one negative real
characteristic value. Consequently, the steady state may only be unstable in the singular case
for v € (73,74).

Since A, which is given by (4.4), is undefined for singular steady states, the characteristic
equation (4.10) cannot be used to study the stability of the singular steady states. So, instead
we consider the stability of the steady states for the smooth velocity nonlinearity v defined in
(1.3). There will be some similarities to the analysis in Section 5.1, but the problem studied
in this section with state-dependent delay is significantly more complicated than the constant
delay problem considered before.

With ¢ constant and v defined by (1.3) the characteristic equation is of the form (4.10).
Recalling the definition of A from (4.4) and using (5.2), we obtain at a steady state ¢

V(&) )+ _ 6V (E)

A—ﬁv(é)e wg =70 <0, (5.34)
since v~ > o' implies v'({) < 0. It follows that the right-hand side of (4.10) is negative
when A > 0, and so there are no non-negative real characteristic values. This is not surprising
since we already know that the steady state is unique, and therefore there are no steady-state
bifurcations.

Furthermore, since v(¢) is a Hill function, it follows that

gv'(%)
(%)

where f is defined by (5.11). Thus Proposition 5.1 will be relevant in what follows.
To investigate the stability of the steady state we consider complex characteristic values.
Let A = a +iw, w > 0 then (4.10) implies

= f(&/0y,m, v /07), (5.35)

S _—(a+iw)T(E) M
&+ iw Y+ A1l —e )<1+a+iw>'

= -7+ 21t [(1—e " cos wt (&) (a® + w? + pa) + e~ sin wt(&) pew)]
+ inﬂ—fqﬂ[e”(g) sinwT(&)(a? + w? + pa) — (1 — e 27 cos w(&)) pw).

Equating the real and imaginary parts yields

a4y [(1 — ¢ cos wT(8))(a® + w? + pa) + e sin wr(é)yw} ,

T2+ o?
A [ 2 | o2 — (1= @
W= [e sinwt(§)(a”+w” +pa) — (1 —e cosz(C))yw]
Isolating e*7() sin wT(¢) and 1 — e *7(¢) cos wT(¢) respectively gives

A(1— e coswt(§)) [(a + )2+ w?] = (& +7) (6% + W? + pa) — pe?, (5.36)

Ae™ O sinwt (&) [(a + p)? + ?] = w ((2zx +7)p+a*+ wz). (5.37)
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Notice that since A < 0, for « > 0 the left-hand side of (5.36) is non-positive. On the other
hand, when
T>u (5.38)

and a > 0 then the right-hand side of (5.36) is strictly positive. Consequently if (5.38) holds,
then all the characteristic values must have a < 0 and the steady state is asymptotically stable.
Next we show that the steady state is also stable if v < y and

gv'(%)
o(@ | ()

To do so, for contradiction suppose that A = a + iw is a characteristic value with « > 0 and
w > 0 where v < p and (5.39) holds. Then |sinw7(¢)| < |wT(&)| and (5.39) implies

(5.39)

<

sian(C)‘ << (5.40)
Consequently, using (5.34),
A sinwr (@) [(a+ p)? + @] | < 1 , (@)

(206+]/l’)’—|- ((x2+a}2)>
w((a+7)u+ (& + w?)).

However, this contradicts the assumption that A = a + iw satisfies (5.37). We thus conclude
that the steady state is asymptotically stable whenever (5.38) or (5.39) is satisfied.

Since the right-hand side of (5.39) is bounded below by 1/ut*, it follows from Proposi-
tion 5.1(1) that the steady state is stable for 0 < ¢ < 6, and for ¢ > 6,.

To determine when the steady state may be unstable we investigate the basic spectral con-
dition for Hopf bifurcation, namely, the existence of a pair of complex conjugate eigenvalues
on the imaginary axis. A proof that Hopf bifurcations actually occur for our equations would,
of course, require in addition that a pair of eigenvalues crosses the imaginary axis at nonzero
speed, that a nonresonance condition is satisfied, and furthermore that the right hand side of
the delay differential equation has certain higher order smoothness properties, see [14,30, 53]
for the case of state-dependent delays.

Assume that A = +iw, w > 0 solves equation (4.10). Then with & = 0 equations (5.36) and
(5.37) reduce to

A(1 — cos(wT)) (w? + u?) = W (7 — p), (5.41)
Asin(wt)(w? + u?) = w(w? + yp). (5.42)
Since A < 0 and the right-hand side of (5.42) is positive, at any Hopf bifurcation we must

have sin(wT) < 0 to satisfy (5.42). Moreover, the left-hand side of (5.41) is negative, and so a
Hopf bifurcation is only possible if the right-hand side is also negative, that is if

v < U (5.43)

In Section 5.1 it was so simple to rewrite (5.5) and (5.6) as (5.16) and (5.17) that we did so
without comment. Equation (5.17) involves the derivative ¢’(); here the analogous term is
v'(¢) which is part of A. We want to rewrite (5.41) and (5.42) as one equation for w which is
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independent of v/(¢) and one equation for v'(¢) which contains no trigonometric functions.
To accomplish this we make use of half-angle formulae.
Let U = wt/2 then

an T tanll — 2sin?U  1—cos(wT)
2 - 2sinUcosU  sin(wT)
and hence using (5.42) and (5.41)
an T = @O =1 (5.44)
2 WHu

We next simplify (5.42) using another half-angle formula. Still with U = wt/2, from the

standard formula
2tan U

1+tan?U’
on substituting for tan U from (5.44) we obtain

Sinwt =

2w(y = i) (wW? + )
(w2 4+ 92) (w? +p2)

Substituting this into (5.42), rearranging and using (5.34) gives
'(Q) _ WP+
o(@)  2v(r—n)

At a Hopf bifurcation equations (5.2), (5.41) and (5.42) must all be satisfied. This is equiv-
alent to solving

sinwt =

(5.45)

+
¥ = 527,3’”(5), (5.46)

along with (5.44) and (5.45).

We will follow similar steps as in Section 5.1, and consider (5.46), (5.44) and (5.45) sequen-
tially, using the first two equations to define v and wy as functions of ¢, so that it only remains
to solve (5.45) for ¢. But because of the state-dependent delay and the constraint (5.43) the
situation is not as simple as in the constant delay case considered in the previous two sections.

Note first that for any ¢ > 0 equation (5.46) gives a unique value of ¥ = (&). Moreover,
since as already noted, T is monotonically increasing it follows that 7y is a monotonically
decreasing function of .

For v satisfying (5.43), the right-hand side of (5.44) is negative. Then because of the
properties of the tan function in (5.44) there will be at least one solution wT to (5.44) satisfying
wt € ((2k+1)m, (2k+2)7) for k = 0,1,2,.... We denote by wy any solution of (5.44) for
which wt (&) € ((2k+1)7, (2k +2) 7).

At this point, we have defined 7 and wjy as functions of ¢. We still need to solve for
¢, or i from (5.45). We already considered the behaviour of the left-hand side of (5.45) in
Proposition 5.1, so we now consider the behaviour of the right-hand side. Let

24 .2

wip+7
1Y) = 77—
K= G —w
Usually we will take v = (&), defined by (5.46), but in the proposition below we con-
sider ri(7y) for general 4. Note that a solution of (5.45) corresponds to a solution of

f(&/0,,m,0" /ot) = r(v()), and since v is decreasing both f and r; will be negative at
such a solution, thus from (5.47) we require y < p.

(5.47)
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Proposition 5.5. Let r(7y) be defined by (5.47) and wy satisfy wyt € ((2k + 1), (2k + 2)7) for
integer k > 0. Then for -y € (0, ) it holds that

I nd)] > 2 (“;k)

2. re(y) = —o0asy — 0ory — i,

3. ()] <

Proof. The proof is elementary. ]

While there is a unique steady state ¢ for the case of decreasing v with constant g, just as
in Section 5.1 the location and properties of this steady state will depend on the values of the
other parameters. The following theorem collects together our results for this case.

Theorem 5.6. Let & be the steady state of the DDE (1.1), (1.2) with ¢(¢) = g* constant, and v
monotonically decreasing, so v~ > v" and the state-dependent delay T defined by (1.3) evaluated at
the steady state is T($) = a/v(¢). Then

~

. If| EZ;%‘) | < . Tl(g) then the steady state & is asymptotically stable.

2. The steady state ¢ is asymptotically stable if m < 1/(ut(¢)), or if both m > 1/(ut(¢)) and
r=ry= % < (1 + m;n'(zé)fl)z'

3. Forany fixed m > 0, and for 0 < ¢ < 80, or ¢ > 0,, or equivalently for v > ys0r 0 < v < 73,
the steady state is asymptotically stable.

4. If v > u the steady state is asymptotically stable.

5. For any fixed  # 0, let v = y(m, {) be the value of vy such that (5.2) is satisfied and hence ¢ is
a steady state. Or, for any fixed v with 0 < v < yz or v > 4 let & = (m,y) satisfy (5.2) and
hence be a steady state. Then ¢ is asymptotically stable for all m sufficiently large.

6. Let u > 3.

(a) Forany k > 0, for all m = m(k) sufficiently large there are two families of (at least) k + 1
Hopf bifurcations as vy is varied. In the first family, the characteristic values A; = a; + iw;
with w;t € ((2j + 1), (2j +2)7) for j = 0,1,..., k cross the imaginary axis from left to
right as <y increases, while in the second family they cross the imaginary axis from right to
left.

(b) Let v € (y3, min{vya, u}) be fixed. Then as m is increased there is an infinite sequence
of Hopf bifurcations where the real part of Ay = ay =£ iwy becomes positive with wyt €
((2k+ 1), (2k +2) 7).

Proof. Statements (1) and (4) were already shown; see equations (5.34), (5.39) and (5.38).
Claim (2) follows from (1) using Proposition 5.1, since

go'(¢) 1/2m _m|l —ry/?|
| S ST m )| = A7

(%)

where r, = v~ /o > 1.
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Claim (3) also follows from (1), similarly to the proof of Theorem 5.3(3).

Statement (5) is derived similarly to Theorem 5.3 (4), by using (5.46) and (5.33) to show
that e "7 < e #7(6) < T implies that y3/7 < /0, < ya/7.

Finally, (6) is more delicate to prove. As noted before Proposition 5.5, to find a Hopf
bifurcation we need to solve f(¢/6,,m,v"/vt) = r(y(¢)). Since for & # 6, the function
f(&/6,,m,0" /vT) — 0 as m — oo, we begin by considering ¢ = 6,. Recall that v(&) defined
by (5.46) is a monotonically decreasing function of {. Moreover, using (1.3) we see that 7(6,) =
2a/(v~ +ov%) € (t7,7"), which is independent of the value of m. Then

+
¥(0y) = '%Z}e‘”f(ev) € (713, 74), (5.48)
and y(6,) is also independent of the value of m.
Now there are two cases to consider. First consider the case where y(0,) < u. If

(v=/vt)+1 ((2k +2)2(t/T(6,))? + 7(91,)2>

m > 2(0 /o) —1 27(00) (1 — v(60))

(5.49)
then

f(1,mo /o) =—

m(v~ /vt —1) ((2k+2)2(7f/f(9v))2+7(9v)2>
2(v~ /vt +1) 27(05) (v(68s) — )
<ri(v(6)), j=0,1,...,k

Here the equality comes from definition of f, the strict inequality from (5.49) and the last
inequality follows from a similar argument that proves Proposition 5.5(3), the only difference
being that here we use the actual value of 7(6,) in the inequality, rather than the bound 7~.

With this inequality as the starting point, we examine what happens when we increase
¢ away from 6,. If { is increased then (¢) decreases with limg ,o v($) = 0. But r;(7(¢))
and f(¢/6,,m, v~ /v") are both continuous functions of ¢ with limg_,o, 7j(7(§)) = —co and
limg_,o f (&/60y,m,v~ /v") = 0. Consequently for each j = 0,1, ...,k there exists a ¢ such that
f(&/80,m, 0 /07) = 1;(7(2))-

If instead ¢ is decreased from 6, then limg_,o¥(§) = +o0, so ¥(§) > u for ¢ sufficiently

small. However, for y(§) < p we have lim, »,7i(y) = —oo, while f(Z/0,,m,v"/v") is
bounded, so again for each j = 0,1,...,k there exists a ¢ such that f({/60,,m,0" /vT) =
ri(7(€))-

Solutions of this equation define the Hopf bifurcation points, which gives the required
Hopf bifurcations when 7 (6,) < u. To summarize the argument up to this point, for a fixed
k and any large enough m = m(k) satisfying (5.49), we found two families of k + 1 Hopf
bifurcations, one for ¢; < 6, and one for ¢; > 6,, by finding appropriate (g;) that satisfy
f(&;/6y,m,0~ /o) =ri(7(E;)) for each j = 0,..., k. See Figure 5.7(d) for illustration of these
families as functions of the parameters m and .

Now consider the more delicate case where 3 < it < 7(6,) < 7. The above argument
fails in that case as |f({/60,, m,v~ /v™)| > 0 for ¢ = 6, but the corresponding -y is y(6,), with
7(6s) > u, and by (4) the steady state would be asymptotically stable. Instead, noting that (&)
defined by (5.46) is monotonically decreasing, this function is invertible and we can instead
consider ¢ = () as a function of . Fix ¢ € (73, ), and consider the behaviour as m — oo.
In this case the function v(&) defined by (1.3) approaches the piecewise constant function (1.7),
and the steady-state function () (recall (5.2)) approaches the case illustrated in Figure 5.5.
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Since v is fixed with v € (y3,4) C (7v3,74), we find { — 6, and v'({) — —oo while v(&)
and ¢ remain bounded and bounded away from zero. Consequently, for m sufficiently large

g;’ég) < rj(y) for j = 0,1,...,k. From here the argument proceeds as in the case v(6,) < p.

Statement (6)b also follows trivially in the case that y3 < p < ¥(6,) < 7a. O

Although Theorem 5.6(6) is stated for one-parameter continuation in m or 7, we can
also draw conclusions for two-parameter continuation of the Hopf bifurcations in the (v, m)-
parameter plane.

The argument used in the proof of Theorem 5.6(6) in the case when u € (3, v4) shows that
for any y_ > 73 the k-th Hopf bifurcation occurs for v € (73, v-) for all m sufficiently large.
Then because of Theorem 5.6(5) the k-th Hopf bifurcation approaches oy = 73 as m — oo, and
in the (vy, m)-parameter plane the left side of the Hopf bifurcation curves asymptote to v = 3
as m — oo. Similarly for any 74 < u the other instance of the k-th Hopf bifurcation occurs
for v € (74, ) for all m sufficiently large, and the right side of the Hopf bifurcation curves
asymptote to y = p as m — oo.

In the case that y > <4, a similar argument can be applied to show that the k-th Hopf
bifurcation curve asymptotes to y = y3 and y = 4 in the (-y, m)-parameter plane.

There are nevertheless differences between the cases where 7y converges to 3 or 74 as
m — co and the case where v — y as m — oo. To see this consider for fixed k the limit as
m — oo when v approaches the piecewise constant function (1.7). Then from Theorem 5.6, we
have § — 0, and v € [y3, min{vy4, u}]. Since 7(&) € [a/vy,a/vr] and wiT(E) < (2k+2)7
it also follows that wy is bounded. Thus the numerator of the right-hand side of (5.45) also
remains bounded. Now there are two cases to consider.

First suppose that as m — oo and § — 6, that v'({) becomes unbounded, that is v/(§) —
—o0, or equivalently that A — —co. Then the left-hand side of (5.45) becomes unbounded in
the limit as m — oco. Since the numerator of the right-hand side is bounded, we must have
v—u=0(1/A) — 0 to satisfy equation (5.45). To summarize, if v'({) — —o0 as m — co we
must have that v — p in this limit.

On the other hand, if A < 0 remains finite as m — oo, because 7, ¢ and v(¢) are bounded
and bounded away from zero in the limit, the only possibility in (5.34) is that v/(¢) also
remains finite. But as m — co the function v(&) approaches a step function, and the only places
where v/(&) is non-zero and finite are near the corners of the limiting velocity nonlinearity.
Consequently, the only possibility for a Hopf bifurcation to exist for arbitrary m is that the
steady state at which this Hopf bifurcation happens converges to the corners of the limiting
velocity nonlinearity. That is, in the limit as m — oo with A < 0 finite, we must have that
¥ — 3 or v — Y4 with ¢ — 6, where 3 and -4 are defined by (5.33).

Below we illustrate the different possible behaviours allowed by Theorem 5.6 in the three
cases: f < 3, ft € (7y3,74) and p > 7a.

Case 1: We begin with the case y < 3. By Theorem 5.6 (point 4) the steady state must be
stable whenever v > p, while for v < y we have v < u < 3 so by Theorem 5.6(point 5) the
steady state is stable for all m sufficiently large, or by Theorem 5.6 (point 3) it is stable for all
7 sufficiently small.

Figure 5.6 shows an example of the behaviour of (1.1)—-(1.2) for (g <»,v |) with u < 73 <
v4. Panel (b) shows the smooth case for several different values of m, which reveals that the
steady state is always stable. Panel (a) shows the behavior in the limiting case with (1.7). In
this case the singular steady state can only become a stable steady state for large finite m.

In the model (1.1)—(1.2) we consider the parameters oy and p to be independent, but de-
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Figure 5.6: Bifurcation diagram of (1.1)-(1.2) with (g <+, v |) and parameters p =3,y =
05¢ =¢g"=1v=160,=1a=2,0" =2and v" = 1. (a) The limiting case with v
defined by (1.7). The stable steady state is shown as a green solid line. (b) With smooth
velocity nonlinearity v defined by (1.3) with m = 1, 10, 80, 200 as indicated by color.
The steady state is always stable.

pending on how the model is derived, that may not be the case. For example, the current
model (1.1)-(1.2) can be derived as a reduction of the operon model in [18]. In the model in
[18] the parameter equivalent to <y is an effective removal rate which is the sum of the actual
degradation rate with the dilution because of the growth rate . Consequently, in the model of
[18], and in similar systems modelling gene regulatory dynamics in a growing cell, we obtain
the natural parameter constraint v > y, and expect dynamics corresponding to Figure 5.6.

Case 2: Next, in Figure 5.7, we illustrate the behavior of (1.1)—=(1.2) for (g <»,v |) with
i € (v3,74). Panel (a) depicts the behavior of the limiting case with piecewise constant
v defined by (1.7). Panel (b) shows the case of the smooth velocity nonlinearity (1.3) with
m = 100. The steady state close to x = 6, undergoes a pair of Hopf bifurcations creating a
bubble of stable periodic orbits which coexist with the unstable steady state for an interval of
values of v which is a subinterval of (3, #). As required by Theorem 5.6(4) the steady state
is asymptotically stable for v > u. Thus, in contrast to the previous case, the singular steady
state may become either a stable or unstable steady state for very large finite values of m.
Panel (c) is similar to panel (b) but for m = 32. In this case the steady state is always stable,
and no Hopf bifurcations are seen.

Figure 5.7(d) shows a two-parameter continuation of the first three Hopf bifurcations il-
lustrating Theorem 5.6(4-6). The steady state is stable below and outside the outermost Hopf
curve and unstable otherwise, and Hopf bifurcations appear sequentially for increasing values
of m. The bifurcation curve of first Hopf bifurcation (corresponding to k = 0 in the analysis
above) is clearly seen to asymptote to y = 3 and ¢y = y as m — oo. The subsequent Hopf
bifurcations also approach these limits as m becomes larger, but do so more slowly.

For the parameter values shown in Figure 5.7 the inequalities y3 < ¥(6,) < pu < 4 hold.
Consequently, (5.49) applies and gives a sufficient condition on m to ensure that the k-th Hopf
bifurcation arises. For the given parameters (see the caption of Figure 5.7) these sufficient
conditions are approximately m > 84, 316 and 703 for k = 0,1,2 respectively, whereas in
Figure 5.7 the corresponding Hopf bifurcation curves have minimal m values of approximately
m = 34, 147, and 336. Therefore, at least in this case, the sufficient condition is not tight. No
Hopf bifurcations are seen for m < 34 in panel (d), which explains why no Hopf bifurcations
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Figure 5.7: Bifurcation diagram of (1.1)-(1.2) with (g <, v |) and parameters p = 3, u =
03, =¢t=1,7=1,60,=1,a=3,0" =05and v" = 0.2. (a) The limiting case with
v defined by (1.7). The stable steady state is shown as a green solid line, and the singular
steady state as a black dashed line. (b) With a smooth velocity nonlinearity v defined
by (1.3) with m = 100. Solid lines represent stable objects including the stable steady
state (in green), and envelope of the periodic orbit (in red and blue). Dashed lines
represent unstable steady states which have two eigenvalues with positive real part (in
black). (c) As in (b) but with m = 32. (d) Two-parameter continuations in m and vy
of the Hopf bifurcations (shown as solid curves) with the other parameters as above.
The outermost curve of Hopf bifurcations is associated with the stability change seen
in (b). The black dash-dotted line denotes v = 3 = 0.0333 and the red dash-dotted
line denotes v = u = 0.3, the location of the Hopf bifurcations in the limiting case as
m — oo. Note that 7(6,) = 0.2293 < u < 74 = 0.4959. (e) Profiles of the stable periodic
orbits from the Hopf bifurcations in (b) at v = 0.13 and m € [56,200] as indicated by
the color map. (f) Projection of the phase space dynamics into the (x(t), x(t — 7)) plane
at v = 0.13 where T = 1(6,) = 60/7. The arrow indicates the direction of the flow. The
square marks the unstable steady state in the limiting case at the threshold.

37
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were detected for m = 32 in ().

As m increases, the stable periodic orbits created in the Hopf bifurcation at v = 0.13 €
(73, 1) are shown in Figure 5.7(e) and (f). Panel (e) shows the profiles of these orbits, while
in (f) we show their projection into the (x(t), x(t — %)) plane. Note that since the delay 7 is
state-dependent we do not use the actual delay for this projection, but we took T = T(6,).
The limiting behaviour as m — oo is quite different from the constant delay case considered
in Section 5.1. Not only is the shape of the profile different, but comparing Figure 5.7(f) and
Figure 5.2(f) we see that the direction of rotation of the orbits, as indicated by the arrows, is
reversed in the two examples.

Case 3: The final case to consider for (1.1)—=(1.2) with (g <»,v |) is when 73 < 74 < y, and
this is illustrated in Figure 5.8. Panels (a)—(c) show the dynamics for the limiting case with the
piecewise constant velocity nonlinearity (1.7) and for the smooth case with the Hill function
from (1.3) with m = 250 and m = 100 respectively. For the limiting case in (a) the singular
steady state with x = 6, appears as a straight line segment for v € (y3,4). The singular
steady states become unstable steady states in the smooth case as shown in (b), and there is a
bubble of stable periodic orbits between the pair of Hopf bifurcations.

Figure 5.8(d) shows the locus of the principal Hopf bifurcation for a two-parameter contin-
uation in m and . Below and outside the curve of Hopf bifurcations the steady state is stable,
while between the Hopf bifurcations it is unstable. We see that the Hopf bifurcation curves
approach 73 and 74 as m — o, as follows from Theorem 5.6. Since 74 < u and necessarily
7(0y) € (73, 7a) we are guaranteed that y(6,) < u, so for all such examples Theorem 5.6 guar-
antees that there are infinitely many Hopf bifurcations. However, they may occur for very
large values of m. For the example depicted in Figure 5.8, only one Hopf bifurcation is ob-
served with m > 117. For the parameter values of this example the sufficient condition (5.49)
(with k = 0, 1) ensures a first Hopf bifurcation for m > 152, while a second one is ensured for
m > 602, which is outside the parameter range considered in Figure 5.8.

If the value of the Hill coefficient m is reduced sufficiently then there are no longer any
Hopf bifurcations and the steady state remains stable, as seen in Figure 5.8(c). Interestingly,
even though there are no longer any Hopf bifurcations in this case, the dependence of the
steady state x on 7 is still very similar to (a) and (b), with an obvious plateau visible in the
graph of x in Figure 5.8(c) for v € (3, 74).

Figure 5.8(e) and (f) respectively show the profiles and the (x(t), x(t — t))-space projections
of the stable periodic orbits at v = 0.4 as m increases, where we choose ¥ = T(0,). The
periodic orbits approach a certain structure as m — co. Note that the direction of rotation in
both Figure 5.8(f) and Figure 5.7(f) is clockwise, while in Figure 5.2(f) it is counterclockwise.

5.4 State-dependent delay with v increasing and g constant (g <>, v 1)

Here we again consider the model (1.1)-(1.2) with a constant function ¢(¢) = ¢* and state-
dependent delay, but now we consider the case of increasing v, so v~ < v in (1.3) and (1.7):
(g <, v1).

As illustrated in Figure 5.9, it is possible for up to three steady states to coexist due to the
fold bifurcations at the corners associated with v = 73 and v = 4. Note that in Section 5.3
we had 3 < 4. Since the function v is increasing in this section, it follows from the definition
(56.33) that now 4 < 3. In the limiting case where v is defined in (1.7), at the non-singular
steady states the characteristic equation is of the form (4.11), and hence these steady states are
stable. For ¢ € (4, 73) the two stable steady states co-exist with a singular steady state, at
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Figure 5.8: Bifurcation diagram of (1.1)-(1.2) with (g <>, v |) and parameters f =3,y =
15, =gt =1,v=1,0,=1,a=2,0 =2and v = 1. (a) The limiting case with v
defined by (1.7). The stable steady state is shown as a green solid line, and the singular
steady state as a black dashed line. (b) With a smooth velocity nonlinearity v defined
by (1.3) with m = 250. Solid lines represent stable objects including the stable steady
state (in green) and a stable limit cycle (represented by maximum and minimum of x(t)
on the periodic solution). Dashed lines represent unstable steady states which have
two eigenvalues with positive real part (in black). (c) As in (b) but with m = 100.
(d) Two-parameter continuations in m and -y of the Hopf bifurcations seen in (b). The
dash-dotted lines denote v = 3 = 0.1494 and v = 74 = 0.6694, the location of the
Hopf bifurcations in the limiting case as m — oo. (e) Profile of the stable periodic
orbits from the Hopf bifurcations in (b) at v = 0.4. The color map indicates values
of the continuation parameter m. (f) Projection of the phase space dynamics into the
(x(t),x(t — 7)) plane at v = 0.4 where ¥ = 7(6,) = 4/3. The arrow indicates the
direction of the flow. The square marks the unstable steady state in the limiting case at
the threshold.
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Figure 5.9: Illustration of how the number of steady states of (1.1), which are given by
(5.2), changes with the intersections of { — ,86’7“(5) g and ¢ — 7C. These are shown
in the limiting case of (1.6) and (1.7) with g* = ¢~ = g%, so ¢(¢) = ¢ is a constant
function, and v~ < v so v is piecewise constant and monotonically increasing: (g <>
,01). Then (&) = a/v(g) is state-dependent; 7(¢) = v~ = a/v~ for { < 6y, T(§) =
Tt =a/v" for & > 6, and T({) is set-valued when ¢ = 65,

which the characteristic function is not defined. This leads us to consider the smooth velocity
nonlinearity (1.3).

Because the smooth velocity nonlinearity approaches the step function shown in Figure 5.9
as m — oo, it follows that for all m sufficiently large there will be a pair of fold bifurcations at
(& 7) = (&7, v(§7)) and (¢, 7) = (&7, 7(&7)), with (£, 7(§7)) = (60, 74) and (¢T,7(5T)) =
(6y,73) as m — oo. To study the associated bifurcations consider the characteristic equation
which has the form (4.10). Writing the characteristic function A(A) as

0
AA) =A+y—A+Ac O —pA e'ds, (5:50)
—a/v(Z)

it follows from (5.2) that at a steady state

O =y A [ s =y (@A = 7 pr(@)y L)

—a/0(¢) 0(¢)
_ 1 ¢v'(¢)
= yut($) (yr(g) =50 ) (5.51)
Hence, A = 0 is a characteristic value if and only if
ge 1
00 @ 652
In addition, note that
&v'(§) 1

(5.53)

o@)  wt@
implies that A(0) < 0. At the same time, it is easily seen that for real A the characteristic
function satisfies A(A) — 400 as A — +oc0. We conclude that when (5.53) is satisfied there is
a real positive characteristic value and hence the steady state is unstable.

We now show that fold bifurcations occur when (5.52) is satisfied. To that end, consider
the curve of solutions (y(¢), ¢) where (&) is defined by (5.46), which by (5.2) is the locus of
steady states in (v, ¢)-plane. Differentiating this relationship with respect to ¢ we find

7(¢)

7)== (14 7).
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However, (&) = a/v(¢) implies that

#@%:_MQZZ_ @ (5.54)
Thus (&) '(@)T(2) (@@ ('@ 1
/ _ 20 T _ HT)Y 0 _
7@ =T (1-n o(¢) ) =% (v(é) m(@)‘ 559

Hence sgn(vy/(&)) = sgn (‘Z’Eg) - ﬁ), and /(&) changes sign when the left-hand side of

(5.52) changes sign, which ensures that fold bifurcations occur at these points in the (v, ¢)-
plane.

While the above analysis appears similar to the constant delay case considered in Sec-
tion 5.2, the state-dependency of the delay introduces two significant differences.

First, with a state-dependent delay and increasing v, fold bifurcations occur when (5.52)
is satisfied, whereas in Section 5.2 with increasing ¢ we found fold bifurcations when (5.27)
is satisfied. Thus for the constant delay case the fold bifurcations occur when the unimodal
function ¢ — f(5/0,n,8/8") = ¢8'(8)/g(Z) is equal to 1, and so there is at most one pair of
fold bifurcations. In contrast, for the state-dependent delay case, fold bifurcations occur when
the unimodal function (5.35) is equal to 1/u7(¢). For increasing v, the function ¢ — 1/ut(¢&) is
also an increasing function, thus the fold bifurcation occurs at the intersections of a unimodal
function with an increasing function. Clearly, such functions may have multiple pairs of
intersections and hence multiple pairs of fold bifurcations. From Proposition 5.1, for the Hill
function v(&) defined by (1.3) we have that ¢ — &v'({)/v(&) is monotonically decreasing for
& > 0,(v" /)2, 5o there will be at most one intersection with the increasing function
¢+ 1/ut(¢) on this interval. Thus if there are additional fold bifurcations they must occur
for & < 0,(v=/ v*)l/ Zm < @, In the current work, we will not look for these additional fold
bifurcations, nor will we show that they cannot exist. Even if it were possible to show that
they cannot exist when v is defined by (1.3), we would expect that additional fold bifurcations
could be induced by suitable modifications to the velocity nonlinearity.

A second difference between the state-dependent and constant delay cases concerns the
stability of the steady state near the fold bifurcation. Note that the argument after (5.39)
in Section 5.3 still applies to show that the steady state is stable if v < p and (5.39) holds.
Consequently, a fold bifurcation which occurs for v < p must involve a stable steady state
which loses stability at the fold bifurcation. However, this argument does not apply when
v > u, and we will see examples where stable steady states lose stability in a Hopf bifurcation
with ¢ > p, and also fold bifurcations where the steady state is unstable on both sides of the
bifurcation (with different numbers of unstable characteristic values). This contrasts with the
constant delay case in Section 5.2 where we showed that a stable steady state can only lose
stability at a fold bifurcation.

As was the case when v was decreasing, Hopf bifurcations are governed by equations
(5.41) and (5.42). However, since v is increasing we now have A > 0. At a Hopf bifurcation
the right-hand side of (5.42) is strictly positive, and hence sin(wt) > 0. Since sin(w7) > 0
implies cos(wT) < 1, it then follows that the left-hand side of (5.41) is also strictly positive,
and a Hopf bifurcation is only possible if the right-hand side is also strictly positive, that is if

v > (5.56)

As in Section 5.3, we find Hopf bifurcations by sequentially solving (5.46), (5.44) and
(5.45). Equation (5.44) has infinitely many solutions wi(7y(¢)) for k = 0,1,... with wyT €
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(2krt, (2k + 1) 7t). Finally, to solve (5.45) with v/(&) > 0, we need to determine ¢ that satisfies
f(&/0,,m,0" /ot) =ri(y(€)) > 0 (defined in (5.47)). Usually we will take v = (&), defined
by (5.46), but in the proposition below we consider rx(-y) for general .

Proposition 5.7. Let ri(7y) be defined by (5.47) and wy satisfy wyT € (2kmt, (2k + 1)7T) for integer
k > 0. Then for v > w it holds that ri(y) > 0 and

1. rx(y) is monotonically decreasing,

2. re(y) = +ooasy — pand ri(y) — 1/2as ¢y — 4oo,

2k +1)2(rt/Th)% + 92

3 .
K < 27(y — )

Proof. The proof is elementary:. O

The following lemma will be needed in the proof of Theorem 5.9.

Lemma 5.8. For x > 0 let f(x) = 1(1—e™) then f(x) is strictly monotonically decreasing for
x > 0 with

1= chlgbf(x) > x1—1>Toof(x) =0. (5.57)
Proof. The two limits in (5.57) are easily verified. To show the monotonicity of f(x) first
differentiate to obtain

1
/ _ _ —X
) == [1 (x+1)e }
The assumption f’(x) = 0 for some x > 0 yields e* = 1+ x which is impossible for x # 0.
Using continuity we infer that on (0,00) there is no sign change of f'(x), and that f'(x) is

strictly monotonic for x > 0. Because of (5.57) f is decreasing. O

The following theorem collects our results for the case of increasing v with constant g.

Theorem 5.9. Let & be a steady state of the DDE (1.1), (1.2) with g(&) = g* constant, and v
monotonically increasing, so v~ < v™, and the state-dependent delay T defined by (1.3) evaluated at
the steady state is T(&) = a/v(¢). Then

&v'(¢)
LI <
is unstable.

. , 0 5(E) 1
then the steady state ¢ is asymptotically stable, while if @ it

1
(&) max{p, v} ut (%)

2. For any fixed & # 0, let v = y(m, {) be the value of vy such that (5.2) is satisfied and hence ¢ is
a steady state. Or, for any fixed v with 0 < v < g or v > 3 let { = (m, y) satisfy (5.2) and
hence be a steady state. Then ¢ is asymptotically stable for all m sufficiently large.

3. The steady state & is asymptotically stable if m < 1/(t(¢)max{u,v}), or both m >

_ 2
1/(t(@) max{p, v}) and 1 > % > (1 = s trr )

4. For any fixed m > 0, and for ¢ > 0,, or equivalently for 0 < 7 < <4, the steady state is
asymptotically stable. For any fixed m > 1, and for 0 < ¢ < 8, or equivalently for v > 3 the
steady state is asymptotically stable.
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5 Ifm>1/(ptt)and & < (1— W)z then there exist £~ < 0,(v™ /v™)V/2" < & with
Y(&7) < (&) such that as vy is varied there is a branch of steady states with { < ¢~ and
v > (&™) and another branch with & > ¢ and v < y(&1). For v € (v(¢7),v(&")) these
two branches of steady states co-exist with a branch of unstable steady states which exists between

fold bifurcations at (&,v) = (¢~,v(&7)) and (&, ) = (&F,v(¢T)).

6. Let u < 3.

(a) For any k > 0, for all m = m(k) sufficiently large there are two families of (at least) k + 1
Hopf bifurcations as vy is varied. In the first family, the characteristic values A; = a; + iw;
with w;t € (2jm, (2j +1)7) for j = 0,1,...,k cross the imaginary axis from left to right
as vy is increased, while in the second family they cross the imaginary axis from right to left.
For all j sufficiently large these bifurcations occur on the branch of unstable steady states
between the fold bifurcations identified in (5).

(b) Let v € (max{ys, u},v3) be fixed. Then as m is increased there is an infinite sequence
of Hopf bifurcations where the real part of Ay = ay % iwy becomes positive with wyT €
((2k7t, (2k + 1) 7r). All but finitely many of these bifurcations are located on the branch of
unstable steady states between the fold bifurcations.

Proof. The last part of (1) is shown after (5.53). To establish asymptotic stability we show that
Re(A) < 0 for all of the characteristic values that solve (4.10). From ¢v'(¢)/v(&) < 1/ut(¢)
and (5.51) it follows immediately that A = 0 is not a characteristic value. To show that A > 0
is not a characteristic value, evaluating the integral in (5.50) we obtain

AN =A+y—(1— e‘“(g))é()\nL 1.

A
But
_E'(g) 0
AZT00) S W@ maxdiat
hence
AA) > A4 — L(l e MOy (A s Aty — (A+p),

At(g)

where the last inequality follows from Lemma 5.8. Now there are two cases to consider. If
v > u then

max{p, v} max{y, v}

AA)>A+y—A+u)=y—pu>0.
On the other hand, if v < u then

A(M) >/\+7—Z(/\+y):/\< —Z) > 0.

In both cases the characteristic function satisfies A(A) > 0 for all A > 0 so there are no real
positive characteristic values.
To complete the proof of (1) it remains to show that there are no complex characteristic

values A = a +iw with « > 0 and w > 0. For the case 7 < u the proof is the same as in
Section 5.3 (where (5.39) holds independent of the sign of v/(¢)). For the remaining case, if
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v > u the assumption of the theorem reads é{zég) < 7%@ Let A = a + iw be a characteristic

value with « > 0 and w > 0 then

|Ae™"® sin w(§) [(a + #)* + «?] | < AwT(@) [(a + p)* + 7]
_ 7Cv’(é)

v(¢)

<wl(a+p)?+w?

wT(&)[(a+ p)? + w?]

< w((2a+’y)}4+oc2+w2>.

Consequently (5.37) is violated, and so there is no such characteristic value. Thus « < 0 for all
characteristic values and the steady state is asymptotically stable.

Statement (2) is derived similarly to Theorem 5.3(4), by first using (5.46) and (5.33) to show
that e #T < e #7(0) < =HT" implies that 4/ < /60, < 3/, then applying Proposition 5.1
and (1).

Statement (3) follows from (1) using Proposition 5.1 (point 4), since

m(1 —rk/?)

1—1—1’11,/2

where r, = v~ /vt € (0,1). Statement (4) also follows from (1), using Proposition 5.1 (point
1), similar to Theorem 5.3 and Theorem 5.6, where for the second part of (4), m > 1 ensures
that

m(l—v /) (@/0.)"  Bg e

F& om0 [V ) = A 0,y (o o + (27007) &

—0 as¢ —0.

To show (5), note that the parameter constraints ensure that f(¢/60,,m, v~ /v") = é;’ég) >

ﬁ when & = 0,(v/v")/?". Then since f(&/60,,m,0"/v") — 0as & — 0and as & — oo it

follows that there exists &+ > 0,(v™ /v+)/2" and ¢~ < 0,(v™/v*)!/?" which both solve (5.52).
We take ¢~ to be the largest & which solves (5.52) with &~ < 8,(v™ /)12, while as discussed
after (5.55), {* is unique. Then it follows from (5.52), (5.55) and the adjacent arguments that
there is a pair of fold bifurcations at (¢,y) = (¢, v(¢)) and (¢, 7v) = (&, y(¢")), which are
connected by a branch of unstable steady states, and no other fold bifurcation (besides ¢ = ™)
with & > ¢~. For ¢ > ¢, it follows from (5.55) that 9/ (&) < 0 and hence this branch exists for
ge (¢t ,c0)and v € (0,7(¢")). If ¥({") < u then the whole of this branch of steady states is
stable, otherwise by (1) it is stable for all { sufficiently large, given by condition (&) < p.

For the branch which exists for ¢ € (0,¢™), it follows from (5.46) that y(&) — +coas ¢ — 0.
Hence y(¢) takes all values in [y(¢~), +o0) for { € (0, ). However, as discussed after (5.55),
it is possible for this branch to have additional fold bifurcations. If there are no additional fold
bifurcations and (¢~ ) < u then the branch of steady states is stable for v € (y({™), u). Also,
if m > 1 by (4) it is stable for all ¢ sufficiently small, or, equivalently, for all (&) sufficiently
large.

To show (6), first consider the case when 7y (6,) defined by (5.48) satisfies y(6,) > . If

m > 2

1+ (0 /o%) <<2k+ 12(r0/7(6:))? +7(9v)2>

1—(v=/v%) 29(6,) (7(6) — 1) (5.58)
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then

f(1,mo /oT) =

m(l—ov"/ot) ((2k+1)2(7r/r(9v))2+7(9v)2)
2(1+v/oT) 27(60) (7(60) — )
>ri(v(0s)), j=0,1,...,k

Here the equality comes from the definition of f, the strict inequality from (5.58) and the last
inequality follows from a similar argument as in the proof of Proposition 5.7 (point 3), but
using the actual value of 7(6,) in the inequality, rather than the bound 7.

With this inequality as the starting point, increasing ¢ away from 6, we have
limg_,o (&) = 0. But r;(v(&)) and f(¢/6,,m, v~ /v") are both continuous functions of § with
limg_,e0 7(7(8)) = 00 and limg_,o0 f(£/60y,m, v~ /v") = 0. Consequently for eachj = 0,1,...,k
there exists a ¢ such that f(5/6,,m, v~ /v") =7;(v(Z)).

Similarly, for ¢ decreasing from 6, (see also the proof of Theorem 5.6) it follows for each
j=0,1,...,k that there exists a ¢ such that f(&/6,,m,0~ /v") = rj(7()). As in the proof of
Theorem 5.6 this defines the required Hopf points for the two families of k + 1 Hopf bifurca-
tions.

This argument fails in the more delicate case where 74 < ¥(0,) < u < 3. In this case
fix v € (u,73), and consider the behaviour as m — oo. Since (&) — 4 and y(¢7) = 73,
it follows that v € (y(&*),v(¢7)) for all m sufficiently large. Then since (&) defined by
(5.46) is monotonically increasing for ¢ € (¢, ¢ "), this function is locally invertible and we
can instead consider ¢ = ¢(7) as a function of y. From here the argument proceeds as in the
proof of Theorem 5.6(6). O

We now present several examples to illustrate the complex dynamics allowed by Theo-
rem 5.9. There are essentially three main cases to consider depending on whether yu falls
above, below or within the interval (74, y3). As in Section 5.3 we start with the simplest case
where there are no Hopf bifurcations.

Case 1: 74 < 73 < u. This is illustrated in Figure 5.10. Panel (a) shows one-parameter
continuations of the steady-states in <y for several fixed values of m, along with the limiting
case (1.7), while panel (b) shows the two-parameter continuation of fold bifurcations of steady-
states in the (7,m) plane. We see that for all m sufficiently large there is a pair of fold
bifurcations at (¢,7) = (¢, 7(¢7)) and (§,7) = (&7, v(¢7)), with (&7, 7(¢7)) = (6o, 74) and
(&, 7(E")) — (6s,73) as m — oo. As required by Theorem 5.9, the steady state is always
unstable between the fold bifurcations, while we observe it to always be stable otherwise.

Similar to the analysis in Section 5.2 that led to (5.28), imposing max{/’(x)} > 0 leads to
the necessary condition

v < —But (§)e FT 0 g* (5.59)

for the coexistence of three steady states. However, the algebra to turn this into an explicit
condition (compare (5.59) with (5.28)) is challenging with a state-dependent delay (5.1), so
instead we apply this condition numerically. The red dash-dotted curve in Figure 5.10(b)
depicts the condition (5.59). For any fixed m, this curve provides an upper bound on 7y for
the existence of fold bifurcations and hence multiple coexisting steady states. By the same
argument as in Section 5.2 the cusp bifurcation must lie on this curve. This can be seen in
Figure 5.10(b) where the cusp point (y,m) = (0.4844,5.0002) lies on this bounding curve.
Because of (5.56), there can be no Hopf bifurcations for v < p, and since the fold bifur-
cations all occur for ¢ < p, there can be no Hopf bifurcations between the folds, as seen
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Figure 5.10: Bifurcation diagram of (1.1)—(1.2) with (g <»,v 1) and parameters p = 1.4,
n=08g =g¢g"=1v=0,=a=1,0" =05and v = 1. By (5.33) this implies
Y4 = 0.2827 < 3 = 0.6291 < p (Case 1). (a) One parameter continuation of the steady
state in 7y for the velocity functions in (1.7) and in (1.3) with different fixed values of m.
For m < 5 the steady state is always stable. For m > 5 it is unstable between two fold
bifurcations, and for large m approaches the limiting case (1.7) (denoted by m = o in
the figure). (b) Two-parameter continuation of the fold bifurcations in the (1, m)-plane,
with a cusp point at (y,m) = (0.4844,5.0002). The red dash-dotted curve denotes the
bound on the fold bifurcations given by (5.59).

in Figure 5.10. For ¢ > u, Theorem 5.9 ensures that the steady state is stable for < suffi-
ciently large or for m sufficiently large. In Figure 5.10 we see that actually there are no Hopf
bifurcations at all and the steady state is stable for all values of v > u and for all m > 0.
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Figure 5.11: One parameter bifurcation diagrams of (1.1)—(1.2) with (g <,v 1) for
varying 7y and smooth increasing v defined by (1.3), with the exponent m in the velocity
nonlinearity defined by (a) m = 50 and (b) m = 2. The other parameters are taken to
bef=14,u=02,9¢ =g¢"=1,606,=1,a=1,0" =01and v = 2. By (5.33) this
implies 74 = 0.1895 < u < 3 = 1.2668 (Case 2). Solid lines represent stable objects
(with stable steady states shown in green), and dashed lines represent unstable objects
(with unstable steady states shown in green, black or grey depending on the number of
unstable characteristic values). In (a) a branch of unstable periodic orbits is represented
by the 2-norm (5.60) of the periodic solution (red dashed line in inset), while in (b) red
and blue lines represent the maximum and minimum values of x(¢) on the periodic
orbit.
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Case 2. The case y € (74, 73) is illustrated in Figures 5.11-5.14. Figure 5.11 shows two
one-parameter continuations in <y for different values of m. At first glance, Figure 5.11(a)
for which m > 0, looks much like the corresponding constant delay case with increasing g
illustrated in Figure 5.4(b) in Section 5.2. In both of these examples there are two fold bifur-
cations, leading to an interval of bi-stability of steady states, and Hopf bifurcations between
the fold bifurcations leading to unstable periodic orbits. However, as shown in the inset of
Figure 5.11(a), for the state-dependent delay with y < <3 the upper branch of stable steady
states, which exists for x > 6,, loses stability in a (subcritical) Hopf bifurcation, and not at the
fold bifurcation. Recall that for the constant delay case considered in Section 5.2 we showed
that the steady-state could only lose stability in a fold bifurcation.

Figure 5.11(b) illustrates the dynamics for a much smaller value of m, but with the other
parameters unchanged. In this case m is too small for fold bifurcations to occur, but we still
find a pair of Hopf bifurcations, one supercritical and one subcritical, leading to a stable
periodic orbit, and also a very narrow interval of bistability of this periodic orbit and a stable
steady state between the subcritical Hopf bifurcation and a saddle-node of periodic orbits
bifurcation. This is quite different from the dynamics seen before where, for decreasing g or
v respectively in Sections 5.1 and 5.3, only supercritical Hopf bifurcations were observed, and
for increasing ¢ in Section 5.3 where Hopf bifurcations only occur between the pair of fold
bifurcations.

The branches of periodic orbits in Figure 5.11(a) and (b) are represented differently. In
Figure 5.11(a) we plot the L, norm of the periodic solution of period T, defined as

T 1/2
Il = (7 [, Ivo)at) (5.60)

In contrast, in Figure 5.11(b) we display the branch of periodic orbits by plotting both max x(t)
and min x () over the periodic orbit, which clearly shows the amplitude of the periodic solu-
tion. Both representations can be useful on bifurcation diagrams since at a Hopf bifurcation
all three expressions are equal to the steady state value and therefore the periodic orbits em-
anate from the steady states at Hopf bifurcations. However, the representation (5.60) has the
additional property that ||x|2 — xs as the solution approaches a homoclinic orbit to a saddle
steady state x;. An example of this is seen in Figure 5.11(a) where the branch of unstable
periodic orbits emanating from the subcritical Hopf bifurcation appears to terminate in a ho-
moclinic bifurcation at the middle steady state. We will investigate homoclinic bifurcations
below, and so we will mainly use the L, norm (5.60) to represent periodic orbits.

To investigate this example further in Figure 5.12 we present two-parameter continuations
of the bifurcations in v and m, with all the other parameter values the same as in Figure 5.11.

Figure 5.12(a) shows how the y-m parameter plane is divided into regions where there are
0, 1 or 2 stable steady states. These regions are partly bounded by a curve of fold bifurcations,
but mainly by a curve of Hopf bifurcations, with the two bifurcation curves meeting at a
Bogdanov-Takens (BT) bifurcation point, at which the characteristic equation has a double
zero characteristic value.

Figure 5.12(b) shows the locus of the fold bifurcations, along with codimension-two bi-
furcations which occur on this branch. Different line types/colours are used to indicate the
number of unstable characteristic values (not counting the zero characteristic value associated
with the fold bifurcation itself). Since (&, v(¢%)) — (0,,74) as m — oo, and pu > 14, it follows
that y(&") < u for all m sufficiently large. As explained before Proposition 5.7, these fold
bifurcations which occur for v < u always involve a stable steady state. The fold bifurcations
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Figure 5.12: Two parameter (Case 2) bifurcation diagrams of (1.1)—(1.2) with (g <>, v 1)
and smooth increasing v defined by (1.3). The bifurcation parameters are y and m, with
the other parameters for all the panels taken as stated in the caption to Figure 5.11. (a)
The parameter space is divided into regions where there are 0, 1 or 2 stable steady states
as indicated. These regions are partly bounded by a curve of Hopf bifurcations (black),
and partly by a curve of fold bifurcations (blue). These two curves meet in a Bogdanov—
Takens (BT) bifurcation point at (y,m) = (1.1795,3.0209). (b) Two-parameter continua-
tion of the fold bifurcations only. The fold curve is drawn according to the number of
characteristic values with positive real part; solid blue for zero, dashed blue for one, and
dashed light blue for three. The dashed vertical blue lines denote v = 3 and v = 4,
given by (5.33), the location of the fold bifurcations in the limiting case as m — co. The
red dash-dotted curve denotes the bound on the fold bifurcations given by (5.59). There
is a cusp point at (, m) = (2.0321,2.1058). The same BT point is detected again as well
as two fold-Hopf points at (y,m) = (1.7153,2.4612) and (v, m) = (1.9354,2.1748). (c)
Continuation of the branch of Hopf bifurcations emanating from the BT point (in black),
with the branch of fold bifurcations shown in blue for scale. These Hopf bifurcations
always involve a stable steady state that loses stability, either in a supercritical Hopf
bifurcation to a stable periodic orbit (the solid black curve), or in a subcritical Hopf
bifurcation to an unstable periodic orbit (the dotted-dashed black curve). Two Bautin
bifurcations at (y,m) = (1.0721,4.6069) and (5.3352,1.2929) where the criticality of the
Hopf bifurcation changes are denoted by red stars. (d) Continuation of the branch of
Hopf bifurcations which passes through both fold-Hopf points. This bifurcation curve
only involves unstable steady states. The dashed black curve represents Hopf bifur-
cations with one unstable eigenvalue, and the dashed gray curve with two unstable
eigenvalues. The change in number of eigenvalues with positive real part occurs at the
fold-Hopf points.
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where a stable steady state is created/destroyed are shown as the solid blue segment of the
curve of fold bifurcations which is asymptotic to y = 74 in Figure 5.12(b). In contrast, the part
of the branch asymptotic to v = 3 as m — oo consists of fold bifurcations of two unstable
steady states (with different numbers of unstable characteristic values). The BT point, already
seen in Figure 5.12(a), separates these two parts of the branch of fold bifurcations. Conse-
quently, only part of the branch of fold bifurcations delineates the boundary between regions
of parameter space with different numbers of stable steady states. This contrasts starkly with
the constant delay case considered in Section 5.2 and the state-dependent case with u > 73
(shown in Figure 5.10), for both of which steady states only lose stability in a fold bifurcation.

Figure 5.12(c) shows the Hopf curve which terminates at the BT point. We verified nu-
merically that at all points on this curve the Hopf bifurcation is from a stable steady state
that loses stability. Close to the BT point, and at the other end of this branch as m — oo, the
Hopf bifurcation is subcritical leading to an unstable periodic orbit. But on a large segment
of this curve (and in particular for the smallest values of m on the curve) the Hopf bifurcation
is supercritical leading to a stable periodic orbit. Two Bautin bifurcation points, where the
Hopf bifurcation changes criticality, separate the sub and supercritical segments of the curve.
Figure 5.12(a) shows the number of stable steady states in the y-m parameter plane, and just
the parts of the bifurcation curves that delineate these regions. The region with no stable
steady states contains a stable periodic orbit (because of the supercritical Hopf bifurcation on
the left-side of this region).

Figure 5.12(d) shows another curve of Hopf bifurcations for the same problem. This curve
passes through the two fold-Hopf bifurcation points seen on the curve of fold bifurcations
in Figure 5.12(b). We notice that while these points are close together on the branch of fold
bifurcations (they are both close to, but on different sides of, the cusp point), as the inset
shows, they are on different legs of the branch of Hopf points, and hence far from each other
on this branch of Hopf bifurcations. The codimension-two fold-Hopf bifurcation points are
of interest, as such bifurcations are impossible for the constant delay model of Section 5.2.
However the Hopf bifurcations seen in this example all generate unstable periodic orbits
bifurcating from unstable steady states, and we will not study them further.

In Figure 5.13 we continue our study of the dynamics seen in Figures 5.11 and 5.12 by
showing one-parameter continuations of the dynamics and bifurcations as <y is varied for
different fixed values of the steepness parameter m in the Hill function (1.3). For m small there
is a unique stable steady state for each value of v and no bifurcations occur. For m > 0.8355
there is still a unique steady state, but it is unstable between a pair of super-critical Hopf
bifurcations, where a branch of stable periodic orbits exists. This is illustrated in Figure 5.13(a)
for m = 1.2, where we see that the period of the periodic orbits is monotonically increasing
from the left Hopf point to the right Hopf point.

Increasing m further for m > 1.2929 we pass the lower Bautin bifurcation seen in Fig-
ure 5.12(c) and the right Hopf point becomes subcritical. The branch of periodic orbits is still
contiguous, but a fold bifurcation of periodic orbits born in the Bautin bifurcation divides the
branch of periodic orbits into an upper stable branch and a lower unstable branch. The period
is no longer monotonically increasing on the branch of periodic orbits, but attains a maximum
period near to the fold bifurcation of periodic orbits, but on the unstable branch of periodic
orbits (as illustrated for m = 2 in Figure 5.13(b)).

For m > 2.1058 the cusp bifurcation seen in Figure 5.12(b) introduces two fold bifurcations
of steady states (seen for m = 2.15 in Figure 5.13(c)). As m is increased further the maximum
period seen on the branch of periodic orbits increases dramatically and the point where the
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Figure 5.13: Case 2 one-parameter bifurcation diagrams for (g <+, v 1) with varying
and different fixed values of m, with the other parameters the same as in Figures 5.11
and 5.12. Solid lines represent stable objects including stable steady states (in green)
and stable periodic orbits (represented by the 2-norm (5.60)). Dashed lines represent
unstable objects including unstable steady states (depending on the number of eigen-
values with positive real part, green for one, black for two and gray for three and
more) and unstable periodic orbits (represented by 2-norm (5.60)). Hopf bifurcations
are marked by blue stars, fold bifurcations of steady states by black squares, and ho-
moclinic bifurcations by red circles. For the branch of periodic orbits, T; is the period at
the left Hopf bifurcation, and T; at the right Hopf bifurcation. The point on the branch
where the largest period, Ty, occurs is marked by a brown diamond.
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maximum period occurs approaches the intermediate steady state (see Figure 5.13(d)).

Comparing panels (d) and (e) of Figure 5.13 suggests that (1.1) undergoes a codimension-
two global bifurcation between these panels. The branches of periodic orbits emanating from
the Hopf bifurcations where the steady states lose stability no longer join up in panels (e)
and (f). Instead, each branch ends at a homoclinic bifurcation to the intermediate steady state
(at different values of the parameter 7y). The panels shown suggest, but do not prove, that
as m is increased the branch of periodic orbits approaches the fold point with Ty, — oo at
the first point where a homoclinic bifurcation occurs. Further evidence is presented in the
two-parameter continuation of Figure 5.14(a) where the homoclinic curves seem to approach
the curve of folds. For larger values of m > 2.3, codimension-one homoclinic bifurcations to
the intermediate saddle steady state are found. Examples of dynamical systems with a single
branch of homoclinic bifurcations terminating at a fold bifurcation of steady states can be
found in [1,35]. Our example is somewhat different from those, as we have two branches of
homoclinic bifurcations.

The homoclinic bifurcation on the branch emanating from the lower Hopf point in Fig-
ures 5.13(e) and (f) does not persist for large m, but instead the homoclinic bifurcation and the
Hopf bifurcation itself move towards the fold bifurcation and terminate at the BT-point found
previously. This is illustrated in a two-parameter continuation in Figure 5.14(a), which shows
the branch of fold bifurcations of steady states passing through the BT point, next to a branch
of Hopf bifurcations, then a branch of homoclinic bifurcations, the latter two branches both
terminating at the BT point tangential to the branch of fold bifurcations at that point. This
is well-known behaviour for Bogdanov-Takens bifurcations, and can be seen in the normal
form diagram for this bifurcation in Section 8.4 of [35]. Bogdanov—Takens bifurcations have
recently been analysed for constant delay DDEs in [6] (where Figures 5 and S8 resemble the
part of Figure 5.14(a) close to the BT point), but we are not aware of any systematic study of
them in state-dependent DDE problems.

While in the classical unfolding the bifurcation curves extend arbitrarily far from the BT
point, in our example in Figure 5.14(a) both the branch of homoclinic orbits and the branch of
fold bifurcations terminate. The branch of fold bifurcations terminates at a cusp bifurcation
with the other branch of fold bifurcations. The proximity of the cusp point to the BT point
suggests that our system may be close to a codimension-three Bogdanov-Takens—cusp (BTC)
point. While we are not aware of a systematic study of this bifurcation, they have been
observed in a neuron model in [1], and some of the bifurcation structures that we find resemble
those in [1].

The homoclinic bifurcation on the branch emanating from the upper Hopf point in Fig-
ures 5.13(e) and (f) is also shown in Figure 5.14(a) and persists for arbitrary large values of m
(it was already seen with m = 50 in Figure 5.11(a)), but there is a change in stability on this
branch for m > 4.6069 due to the Bautin bifurcation seen in Figure 5.12(c).

The maximum period of orbits from the one-parameter continuations described in Fig-
ure 5.13 are also shown as a curve in two-parameter space in Figure 5.12(a). This curve
approaches the right most curve of fold bifurcations with the period becoming unbounded as
it does so. Our computations of the two branches of homoclinic bifurcations also terminate
close to this point. We conjecture that the co-dimension two of the homoclinic orbits already
described in Figure 5.13 that occurs where the branch of maximum period orbits terminates
will occur on the branch of fold bifurcations. This would be consistent with the previously
mentioned examples of curves of homoclinic bifurcations which terminate at fold bifurcations
[1,35].
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Figure 5.14: (a) Bifurcation diagram near the Bogdanov—Takens point shown in Fig-
ure 5.12 for (g <»,v 1) shows a branch of Hopf bifurcations and a branch of homoclinic
bifurcations emerging from the BT point. The dashed brown line denotes the point in
parameter space where the largest period was encountered on the branches of periodic
orbits shown in Figure 5.13, with the period shown in the lower inset. The upper in-
set shows the ordering of the curves emerging from the BT point. (b) Profile of the
unstable periodic orbit with parameters p = 14, y = 02, g~ = ¢~ =1, m = 2.35,
v =17550,60, =1,a=1,0v = 0.1, and v" = 2. The blue curve shows the periodic
orbit with period T = 183. In the inset the part of the periodic orbit (in blue) near
to the intermediate steady state is overlayed by a linear approximation to the dynam-
ics in red (see text for details). (c) Projection of the periodic orbit from (b) onto the
space (x(t),x(t —7/2),x(t — 7)) where T = 5.1926 is chosen to be the delay at the in-
termediate steady state represented by the orange dot. The solid black line represents
the dominant one-dimensional linear stable manifold associated with the characteris-
tic value —0.045. The parallelogram denotes the plane associated with the dominant
unstable characteristic values A = 0.0184 £ 1.4738i.

In Figure 5.14(b) and (c) we display one of the periodic orbits for m = 2.35 from the lower
branch of periodic orbits shown in Figure 5.13(e). The orbit is shown close to the homoclinic
bifurcation at the end of the branch, for which the period is large. Figure 5.14(c) shows a
phase space projection of the part of the orbit close to the intermediate steady state. In this
projection the orbit approaches the saddle steady state from above close to the dominant
stable direction (associated with the characteristic value with negative real part closest to zero
which is A = —0.045), but with a growing oscillation about this point in the plane defined
by the dominant unstable direction (associated with the characteristic value with positive
real part closest to zero which is A = 0.0184 4 1.4738i). To further confirm that this linear
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behaviour is determining the dynamics near to the intermediate steady state x*, in the inset
of Figure 5.14(b) we plot in red the curve

x(F) = x* + kye 0045 4 ki, 00184 (5(1.4738¢),

for suitably chosen coefficients k;, and observe that it overlays the periodic solution over most
of the time interval shown. This behavior is similar to that associated with Shilnikov type
complex dynamics, but in contrast with the construction of a chaotic attractor of Shilnikov
type, the periodic orbit pictured in Figure 5.14(b) and (c) is unstable.
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Figure 5.15: Profiles and periods of periodic orbits on the branches that approach ho-
moclinic bifurcations in Figure 5.13(e) with m = 2.35 for (a) the unstable periodic orbits
on the branch emanating from the subcritical Hopf bifurcation at v = 1.734, and (b) the
stable periodic orbits on the branch emanating from the supercritical Hopf bifurcation
at ¢ = 1.240.

Figure 5.15(a) and (b) shows the profiles and periods on the two branches of periodic
solutions seen in Figure 5.13(e). Comparing these two panels we see that the periodic orbits
on the two branches are very different, with the unstable orbit in Figure 5.15(a) having a small
amplitude and with x(t) below the steady state value along the whole orbit on the entire
branch. In contrast stable periodic orbits shown in panel (b) have much larger amplitude.

Case 3: It remains to consider the case where y < 94 < 3. Making a small change to
the parameters considered in the example in Figures 5.11 to 5.15 by changing the value of
from B = 1.4 to B = 2 but leaving the values of the other parameters unchanged, results in
u=02< 7y = 02707 < y3 = 1.8097. However, although p < -4 in this case y is close to 4
and the dynamics and bifurcations are very similar to those shown in Figure 5.11, so we do
not show them here. Instead in Figure 5.16 we consider an example with y < 74 < 3.

Theorem 5.9 suggests that stability may be lost in either a Hopf or a fold bifurcation,
but for the example in Figure 5.16 with u < <4 we see that the steady state always loses
stability at a Hopf bifurcation. Unlike the previous example, there is no longer a BT point,
and for all m sufficiently large the steady state loses stability in a subcritical Hopf bifurcation
close to the fold bifurcation, resulting in a short branch of periodic orbits that terminates in
a homoclinic bifurcation to the intermediate steady state created at the fold bifurcation, as
illustrated for m = 50 in Figure 5.16(b)—~(d). For m small, below the cusp bifurcation at m =
5.0007, v = 0.7572, the Hopf bifurcations are supercritical leading to a branch of stable periodic
orbits between the Hopf bifurcations, similar to Figure 5.13(a). As seen in Figure 5.16(b) the
Hopf bifurcations and homoclinic points are very close to the fold bifurcations. This makes
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Figure 5.16: Bifurcation diagrams of (1.1)-(1.2) with (g <+, v 1) and parameters § = 1,
#=019 =g¢"=16,=1a=20 =02and v = 1. By (5.33) this implies y <
74 = 0.3679 < 3 = 0.8187 (Case 3). (a) The limiting case with v defined by (1.7). The
stable steady state is shown as a green solid line, and the singular steady state as a black
dashed line. (b) With smooth velocity nonlinearity v defined by (1.3) with m = 50. Solid
lines represent stable steady states (in green). Dashed lines represent unstable objects
including unstable steady states (depending on the number of eigenvalues with positive
real part, green for one, and gray for three and more) and unstable periodic orbits
(represented by 2-norm (5.60)). (c) and (d) Profiles and periods of the periodic orbits on
the branches shown in (b) that terminate at homoclinic bifurcations and emanate from
the subcritical Hopf bifurcations at (c) v = 0.4175 and (d) v = 0.758. (e) Two-parameter
continuations in m and 7 of the fold and the Hopf bifurcations with other parameters
as above. The dashed vertical blue lines denote v = 3 and 7 = 4 the location of the
fold bifurcations in the limiting case as m — oo. The red dash-dotted curve denotes
the bound on the fold bifurcations. (f) Two parameter continuation of the curve of
Hopf bifurcations, with the two Bautin bifurcation points and the criticality of the Hopf
bifurcation indicated. The Hopf bifurcations delineate the parameter space into regions
where there is 0, 1 or two stable steady states, as indicated. Also shown in the insets is
the maximum period curve (similar to Figures 5.13 and 5.14), which terminates at the
point marked Fhy with infinite period.
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numerical continuation of the branches of homoclinic bifurcations very delicate, and so we
do not show the curves of homoclinic bifurcations in the two parameter continuations in
Figure 5.16(e) and (f). Instead in the insets in Figure 5.16(f) we show the curve formed by
the periodic orbits of maximum periods from the one-parameter continuations in 7; as was
done in case (b) in Figures 5.13 and 5.14. This curve is born from the Bautin bifurcation point
and terminates at the point labelled Fhy on the curve of fold bifurcations, where the period
becomes infinite. We expect two curves of homoclinic bifurcations to be born at this point,
and to persist for arbitrarily large m (as seen in (b) for m = 50).

5.5 Summary

We briefly summarize the results of Section 5. We have separately studied cases with constant
delay and decreasing (Section 5.1) and increasing (Section 5.2) function g, and then the cases
with constant ¢ but with state dependent delay with velocity v decreasing (Section 5.3) or
increasing (Section 5.4). These results can be compared between constant and state-dependent
cases but with the same type of nonlinearity (Section 5.1 and 5.3, and Section 5.2 and 5.4), or
between the two types of nonlinearity with the same type of delay (Section 5.1 and 5.2, and
Section 5.3 and 5.4), as we will do below.

In general, the dynamics with state-dependent delay is significantly richer than that of the
corresponding constant delay case. For decreasing non-linearity (Section 5.1 vs Section 5.3)
in the constant delay case there is a range (1,72) of the parameter v where the unique
equilibrium undergoes a series of Hopf bifurcations as the Hill coefficient n — oo (Figure 5.2).
In contrast, in the state dependent case a new constraint becomes important as we show that
Hopf bifurcations can only occur for ¢ < p. Therefore, if the y is below the range (3, 1)
the unique equilibrium is always stable (Figure 5.6), when it is above (73, y4) we recover the
result from Section 5.1 (Figure 5.8), and when u € (13, 74), the result of Section 5.1 is confined
to values of ¥ € (y3,74) N {7y < u} = (3, 1); see Figure 5.7.

When the feedback nonlinearity is increasing with constant delay (Section 5.2) the system
has multiple equilibria for o in an interval which approaches (77,71) in the limit as the
feedback nonlinearity approaches a piecewise constant function. The stable equilibria always
lose stability at fold bifurcations at the ends of the interval, leading to bistability of steady
states for this interval of o values. Hopf bifurcations can only occur on the middle branch of
unstable equilibria.

As documented in Section 5.4, this scenario changes dramatically for state dependent de-
lays. For increasing v there is again a constraint and we show that Hopf bifurcations can only
occur for ¢ > u. Consequently if y > -y3 there are no Hopf bifurcations. On the other hand,
when p < 73 new dynamics are observed. In this case stable equilibria can now lose stability
in a Hopf bifurcation and the interaction of the Hopf and fold bifurcation curves in two-
parameter continuation in 7 and the Hill coefficient leads to existence of Bogdanov-Takens
points, fold-Hopf points and a possible double homoclinic bifurcation. This last scenario,
documented in Figure 5.13, suggests that a curve of periodic orbits connecting subcritical and
supercritical Hopf bifurcations of the stable equilibria, collides with a fold bifurcation where
the equilibrium also admits a homoclinic orbit. Continuation of the curve of periodic orbits
in two-parameter space suggests that the curve splits into two curves of periodic orbits each
terminating at a homoclinic bifurcation at the middle equilibrium branch, but at different val-
ues of parameter y. A less dramatic result, but perhaps more important for applications, is
the observation of bistability between a stable fixed point and a stable periodic orbit in Fig-
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ure 5.13(b), a scenario that is impossible in the constant delay case of the Goodwin operon
model considered in Sections 5.1 and 5.2.

6 Dynamics with two Hill functions

We now consider the model (1.1), (1.2) with both the functions ¢ and v non-constant at the
same time. In the limiting case these functions are defined by (1.6) and (1.7), and when
8, # 0, the steps in the functions occur for different values of x, so they reduce to the cases
considered in Section 5 with v constant for x in a neighbourhood of 6,, and ¢ constant for x
in a neighbourhood of 6,. With smooth nonlinearities defined by (1.3) and large exponents
m > 0, n > 0, when 0, # 6, we will see dynamics and bifurcations near x = 0, similar to
those observed in Sections 5.1 and 5.2, and similar to Sections 5.3 and 5.4 near x = 8,. On the
other hand, when 6, = Gg new dynamics are observed.

Recall the notation (g |, v |) that indicates the monotonicity type of functions g and v,
introduced in Section 1. Note that if v~ > v then v(x) is a decreasing function of x, then 7(x)
given by (5.1) is an increasing function of x, and therefore e #7(*) is a decreasing function of x.
It follows immediately that for (g |, v ) the function h(x) (see (5.2)) is strictly monotonically
decreasing and hence for g and v both monotonically decreasing there is exactly one steady
state.

If either or both of ¢ or v is increasing then it is possible to have fold bifurcations and
additional steady states. To see this, consider a steady state ¢ with both v and g given by (1.3),
in which case the characteristic equation has the form (4.8), which can be written as A(A) =0
with 0

B() = A+7(8) — A©) — (Q(E) — A@)e ™™ —ua@) [ ol % (6.1)
where (recalling (4.4) and (5.15))

i@ ol (7) — 58 (6) _ gV 6) @)y - GV (E)
Q(&) = pe M8 () ") A(Z) ﬁv(g) Heg(8) 0

The properties of A(&) and Q(¢) were already described in Proposition 5.1. Now

B(0) = 7(6) ~ Q@) ~ #A) [ 1ds = 1(6) ~ Q) ~ i) AE)

_ L@ EE©)
=11 e O ).

Hence, A = 0 is a characteristic value if and only if

_ ¢8'() AN
M) : NG +ut(¢) o(0) 1=0. (6.2)
In addition, we note that M({) > 0 implies that A(0) < 0. At the same time, for real A the
characteristic function satisfies A(A) — +co0 as A — 4o00. We conclude that when M(&) > 0
there is a real positive characteristic value and hence the steady state is unstable.
We now show that fold bifurcations occur when (6.2) is satisfied. To that end, consider the
curve of solutions (y(¢), ¢) where (¢) is defined by

‘Bg(é) efyr((j)

7(¢) = z , (6.3)
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which by (5.2) is the locus of steady states in the (v, {)-plane. Differentiating this relationship
with respect to ¢ we find

7@ = -1 4 100 e
Using (5.54) we obtain
7@ =@ (5 w0 E 1) —rome. 64

Hence sgn(7/(&)) = sgn(M(¢)), and 7/(¢) changes sign when M(&) does, which ensures that
fold bifurcations occur at these points in the (1, {)-plane.

Note that this is a direct generalisation of the fold bifurcations found in Section 5 as (6.2)
reduces to (5.27) when v is a constant function, and to (5.52) when g is constant.

Next we determine when Hopf bifurcations may arise for the general case where both ¢
and v are non-constant. For A # 0, using (6.1) we can rewrite the characteristic equation
A(A) =0as

A= —q+ AE)(1— e ) (1 + %) +Q(E)e @), (6.5)

At a Hopf bifurcation we set A = iw, with w # 0, and from (6.5) obtain

iw = =7+ A@Q)(1—e ) (14+ 5 )+Q(@)e
=—v+A(&)(1 — coswT +isinwT) (wz;;wy> + Q(&)(cos wt —isinwT).

Taking real and imaginary parts, this reduces to

v = A(¢) (1 — coswT + %sinwr) + Q(¢) coswr, (6.6)

w = A(f) (sinwr - %(1 - coswr)) — Q(&)sinwrt. (6.7)

Note that when wt = 2k7t for k € Z the last equation reads w = 0, which contradicts the
requirement that w # 0 for a Hopf bifurcation. It follows that at a Hopf bifurcation

| cos(wT)| < 1. (6.8)

The equations (6.6) and (6.7) can each be rearranged in two ways: first, as A(¢)(1 —
coswT) = other terms, or, second, as A({)sinwt = other terms. Doing so, then equating
the same expressions from the two equations gives

A(E) sinwt(w? + 1?) = w(yp + w?) + Q&) (wsin wt — pcos wT), (6.9)
A(E)(1 — cos wT)(w? + p?) = W?(y — ) — Q(&)(w? cos wT + pw sin w). (6.10)

Note that when ¢ = ¢~ so g is constant and Q(&) = 0 these equations reduce to (5.41) and
(5.42). On the other hand when vt = v~ so v/(¢) = 0 and hence A(g) = 0, equations (6.9)
and (6.10) can be shown to reduce to (5.13) and (5.14).

Using (6.8), the left-hand side of (6.10) has the sign of A(¢) (recall also (5.41) which has an
identical left-hand side).
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When Q(¢) = 0, the right-hand side of (6.10) has the sign of v — p. For the general case
with Q(&) # 0, since | coswT| < 1 and |sinwTt| < wT, we obtain

1Q(E)(w? coswT + pwsinw)| < |Q(E)|(w?| cos w| + pew| sinwt|) < [Q(E)|w? (1 + ).

Then, when A({) < 0, and hence v is a decreasing function, the left-hand side of (6.10) is
negative, while the right-hand side satisfies

wW?(y — ) — Q&) (w? cos wT + pw sinwt) > w?(y — u) — |Q(E) |w?(1 4 p)
= (y—u—1Q@®)|(1+u1)). (611

Consequently, there can be no Hopf bifurcations if v > u + |Q(&)|(1 + u1).
Similarly for the case that A(¢) > 0 (and hence v is an increasing function), the left-hand
side of (6.10) is positive, while the right-hand side satisfies

w?(y — 1) — Q&) (w? cos wT + pw sinwt) < w?(y — ) + |Q(&)|w? (1 + 1)
= (y—p+ Q@) |(1+u1)). (612

Thus, when A(¢) > 0 there can be no Hopf bifurcations if ¥ < p —|Q(&)|(1 + ut).

Note that both the conditions here reduce to the previous ones in the limit as Q(¢) — 0, or
equivalently as ¢'(¢) — 0. As in Section 5, we will deal with this by considering the different
combinations of increasing and decreasing functions v and g separately.

6.1 Two Hill functions with 6, # 0,

With ¢ and v both varying and 0, # 0,, the dynamics will be comparable to a combination
of the four simplified cases as discussed in Section 5.1-5.4. In particular, if both ¢ and v
are decreasing functions, there is always exactly one steady state. The dynamics in the case
(g 4,v }) will be similar to the case in Section 5.1 near to x = 6, and similar to the case in
Section 5.3 near to x = 0,. The singular steady states in the limiting case give rise to steady
states in the smooth case which may undergo Hopf bifurcations where the stability of steady
state changes, as illustrated in Sections 5.1 and 5.3.

For the cases when ¢ and v have opposite monotonicity, there are up to three coexisting
steady states. The bifurcations occurring near the two respective thresholds agree with the
examples in Section 5. Since the dynamics can be explained using the results of Section 5 we
only briefly consider the dynamics with 6, # 6, and present two examples, one with (g {,v 1)
in Section 6.1.1, and another for (¢ 1,7 1) in Section 6.1.2. In this last example, it is possible
for up to five steady states to coexist with sufficiently steep nonlinearity.

The constants 7; for j = 1,2,3,4 introduced in (5.4) and (5.33) in Section 5 will also play
a role here. When 6, # 6, we again define these using (5.4) and (5.33). However, since both
the functions ¢ and v are non-constant we need to define a value for 7 in (5.4) and for g in
(5.33). We proceed as follows. For 7 and 7, given by (5.4), the required value of T is 7(6,)
and hence we take T = 77 if 6, > 6y and T = 77 if 6, < 6. Similarly in (5.33) we take g = g~
if g > 6, and g = g™ if By < ;.

6.1.1 Decreasing g and increasing v (g |, v 1,0 # 6,)

When ¢ and v have opposite monotonicity, either (g |,v 1) or (¢ 1,v ), and 6 # 6, there are
up to three coexisting steady states in the limiting case. Figure 6.1 shows such an example in
the case (g |, v 1,0, < 6;).
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Figure 6.1: Steady states of (1.1), given by (5.2), occur at the intersections of ¢ —
,Be’VT@) ¢(&) and ¢ — 7¢. These are illustrated for various v in the limiting case of (1.6)
and (1.7) for (g, v 1,0, < 98)' The red lines denote the slopes Vs illustrated here with
Y2 < 71 < Y2 < 3. There is a singular steady state at § = 0, for v € (y4,73) and at
¢ = 0g for v € (71, 72)-

Figure 6.1 shows that if v € (y4,73) then there are three steady states in the limiting
case. At most two of these steady states will be stable, with the intermediate steady state at
x = 6, singular. If the intervals (71,72) and (74, 3) overlap then it is possible to have one
stable steady state coexisting with two singular steady states. Such a scenario is illustrated in
Figure 6.2(a) which has two singular steady states and one stable steady state for v € (7y1,72).
The number of steady states changes when & intersects Se #7(¢)g(¢) at the corners along
6, at parameter values 3 and 4. The singular ‘fold” bifurcations give rise to classical fold
bifurcations in the case of smooth nonlinearities defined by (1.3), as seen in Figure 6.2(b) for
the case m = n = 40. We note from (6.2) that since ¢’ and v’ have opposite signs, we require
¢v'(&)/v(g) > 1/(ut(&)) for a fold bifurcation to occur, and so for m = n a somewhat larger
value of the steepness parameter m is required to obtain a fold bifurcation than would have
been the case with constant g (for which, by (5.52), fold bifurcations occur when v’ (¢) /v(&) =
1/(u7(E)) is satisfied).

In the example presented in Figure 6.2 the function v is increasing with u < <4, and so
we expect to see similar behaviour for x ~ 6, as in Case 3 of Section 5.4, while since g is
decreasing the behaviour for x ~ 6, should be similar to that seen in Section 5.1. This is
indeed what is observed.

Since v is increasing, from (6.10) and (6.12) it is necessary that v > p — |Q(&)|(1 + u7)
for Hopf bifurcations to occur. However, this does not impose any additional constraints
as in this example p — [Q()[(1 +put) < p < minj_s1534) 7j, and as we already saw in
Section 5, Hopf bifurcations typically occur for v > min;_(1534; 7. So the steady state can
lose stability in a Hopf bifurcation close to the fold point. This is seen in Figure 6.2(b) close
to (7,x) = (3,60,) and is similar to the behaviour observed in Cases 2 and 3 in Section 5.4.
Figure 6.2(c) shows two-parameter continuations of these bifurcations. Apart from the Hopf
bifurcations giving rise to a stable periodic orbit for v € (1, 72) the rest of the dynamics
observed are remarkably similar to those seen in Figure 5.12 with v increasing and constant
g. In particular, as the steepness of the nonlinearities given by m = n increases, the fold
bifurcations approach v = <74 and ¢y = <3 with the steady states at which they happen
approaching 6, the fold bifurcations disappear at a cusp point (at v = 2.1535), while the Hopf
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Figure 6.2: Bifurcations of (1.1)—(1.2) in the case (g |,v 1,6, < 6;) with parameters
B=14,1u=02¢ =1>¢"=0540,=05<6;=1,a=1,andv” =01<0" =2
With these parameters y < 74 = 0.3789 < 73 = 0.6334 < 7, = 1.2668 < 3 =
2.5335. (a) The limiting case with g defined by (1.6) and v defined by (1.7). The stable
steady state is shown as a green solid line, and the singular steady state as a black
dashed line. (b) With smooth nonlinearity ¢ and v defined by (1.3) with m = n = 40.
Periodic solutions are represented by maximum (in red) and minimum (in blue) of
x(t) on the solution. (c) Two-parameter continuations in m = n and -y of the fold and
the Hopf bifurcations with the other parameters as above. There is a cusp point at
(v,m) = (3.8948,2.1535), a BT point at (y,m) = (1.5502,4.2073) and fold-Hopf points
at (y,m) = (2.3399,3.0346), (3.2632,2.4198), (2.9741,2.8976) and (2.3178,9.3191). (d)
Profile of the stable periodic orbits at v = 1 emanating from the Hopf bifurcations in
(c). The color map indicates values of the continuation parameter m = n.

bifurcations and stable periodic orbits can occur for smaller values of m > 0.8079. There is
also a Bogdanov-Takens bifurcation, fold-Hopf bifurcations at which Hopf bifurcations cross
the fold points, and for the fold close to v = -y3 the steady state loses stability in a subcritical
Hopf bifurcation for arbitrary large m = n, and not at the fold bifurcation.

The most significant difference between the example shown in Figure 6.2 and Cases 2
and 3 from Section 5.4 is the pair of Hopf bifurcations seen for x ~ 6, and ¢y € (71,72). In
Figure 6.2(c) the steady state is seen to lose stability between a pair of Hopf bifurcations for
m > 23. Since for m = n > 0 the function v is essentially constant except for 6 ~ 6,, it follows
that v is close to constant for 6 ~ 0, and so these Hopf bifurcations and the resulting periodic
orbits follow the dynamics explored in Section 5.1. Indeed, the dynamics associated with the
Hopf bifurcations and periodic orbits for x ~ 6, seen in Figure 6.2 is remarkably similar to
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that seen for constant v and decreasing g in Figure 5.2 of Section 5.1. The Hopf bifurcations
are supercritical, generating a stable periodic orbit which co-exists with the unstable steady
state between the pair of Hopf bifurcations. The amplitude of the periodic orbit is shown for
m = n = 40 in Figure 6.2(b), from which we see that it is always small and shrinks to zero at
the Hopf bifurcations at each end of the interval.

Figure 6.2(d) depicts the profile of such stable periodic orbits for a fixed value of v in
between the two Hopf bifurcations. As m = n — oo, the periodic orbits appear to approach a
limiting profile. Notice that this stable periodic orbit oscillates around 8, but does not cross
the other threshold at 6, = 0.5. Thus in the limiting case as m = n — oo the delay will be
constant and equal to 7" on this periodic orbit. In [31] we construct slowly oscillating periodic
solutions for both constant and threshold delays, and using those constructions it can be seen
that the limiting profile in Figure 6.2(d) is a slowly oscillating periodic solution.

6.1.2 Increasing g and increasing v (g 1,v 1,05 # 6,)

,Bg*ef”ﬁ / /
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Figure 6.3: Steady states of (1.1), given by (5.2), occur at the intersections of { +—
ﬁe”‘T@) g(&) and ¢ +— 7¢. These are illustrated for various v in the limiting case of (1.6)
and (1.7) for (g 1,v 1,6, < ;). The red lines denote v = 74, 72,71,73 in ascending
order.

When v and g are both increasing with 6, # 0, there are up to five coexisting steady states
in the limiting case as shown in Figure 6.3. The four corners at the respective thresholds
f; and 0, are associated with the emergence of fold bifurcations. A necessary and sufficient
condition to obtain five coexisting steady states is that (72, 1) N (74, 73) # @. Note that since
g is now increasing the values 7, < 71 have the opposite order than in previous example, see
(5.4).

Figure 6.4(a) shows such an example, with five co-existing steady states in the limiting
case when v € (72, 71). Referring to the discussion in Sections 5.2 and 5.4, in the limiting case
the non-singular steady states are always stable, leading to tristability of steady states in this
parameter interval. This then leads to tristability of steady states for smooth nonlinearities
with m = n sufficiently large, as depicted in Figure 6.4(b).

Following the discussion in Sections 5.2 and 5.4, the intermediate singular steady states
become unstable steady states between the fold bifurcations in the smooth case. However, the
behaviour is not the same at each of the folds. In the example presented in Figure 6.4 we have
# € (71,73), and so we expect to see similar behaviour for x = 6, as in Case 2 of Section 5.4,
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Figure 6.4: Bifurcation diagram of (1.1)=(1.2) for (¢ 1,v 1,6, < 6;) with parameters
B=14u =029 = 0.5,g4r =19 =080, = 1,0, = 05,a = 1,0~ = 0.1 and
vt = 2. With these parameters 74 = 0.1895 < 7, = 0.6334 < 71 = 73 = 1.2668.
(a) The limiting case with ¢ defined by (1.6) and v defined by (1.7). The stable steady
state is shown as a green solid line, and the singular steady state as a black dashed
line. (b) With smooth nonlinearity ¢ and v defined by (1.3) with m = n = 20. (c) Two-
parameter continuations in m = n and 7 of the fold and the Hopf bifurcations with
the other parameters as above. There are two cusp points at (7, m) = (2.0329,2.1053)
and (0.84265,5.7871), a BT point at (7, m) = (1.2009,2.9825), two fold-Hopf points at
(y,m) = (1.6820,2.5172) and (1.9519,2.1629), and two Bautin bifurcations at (y,m) =
(5.4365,1.2928) and (1.0709,4.6890).

while since g is increasing the behaviour for x ~ 6, should be similar to what was observed
in Section 5.2, and this is what we observe.

For the fold bifurcation near (v, ) = (74, 6»), the steady state loses stability at the fold for
all m sufficiently large (seen for m = n = 20 in Figure 6.4(b)). Since v is increasing, from (6.12)
there can be no Hopf bifurcations for v < p —|Q(¢)|(1 + ut). However, lim;,_ Q(&) = 0 for
¢ # 0g, and since 74 < u there can be no Hopf bifurcations near to the fold for m sufficiently
large. The same is not true for the fold close to (7, &) = (3, 60,), where since 3 > u the steady
state may lose stability in a Hopf bifurcation near to the fold point, which is indeed what is
seen for all m sufficiently large. This is similar to the behaviour seen in the previous example
in Figure 6.2 and to Cases 2 and 3 in Section 5.4.

Following the theory of Sections 5.2 and 5.4, as m = n is increased there will also be
an infinite sequence of Hopf bifurcations on the unstable branches that cross 6, and 0,. For
the branch that crosses x = 0, these Hopf bifurcations will be confined between the fold
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bifurcations as m = n is increased. No Hopf bifurcations are seen on this branch in Fig-
ure 6.4(b) because the value of m is too small, with the first Hopf bifurcation only occurring
form =n ~ 61.

=
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2+ Unstable=3
o Fold
*  Hopf
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Figure 6.5: Bifurcations of (1.1)—(1.2) in the case (¢ 1,v 1,6, < 6;) with smooth non-
linearities ¢ and v defined by (1.3) with m = n = 100, and other parameters f = 1.4,
p=1¢ =05>¢"=160,=05<6;,=1,a=1and v =05 < 0" =2 With
these parameters y4 = 0.1895, 7, = 0.4246, and y; = 3 = 0.8491.

Figure 6.5 shows another example for (¢ 1,v T, g # 6,), but this time with p > 3 which
corresponds to Case 1 in Section 5.4. In this example no Hopf bifurcations are observed on
the unstable branch that crosses ¢ = 0,. This follows from (6.12) because there can be no
Hopf bifurcations for v < p — |Q(¢)[(1 + u7), and |Q(Z)| — 0 as n — oo for § # fg. On
the other hand, a pair of Hopf bifurcations is observed on the branch of unstable steady
states that crosses { = 0,. In this case (6.12) does not preclude Hopf bifurcations because
Proposition 5.1(2), with f(x,p,r) given by Q(¢) with parameter p = n from g, shows that
|Q(¢)| can be arbitrarily large for ¢ ~ 6, as n — co.

6.2 Two Hill functions with 6, = 0,

The cases of (¢ 1,0 1,0, = 6;) and (g |, v |, 6, = 6;) where both functions are either increasing
or decreasing are reasonably straightforward. However, the two cases for which one function
is increasing and the other decreasing, (g },v 1,6, = Gg) and (g |, 01,0, = Qg) are altogether
more delicate and surprising.

6.2.1 g and v both increasing or decreasing (g 17,v 1,0, = 0,) and (g |,v |,0, = 6,)

In both these cases & — Be "7(¢)¢(&) is monotonic, so the existence of steady states is straight-

forward following the theory in Section 5. Writing 6, for the value of 6 when 6, = 6,, and

defining

peitgt
ng

4

e HT o~
Y13 = and 7y = pe "8 (6.13)

Og0
with ¢ and v both decreasing, there is always a unique steady state. In the limiting case of
piecewise constant nonlinearities (1.6)—(1.7), this steady state is stable for v < 713 and 7y > 724,
and is singular for v € (713, 724). In the smooth case, this gives rise to a unique stable steady
state for very small or very large . The question then arises as to when the steady state may
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lose stability in a Hopf bifurcation for v in or near the interval (713, v24). From (6.11) when g
and v are both decreasing Hopf bifurcations cannot occur if

7> p+ Q)|+ ut) =p+ (1 +ut)

¢g'(8)
50 ‘ (19

Thus when g is a constant function, which implies that Q = 0, there can only be Hopf
bifurcations when v < u as seen in Section 5.3. In contrast, by Proposition 5.1, we have
0008" (0g0) /8 (0gu)| — o0 as n — oo while (6.14) cannot be satisfied when |5¢'(¢)/g(¢)| > 1.
Consequently for n large there is no constraint preventing Hopf bifurcations, and we expect
to see Hopf bifurcations for ¢ ~ 0, for n sufficiently large, just as we did in Section 5.1.
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Figure 6.6: Bifurcation diagram of (1.1)~(1.2) for (¢ |,v |,0; = 6,) with parameters
,[3:3,;4:0.5,')/:1,9g:6v:00g:1,a:1,g’:1>g+:0.1,and
v~ =1 > vt = 0.5. With these parameters 7133 = 0.1104 and 7,4 = 1.8196. (a)
With nonlinearities ¢ and v defined by (1.3) with m = n = 200. The Hopf bifurcations
associated with stability change occur at (,x) = (0.2333,1.0018) with w = 2.3128
and (7,x) = (1.8669,0.9659) with w = 2.3155. Stable periodic orbits are represented
by maximum (in red) and minimum (in blue) of x(t) on the periodic solution. (b)
Two-parameter continuations in m = n and 7 of the Hopf bifurcations with the other
parameters as above. (c) Profile of the stable periodic orbits with v = 0.4. The color map
indicates values of the continuation parameter m = n. (d) Profile of the stable periodic
orbit with m = 200 and v = 1.3 and the other parameters as above. The associated
steady state is at x* = 0.9848. The period of the periodic orbit T = t4 = 2.8772.

Figure 6.6 illustrates the case of ¢ and v both decreasing with 6, = 6, = 6¢,. Panel (a)
shows the dynamics for smooth nonlinearities ¢ defined by (1.3) with m = n = 200. In this



Dynamics of a state-dependent delay-differential equation 65

case the steady state is unstable between two supercritical Hopf bifurcations. These Hopf
bifurcations occur close to but slightly to the right of the limiting values 713 and 24. The
resulting periodic orbit is stable on the whole of the interval between the Hopf bifurcations.

Figure 6.6(b) shows a two-parameter continuation of the curve of Hopf bifurcations at
which the stable periodic orbit is created. The amplitude plot of the periodic orbits in panel
(a) of Figure 6.6 suggests that different behavior is seen near the two Hopf points, and this is
illustrated in the periodic solution profiles shown in panels (c) and (d). In (c) with v = 0.4, as
m = n is increased the profile of the periodic orbit converges to a limiting profile (which we
construct in [31]). The situation is different with y > 1 as shown in panel (d) with 7 = 1.3 and
m = n = 200. While there is again a large period periodic orbit, the profile is quite different,
with x(t) never much greater than x* even though there is a large segment t € (to, tz) of the
periodic orbit for which x(¢) > x*. This large subinterval of the periodic orbit on which the
solution is nearly constant looks quite different to the periodic orbits seen in (c).

The case of (g 1,v 1,6, = 6) is analogous to the scenarios considered in Sections 5.2
and 5.4 which lead to a pair of fold bifurcations when (6.2) is satisfied, and an interval of y
values for which two stable steady states coexist with an unstable steady state. Because v and
¢ are both increasing, the functions ¢ — ¢¢'(¢)/g(¢) and & — ut(&)E0' (&) /v(&) are both pos-
itive, and moreover 04,8 (0¢0) /g(0g0) and ut(040)0400' (0g0) /v(040) are increasing functions of
n and m, respectively. Since the condition (6.2) is more easily satisfied in this case than when
one of these functions is zero or decreasing, fold bifurcations can occur for smaller values of
m or n for (g 1,0 1,0, = ;) than was seen for (g 7,0 <+) or (§ <»,v 1). Asm = n — oo the
interval of bistability converges to (724,713). Equation (6.12) imposes a constraint on Hopf
bifurcations to occur when g and v are both increasing. However, since Q(6;) — c0as n — oo,
Hopf bifurcations can occur for all n sufficiently large.

6.2.2 g and v with opposing monotonicity (g 1,v |,0; = 0,) and (g |,v 1,0, = 6,)

These cases are altogether more delicate and surprising, and need explaining in some detail.
For the smooth nonlinearities when the power m or # is large, and the function g(x) or v(x) is
close to a step function, we will informally refer to the part of the function with large gradient
as the interface. When m > n the v(x) function will have a much narrower interface than the
function g(x), while g(x) will have a narrower interface when n > m. These interfaces are
centred at x = 6, and x = ¢, so when 6, = 0, they will overlap or if m > n or m < n the
interval on which one interface occurs will be inside the interval on which the other interface
occurs. When ¢ and v have opposing monotonicity the dynamics of (1.1)—=(1.2) will be very
different depending on which interface is narrower.

From (6.2) there will be a fold bifurcation when

_ _ 58'(@) ¢v'(g)
0=ME="ey T O%z T
When v is increasing by Proposition 5.1
. 0,0'(0,) (9 I o (S
oy > and lImSet = lim S =0 (6.15)

which ensures that a fold bifurcation must occur for m sufficiently large when # is held con-
stant. If g is decreasing then g’ (&) /(&) < 0 and the value of m required for a fold bifurcation
to occur will be larger than when this term is non-negative, that is, when g is constant or in-
creasing. Those cases were considered in Sections 5.4 and 6.2.1. An analogous argument to
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(6.15) shows that when g is increasing a fold bifurcation will occur for n sufficiently large
when m is held constant.

A more delicate question is, what happens when m — oo and n — oo with ¢ and v having
opposite monotonicities. In that case one could expect that whichever of the terms ¢¢'(¢)/g(&)
or &v'(&)/v(&) grows faster as m, n — oo will determine where and whether fold bifurcations
occur, however, as we will see, the behaviour is more nuanced than that.

We will now consider the case (g |, v 1,6; = 6, = 0¢,) for which 0 < r, < 1 < rg, where
r¢ =g /¢ and r, = v~ /v". Evaluating M(f,) using Proposition 5.1(2) we obtain

0408’ (0g0) 0o00' (040) - n(l—rg) m(1—ry)
M(6g0) = W + VT(%)W 1= m 1 O0) 5 1 619)
Then if Aor)  (re—1)
nt(0g0) (6.17)

(T4r0)  (Atry)

it follows that M(fg,) — +0c0 as m = n — oo, and in particular M(fg,) > 0 for all m = n
sufficiently large. This ensures that there is a pair of fold bifurcations as 7y is varied with
m = n sufficiently large.

Of course, since m and n appear in the different nonlinearities v and ¢ modelling different
processes, there is no reason beyond mathematical convenience to assume that m = n. So,
it is interesting to consider whether fold bifurcations still occur as m — oo and n — oo
independently.

The condition (6.17) was arrived at by evaluating M(f,), which has a convenient form
because of Proposition 5.1(2). However, we will show below that it is not a necessary condition
for existence of fold bifurcations. To see this, note that for the case we consider we have
0 <ry <1< rg and hence

1o/ "0g0 < Ogo < 1/ *"Bgp. (6.18)

From Proposition 5.1(4) the positive function ¢v'(&)/v({) achieves its maximum at § =
ri/#M04y < Ogo and the negative function ¢g’(¢)/g(&) achieves its minimum at ¢ = r(é/ 210y >
Ogo. Thus, for & € (r}/*"6040, ry/*"050) We have £v'(¢)/v(¢) and &g'(8)/g(Z) as well as (&)
all decreasing functions of ¢ and it follows that M(¢) is decreasing for & € (r}/?"0y,, ré/ 21605)
as well as satisfying limg_, ., M({) = —1. Consequently, we expect M({) to obtain its max-
imum value for ¢ < r1/?"0g,. If this maximum value is positive, then (6.2) will have at least
two solutions, indicating two fold bifurcations for different ¢ values, one on each side of this
maximum. While we will not consider the other case of (g 1,v |,0; = 6, = 0, in detail,
we note that in that case ¢ would be the increasing function, with r, = ¢~ /¢ <1 < r, and
for ¢ € (rél,/znegv, r}/#04,) we would have gg'(&)/g(¢) positive and decreasing, &v'(¢€)/v(¢)
negative and decreasing, and 7(¢) increasing, from which it follows that M(¢) is decreasing
for ¢ € (ré/ 21005, 15/ 204 ), 50 M(E) would obtain its maximum value for & < 0g,.

To study the steady states and fold bifurcations of (1.1)—(1.2) for (g |, v 1,6, = 6, = 04,)
we will work directly with the function /(¢) defined in (5.2). Suppose the parameters are
chosen so that Be "7 ¢~ > Be*T g*. Then

pet g™ = lim pe ™ 9g(¢) > lim peOg(z) = e g™, (6.19)
—

¢—r+o0

Figure 6.7 depicts such an example for which fe #7(©)¢(&) is a monotonically decreasing
function of ¢ in both the smooth case and the limiting case as m = n — oo, so that there is
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Figure 6.7: Bifurcations of (1.1)~(1.2) for (g |,v 1,0, = 6, = 04) with = 1.4, u = 0.2,
§ =1,8"=050,=0,=0p=10a=1,0 =1and vt = 2. With these parameters
Be FT gm > e Tlo(0yy) > Be FT'¢. (a) With smooth nonlinearity g and v defined
by (1.3) with m = n = 100. (b) Two-parameter continuations in m = n and <y of the Hopf
bifurcation at which the steady state loses stability with the other parameters as above.
The vertical lines at v = 13 = 0.6334 and v = 7,4 = 1.1462 denote the location of the
Hopf bifurcations in the limiting case as m = n — co. (c) Graphs of & — Be #7(%) (&)
and ¢ — ¢ with m = n = 100 and v = 1. Since { — ,Be’?”(‘f)g(g) is monotonically
decreasing there is a unique intersection and hence a unique steady state for and ¢ > 0.
(d) Graph of & — Be 17(€)g(Z) in the limiting case, with the black dot denoting the
value of e #7(0) 8(6¢v). The inset depicts the continuation of the steady states in the
limiting case with g and v defined by (1.6) and (1.7). Stable steady states are shown as
green solid lines, and the singular steady state as a black dashed line.

always a unique steady state. One could easily and incorrectly assume that & — Be #7(¢)g()
will be monotonically decreasing whenever (6.19) holds. However, this is not always true, and
indeed is never true when (6.17) holds. To show this, recalling the definitions of g and v given
by (1.3) in the smooth case, notice that at the threshold, the function values are independent
of the nonlinearity m or n, with

v 4ot

-4 ot
2(6,) :% and (0,) = . (6.20)

Thus for (g },v 1,0y = 6, = 0gy) and 0 < r, < 1 < 1y it holds that

g > g(bg) > g7, (6.21)
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while v > v(0,) > v~ implies

T > 7(0g0) > T7. (6.22)
Then (6.17) implies that
_(1—=ry) (1—1ry) _ 1rg—1 re—1 2rg
v In| 1 =1 : 2
M gy PO )y T 1y, o 1, ) T, (6.23)
But
g 28 /8" 2% &
Tdrg 1487 /g7 gr+8  8(60)
and a ) N )
— 71y a (vt —ov” a a _
- = — = — — = — 9 v)-
K (14+7ry) o~ (v*—i—zﬁr) - o +our (60
Thus

T (1=ro) > ln< 2’

) e u —(00) > s /5(05)

= e M) > 07/ 0(650)
= BeFlg(0,,) > BeHT g™

Thus if the parameters are chosen so that (6.17) and (6.19) both hold then
pe g (0g0) > P g > pe T gt (6:24)

and the function & + Be 7€) ¢(¢) is not monotonic. This was not the case for the example
in Figure 6.7, but below we will demonstrate examples where both (6.17) and (6.24) hold, and
more interesting dynamics arise. Moreover, the inequalities in (6.23) are not all tight, and we
will also show that it is possible to obtain (6.24) for parameters for which (6.17) does not hold.

pe i g~ ~

Be M7 gt

¢ ¢ O
Figure 6.8: An illustration of Be~""(®)g(&) and 4¢ in the case (g |,v 1, 0y = 0y = Og0)

for both smooth nonlinearities and in the limiting case m = n — co when (6.24) holds.

Now suppose that (6.24) holds and consider /(¢) defined in (5.2). This situation is illus-
trated in Figure 6.8. Recall (6.13) and also let

B 5e—m(9gv)g(9gv)

Yev 1= : (6.25)

ng
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We will now show that when v € (724, 7¢0) for all m sufficiently large there are three steady
states. From (5.2), we have h(0) = Be #* ¢- > 0 and h({) — —oo as { — +oo. Moreover,
(6.25) and 1y < 74y implies

1(0g0) = Be ") g(0g0) — Y0g0 = YguBgo — Y050 = (Vg0 — 7)0g0 > 0.

From h(fg,) > 0 the intermediate value theorem immediately yields the existence of one
steady state ¢ > 0q,; to show that there are three steady states it suffices to show that there
exists ¢ € (0,60,,) with k(&) < 0.

For any § € (724, 740) we have §0¢, € (ﬁe*?‘fg*,ﬁef”f(ggv)g(egv)) so for some ¢ > 0 it
holds that 4604, = Be™#* ¢~ + 24¢. This implies that the point & (shown in Figure 6.8) where
the line 4¢ intersects fe #T ¢~ satisfies ¢ = Be T g~ /4 = Ogp — 2. Let

52 ggv — &€= %(é"‘egv) € (é/ggv)~

Then
§6 = V(00 —€) = P g~ +29e —Fe = pe " g~ + e
We have ¢(¢) < ¢~ since g is strictly decreasing, and then

1(E) = pe ™ Og(§) =98 < pe 1™ Ogm — (Be T g +4e) = ple MO —e T g — Fe.

Since ¢ < gy, using the pointwise limit of the Hill function to its piecewise constant limit we
have limy,_,c T(¢) = 7. It then follows from the previous equation that there exists m > 0
such that h(¢) < 0, which shows that h(¢) has at least three sign changes, and so there are
three co-existing steady states.

When m > 1 and n > 1 it is easy to verify that

lim 2= (Be " ©g()) = tim 2 (e Eg()) =0,
from which it follows that there is a unique steady state for all 7y sufficiently small or large.
Bifurcations from this steady state will depend on the nonlinearities g and v.
In the case of smooth nonlinearities when one of m or n is held fixed while the other one
is increased to infinity the arguments of Sections 5 can be adapted to show that in the limiting
case m — oo the fold bifurcations occur at

_ Be M g(6gv) <y = ﬁeiyﬁg(egv)

: 6.26
oo Beo (6.26)

Y4

with singular solutions for v € (4, 3). Similarly, with m fixed in the limiting case n — oo,
singular solutions occur for ¢ € (71, y2) where

lBe‘?‘T(egv)g"' ﬁe‘?‘f(egv)g_

<y = (6.27)

T

va ng

With g decreasing, whether fold bifurcations occur at the ends of this interval will depend
also on the steepness of v. These limiting cases correspond to solutions of #(¢) = 0 where the
line 4 & intersects the curve e #7(©)¢(&) at its maxima and minima which are illustrated in
panels (a) and (c) of Figure 6.9 when one of the values m, n is fixed and the other tends to co.
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Figure 6.9: Illustrations of the behaviour of the function & — Be #7(¢)¢(¢) in the case
(g 4,0 1,05 = 0, = Og) with e #70s)g(f,) > Be #™ g= > Be T ¢t as m and/or
n tend to infinity, showing that different maxima and minima are possible depending
on the limits taken. The insets show the function on the interval ¢ € [0,26,] while the
main panels show the behaviour for { ~ 04,. The values of m and n are taken to be
(@) m = 10 fixed and n — oo, (b) m> = n — oo, (c) n = 10 fixed and m — oo, and,
(d) n = /m — oo. The values of the other parameters are = 14, u = 0.2, g~ =1,
§7=050;=0,=0p=1a=10" =03and o™ =2.

Panels (b) and (d) of Figure 6.9 illustrate what happens when m and n both tend to infinity,
but one is increased much faster than the other, showing that the same extrema are observed
as when the more slowly increasing exponent is held fixed. Since the maxima and minima
of the nonlinearities converge to different values depending on whether m or n is increasing
faster, and the limiting locations of the fold bifurcations are determined by the extrema, the
location of the fold bifurcations as m — oo and n — oo will depend on how these limits are
approached. We will investigate the dynamics for different relationships between m and n
below.

Since the value of ,Be*}”(e&”) g(QgU) is independent of m and n, the maximum of ¢ —
Be 1€ o(Z) cannot be smaller than this value, which imposes the bound that the right-
most fold bifurcation must occur for 7y > ¢, Using (5.2) and (6.2) it is easy to show that
W(¢) = yM(Z) when k(&) = 0, that is at a steady state. Consequently, if M(6,,) = 0 the right
fold bifurcation will occur at { = 0, with v = 74,, while if M(6g,) < 0 then 1(6¢,) < 0 so the
fold bifurcation occurs for { < 6, and v > 7¢p. Similarly, if M(6g,) > 0 the fold bifurcation
will occur for § > 04, and ¥ > 4,. These situations are illustrated in Figures 6.10 and 6.11



Dynamics of a state-dependent delay-differential equation 71

) (a)
. pe g (6,)
2 L
Sk
va [ /)7—‘ - ™ ﬁe—;u—*g—
q\'Y )
peiTgt
0 L L L
0 Y24 Ygv 0.6 0.8 T
I (c) = (d)
& &
300 300 |
200 | 200 |
100 100!
. n L 0 T 4’/)
Y24 0.3 04 7405 7 0.7 0.8 0.9 00 &

Figure 6.10: Bifurcations of (1.1)-(1.2) in the case (g |,v 1,0, = 0, = 04) with
Be FT0)g(foy) > BeHT g > Be "T'gt and m = n. Parameter values are p = 10,
=029 =1 ¢t =1/10, 0o = 1,07 =1, vt = 2 and a = 18.4091, for which
M(fgy) = —1 when m = n. (a) With smooth nonlinearity ¢ and v defined by (1.3)
with m = n = 10, and inset showing the limiting case as m = n — co. (b) The be-
haviour of ¢ — Be #"(©)g(¢) as m = n — oo with the inset showing that the maximum
of the function is ,Be’VT(GSU) 8(fgy) in the limiting case. (c) Two-parameter continuation
in m = n and <y of the fold bifurcation with the other parameters as above. The fold
bifurcations are always associated with unstable steady states, and there is a cusp point
at (y,m) = (0.5271,4.2830). In the limiting case as m = n — oo the folds occur at
v = 724 = 0.2518 (recall (6.13)) and 7y = 7gy = 0.4725. (d) Two-parameter continuation
in m = n and ¢ of the fold bifurcations with the other parameters as above.

which we now describe in more detail.
From (6.16), for any parameter set with 0 < r, <1 <, taking

= — 2+n ,
UT(0go) 1 =19 re+1

ensures that M(ng,) = 0. However, for the example in Figure 6.10, we prefer to set m = n and
choose the other parameters to enforce equality in (6.17), which ensures that M(6y,) = —1
for all m = n > 0. This results in a fold bifurcation at v = 74, in the limiting case as
m = n — oo, since as already noted M({) is decreasing at { = 6, and also both ¢’ () /v({)
and ¢g'(¢)/g(&) become increasingly steep as m = n — oo so the point ¢ at which M(¢) = 0
approaches 0y, as m = n — oo. This is illustrated in Figure 6.10 where panel (b) shows that
the maximum of & — Be ") g(&) tends to e ) g(6y,) as m = n — oo while panels (c)
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Figure 6.11: (a) and (b) The behaviour of & — Be 7€) g(&) as m = n — o in the case
(gL, 1,05 =0, = 0g0) with Be #T0s0)g(fe,) > e 7 g~ > Be T ¢t with the same
parameter values as in Figure 6.10 except for the value of 4. In (a) a = 22.1591 and in (b)
a = 14.6591. The insets show that lim,;—y—co maxé{,[%e’“(‘f)g(é)} > ﬁe”’T(exv)g(f)gv),
with the maximum indicated by the dashed line in the inset, and the value at 0, by the
black dot. (c) and (d) show the corresponding two-parameter continuations in m = n
and either (c) v or (d) ¢ of the fold bifurcations with the left panel showing the case
of a = 22.1591 and the right panel for a2 = 14.6591. The fold bifurcations are always
associated with unstable steady states. In (c) the asymptote denoted 7* for the fold
bifurcation is obtained dividing the maximum value of ,Be’F‘T(C) ¢(&) from (a) and (b)
by ¢, and is seen to be strictly larger than <y¢, in both cases.

and (d) show that the corresponding fold bifurcation asymptotes to v = 74, and ¢ = 0,y as
m=n — oo.

Figure 6.11 illustrates two examples with the same parameters as in Figure 6.10, except for
the length parameter a. Changing just the length parameter a leaves the ratio r, unchanged,
but changes the value of 7(,,) as well as 7~ and t". With a = 221591 and m = n it
follows that M(g,) = n/12 — 1 and limy—y o M(6gp) = 00, while for a = 14.6591 we
have M(04,) = —n/12 — 1 with limy— 0 M(0gy) = —oc0. As Figure 6.11(a) and (b) show,
for both of these parameter sets, (6.24) is satisfied and ¢ — ﬁe‘”r(g) g(&) is non-monotone. It
is also clear from the insets in these panels that in contrast to Figure 6.10, the maximum of
& Be #7@)g(£) is now strictly larger than Be=#7%2) ¢(8y,) for all m = n > 0. Consequently,
as seen in Figure 6.11(c), the rightmost curve of fold bifurcations asymptotes to a value of
v which is strictly larger than 7¢, as m = n — co. As Figure 6.11(d) shows in both cases
the location of this fold bifurcation converges to 6, as m = n — co. When M(fg,) > 0
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the maximum of Be *7(&)¢(¢) occurs for & > f¢o and consequently for the fold bifurcation as
m=n — 0o, § — tg, from above and v — * from below for some * strictly larger than -y,.
For M(6,,) < 0 the convergence is from the other side, but again ¥ — 7* for some * strictly
larger than 7y,.

We remark that for the example with a2 = 14.6591 in Figure 6.11, because M(f,,) < —1 the
condition (6.17) is violated, even though the condition (6.24) is satisfied, demonstrating as we
claimed earlier that (6.17) is not a necessary condition to obtain (6.24). This also shows that
it is insufficient to just evaluate the value of M(fy,) to determine whether fold bifurcations
occur.

In Figures 6.12 and 6.13 we return to the parameter set first considered in Figure 6.9 for
which Be "7 g () > Be *T ¢= > ﬁ(f"T+ ¢". Now, we also consider the Hopf bifurcations
and resulting periodic orbits. With these parameters M(6y,) < 0 when m = n > 0 with
M(04y) — —co as m = n — oo and so the upper fold bifurcation approaches y* for some
Y* > 74 from above as m = n — oo, as seen in Figure 6.12(c), similar to the left panel of
Figure 6.11(c). The other fold bifurcation is seen in Figure 6.12(c) to approach 7 = 724 as
m=n— o0,as ¢ — e ") g (&) evolves from the smooth function shown in Figure 6.12(b) to
its limiting form as in Figure 6.12(d). This agrees with the arguments under Figure 6.8 above.

For the one parameter continuation shown in Figure 6.12(a) the steady state is stable for
all v sufficiently large or sufficiently small, and loses stability in a Hopf bifurcation (and
not at the fold bifurcations). A two parameter continuation of these Hopf bifurcations in
Figure 6.12(c) shows that they approach 13 and 74 as m = n — oo, similarly to how we saw
the Hopf bifurcations were forced to the ends of the interval of singular steady state solutions
in Section 5.1.

In Figure 6.12(a) there are no stable steady states for v € (0.624,0.837), so we explored
the stable invariant objects in this case using both numerical bifurcation detection and con-
tinuation and numerical simulation of the DDE. Using ddebiftool we find that the Hopf bi-
furcation at y = 0.624 is supercritical and generates a branch of stable periodic orbits, which
is illustrated in Figure 6.13. There is an apparent canard explosion [34] on this branch at
v ~ 0.629 where the amplitude of the periodic orbit increases dramatically. The continuation
of the branch fails in ddebiftool at this point, but since the periodic orbits are stable we are
able to continue them through the canard explosion using simulation with ddesd, and then
continue again with ddebiftool after the canard explosion, to obtain the continuous branch
of periodic solutions for m = n = 40 shown in Figure 6.12(a) and Figure 6.13. After the canard
explosion for ¢ € (0.629,0.84) the periodic orbit is stable with large amplitude and moderate
period (T ~ 13) and evolves slowly as 7 is varied. Then at v ~ 0.84 the period of the orbit
grows dramatically while the amplitude is roughly constant. In Figure 6.12(a) this branch is
represented by its 2-norm as the red curve. This curve appears to terminate on the middle
unstable branch of steady states when v = 0.84. However, as seen in Figure 6.13(c) and (d)
the amplitude of these orbits remains large, so there is not a Hopf bifurcation at this end of
the branch.

The large period orbits shown in Figure 6.12(c) and (d) spend a lot of time close to the
unstable steady state on the middle branch between the folds, which is itself very close to the
threshold x = 0, and resemble relaxation oscillations. This branch of periodic orbits most
likely ends in a homoclinic orbit to the unstable steady state with an infinite period. There
is also bistability between the stable periodic orbit and a stable steady state for a very small
range of parameters y € [0.837,0.84].

In Figure 6.12 there are two fold bifurcations, as we have seen in many examples when
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Figure 6.12: Bifurcations of (1.1)—(1.2) when (g |,v 1,0, = 0, = 6¢,) with the same
parameters as in Figure 6.9. (a) With smooth nonlinearity ¢ and v defined by (1.3)
with m = n = 40. The stable periodic orbits are represented by the 2-norm. (b)
Steady states occur at the intersections of § — Be 'O g(&) and & — ¢, with &
illustrated here with ¢ = 0.9. The black dot marks the value of Be#7(%v) g(64,). (c)
Two-parameter continuation in m = n and <y of the fold bifurcations (in blue) and Hopf
bifurcations (black) with the other parameters as above. Solid curves indicate the parts
of the bifurcation branch where there are no characteristic values with positive real
part (and hence a stability change at the bifurcation), and dashed lines indicate where
the parts of the branch where there is at least one unstable characteristic value. In this
example the steady state always loses stability in a Hopf bifurcation, and not at the fold.
The four vertical lines denote 13 and 724 (recall (6.13)) and ¢, (recall (6.25)), along with
v* = 0.9305. (d) Plot of & — Be #7(&)¢() in the limiting case with ¢ and v defined by
(1.6) and (1.7). The black dot marks the value of ,Be_“T(Gg”) g(0gv). The dashed line is
obtained by taking the Hausdorff limit of the smooth function, and extends above the
point-wise limit at 04, because limy;—,—;c maxg Be 1@ o(F) > ﬁe‘i‘r(egv)g(va). The
inset panel depicts the continuation of steady states in the limiting case. Stable steady
states are shown as green solid lines, and the singular steady state as a black dashed
line.
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Figure 6.13: The branch of stable periodic orbits for (g |,v 1,0, = 6, = 6g) when
v € [0.624,0.84] from Figure 6.12(a). Panel (a) shows the amplitude of the periodic
orbits along the branch. (b) The period of the orbits. (c) Profiles of the periodic solutions
show that the large period orbits at the end of the branch are of relaxation oscillator
type. Panel (d) depicts the last periodic orbit found by ddebiftool, with the inset panel
showing a zoom of the dynamics near the spike.

. (b)
1t

12}

08|
Ogo 06| ”

04 | 0.63
0.8 -

02| |

1.01 1.03
0.6 ‘ ‘ ‘ 0 ‘ ‘ ‘
06 08 1 12 7 0 05 O 15 §

Figure 6.14: (a) One parameter continuation of the steady state when (g |, v 1,6, = 6, =
f¢v) for varying v with the other parameters the same as in Figure 6.12 except m = 100
and n = 500 reveals four fold bifurcations. (b) Three steady states are indicated for
v = 0.6130 at the intersections of & — Be #7(%)¢(&) and ¢.
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one of ¢ and v is increasing. However, as Figure 6.14 shows, it is possible to obtain four fold
bifurcations by just changing the steepness of the nonlinearities and resulting width of the
interfaces of the nonlinearities. In Figure 6.14 we do this with n > m > 0. Since n is very
large the function ¢ has a very sharp interface, and drops from very close to its maximum
value ¢* to its minimum value ¢~ while v is essentially unchanged and equal to v(fy,). This
results in the function & — Be #7(©)¢(&) having extrema close to fe #™(%>) ¢~ and fe #7(0x) g+,
as shown previously in Figure 6.9(a) and (b). Outside of this narrow interface, g is essentially
constant, and therefore e #7(¢)¢(&) is increasing, since v(&) is an increasing function. Thus
the function & — Be 7€) ¢(¢) is increasing, then decreasing, then increasing again. For m
sufficiently large (so that the derivative of e #7(¢)g(¢) is larger than 7) this creates two fold
bifurcations close to the ends of the inner interface for ¢ in addition to the other two fold
bifurcations close to the edges of the outer interface of v.

Figure 6.15(a) shows that with n = 5m the second fold bifurcation exists for all m > 66.39.
As shown in Figure 6.15(b) one pair of fold bifurcations exists for { < 6,, and the other for
¢ > Ogp. This happens because 0, is in the middle of the sharp interface of g, the only (very
short) interval on which Be=#7(¢) (&) is decreasing, with two of the corners giving rise to the
fold bifurcations on each side of 0,,. Figure 6.15(b) shows that as n = 5m — oo all of the fold
bifurcations are squeezed into ¢ = ¢, but in Figure 6.15(a) we see that the limiting -y values
of the folds all appear to be different. Because Be *7(&) g (&) — Be #T ¢~ as m,n — oo for all
¢ < fg (and to Be #T g for & > f¢0), two of the fold bifurcations asymptote to v = 724 and
¥ = Y13 as m,n — oo, as shown in Figure 6.15(a). These are the outer two fold bifurcations for
the smallest and largest ¢ values in Figure 6.15(b). The asymptotic y values for the inner pair
of fold bifurcations depends on the relative widths of the interfaces of the ¢ and v functions.
With n = 5m it appears that the limiting 7y values are strictly inside the interval (y1,72).
Different behaviour is observed if m, n approach infinity with different relationships. For
example, if n = m? (as considered first in Figure 6.9(b)) then the g interface is much narrower
than for v and the inner folds asymptote to ¢y = 7, and v = ; while the outer folds still
asymptote to vy = 74 and y = <13 as seen in Figure 6.15(d).

If n = m" — oo for r € (0,1) then the behaviour of ¢ — Be #7()g(&) and the bifurcations
are completely different, as shown in Figure 6.9(d) and Figure 6.15(c). In this case m > n so
the v interface is much narrower than the g interface. As g is decreasing this results in the
function & ~ Be #7(©)¢(&) being decreasing for & small and large, and increasing only on a
small interval about { = 6, corresponding to the narrow interface of v. In this scenario the
limiting form of the function Be~#7(¢)g(¢) is still piecewise constant for & < O¢v and & > Oy,
but now the function is decreasing rather than increasing at the corners corresponding to
Y24 and 13, so these corners no longer result in fold bifurcations. Instead the folds occur
close to the local extrema of ﬁeﬂ”(é‘) ¢(&) seen in Figure 6.9(d), so that, for instance, when
n = m?/3 — oo the fold bifurcations in Figure 6.15(c) approach 74 and <3 defined by (6.26).

Figure 6.15(b) shows that the locations of the fold bifurcations are squeezed into § = 0,
as n = 5m — oo and the nonlinearities in (1.1)—(1.2) become piecewise constant for ¢ # 0.
Similar behaviour was observed when n = m" — oo for r > 0 but we omit the figures. Notice
also that as already observed in the previous example, the outer Hopf bifurcations at which
the steady state changes stability approach 724 and 13 as in the limiting case as n = m" — oo
in all of these examples.

Although there are four fold bifurcations in the example in Figures 6.14 and 6.15, because
of the location of the folds it is not possible to obtain five co-existing steady states.

+

As a final example we change just the parameters v™ in the v function from the previous
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Figure 6.15: Two parameter continuations of the bifurcations of (1.1)-(1.2) when (g |
;01,0 =60, = ng) with the same parameters as in Figures 6.9, 6.12 and 6.14, except
for m and n. The branches of fold bifurcations are shown as blue and red curves and
the Hopf bifurcations in black. Solid curves indicate the parts of the bifurcation branch
where there are no characteristic values with positive real part (and hence a stability
change at the bifurcation), and dashed lines indicate where the parts of the branch
where there is at least one unstable characteristic value. In all four examples the steady
state always loses stability at a Hopf bifurcation, and not at the fold bifurcation. (a)
and (b) Continuation of the fold bifurcations in ¢ and m with n = 5m, showing in
(a) the 7 values of the fold bifurcations and (b) the value of the steady state ¢ at the
fold bifurcation. Cusp bifurcations occur at (y,m) = (0.6083,66.3853) and (y,m) =
(1.2480,7.0681). (c) and (d) are similar to (a), except in (c) n = m?/3 and in (d) n = m?.
Cusp bifurcations occur in (c) at (y,m) = (0.9577,11.3879), and in (d) at (y,m) =
(0.5909,22.4752) and (v, m) = (1.2484,7.0591).

example, to obtain a new example with Be #7()g(9) > Be #T gt > Be M ¢~, whose dy-
namics are explored in Figure 6.16. With m = n the dynamics with one and two parameter
continuations is very similar to the earlier case shown in Figure 6.12 with a single pair of fold
bifurcations and so we omit the figures here. But different choices of m and n lead to more
interesting dynamics shown in Figure 6.16. One-parameter continuation in oy with n and m
fixed with n > m > 0, as shown in Figure 6.16(a) reveals four fold bifurcations, a large inter-
val of y values on which there are three coexisting steady states with two stable, and a small
interval for v € (0.5352,0.5513) for which there are five co-existing steady states of which
one or two are stable. Figure 6.16(b) illustrates how these five steady states arise because for
n > m the downward g interface is much narrower than the interface for the increasing v



78

200 ¢

100 ¢

800 |

600 |

O I
7Y240.3 Y113 Y3 1 v 72403 Y1713 0.8 72

T. Gedeon, A. R. Humphries, M. C. Mackey, H.-O. Walther and Z. Wang

AN TG
1.4 g - 0.8
098 — = — — — — — — —
0.54 0.55 06"
va [ e e — = =]
04l 0.58
0.6 0.2k 0.54
0.95 1.05
L L L L L 0 L L
02 04 06 08 17 0 05 g0 15 S
& | (c) | l & (d) e ‘
| I 200 I : \ J
| ! g
I , I \ =
| | 10 120 [ |10
| I 0.52 0.56 | 05 0.55
: : 25 \\\\\ :25 SO
| | N NS
X | \\
: : 22 > 60 I ' I'z.z x
| | 1.1 1.3 : | 1.1 1.3
| |10 | 1110
| | |
bl e
0 \ 1 8 0 e N N R 8
Y24 71713 0.8 72 1.3 v Y24 71713 0.8 72 1.3 v
& e ] I i
| Py | [
I it 800 1 | 'l
| 0L === |
| 05 0.55 | I | soo :
: 25 SN 600 | Il ,' \\\\ I
| \\\Q | || 300 ~4
400t | l\ vs Mo 400 | II 052 0.54
| 11 13 | 500 T
\ 20 4 I
2001 ) \ 200 - // '
Y/ \ { 1=
/ %o 05 0 N 02063

Y

Figure 6.16: Bifurcations of (1.1)~(1.2) when (g |,v 1,0, = 6, = fg,) with B = 1.4,
p=202¢ =1¢"=050,=0,=0,=1a=10 =01landv" = 1. Apart
from m, n, v~ and v, these are the same parameters as in Figures 6.9 and 6.12-6.15.
(a) One parameter continuation of steady states in 7 with smooth nonlinearities g and
v defined by (1.3) with m = 100 and n = 500. This reveals four fold bifurcations and up
to five coexisting steady states (at most two of which are stable). (b) Illustration of the
five steady states occurring in (a) at the intersections of ¢ +— Be *7(&)g(¢) and & — ¢
with v = 0.5480. (c) to (f) Two parameter continuations of the fold bifurcations (red
and blue) and Hopf bifurcations (black) with (c) n = 5m and (d) n = m? (e) m varying
with n = 500 fixed and (f) n varying with m = 100 fixed. The bifurcation curves are
drawn according to the number of characteristic values with positive real part; solid for
zero and dashed for one or more. Cusp points are denoted by crosses. In (e) there is
a change of stability at the fold bifurcation between two Bogdanov-Takens bifurcations
(denoted by pink diamonds) at (y,m) = (0.2,165.62) and (v, m) = (0.1938,438.82),
otherwise in these examples the stability change is always at the Hopf bifurcation (as
was the case in Figure 6.15).
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function (compare with Figures 5.3 and 6.14). Panels (c) and (d) of Figure 6.16 show two-
parameter continuations with n = 5m and n = m? which reveal that with these parameter
constraints all four fold bifurcations persist to arbitrary large values of m with one pair of fold
bifurcations contained in the interval (71,713) and the other in the interval (74, y2) for all m
sufficiently large, just as was seen in Figure 6.15. But for the parameters used in Figure 6.16
we have (71, 713) C (724, 72) so there are five coexisting steady states between the red curves
in Figure 6.16(c) and (d) for arbitrary large m.

In the examples shown in Figure 6.16(c) and (d) the stable steady states loses stability in a
Hopf bifurcation just before the fold bifurcation. As in the previous examples in this section
these Hopf bifurcations asymptote to 74 and 713 as m, n — oo. In Figure 6.16(e) and (f) we
explore a different scenario, where we keep one of m or n fixed but much larger than zero,
and allow the other one to vary on the positive real line.

The value m = 0 in Figure 6.16(e) corresponds to the v function being constant, and since g
is decreasing, this corresponds to the scenario considered in Section 5.1. This is why the curves
of Hopf bifurcations, but not the folds, extend all the way down to m = 0. For 0 < m < n
the ¢ function has a much narrower interface than the v function, so Be #7(&)g(&) will be
first increasing then decreasing and finally increasing again, similar to many of the examples
in this section. However for m > n > 0 the v function will have a narrower interface, so
Be 17(8) o(&) will be first decreasing, like in Figures 6.9(d) and 6.15(c). Interesting dynamics is
observed with n > m > 0. In particular, in Figure 6.16(e) there is a pair of Bogdanov-Takens
bifurcations, and on the curve of fold bifurcations between these points a steady state loses
stability at the fold bifurcation, unlike the previous examples in this section, but similar to
examples in Section 5.4. In Figure 6.16(f) we explore varying n with m > 0 fixed. Thus when
n = 0 we are in the scenario of g fixed and v increasing explored in Section 5.4 which is why
fold bifurcations persist down to n = 0 in Figure 6.16(f). As n increases, once the interface
of the g function becomes narrow enough there is a cusp bifurcation which leads to a second
pair of fold bifurcations and five coexisting steady states for all n sufficiently large. For n
large the folds are contained in the intervals (724,72) and (71, 713), but do not asymptote to
the ends of these intervals as n — oo because m is held fixed and finite.

6.3 Summary

In Section 6 we have considered the situation where both functions g and v are non-constant.
We first derived formulae for the existence of both fold bifurcations (6.2) and Hopf bifurca-
tions (6.9)—(6.10), which reduce to formulae derived in Section 5 if either v or g is a constant
function.

In Section 6.1 we study the case when the thresholds are different; 6, # 6,. Not sur-
prisingly, we recover the same dynamics and bifurcation structures as in Section 5 near each
threshold when m > 0, or n > 0 since in these limits the behavior localizes in the area where
the other function is essentially constant. In particular, in the case (¢ |, v |) the dynamics is
similar to that observed in Section 5.1 near x = ; and to that in Section 5.3 near x = 6,. In
Section 6.1.1 we consider the example (g |, v 1) which supports bistability between an equi-
librium and periodic orbit and in Section 6.1.2 we examine (g 1,v 1) which can exhibit up to
five equilibria and tristability.

In Section 6.2 we look at the situation when 0, = 0,. First in Section 6.2.1 we consider a rel-
atively straightforward situation where both functions ¢ and v are either increasing (¢ 1,v 1)
or both decreasing (g |, v J). Both of these cases are similar to their counterparts discussed in
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Section 5.

The most interesting case is when 6, = 6, but the monotonicity of ¢ and v do not agree
ie. (g1,v])and (g ),v1). This is discussed in Section 6.2.2. The main result is that which
behavior dominates (i.e. the behavior observed for increasing g or v or behavior for decreasing
g or v) depends sensitively on the way in which m and n approach infinity. We capture this
informally in a concept of “interface width”; if m >> n then the interface of v is much narrower
than the interface of ¢ and vice versa.

Figure 6.9 illustrates that the function & ~ Be "7(€)¢ (&) converges to different limits as
m and n go to infinity at different rates, indicating that the fold bifurcations will occur at
different places in these limits. We also observe that additional equilibria may appear when
m and n approach infinity at different rates (Figures 6.15 and 6.16). Finally, we observe a
canard-like explosion in amplitude of a periodic orbit that emanates from a Hopf bifurcation,
see Figure 6.13.

7 Conclusions

This paper is long and complicated, and hence difficult to summarize succinctly. Suffice
to say that we have introduced a generalization of a prokaryotic gene regulatory model, in
(1.1)—(1.2), originally developed in [18]. The generalization has both nonlinearities in terms
of feedback but also nonlinearities appearing in state dependent delays. Moreover the delays
are generated by a threshold condition. It is thus somewhat novel for both the mathematical
and modeling literature. The first three sections of the paper are concerned with establishing
important and relevant mathematical properties of the basic system (1.1)-(1.2). Section 2
establishes properties of the semiflow generated by (1.1)—(1.2), while Section 3 establishes
conditions for the existence of a global attractor of the semiflow. Section 4 deals with the
linearization of (1.1)=(1.2) which is of significant utility in the following Sections 5 and 6
where we examine the behaviour of (1.1)—(1.2) both numerically and analytically.

At the ends of both Sections 5 and 6 we have offered general synopses of the results of
each, which we will not repeat here. As an aid to the reader, in Table 7.1 we have listed all
of the figures in this paper illustrating dynamics for various combinations of ¢ and v, along
with the types of bifurcations that we observed numerically in each case.

We have studied the threshold model (1.1), (1.2) directly without applying the time trans-
formation of Smith [55,56] to convert the equations to a distributed delay DDE with constant
delay. We showed in Sections 5.3-6.2.2 that the dynamics of the model (1.1) with a threshold
delay is altogether richer and more surprising than the dynamics of the corresponding con-
stant delay model considered in Sections 5.1-5.1. In so doing we demonstrated that problems
with threshold delays can be analysed and studied numerically without time transforming the
problems to constant delay problems. Our methods are applicable to problems with multiple
delays including one or more threshold delays.

Much of the algebra in this paper is rooted in the use of monotone Hill functions for g(¢&)
and v(¢) which is both relevant and quite justifiable for modeling in the biological realm. Our
algebra is helped by the use of the function ¢ — ¢f'(¢)/ f(&) which has a tractable form (5.11)
when f is a Hill function. Notice that if f(¢) = C&F then

@)
@) ~ "

so we can think of ¢f'(&)/ f() as a description of a local power of a non-polynomial function.
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] (g,0) ‘ Corresponding figure number and bifurcations
( ) | 5.1(B7y), 5.2(1,2,H,S)

(g T v<4>) | 5.3(BY), 54(1,2EH,Cu)
( )

( )

5.5(87), 5.6(1,9), 5.7(1,2,H,5), 5.8(1,2,H,5)
5.9(7), 5.10(1,2,FS,Cu), 5.11(1,Eh,H,Fp), 5.12(1,2,Ba,BT,FH,Cu),
5.13(1,FFp,H,h), 5.14(2,FH,h,BT,Cu), 5.15(1,H,h), 5.16(1,2,F,H,h,Cu,Ba,Fhy)
(g1, v1) [ 6.1(B7), 6.2(1,2,FH,Cu,BT,FH), 6.7(87,1,2,H), 6.8(87), 6.9(B),
6.10(8,1,2,ECu), 6.11(8,2,ECu), 6.12(B,1,2,EH,Cu), 6.13(1,H,h,Ca),
6.14(B,1,4EH), 6.15(2,4FH,Cu), 6.16(B,1,2,4F,555,H,Cu,BT)

(g1, v1) | 6.3(BY), 6.4(1,2,4F,555 H,Ba,BT,FH), 6.5(1,4F,55S,H)

(g L,v]) | 6.6(1,2H)

(g1 vl

Table 7.1: Summary of various dynamic behaviours seen in Sections 5 and 6. The nota-
tion of 'n.m’ refers to figure ‘'m’ of Section 'n” and the symbols after indicate the type
of continuation explored and the bifurcations observed. B7y and p refers to a figure
in which Be #7¢(&) (with or without ¢) is plotted to show qualitatively the number
of steady states of the system (1.1)-(1.2). 1 and 2 indicate that 1 and/or 2 parame-
ter numerical continuation was performed. The bifurcations observed are denoted by
F (Fold), Fp (Fold of Periodic Orbits), H (Hopf), S (Stable-no bifurcation), and h (ho-
moclinic) and for higher co-dimension bifurcations: Ba (Bautin or generalized Hopf),
BT (Bogdanov-Takens), Cu (cusp), FH (fold-Hopf), Fh; (fold-homoclinic). 4F denotes
examples with 4 fold bifurcations, 555 denotes 5 co-existing steady states, and Ca a
canard. Note that left clicking’ on a number will take you to that figure, while "Alt <’
will bring you back to this table.

While a similar approach could be adopted for other nonlinearities, the results would likely
be quantitatively different, but we expect that for monotone functions they would not show
qualitative alterations. However, if non-monotone nonlinearities were considered then we
expect that there would be substantial qualitative as well as quantitative differences.

Future directions. In [20] the authors examine the various dynamic patterns (what they
term ‘multi-synchronization” or ‘multi-rhythmicity’) that emerge from models of biochemical
and cellular oscillators coupled to each other, and illustrate their considerations with examples
of the circadian oscillator and the cell cycle. While certainly of interest biologically, perhaps
the more interesting question is whether or not one could construct a catalog, or dictionary, of
possible dynamical behaviours arising from the coupling of N different dynamics generated
by DDEs as we have considered here.

In particular, consider

1) — R.,—HiTi(t) vi(xi(t))) A+ — T s
xi(t) = Bie 0 (xi(t — Ti(t)))gz(xz(t Ti(t))) — vixi(t) (7.1)
where for t > 0 the delay 7;(t) is defined by the threshold condition
0 t
a; = vi(xi(t+5s))ds = / vi(x;(s))ds (7.2)
—T7i(t) t=Ti(t)

fori =1,...,N. Assuming that these systems are coupled through one or more of the param-
eters B, i, vi, a; or through the functions 7;,v;, g;, then what can be said about the resulting



82 T. Gedeon, A. R. Humphries, M. C. Mackey, H.-O. Walther and Z. Wang

dynamics? The paper [20] considered both ‘series” and ‘parallel” coupling between their two
dynamics, but one would have to precisely define what was meant by this within the context
of (7.1)-(7.2).

For N = 2 one might consider a system

x| (t) = Prage ) (zll((fl_(?l))t)))gdxl(t —1(t)) —mx(t),

(

e . v2(x2(4)))

) = P

One could regulate the strength of the coupling by an additional constant i.e. by considering

the term B1a;x; rather than just B1x;. This would allow an examination of the strength of

coupling while keeping B’s the same for comparison with a single DDE oscillator. This seems

to be the simplest linear coupling; an alternative might be considering B1(x2), B2(x1) where

these are Hill functions. This coupling results in a positive mutual feedback in the sense that
more x1 makes g(x;) bigger and vice versa.

For stable oscillation in a single DDE we need at least one of the functions v or g to
be decreasing. Are there differences if we couple same kind oscillators (—, +) with (—, +)
or (+,—) with (4, —) on one hand and two different oscillators (4, —) with (—, +)? If we
mutually couple two DDEs in a way that they form a negative feedback loop, can we identify
oscillations that arise due to local negative feedback (i.e. the oscillator type (—,+) and (4, —))
and the global negative feedback, that arises from the mutual coupling of the oscillators? In
particular, consider two types of mutually coupled equations. First consider the coupling
through the nonlinearities g

)))gZ(XZ(t - TZ(t>)> - ’)/2X2<t>.

bl = m() - )

xy(t) = pae 12

v2(x2(t — Tz(t)))gz(xl(t —t))) — r2x2(t),

where both vy,v; are decreasing, so that each equation can support oscillations with con-
stant input from the other oscillator (see Section 5.3). If both g1, 4> are also decreasing this
represents mutual inhibition between two oscillators and suggests the possible existence of
bistability.

Alternatively, one can consider coupling of the equations through the v functions rather
than nonlinearities g, with all functions vy, vy, g1, 2 still decreasing:

xé(t) = ,Ble_ym(t) 01 (zzléfz_(ﬁgl)()t)))gl (x1(t=7u(t))) — mxa(t),
(

xé(t) = ,BZE_HZTZ(t) Uz(zf(fl(22)()t)))g2(x2(t - TZt))) - ’szz(t)-

Does either system support bistability between periodic solutions? If so, does the shape
of the periodic solutions reflect the fact that in mutually repressible coupled systems one
component is high while the other is low?

One can also consider larger system of equations that are cyclically coupled

3 (0) = pre im0 D)y (et = () = mam (), 73
x(t) = Bje ) 7 (z;éfft;)()t))) gi(xia(t—g(t) —vxi(t), j=2,...,N.  (7.4)
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We have already tackled a particular problem of this form in [18] where we considered

AM o et O(E(E) :
(0= By (E( = ) (1),
AT _ g ot (M) -

G0 = i) M= (1) ~ L),

dE

S (0) = Bel(t) — TeE (1)

which is exactly of the form (7.3),(7.4) with N = 3 and g»(x) = g3(x) = x and 3 = 13 = 0.

To conclude, the work presented here opens many interesting questions on how the inter-
play between the character of the nonlinearity, state dependent delay and coupling affects the
local and global dynamics of DDEs.

Appendices

A Relation of (1.1)—(1.2) to the model of Gedeon et al. [18]

The Goodwin model [22] for operon dynamics considers a large population of cells, each of
which contains one copy of a particular operon. (M, I, E) respectively denote the mRNA,
intermediate protein, and effector protein concentrations. For a generic operon [21,22,24,25,
46,51] the dynamics are assumed to be given by

d

7124 = Bmf(E) — ymM, (A.D)
% = BIM — 1], (A.2)
% = Bl — ycE. (A3)

The production flux f of mRNA is assumed to be a function of the effector level E. Further-
more, the model assumes that the flux of protein and metabolite production are proportional
(at rates By, Br respectively) to the amount of mRNA and intermediate protein respectively.
All three of the components (M, I, E) are subject to degradation at rates yy;, y1, ve. The pa-
rameters B1, Be, Ym, y1 and v have dimensions [time~!].

In [18] we extended the classic Goodwin model for the regulation of the bacterial operon
to a situation in which the cells are growing exponentially at a rate y and have finite transcrip-
tional and translational velocities that are potentially dependent on the state of the system.
For the full model of [18], retain the notation of the original Goodwin operon model, denote
the transcriptional velocity by vy (E(t)) and the translational velocity by v;(M(t)), and let
Yi = i + p. Then the extension in [18] is

dM Ty om(E) _
—p = Bue ™0 UM(E(tM— ey Bt = (1)) = T, (A4)
dl _ —utr(t % (M) -
@i =P = gy MO ) o
d£ = Bgl — yEE. (A.6)

dt
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These equations are supplemented by the two additional equations which implicitly define
the delays Ty and 1 by threshold conditions, namely

t 0
ow= [ omEEs= [ ou(E(+s)ds (A7)
t 0

ar = o1(M(s))ds = / o1(M(t + 5))ds. (A8)
t=7(t) —T(t)

In our extended model [18], as in the original Goodwin [21] formulation, the function f is
a monotone increasing function for an inducible operon, and for a repressible operon f is a
monotone decreasing function.

To make the transition from the full model (A.4)—(A.6) presented in [18] to the apparently
simpler situation of (1.1)—(1.2) considered here is relatively straightforward. We simply need
two assumptions:

1. We first assume that the translational velocity v; is not regulated but is large with respect
to the other characteristic times in the system so the translational delay 7; ~ 0.

2. Our second assumption involves the existence of fast and slow variables [36, Section 2.3]
so there is a clear separation of time scales.

With these assumptions and the substitutions: E — x, B — ;1 %ﬁ ;gi (or B — b xﬁgi)
f — g, and Tm(t) — 7(t) we immediately obtain the system (1.1)—(1.2) that we study here.
One might think that (1.1) is somewhat novel but in fact similar formulations are available
in different situations. Below, in Appendix B we give several other examples of models in the
spirit of (1.1), but which differ in details that may or may not offer significant differences in

behaviour.

B Other examples

In this appendix, we mention four different examples of previously published studies which
can be thought of as extensions of the considerations in this paper.

A bistable genetic switch

The two types of operon dynamics originally considered were classified as either repressible
(in which the production flux function f in (A.1) is a decreasing function of its argument), or
inducible (in which f is an increasing function of its argument). In the language of dynamical
systems these are negative or positive feedback systems. However, there is a third type of
fundamental dynamical entity found in prokaryotes, namely the so called bistable switch in
which the effector produced by operon X inhibits the transcription of DNA from operon Y
and vice versa (which we might denote as a (—, —) system). The paradigmatic molecular
biology example of a bistable switch due to reciprocal negative feedback is the bacteriophage
(or phage) A, which is a virus capable of infecting E. coli bacteria. Originally described in [32]
and very nicely treated in [48], it is but one of many examples of mutually inhibitory bistable
switches that have been found since. Models of this process are to be found in [26], [50], and
[9] among others.

Consider a simple model for this process in which the dynamics of the intermediate of
both the X and Y operons is fast relative to the dynamics of the corresponding mRNA Mx
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and My, and effectors Ex and Ey. Then we can write down a reduced version of the model
(A.4)—(A.6) in the form

dMyx ity (1) vpmy (Ey) B -

ar Bumye . t UMX(Ey(t — TMX(t)))fX(EY(t TMx(t))) TMxMx, (B.1)
ddEtX = ‘BEXMX - ’7EXEX/ (Bz)
dMy _ g, (1) omy (Ex) B e

ar Bmye : UMY(EX(t — TMY(t)))f(EX(t TMy(t))) Ymy My, (B.3)
ddE;}/ = ﬁEyMY — Ve, Ey. (B.4)

Analysis of the network dynamics of ordinary differential equation systems [23,47] sug-
gests that the system

d%x = Pmxfx(Ey) — TmMx,
dditx = BexMx — YexEx,
% = Bmyf(Ex) — Tmy,
ddg = Be, My — Vi, Ey,

corresponding to (B.1)—(B.4) in both (++) and (——) cases is a positive cyclic feedback sys-
tem [17] and will display bistability [23,47]. The recent preprint [49] carefully analyzes the
boundary of bistability regions in both (4++) and (——) cases.

Based on the results from [18], inclusion of distributed delays could add additional equi-
libria, resulting in multistability. Adding delays also can change the range of bistability in the
parameter space.

System (+—) is a negative feedback system where we expect that the trivial equilibrium
will lose stability through Hopf bifurcation if the slope(s) of nonlinearities are sufficiently
steep at the equilibrium. Adding delays may result in additional stable equilibria and sec-
ondary Hopf bifurcations, as was observed in [18].

A forest growth model

In [39], the authors considered an age structured model for the growth of a single tree species
forest. They showed that the dynamics of the number of adult trees A is governed by

dA(t) ey fIA()
= ()mrb(A(t—r(t))) — YA(t) (B.5)

in conjunction with the condition
t
[ fAae)ds =s. (B.6)
t—1(t)

In (B.5) u is the mortality rate of saplings, f is the velocity of maturation of saplings, r is the
birth rate, b is the reproduction (birth) function and vy is the mortality rate of adults.
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Cell reentry into proliferation = BN

Resting
phase cells

Proliferating phase cells

G1‘ s ‘ G2 ‘M

vP

Cell death (apoptosis) Cell differentiation

Figure B.1: The Burns and Tannock [7] model for the cell cycle consisting of a resting
phase (Gp) and the proliferating phase P with the sub-phases G, S (DNA synthesis), Gy,
and M (mitosis and cytokinesis). It is assumed that cells can die from the proliferating
phase at a rate y and exit into the differentiation pathway from Gy at a rate 4. Redrawn
from [37].

The Gy cell cycle model

The original Gy cell cycle model proposed by Burns and Tannock in [7] is illustrated in Fig-
ure B.1, and captures the essence of what is known of the cellular replication process at a
intermediate (cellular or non-molecular) level of sophistication and knowledge. The prolifer-
ating phase cells are denoted by P while the resting Gy phase cells are denoted by N.

In the elaboration of [37], it is presumed that cells die from the proliferative phase at a rate
v so the flux of cells to death is vP, and differentiate from Gy at a rate ¢ so the differentiation
flux is N. Cells in the Gy phase can, in addition to differentiating, re-enter the proliferative
phase at a rate B so the flux of cells into proliferation is BN. Cells that enter the proliferative
phase are assumed to proceed through the stages Gy, S, Gz, and M in a lock step fashion that
takes a time 7 to complete if death does not intervene. Once mitosis is completed, cytokinesis
produces two daughter cells that then enter Go.

Based on the assumption that the rate B of cell entry from Gy into P, is a function of
the size N of Gy, then it is straightforward to show that the dynamics of the augmented
Burns/Tannock cell cycle model are governed by the differential delay equation

i;j — _[6+ B(N)IN +2¢ T NB(N:), (B.7)

where we have used the notation N = N(t) and Ny = N(t — 7). Equation (B.7) has been the
subject of an extensive bifurcation analysis in the work of [12].

Now we consider a slightly modified cell cycle model identical to the Burns/Tannock
model with the additional wrinkle that the velocity v with which cells move through the
proliferative phase of the cell cycle is under the control of the number N of non-proliferative
cells.

Remark B.1. One would think that the velocity of movement through the proliferative phase P
would be an increasing function of decreased N which would lead to a delay 7 that decreases
as N decreases. This would lead to cell density dependent inter-division times.

If we take the number of proliferative phase cells at time ¢t and age a to be p(t,m), the
maximum age at cytokinesis to be a,,, and the velocity with which they move through the cell
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Figure B.2: A schematic representation of the recurrent inhibition circuit considered in
[15]. This figure is modified from the original publication.

cycle to be v(N(t)), then the evolution equation for p(t, m) is given by

ap(t,m) ap(t,m)
o5t +o(N(t)) .

and we have the initial condition

p(t,m =0) = N(£)B(N(t)). (B.9)

Following the same derivation procedure as in [18], the final equation for the dynamics of the
non-proliferative cellular population N is given by

dN(t) _ ey ©(N(t))
a2 ey

We also have the additional condition that

Ay = t v(N(s))ds. (B.11)
t—1(t)

= —p(t,m) (B.8)

—T(H))B(N(t —(t)) = (6+ B(N(H)))N(t).  (B.10)

Remark B.2. Note that, not unsurprisingly, the augmented cell cycle model is identical in
formulation with the forest growth model of [39].

A model for recurrent inhibition

A model for the dynamics of a recurrent inhibitory neural feedback circuit is considered in
[15], however the model was incomplete omitting the velocity ratio term which appears in all
of the other models here. The term v(x(t))/v(x(t — 7(t))) in (1.1) is essential as shown in
[5,10,18] from conservation and flux arguments. Here, we complete the model of [15].

To capture the spirit of the recurrent inhibitory neural circuitry and offer a complete for-
mulation incorporating the ratio term, we consider the situation with dynamics described
by

PO — -V ) - g

(1))
where V = E — I is the net potential in the neuron, E(I) is the excitatory (inhibitory) potential,
2 is the velocity of propagation of the action potentials around the inhibitory loop back to the
soma, and G is the response of the neuron to the recurrent inhibitory drive. F ~ aV (a« > 0)
is the firing frequency of the cell, an increasing function of the postsynaptic potential V. In
conjunction with (B.12), if the length of the recurrent inhibitory pathway is L we have the
ancillary condition

G(E(V(t—1(t)), (B.12)

t
L= /t o S (B.13)
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In [15] it was argued that X is an increasing function of the postsynaptic potential V so,
as a consequence the delay time 7 is a decreasing function of V. It was further noted that, on
physiological grounds, G is an increasing function of the firing frequency F for small values
of F and decreasing with increasing F past a certain maximum.

This model can be further generalized to a state dependent DDE with distributed state
dependent delays. This generalization relaxes the assumption that the length L is constant.
A more realistic assumption is that the lengths are distributed in population of neurons de-
scribed by a distribution K. Note that this is equivalent to having variable firing threshold at
the soma that receives the inhibitory input. The model takes the form

”ZZE” — (E— V(b)) — /Ooo Z(‘;:(iv_(g()t)))G(F(V(t — ()KL </ti¢Z(V(s))ds> dp, (B.14)

where V' = E — I is the net potential in the neuron, E(I) is the excitatory (inhibitory) potential,
¥ is the velocity of propagation of the action potentials around the inhibitory loop back to the
soma, and G is the response of the neuron to the recurrent inhibitory drive. F =~ aV (x > 0)
is the firing frequency of the cell, an increasing function of the postsynaptic potential V. To
derive this equation we note that the distribution of the recurrent loop lengths L is analogous
to the distributed maturation times in Kendrick-McCormack age structured models analyzed
n [8]. The analog to the Kendrick-McCormack model of the age distributed population is

IE(t,s) +9s(Z(V(£))E(s, 1)) = —h(s)E(s, t),
L(V()E(0) = G(E(V(£))),  E(to,s) = f(s),s € [0,00)

where s is a position along a loop, E(t,s) is the action potential at position s of the loop and
the propagation velocity ¥ depends on the voltage at time ¢. The term h(s) is the discharge
of the action potential in the soma when the circuit has length s. The function h(s) can be
expressed (see [8]) using the distribution K}, of circuit lengths as

Ky d
o) = T i i

Solving the partial differential equation along the characteristics

gives the equation (B.14). For details of the derivation see [8].

C Numerical techniques

Our numerical techniques are documented in detail in [18,63-65], so here we will only briefly
summarise them, and note some extensions of the previous methods.

All of our computations are performed using MATLAB [43]. Mainly we perform nu-
merical continuation and bifurcation analyses using the MATLAB package ddebiftool [54].
Existing versions of ddebiftool are only implemented for discrete delays, and cannot be ap-
plied directly to problems with threshold delay. Since the largest possible delay is a/v, to
implement threshold delay problems in ddebiftool we introduce up to 100 dummy constant
delays to discretize the time interval [t — a/vg, t] on a equally spaced mesh. The threshold
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delay 7(t) that satisfies (1.2) can then be computed be applying numerical quadrature. The
implementation is explained in detail in [64,65], and is a refinement of our earlier methods
[18,63].

One of the features that makes ddebiftool, and numerical continuation in general, so
powerful is its ability to follow stable and unstable branches of solutions equally well. Occa-
sionally we also use numerical simulation of the DDE to find stable solutions. The standard
MATLAB solver for state-dependent DDEs is ddesd [52], but this is also only implemented for
discrete delays. To use it to solve (1.1)=(1.2) as an initial value problem we first differentiate
the threshold condition (1.2) to obtain

dr(t) _ v(x(t)) (C.1)

it~ o(x(t—1(t))
and then solve (1.1), (C.1) using ddesd. See [18,63,65] for implementation details, and also
[64] for an investigation of the differences between (1.1), (1.2) and (1.1), (C.1).

The numerical collocation underpinning the ddebiftool differential equation solver, is
best suited to smooth nonlinearities and solutions. When m or n is large and one of the Hill
functions in (1.3) approaches a step function issues may arise in the computations. Here we
mention some tricks we applied to compute the figures in those cases.

To circumvent underflow, overflow and division by zero errors in MATLAB when evaluat-
ing Be 17(¢) o(&) near f; or 0, (such as in Figure 6.9), we rewrite the Hill function as

g~ +8"(x/8)"
1+ (x/6)r =%
g_(f)g/x)”+g+
(Bg/x)"+1 7

g(x) =

x > b,

and similarly for v(x). It can still be delicate to continue branches of fold bifurcations when
m or n are large. In practice, when needed, we apply two different techniques for extending
branches of fold bifurcations to very large values of m and/or n. Firstly, the MATLAB non-
linear system solver fsolve [57] can be used to solve (6.2) for each fixed value of m or n, to
extend the branch to large values of these nonlinearity parameters. Alternatively, since M(¢)
changes sign at the fold bifurcation, these can be revealed by performing a contour plot of
M(¢) in the (¢, m) or (§,n) plane and displaying only the M(&) = 0 curve. Furthermore, to
perform two-parameter continuation of the fold bifurcations in (7, m) or (v, n), we evaluate
the right hand side of (6.3) to get the corresponding < for the fold bifurcation at . We apply
such tricks extensively in Section 6.2.2.

We were unable to use ddebiftool subroutines for detecting codimension-two bifurcations
along the fold and the Hopf curves. This was likely due to the complexity of the stability
computations with the augmented system ddebiftool uses for two-parameter continuation
combined with the large number of delays in our implementation. To find the codimension-
two bifurcation points we compute the stability of the points on the codimension-one bifur-
cation branches and track the number of characteristic values with positive real part along
the branch. On the fold branch, a fold-Hopf bifurcation occurs when a complex conjugate
pair of characteristic values cross the imaginary axis. Fold-Hopf points are also found on a
branch of Hopf bifurcations at points where a single real characteristic value changes sign.
A Bogdanov-Takens point is characterised by a single real characteristic value changing sign
on a fold branch, at a point in parameter space where a branch of Hopf bifurcations also
terminates. Note that we do not compute the normal form coefficients of these bifurcations.
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