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Abstract. We present a detailed study of a scalar differential equation with threshold
state-dependent delayed feedback. This equation arises as a simplification of a gene
regulatory model. There are two monotone nonlinearities in the model: one describes
the dependence of delay on state, and the other is the feedback nonlinearity. Both in-
creasing and decreasing nonlinearities are considered. Our analysis is exhaustive both
analytically and numerically as we examine the bifurcations of the system for various
combinations of increasing and decreasing nonlinearities. We identify rich bifurcation
patterns including Bautin, Bogdanov–Takens, cusp, fold, homoclinic, and Hopf bifur-
cations whose existence depend on the derivative signs of nonlinearities. Our analysis
confirms many of these patterns in the limit where the nonlinearities are switch-like
and change their value abruptly at a threshold. Perhaps one of the most surprising
findings is the existence of a Hopf bifurcation to a periodic solution when the nonlin-
earity is monotone increasing and the time delay is a decreasing function of the state
variable.
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1 Introduction

In considering mathematical models for the dynamics of biological feedback systems, the

occurrence of delays is almost ubiquitous and this leads to very interesting biological, mathe-

matical, and modeling problems. These delays arise because of the time required to propagate

feedback signals in biological systems. For physiological examples one need only think of the
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conduction time of action potentials in a neural feedback circuit [2, 38], the time required to

complete DNA synthesis, mitosis and cytokinesis in cell replication [12], the significant time

required to produce mature cells in the hematopoietic system [10, 16], as well as a myriad

of others [19]. Examples in engineering and physical settings are rich and abundant rang-

ing from control of ships [44], vibration control [45], and the delays due to the relativistic

propagation of signals at the speed of light [11, 66, 67].

In this paper we study the dynamics of the positive solutions of the scalar state-dependent

delay differential equation (DDE)

x′(t) = ´e−µÄ(t) v(x(t)))

v(x(t − Ä(t)))
g(x(t − Ä(t)))− γx(t) (1.1)

where for t g 0 the delay Ä(t) is defined by the threshold condition

a =
∫ 0

−Ä(t)
v(x(t + s))ds =

∫ t

t−Ä(t)
v(x(s))ds. (1.2)

We assume that the constants ´, µ, γ and a are all positive.

We will consider the system (1.1),(1.2) with both smooth and piecewise constant functions

v(x) and g(x). In the smooth case, we take the functions to be Hill functions

g(x) =
g−θn

g + g+xn

θn
g + xn

, v(x) =
v−θm

v + v+xm

θm
v + xm

, (1.3)

where the exponents m and n are strictly positive real numbers. We also assume that v(x) is

strictly positive and bounded away from zero:

0 < v0 f v(x) f vU , where v0 = min{v−, v+}, vU = max{v−, v+}. (1.4)

This ensures that the delay defined by (1.2) satisfies Ä(t) ∈ [a/vU , a/v0], and is thus both

bounded and bounded away from zero. Moreover, applying Leibnitz’s rule to (1.2) with

v(x) g v0 > 0 shows that d
dt (t − Ä(t)) g v0/vU > 0 so t − Ä(t) is a strictly monotonically

increasing function of t. Consequently to pose (1.1)–(1.2) as an initial value problem (IVP) it

is sufficient to provide an initial function x(t) = ϕ(t) for t ∈ [−Ä(0), 0] where Ä(0) is defined

by (1.2). We will take the function g to be non-negative and bounded with

0 < g0 f g(x) f gU , where g0 = min{g−, g+}, gU = max{g−, g+}. (1.5)

We are interested in the dynamics when the Hill coefficients m, n are small or large, and

also consider the case of piecewise constant functions obtained by taking the limits of v(x)

and g(x) as m and n → ∞. In that case we take the limiting functions to be set-valued at the

threshold points with

g(x) =







g−, x < θg

[g0, gU ], x = θg

g+, x > θg

(1.6)

v(x) =







v−, x < θv

[v0, vU ], x = θv

v+, x > θv

(1.7)
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Equation (1.6) is derived from (1.3) by regarding the curve {x, g(x)} as a subset of R2 and

taking the limit as n → ∞ using the Hausdorff metric, and (1.7) is derived similarly. There

is a long history of incorporating set-valued functions into differential equations, resulting in

differential inclusions for ordinary differential equations [3,4], and in DDEs. Mallet-Paret and

Nussbaum ([40, 41]) consider set-valued limiting solutions in their study of slowly oscillating

periodic solutions.

As shown in Appendix A, the system (1.1)–(1.2) arises as a quasi-steady state reduction of

the state-dependent delayed extension of the Goodwin [21] operon model studied in [18, 63,

65]. Thus the model is taken to describe the regulation of a bacterial operon in which the cells

are growing exponentially at a rate µ and have finite transcriptional and translational velocities

that are potentially dependent on the state of the system. Then the function g denotes the

production flux of messenger RNA (mRNA) while v is the velocity of translation/transcription

of the mRNA strand to produce the end product (protein). x represents the dimensionless

effector concentration.

The function g(x) in (1.3) is monotone increasing when g− < g+, which we refer to as a

positive feedback case. In the operon context ([21]) this corresponds to an inducible operon.

The classical example would be the lac operon regulating bacterial utilization of lactose as an

energy source. Conversely, when g− > g+ the function g(x) is monotone decreasing, which

we refer to as a negative feedback case, and in the operon setting it would correspond to a

repressible operon. The immediate example that comes to mind is the tryp operon regulating

the production of the amino acid tryptophan.

In [18] it is argued that the transcription velocity for an operon should be an increasing

function when g is a decreasing function, and vice versa, while the translation velocity should

always be monotonically decreasing. In the current study, we do not make this assumption

and instead consider the different possible combinations of increasing/decreasing/constant

g and v to explore potential dynamics. To avoid confusion we use g ↑ to indicate that the

function g is monotonically increasing or equivalently that g− < g+. Then g ³ denotes that g

is monotonically decreasing or equivalently that g− > g+, while we use g ´ to denote that

g− = g+ and so g is a constant function. With analogous definitions for the function v we

denote different cases of these pairs of functions by (g ↑, v ↑), (g ↑, v ³), (g ↑, v ´), etc.

Smith [55, 56] showed that a DDE with a threshold delay can be converted through a

time transformation to a distributed delay DDE with a constant delay, so the theory of those

equations is applicable to this model. Some authors have used this transformation to study

threshold models as distributed constant delay DDEs (see for example [33,58]), but other times

the existence of the time transformation to constant delay DDE has been used as an excuse to

just ignore the threshold delay and treat the delay as if constant. We will demonstrate that the

model (1.1) with the threshold delay (1.2) can display very different dynamics than the same

model (1.1) with a constant discrete delay.

In this work we will tackle (1.1) with the threshold delay (1.2) directly without trans-

forming to a constant delay DDE. We do this because we are also interested in problems

with multiple delays. For a problem with multiple threshold delays defined by different in-

tegrands, or even for a problem with a single threshold delay and a single constant delay, it

is not possible to use a time transformation to convert it to a constant delay DDE. We also

point out that when µ ̸= 0, the term e−µÄ in (1.1) would cause the time transformed equation

to be a distributed DDE with constant delay, and not a discrete delay DDE (see [64]). Finally,

we believe it is interesting that the analysis and numerics of these problems can be tackled

directly for the problem as originally formulated.
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The outline of this paper is as follows. Section 2 discusses the semiflow generated by

(1.1)–(1.2). The following Section 3 considers issues related to the positivity of solutions and

the existence of a global attractor, and then Section 4 examines the linearization of the system

at one of the steady states and the stability of the steady state.

Sections 5 and 6 contain a detailed investigation of the rich dynamics generated by the

system (1.1)–(1.2). We combine the verification of essential necessary conditions for local

bifurcations from stationary points with numerical studies of one- and two-parameter bifur-

cations. Our numerical techniques are extensively documented in [18,63,65], and summarised

in Appendix C. Concerning Theorems 5.3, 5.4, 5.6 and 5.9 about fold- and Hopf-bifurcations

the reader should be aware that for most statements we limit ourselves to proving only those

parts which make the result plausible and serve as a basis for numerical investigation. In par-

ticular, we do not verify non-degeneracy conditions for the bifurcations. Theorems on Hopf

bifurcation for differential equations with state-dependent delay can be found in [14, 30, 53].

We begin in Section 5 by examining the simpler situation in which there is only one non-

linearity, with one of g or v being constant. In Sections 5.1 and 5.2 we consider the constant

delay cases (g ³, v ´) and (g ↑, v ´) respectively. Then in Sections 5.3 and 5.4 we consider

(g ´, v ³) and (g ´, v ↑). In these two cases v and thus Ä are varying, resulting in state-

dependent delays. We find that the dynamics are considerably richer and more surprising in

the state-dependent delay cases, with qualitative differences in the dynamics depending on

whether the growth rate, µ, or the decay rate, γ, is larger.

We continue in this vein in Section 6 but considering both nonlinearities, g and v. In

Section 6.1 we begin by considering the case where θg ̸= θv. In principle there should be four

cases to consider: (g ↑, v ↑), (g ↑, v ³),(g ³, v ↑) and (g ³, v ³), but in practice we find that the

dynamics is determined by the cases studied in Section 5. For example with (g ↑, v ↑, θg ̸= θv)

we find that the dynamics and bifurcations from the steady state ξ are given by the previously

studied cases (g ↑, v ´) for ξ ≈ θg and by (g ´, v ↑) for ξ ≈ θv. Consequently, we illustrate

just two of these cases, (g ³, v ↑, θg ̸= θv) and (g ↑, v ↑, θg ̸= θv) to show how the dynamics

relates to the previous examples of Section 5. The case (g ↑, v ↑, θg ̸= θv) is interesting as it

can result in up to five co-existing steady states, three of which are stable.

If |θg − θv| j 1 then both functions g and v influence the dynamics, so in Section 6.2 we

consider the dynamics when θg = θv. In the cases (g ↑, v ↑) and (g ³, v ³) both functions

are increasing or decreasing, and no new dynamics arise, beyond what was already seen in

Section 5. However, the cases (g ↑, v ³, θg = θv) and (g ³, v ↑, θg = θv) reveal surprising

dynamics in limiting cases.

Section 7 contains summary remarks as well as comments on possible extensions of this

work.

Finally, as noted above the appendices contain the reduction of the model of [18] to the

situation we consider here (Appendix A) as well as a brief elaboration in Appendix B of five

previously published models that fall within the context of this paper, along with a summary

and references for our numerical techniques (Appendix C).

2 The semiflow of differentiable solution operators generated by the

system (1.1)–(1.2)

For delay differential equations a familiar state space is given by the space of continuous

functions on a compact interval, see e.g. [13, 28]. In case of variable, state-dependent delays,
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however, there is a specific lack of smoothness which means that in general the initial value

problem is not well-posed for only continuous initial data, not to speak of, say, smoothness of

solutions with respect to initial data and linearization ([29, 59]).

Recall the definition of the segment xt of a map x : I → R for which the domain I contains

the interval [t − r, t] with t ∈ R and r > 0 : xt is the map [−r, 0] → R given by xt(s) = x(t + s)

for −r f s f 0. In other words, the restriction of x to [t − r, t] is shifted to the interval [−r, 0].

In this section we reformulate the system (1.1), (1.2) as a delay differential equation

x′(t) = G(xt) (2.1)

with a functional G : C1 → R on the Banach space C1 = C1([−r, 0], R) of continuously

differentiable maps [−r, 0] → R, for some r > 0 which is to be determined. The norm on C1

is given by

|ϕ|1 = max
−rftf0

|ϕ(t)|+ max
−rftf0

|ϕ′(t)|,

We will also need the Banach space C £ C1 of continuous maps [−r, 0] → R, with the

norm given by

|ϕ| = max
−rftf0

|ϕ(t)|.

We shall verify the hypotheses from [29, 59, 60] which guarantee the existence, uniqueness,

and differentiability, with respect to initial data, of solutions to an initial value problem which

is associated with (2.1) in a submanifold of the space C1.

We make the following assumptions. The function g : R → (0, ∞) is continuously differ-

entiable with

0 < inf g(R) f sup g(R) = gU .

The function v : R → [v0, ∞), with v0 > 0, is continuously differentiable. We fix a number

r > a/v0 and notice that r is an a priori bound for Ä(t) in Eq. (1.2).

Next we rewrite the system Eq. (1.1), (1.2) in a form which is more convenient for our

purpose. Using segment notation, Eq. (1.2) becomes

a =
∫ 0

−Ä(t)
v(xt(s))ds (2.2)

with the segment xt ∈ C. More generally, we consider the equation

a =
∫ 0

−u
v(ϕ(s))ds (2.3)

for u ∈ [0, r] and ϕ ∈ C. Using positivity of the function v and the Intermediate Value Theorem

we infer that for every ϕ ∈ C there is a uniquely determined solution u = δ(ϕ) ∈ (0, r) of

Eq. (2.3). This yields a map δ : C → (0, r).

Proposition 2.1. The map δ : C → (0, r) is continuously differentiable with

Dδ(ϕ)χ = −
∫ 0
−δ(ϕ) v′(ϕ(s))χ(s)ds

v(ϕ(−δ(ϕ)))
.

In case ϕ(s) = ξ for all s ∈ [−r, 0],

δ(ϕ) =
a

v(ξ)

and

Dδ(ϕ)χ = −v′(ξ)
v(ξ)

∫ 0

−a/v(ξ)
χ(s)ds.
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Before giving the proof recall from [59, page 47] or [29, page 466] that the evaluation map

evC : C × [−r, 0] ∋ (χ, u) 7→ χ(u) ∈ R.

is continuous (but not locally Lipschitz continuous, let alone differentiable), and that the

restricted evaluation map

ev : C1 × (−r, 0) ∋ (ϕ, u) 7→ ϕ(u) ∈ R

is continuously differentiable with

D ev(ϕ, u)(ϕ̂, û) = D1ev(ϕ, u)ϕ̂ + D2ev(ϕ, u)û = ϕ̂(u) + ϕ′(u)û, (2.4)

where D1 and D2 denote partial derivatives with respect to the argument in C1 and in (−r, 0),

respectively. The substitution operator

V : C ∋ ϕ 7→ v ◦ ϕ ∈ C

is continuously differentiable with

(DV(ϕ)ϕ̂)(s) = v′(ϕ(s))ϕ̂(s) for all ϕ̂ ∈ C, s ∈ [−r, 0],

see for example [13, Appendix IV, Lemma 1.5].

Proof of Proposition 2.1. For every ϕ ∈ C the value u = δ(ϕ) is the unique solution of the

equation h(u, ϕ) = 0, where h : (0, r)× C → R is given by

h(u, ϕ) = a −
∫ 0

−u
v(ϕ(s))ds = a − ev(I(V(ϕ))),−u)

with the continuous linear integration operator I : C → C1 defined by

(Iψ)(t) =
∫ 0

t
ψ(s)ds.

The map h is continuously differentiable with

D1h(u, ϕ)1 = −v(ϕ(−u)) < 0

and

D2h(u, ϕ)χ = −D1ev(I(V(ϕ)),−u)DI(V(ϕ))DV(ϕ)χ = −(DI(V(ϕ))DV(ϕ)χ)(−u)

= −(I(DV(ϕ)χ))(−u) = −
∫ 0

−u
v′(ϕ(s))χ(s)ds.

The Implicit Function Theorem applies at every (δ(ϕ), ϕ) ∈ (−r, 0)× C and yields that locally,

δ is given by a continuously differentiable map. Differentiation of the equation h(δ(ϕ), ϕ) = 0

gives

Dδ(ϕ)χ = −D2h(δ(ϕ), ϕ)χ

D1h(δ(ϕ), ϕ)1
= −

∫ 0
−δ(ϕ) v′(ϕ(s))χ(s)ds

v(ϕ(−δ(ϕ)))
.

In the case ϕ is constant with value ξ ∈ R, Eq. (2.3) gives a = δ(ϕ)v(ξ), and by the previous

formula,

Dδ(ϕ)χ = −v′(ξ)
v(ξ)

∫ 0

−a/v(ξ)
χ(s)ds.
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Using the delay functional δ : C → (0, r) the system (1.1),(2.2) is reduced to the equation

x′(t) = ´ e−µ δ(xt) v(x(t))

v(x(t − δ(xt)))
g(x(t − δ(xt)))− γ x(t) (2.5)

with segments xt ∈ C. Eq. (2.5) is of the form x′(t) = GC(xt) ∈ R with the map GC : C → R

given by

GC(ϕ) = ´ e−µ δ(ϕ) v(ϕ(0))

v(ϕ(−δ(ϕ)))
g(ϕ(−δ(ϕ)))− γ ϕ(0) (2.6)

We observe that GC is continuous. The restriction G of GC to C1 is continuously differentiable

because, for ϕ ∈ C1 ¢ C, we have evC(ϕ,−δ(ϕ)) = ev(ϕ,−δ(ϕ)). Here ev : C1 × (0, r) → R is

continuously differentiable, the map δ is continuously differentiable, and the evaluation map

ev0 : C ∋ χ 7→ χ(0) ∈ R is linear and continuous.

To simplify the calculations below we now introduce the continuous map

EC : C → R, EC(ϕ) = evC(ϕ,−δ(ϕ)),

and the continuously differentiable map

E : C1 → R, E(ϕ) = ev(ϕ,−δ(ϕ)),

with the derivative at ϕ ∈ C1 given by

DE(ϕ)ϕ̂ = D1ev(ϕ,−δ(ϕ))ϕ̂ + D2ev(ϕ,−δ(ϕ))D(−δ)(ϕ)ϕ̂

= ϕ̂(−δ(ϕ))− ϕ′(−δ(ϕ))Dδ(ϕ)ϕ̂

for all ϕ̂ ∈ C1. Notice that the right hand side of the previous equation makes sense also for

arguments χ ∈ C instead of ϕ̂ ∈ C1. Thus they define linear extensions DeE(ϕ) : C → R

of DE(ϕ) : C1 → R. Using the continuity of the map evC, and the fact that differentiation

C1 ∋ ϕ 7→ ϕ′ ∈ C is linear and continuous we obtain the next result.

Proposition 2.2. The map C1 × C ∋ (ϕ, χ) 7→ DeE(ϕ)χ ∈ R is continuous.

Incidentally, in the case ϕ ∈ C1 is constant with value ξ ∈ R we have

E(ϕ) = ξ, DE(ϕ)ϕ̂ = ϕ̂(−a/v(ξ)).

With the linear continuous evaluation map ev0 : C ∋ ϕ 7→ ϕ(0) ∈ R we obtain for the

restriction G of GC

G(ϕ) = ´ e−µδ(ϕ) v(ev0ϕ)

v(E(ϕ))
g(E(ϕ))− γ ev0ϕ. (2.7)

In the sequel we will show that the initial value problem

x′(t) = G(xt) for t > 0, x0 = ϕ (2.8)

is well-posed on the set

XG = {ϕ ∈ C1 : ϕ′(0) = G(ϕ)},

which is a continuously differentiable submanifold of codimension 1 in the space C1. This

result follows from results in [29,59,60] provided that the following two assertions are verified:
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1. XG ̸= ∅; and

2. G has the property that

each derivative DG(ϕ) : C1 → R, ϕ ∈ C1, has a linear extension DeG(ϕ) : C → R, and the

map

C1 × C ∋ (ϕ, ϕ̂) 7→ DeG(ϕ)ϕ̂ ∈ R

is continuous.

Property (2) is a version of being almost Fréchet differentiable from [42]. In case the delay

functional δ : C → (0, r) is bounded away from zero, which happens to be true for v bounded

also from above as in the subsequent sections, the manifold XG is simply a graph in the space

C1, given by a continuously differentiable map from an open subset of the closed hyperplane

{ϕ ∈ C1 : ϕ′(0) = 0} into a complementary line in C1, see [62, Theorem 2.4].

We now proceed to the proof of properties (1) and (2). We first show that XG ̸= ∅. The

continuous map

[0, ∞) ∋ ξ 7→ ´ e−µ a/v(ξ) − γ ξ ∈ R

is positive at ξ = 0 and tends to −∞ for ξ → ∞. Therefore the Intermediate Value Theorem

yields a zero ζ > 0 of this map. The constant function ϕ ∈ C1 with value ζ satisfies ϕ′(0) =
0 = G(ϕ), so it belongs to the set XG. This finishes the proof of property (1).

To prepare for the proof of the extension property (2) we compute the derivatives DG(ϕ),

ϕ ∈ C1. For δ : C → R we use the fact that restrictions of differentiable maps m : C → R

to C1 remain differentiable, with derivatives D(m|C1)(ϕ) : C1 → R being restrictions of the

derivatives Dm(ϕ) : C → R, ϕ ∈ C1 ¢ C. It follows that

DG(ϕ)ϕ̂ = −γ ϕ̂(0) +

´

{

1

[v(E(ϕ))]2
[

v′(ϕ(0))ϕ̂(0) · v(E(ϕ))− v(ϕ(0))v′(E(ϕ))DE(ϕ)ϕ̂
]

e−µδ(ϕ)g(E(ϕ))

+
v(ϕ(0))

v(E(ϕ))

[

−µ e−µδ(ϕ)Dδ(ϕ)ϕ̂ · g(E(ϕ)) + e−µδ(ϕ)g′(E(ϕ))DE(ϕ)ϕ̂
]

}

. (2.9)

Now we are ready to verify property (2). In the formula for DG(ϕ)ϕ̂, replace the real number

DE(ϕ)ϕ̂ by DeE(ϕ)χ with χ ∈ C, replace the function ϕ̂ by χ, and replace ϕ̂(0) by χ(0). This

defines DeG(ϕ)χ ∈ R for ϕ ∈ C1 and χ ∈ C so that the maps DeG(ϕ) : C → R, ϕ ∈ C1, are

linear. Using the continuous differentiability of δ : C → R and Proposition 2.1 one shows that

the map C1 × C ∋ (ϕ, χ) 7→ DeG(ϕ)χ ∈ R is continuous. This finishes the proof of property

(2).

With (1) and (2) verified, results from [29, 59, 60] apply and yield the following.

The set XG is a continuously differentiable submanifold of the Banach space C1, with

codimension 1. Each ϕ ∈ XG uniquely determines a maximal continuously differentiable

solution x : [−r, tx) → R, 0 < tx f ∞, of the initial value problem (2.8). That is, x is

continuously differentiable and satisfies x0 = ϕ and x′(t) = G(xt) for all t ∈ (0, tx), and any

other continuously differentiable function y : [−r, ty) → R, 0 < ty f ∞, which satisfies y0 = ϕ

and y′(t) = G(yt) for all t ∈ (0, ty) is a restriction of x. All segments xt, 0 f t < ∞, belong to

XG (because of Eq. (2.8)). Write xϕ = x and tϕ = tx. Let

ΩG = {(t, ϕ) ∈ [0, ∞)× XG : 0 f t < tϕ}.
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The equation

SG(t, ϕ) = x
ϕ
t ,

defines a continuous semiflow SG : ΩG → XG. For each t g 0 the set

ΩG,t = {ϕ ∈ XG : t < tϕ}

is an open subset of XG (possibly empty), ΩG,0 = XG, and each map

SG,t : ΩG,t ∋ ϕ 7→ SG(t, ϕ) ∈ XG, t g 0,

on a non-empty domain is continuously differentiable.

Moreover, the restriction of the semiflow SG to the open subset {(t, ϕ) ∈ ΩG : r < t} of the

manifold R × XG is continuously differentiable [60].

3 Positivity, dissipativity, global attractor

In addition to the assumptions made in Section 2, we assume in this section that the function

v is also bounded from above by a real number vU g v0. Using Eq. (2.3) we infer

a

vU
f δ(ϕ) f a

v0

for all ϕ ∈ C.

Proposition 3.1. For every c > 0 there exists c′ > 0 such that for all ϕ ∈ XG with |ϕ(t)| f c on

[−r, 0] and for all t ∈ [−r, tϕ) we have |xϕ(t)| f c′.

Proof. Let ϕ ∈ XG with |ϕ(t)| f c on [−r, 0] be given, and set x = xϕ. The first term on the

right hand side of Eq. (2.5) is positive and bounded by the constant

dU = ´ gU
vU

v0
.

The variation-of-constants formula yields

|x(t)| =
∣

∣

∣

∣

x(0)e−γ t +
∫ t

0
e−γ(t−s)

[

´v(x(s))

v(x(s − δ(xs))
e−µ δ(xs)g(x(s − δ(xs)))

]

ds

∣

∣

∣

∣

f c + e−γ t dU

γ

(

eγ t − 1
)

f c +
dU

γ
for 0 f t < tϕ.

Set c′ = c + dU

γ . With |x(t)| = |ϕ(t)| f c on [−r, 0] we obtain |x(t)| f c′ for all t ∈ [−r, tϕ).

Observe that for any (continuously differentiable) solution x : [−r, tx) → R of Eq. (2.5) and

for any t ∈ [0, tx) the first term on the right hand side of Eq. (2.5) belongs to the interval

[dL, dU ] =

[

´
v0

vU
e−µ a/v0 g0, ´ gU

vU

v0

]

,

and in the case

x(t) >
dU

γ
we have x′(t) f dU − γ x(t) < 0,
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while for

x(t) <
dL

γ
we have x′(t) g dL − γ x(t) > 0.

Set

Q =

[

dL

γ
,

dU

γ

]

¢ R

and

R = {ϕ ∈ C1 : ϕ([−r, 0]) ¢ Q}.

Proposition 3.2 (Global existence, absorption and positive invariance, positivity).

(i) For all ϕ ∈ XG, tϕ = ∞.

(ii) For every neighbourhood N of Q in R and for each ϕ ∈ XG there exists t(ϕ, N) ∈ [0, ∞) with

xϕ(t) ∈ N for all t g t(ϕ, N).

(iii) If ϕ ∈ XG ∩ R then xϕ(t) ∈ Q for all t g 0.

(iv) If ϕ ∈ XG is strictly positive then xϕ(t) > 0 for all t g −r.

Proof. 1. On (i). Let ϕ ∈ XG be given. From Proposition 3.1 the solution x = xϕ is bounded.

Using this and Eq. (2.5) we infer that x′ is bounded. It follows that x is Lipschitz continuous.

Assume now tϕ < ∞. Then Lipschitz continuity yields that x has a limit ξ ∈ R at t = tϕ and

x extends to a continuous map x̂ : [−r, tϕ] → R. From uniform continuity on the compact

interval [−r, tϕ] it follows that the curve [0, tϕ] ∋ t 7→ x̂t ∈ C is continuous. Using this and the

equation

x′(t) = G(xt) = GC(x̂t) for 0 f t < tϕ

with the continuous map GC : C → R, we also conclude that x′ has a limit η ∈ R at t = tϕ. It

follows that x̂ is continuously differentiable (with x̂′(tϕ) = η), and x̂′(tϕ) = GC(x̂tϕ) = G(x̂tϕ).

In particular, ψ = x̂tϕ belongs to XG, and defines a maximal solution xψ : [0, tψ) → R of

Eq. (2.1), with 0 < tψ f ∞. From the semiflow properties, it follows that when tψ = ∞ we

have tϕ = ∞, in contradiction to the assumption above, while in the case tψ < ∞ we get

tϕ g tϕ + tψ, which contradicts tψ > 0.

2. On (ii). Let a neighbourhood N of Q in R and ϕ ∈ XG be given. Set x = xϕ. There exists

ϵ > 0 so that for

d−ϵ =
dL

γ
− ϵ and d+ϵ =

dU

γ
+ ϵ

we have d−ϵ > 0 and N £ [d−ϵ, d+ϵ].

2.1. Proof that when x(t) f d+ϵ for some t g 0 we have

x(s) f d+ϵ for all s g t.

Otherwise x(s) > d+ϵ =
dU

γ + ϵ for some s > t. For the smallest u ∈ [t, s] with x(u) = x(s) we

have 0 f x′(u) and, on the other hand,

x′(u) < dU − γ x(u) = dU − γ x(s) < −ϵ γ < 0.

2.2. Proof that when x(s) > d+ϵ for some s g 0 there exists t > s with

x(t) f d+ϵ.
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Otherwise x(t) > d+ϵ =
dU

γ + ϵ on [s, ∞). Hence

x′(t) < dU − γ x(t) < −ϵ γ < 0 on [s, ∞),

and consequently x(t) → −∞ as t → ∞, in contradiction to the assumption.

2.3. It follows that there exists t∗ g 0 with

x(t) f d+ϵ for all t g t∗.

Similarly one finds t(ϕ, N) g t∗ with

x(t) g d−ϵ for all t g t(ϕ, N).

Hence

x(t) ∈ [d−ϵ, d+ϵ] ¢ N for all t g t(ϕ, N).

3. The proof of assertion (iii) begins with the assumption that for a given ϕ ∈ XG ∩ R there

exists s > 0 with xϕ(s) > dU

γ , and is then accomplished by a simplified version of arguments

as in Part 2.1.

4. On (iv). Let ϕ ∈ XG be given with ϕ(t) > 0 for all t ∈ [−r, 0]. Set x = xϕ. The

assumption x(t) f 0 for some t > 0 leads to a smallest t > 0 with x(t) = 0. Necessarily,

x′(t) f 0 while Eq. (2.5) yields x′(t) > 0. It follows that x(t) > 0 for all t g −r.

The solution manifold XG is a closed subset of the space C1, and thereby a complete metric

space with respect to the metric given by the norm on C1. The next result implies that the

semiflow SG on the complete metric space XG is point dissipative as defined in [27].

Corollary 3.3. There is a bounded open subset BG of the submanifold XG ¢ C1, with

ϕ(t) > 0 for all ϕ ∈ BG, t ∈ [−r, 0],

such that for every ϕ ∈ XG there exists t(ϕ) g 0 with

SG(t, ϕ) ∈ BG for all t g t(ϕ).

Proof. Choose c > 0 so that N = (0, c) is a neighbourhood of Q. Set R̃ = {ϕ ∈ C1 : ϕ([−r, 0]) ¢
N}. Let ϕ ∈ XG be given. Choose t(ϕ, N) according to Proposition 3.2 (ii). From Eq. (2.5)

we see that the map G sends the set R̃ (which is not a bounded subset of C1) into a bounded

subset of R, say, into (−b, b) for some b > 0. It follows that for all t g t(ϕ, N) + r we have

|(xϕ)′(t)| < b. For t g t(ϕ, N) + 2r we obtain x
ϕ
t ∈ {ψ ∈ XG ∩ R̃ : |ψ′| < b} = BG. The

set BG is an open and bounded subset of XG, with 0 < ϕ(t) for all ϕ ∈ BG, t ∈ [−r, 0]. Set

t(ϕ) = t(ϕ, N) + 2r.

Recall from [27] the definition of a global attractor of a semiflow, which in the case of our

semiflow SG is equivalent to saying that a subset AG ¢ XG is a global attractor if it is

• compact,

• invariant in the sense that for every ϕ ∈ AG there exists an entire flowline1 ξ : R → XG

with ξ(0) = ϕ and ξ(R) ¢ AG, and

1 An entire flowline is a curve ξ : R → XG with ξ(t + s) = SG(t, ξ(s)) for all t g 0 and s ∈ R
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• if AG attracts every bounded set B ¢ XG in the sense that given an open neighbourhood

U £ AG of AG in XG there exists tB,U g 0 such that

SG([tB,U , ∞)× B) ¢ U.

Theorem 3.4.8 of [27] guarantees the existence of such a global attractor provided the

semiflow is point-dissipative and there exists t1 g 0 so that the semiflow SG is completely

continuous for t g t1. The property of being completely continuous (for t g t1) is explained

after Lemma 3.2.1 in [27]. It means that for every t g t1 and for every bounded set B with

SG([0, t]× B) bounded the set SG({t} × B) is precompact.

To prove the latter property, it is sufficient to verify the slightly stronger property that for

every bounded set B ¢ XG

(i) there exists t1 g 0 so that for every t g t1 the set SG({t} × B) is precompact.

Theorem 3.4. The semiflow SG has a global attractor AG ¢ XG, with ϕ(t) > 0 for all ϕ ∈ AG, t ∈
[−r, 0].

Proof. 1. We first show that for every bounded subset B ¢ XG there exists cB > 0 with

|xϕ(t)| f cB and |(xϕ)′(t)| f cB for all ϕ ∈ B and t g −r.

Let B ¢ XG be bounded (with respect to the norm of the space C1). Proposition 3.1 guarantees

the existence of a constant cB,0 with |xϕ(t)| f cB,0 for all ϕ ∈ B, t g −r. Then (2.7) shows that

the set {G(x
ϕ
t ) ∈ R : ϕ ∈ B, t g 0} is bounded, and Eq. (2.1) gives that the set {(xϕ)′(t) ∈ R :

ϕ ∈ B, t g 0} is bounded. Also the set {ϕ′(t) ∈ R : ϕ ∈ B,−r f t f 0} is bounded.

2. Claim: For every bounded subset B ¢ XG the set SG({r}× B) ¢ XG has compact closure

in C1.

Proof: (a) Let B ¢ XG be a bounded subset of C1. Due to Part 1 the sets {xϕ(t) ∈ R : ϕ ∈
B,−r f t f r} and {(xϕ)′(t) ∈ R : ϕ ∈ B,−r f t f r} are bounded. Using the Mean Value

Theorem we see that in particular the set SG({r}× B) is equicontinuous. As it also is bounded

in C, the Ascoli–Arzelà Theorem implies that its closure in C is compact.

(b) We turn to the set {SG(r, ϕ)′ ∈ C : ϕ ∈ B} of derivatives, which is bounded in C, and

proceed to show that it is also equicontinuous. As in Part (a) one sees that the closure K of

the set

{SG(t, ϕ) ∈ C : ϕ ∈ B, 0 f t f r}
in the space C is compact. The map G : C1 → R is the restriction of the continuous map

GC : C → R which is uniformly continuous on the compact set K ¢ C. Using the boundedness

of the set {(xϕ)′(t) ∈ R : ϕ ∈ B,−r f t f r} and the Mean Value Theorem one finds that the

curves

[0, r] ∋ t 7→ SG(t, ϕ) ∈ C, ϕ ∈ B,

are uniformly Lipschitz continuous, hence equicontinuous. Now let t0 ∈ [0, r] and ϵ > 0 be

given. There exists δ′ > 0 with

|GC(ϕ)− GC(ψ)| f ϵ for all ϕ, ψ in SG([0, r]× B) with |ϕ − ψ| f δ′,

due to uniform continuity of GC on K. Due to equicontinuity there exists η > 0 with

|SG(t, ϕ)− SG(t0, ϕ)| f δ′ for all ϕ ∈ B and t ∈ [0, r]with |t − t0| < η.
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Hence

|(xϕ)′(t)− (xϕ)′(t0)| = |G(SG(t, ϕ))− G(SG(t0, ϕ))|
= |GC(SG(t, ϕ))− GC(SG(t0, ϕ))| < ϵ

for all ϕ ∈ B and t ∈ [0, r] with |t − t0| < η.

(c) The Ascoli–Arzelà Theorem implies that the closure of {SG(r, ϕ)′ ∈ C : ϕ ∈ B} in C

is compact. For the closure of SG({r} × B) in C1 to be compact it is sufficient to show that

every sequence of points ϕj ∈ SG({r} × B), j ∈ N, has a subsequence which converges in

C1. Let a sequence (ϕj)
∞

1 in SG({r} × B) be given. Part a) implies that there is a subsequence

which converges in C to some ϕ ∈ C. Part b) shows that the subsequence has a secondary

subsequence so that the derivatives of the latter subsequence converge in C to some ψ ∈ C.

It follows that ϕ ∈ C1 with ϕ′ = ψ, which in turn yields convergence of the secondary

subsequence to ϕ ∈ C1 as k → ∞.

3. We now show that for every bounded subset B ¢ XG and for every t g r the set

SG({t}× B) ¢ XG has compact closure in C1. Let B ¢ XG be bounded and let t g r. For every

ϕ ∈ B,

SG(t, ϕ) = SG(t − r, SG(r, ϕ)),

hence

SG({t} × B) = SG(t − r, ·)(SG({r} × B)).

Use that the closure of SG({r} × B) in C1 is compact and belongs to XG (since XG is a closed

subset of C1), and that the map SG(t − r, ·) is continuous, and conclude that the closure of

SG({t} × B) in C1 is contained in a compact subset of XG ¢ C1.

4. Point dissipativity from Corollary 3.3 in combination with condition (i) from the pre-

vious Part 3 of the proof yield existence of a global attractor, see the remarks preceding

Theorem 3.4.

5. Finally we show that for all ϕ ∈ AG and t ∈ [−r, 0] we have ϕ(t) > 0. Let ϕ ∈ AG

be given. There exists a solution x : R → R of Eq. (2.5) with x0 = ϕ and all segments xs,

s ∈ R, in the compact set AG. It suffices to deduce x(t) > 0 for all t ∈ R. Proof of this: First,

observe that x is bounded. Assume x(t) f 0 for some t ∈ R. In case x(t) = 0 Eq. (2.5) yields

x′(t) > 0 − γ x(t) = 0. It follows that x(u) < 0 for some u ∈ (−∞, t). In case x(t) < 0 set

u = t. For every s f u the variation-of-constants formula yields

x(u) g x(s)e−γ(u−s) + 0,

hence

x(s) f x(u)eγ(u−s) (→ −∞ as s → −∞),

and we arrive at a contradiction to the boundedness of x.

4 Linearization

We now turn to linearization. At a point ϕ ∈ XG the tangent space of the manifold XG is given

by

TϕXG = {χ ∈ C1 : χ′(0) = DG(ϕ)χ}.
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For ϕ ∈ ΩG,t the derivative

DSG,t(ϕ) : TϕXG → TSG,t(ϕ)XG

is given by

DSG,t(ϕ)χ = w
ϕ,χ
t

where wϕ,χ = w is the unique continuously differentiable solution [−r, tϕ) → R of the IVP

w′(t) = DG(SG(t, ϕ))wt for t > 0, (4.1)

w0 = χ ∈ TϕXG. (4.2)

Equation (4.1) is called the linear variational equation along the solution xϕ or along the

flowline

SG(·, ϕ) : [0, tϕ) ∋ t 7→ SG(t, ϕ) ∈ XG.

Suppose that ϕ ∈ XG is a stationary point of the semiflow SG, that is, tϕ = ∞ and SG(t, ϕ) =

ϕ for all t g 0. Then ϕ is constant since for every t g 0, xϕ(t) = x
ϕ
t (0) = SG(t, ϕ)(0) = ϕ(0),

hence

ϕ(s) = SG(r, ϕ)(s) = x
ϕ
r (s) = xϕ(r + s) = ϕ(0) for each s ∈ [−r, 0].

Let ξ ∈ R denote the value of ϕ. Then xϕ(t) = ξ for all t g −r. To obtain the linear

variational equation along this constant solution in terms of g, v, a, ´, µ, γ we compute the

values DG(ϕ)ϕ̂, ϕ̂ ∈ C1 from the formula (2.9). Using Proposition 2.1 (for the values and for

the derivatives of the map δ in case of constant arguments) and the calculation of DE(ϕ)ϕ̂

right after Proposition 2.1 (in case of constant arguments), we find

DG(ϕ)ϕ̂ = −γϕ̂(0) + ´

{

1

[v(ξ)]2
[

v′(ξ)ϕ̂(0)v(ξ)− v(ξ)v′(ξ)ϕ̂(−a/v(ξ))
]

e−µa/v(ξ)g(ξ)

+

[

−µe−µa/v(ξ)

(

−v′(ξ)
v(ξ)

∫ 0

−a/v(ξ)
ϕ̂(s)ds

)

g(ξ) + e−µa/v(ξ)g′(ξ)ϕ̂(−a/v(ξ))

]

}

= −γϕ̂(0) + Aϕ̂(0) + µA
∫ 0

−a/v(ξ)
ϕ̂(s)ds +

(

´e−µa/v(ξ)g′(ξ)− A
)

ϕ̂(−a/v(ξ)) (4.3)

with

A = ´
v′(ξ)
v(ξ)

e−µa/v(ξ)g(ξ). (4.4)

The variational equation (4.1) along the constant solution xϕ : [−r, ∞) ∋ t 7→ ξ ∈ R becomes

w′(t) =− γw(t) + Aw(t) +
(

´e−µa/v(ξ)g′(ξ)− A
)

w(t − a/v(ξ))

+ µA
∫ 0

−a/v(ξ)
w(t + s)ds

(4.5)

The derivatives TG,t = DSG,t(ϕ), t g 0, form a strongly continuous semigroup on the

closed hyperplane TϕXG of the space C1. This semigroup is given by TG,tχ = TG,e,tχ, where

TG,e,t : C → C is the solution operator associated with the classical initial value problem

w′(t) = DeG(ϕ)wt for t > 0, (4.6)

w0 = χ ∈ C, (4.7)
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with the continuous linear functional L : C → R, L = DeG(ϕ), as in the monographs, e.g.,

[13,28]. Recall that by definition the solution w : [−r, ∞) → R of the initial value problem (4.6),

(4.7) is only continuous, with the restriction w|[0,∞) continuously differentiable and satisfying

Eq. (4.6).

The extended derivative DeG(ϕ) : C → R in the case just considered (where ϕ ∈ XG is a

stationary point with value ξ) is given by (4.3), now for ϕ̂ ∈ C. Therefore the equation (4.6)

coincides with Eq. (4.5), considered for continuous maps [−r, ∞) → R whose restrictions to

[0, ∞) are differentiable and satisfy Eq. (4.5) for all t g 0.

The stability of the zero solution of the linear variational equation (4.5) is determined

by the spectrum Ã ¢ C of the generator of the semigroup (TG,t)tg0 on TϕXG ¢ C1, which

coincides with the spectrum Ãe ¢ C of the generator of the semigroup on C.

The spectrum Ãe consists of the solutions ¼ ∈ C of the characteristic equation, which is

obtained from the ansatz R ∋ t 7→ e¼ t ∈ C for a complex-valued solution of Eq. (4.5) as

follows. We write down Eq. (4.5) for w : t 7→ e¼t, multiply by e−¼t, and obtain the equation

¼ = −γ + A +
(

´ e−µ a/v(ξ)g′(ξ)− A
)

e−¼ a/v(ξ) + µ A
∫ 0

−a/v(ξ)
e¼ sds,

or equivalently,

0 = ¼ + γ − A −
(

´ e−µ a/v(ξ)g′(ξ)− A
)

e−¼ a/v(ξ) − µ A
∫ 0

−a/v(ξ)
e¼ sds. (4.8)

To investigate the stability of steady states in different special cases, we make explicit

various forms of (4.8).

If we study the case with a constant delay, i.e. v is a constant function with v(ξ) = v− = v+

in (1.3) and (1.7), then v′ = 0 and hence A = 0. The characteristic equation reduces to

¼ = −γ + ´ e−µ a/vg′(ξ)e−¼ a/v. (4.9)

Similarly, if we study the case with g constant by setting g− = g+ in (1.3) and (1.6), then

g′(ξ) = 0 and the characteristic equation is of the form

¼ = −γ + A − Ae−¼a/v(ξ) + µA
∫ 0

−a/v(ξ)
e¼sds = −γ + A(1 − e−¼a/v(ξ))

(

1 +
µ

¼

)

. (4.10)

We remark that when µA ̸= 0 in (4.8), the integration of the solution e¼t over the delay

interval results in a term µ/¼ term as appears in (4.10). Division by ¼ does not arise in

the characteristic functions of discrete delay DDEs, and so even if (1.1) looks at first glance

like a discrete delay DDE, when combined with the threshold delay condition (1.2) it is a

distributed delay DDE. This accords with the results of Smith [55,56] who showed that a DDE

with a single threshold delay can be converted through a time transformation to a distributed

delay DDE with a constant delay.

When we study the limiting case where both g and v are piecewise constant as defined in

(1.6) and (1.7), then there are intervals where A = v′(ξ) = 0. For a steady state ξ in such an

interval, the characteristic equation simplifies to

¼ = −γ, (4.11)

where there is a unique negative real characteristic root and the steady state is stable.
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5 Dynamics with one Hill function

At a steady state x(t) ≡ ξ ∈ R, equation (1.2) reduces to

Ä(ξ) =
a

v(ξ)
, (5.1)

so the delay is still state-dependent. Equation (1.1) becomes

0 = h(ξ) := ´e−µÄ(ξ)g(ξ)− γξ (5.2)

at a steady state. With g(x) and v(x) defined by (1.3) we have that

´g− g h(0) = ´e−µa/v−g− g 0, h(x) f ´e−µa/vU gU − γx f ´gU − γx.

Consequently any steady state satisfies ξ ∈ [0, ´gU/γ], and there is always at least one such

steady state.

The steady states occur at the zeros of h(ξ), which from (5.2) occur at the intersections of

´e−µÄ(ξ)g(ξ) and γξ. Thus the number of steady states depends on the behavior of the term

e−µÄ(ξ)g(ξ) in (5.2).

We begin by considering the simplified setting where either g or v is a constant function,

while the other one is either a Hill function defined in (1.3), or a piecewise constant function

(1.6) or (1.7). This leads to the four cases discussed below.

With v± := v− = v+ in (1.3) and (1.7) we obtain v(ξ) = v± independent of the value of ξ

and consequently a constant delay Ä = a/v±, and equation (1.1) reduces to

x′(t) = ´e−µÄg(x(t − Ä))− γx(t), (5.3)

which is a constant delay DDE with a monotone feedback nonlinearity. We consider this case

first for decreasing and increasing g in Sections 5.1 and 5.2, respectively. The results which

we obtain correspond to semi-local properties of equilibria which are familiar for the constant

delay equation (5.3) with a sufficiently smooth nonlinearity g. If g is strictly decreasing then

there is a single equilibrium solution, from which periodic solutions bifurcate off in a sequence

of Hopf bifurcations when a parameter multiplying g grows to infinity. These periodic solu-

tions can be distinguished by their oscillation frequencies. Stable periodic orbits occur only

at the lowest possible frequency, for so-called slowly oscillating periodic solutions [31]. If g is

increasing then multiple equilibria are possible. Hopf bifurcations from these equilibria yield

periodic orbits which are all unstable. For more detailed information about the numerous

local and global results on solutions of autonomous delay differential equations which were

achieved during the past decades see, for example, the survey [61].

Sections 5.1 and 5.2 contain results which are not covered by the existing theory. We

consider the limiting cases as the smooth function g approaches a piecewise constant function,

as these help to understand better the changes which occur in the dynamics when certain

parameters grow to infinity. This also affords us the opportunity to present, in the simpler

setting of constant delays, the methods we will subsequently use when the delays are state-

dependent in Sections 5.3 and 5.4.

With g− = g+ in (1.3) and (1.6), g is a constant function, while v− ̸= v+ results in a

state-dependent delay. We consider the two cases of v decreasing or increasing in Sections 5.3

and 5.4, respectively. The general case where g and v are both non-constant is studied in

Section 6.
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5.1 Constant delay with decreasing g (g ↓, v ↔)

In this section we study (1.1)–(1.2) with a constant delay Ä and decreasing g. The DDE reduces

to (5.3) with Ä = a/v± on setting v± = v− = v+ in (1.3) or (1.7). We require g− > g+ in (1.3)

or (1.6) to ensure that g is decreasing.

θg

´e−µÄg−

´e−µÄg+

Figure 5.1: Steady states of (1.1), given by (5.2), occur at the intersections of ξ 7→
´e−µÄ g(ξ) and ξ 7→ γξ. These are illustrated for various γ in the limiting case of (1.6)
and (1.7) with v± = v− = v+, so the delay Ä = a/v± is constant, and g− > g+, so g is
monotonically decreasing: (g ³, v ´).

As noted above, if h(0) g 0 with g decreasing we have h′(ξ) = ´e−µÄg′(ξ) − γ < 0.

Therefore, with smooth g defined in (1.3), for any fixed values of the parameters there is

always exactly one steady state ξ. We note for later use that rearranging (5.2), for any fixed

value of ξ > 0, there is also a unique value of γ for which ξ is a steady state.

Figure 5.1 illustrates the uniqueness of the steady state with a piecewise constant g defined

by (1.6) as γ varies. At the ‘corners’, the steady state ξ = θg satisfies (5.2) with g = g+ and

g = g− respectively, which gives rise to

γ1 =
´e−µÄg+

θg
and γ2 =

´e−µÄg−

θg
. (5.4)

We refer to the steady state where e−µÄg(ξ) and γξ intersect on the vertical line segment of

the curve as a singular steady state. The singular steady state exists for γ ∈ (γ1, γ2), where the

bounds on γ are given by (5.4).

Next, we consider the stability of the steady state for the piecewise constant function

g defined in (1.6). If γ ∈ (0, γ1) ∪ (γ2,+∞), the intersection occurs on the horizontal line

segments. Then A = g′(ξ) = 0 and the characteristic equation (4.8) reduces to (4.11), and

hence the steady state must be stable. This implies that in the limiting case only a singular

steady state may be unstable. However, the characteristic equation is not defined in this

situation and we therefore consider the smooth nonlinearity g defined in (1.3) for large n. As

a consequence of the choices made in this section, A = 0 and g′(ξ) < 0 with n > 0.

It follows immediately from (4.9) that there are no real non-negative characteristic values

when g′(ξ) < 0. So, suppose ¼ = ³ ± iω, ω > 0 is a solution of the characteristic equation

(4.9). Then for ¼ = ³ + iω we have

³ + iω = −γ + ´e−µÄg′(ξ)e−(³+iω)Ä = −γ + ´e−µÄg′(ξ)e−³Ä [cos(ωÄ)− i sin(ωÄ)] .
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Equating real and imaginary parts respectively, we obtain

³ + γ = ´e−µÄg′(ξ)e−³Ä cos(ωÄ), (5.5)

ω = −´e−µÄg′(ξ)e−³Ä sin(ωÄ). (5.6)

Now suppose that ¼ = ³ + iω is a root of the characteristic equation with ³ g 0. Then

γ f ³ + γ f ´e−µÄe−³Ä|g′(ξ) cos(ωÄ)| f ´e−µÄ|g′(ξ)|.

Consequently, if

γ > ´e−µÄ|g′(ξ)| (5.7)

then ³ < 0 for all the characteristic values and the steady state is asymptotically stable. Notice,

that since (5.2) is also satisfied at a steady state, equation (5.7) is equivalent to
∣

∣

∣

∣

ξg′(ξ)
g(ξ)

∣

∣

∣

∣

< 1. (5.8)

We arrive at a sufficient condition for stability of the unique steady state: when (5.8) is satisfied

at a steady state, the steady state is asymptotically stable.

The function ξ 7→ ξg′(ξ)/g(ξ) plays a central role in the analysis, so we study its properties

here. Differentiating g in (1.3) gives

g′(ξ) =
nθn

g (g+ − g−)ξn−1

(θn
g + ξn)2

(5.9)

and hence
ξg′(ξ)
g(ξ)

=
n(g+ − g−)(ξ/θg)n

(1 + (ξ/θg)n)(g− + g+(ξ/θg)n)
. (5.10)

Now, let

f (x, p, r) =
p(1 − r)xp

(1 + xp)(r + xp)
(5.11)

and note from (5.10) that f (ξ/θg, n, g−/g+) = ξg′(ξ)/g(ξ). The following proposition will be

essential in this and following sections.

Proposition 5.1. Let f (x, p, r) : R3
>0 → R be defined by (5.11) then

1. For fixed p > 0, r > 0,

lim
x→0

f (x, p, r) = lim
x→∞

f (x, p, r) = 0.

2. For fixed r > 0 with r ̸= 1 we have limp→∞ | f (1, p, r)| = ∞, with

f (1, p, r) =
p(1 − r)

2(1 + r)
,

and | f (1, p, r)| f p/2.

3. For fixed r > 0 and fixed x > 0 with x ̸= 1,

lim
p→∞

f (x, p, r) = 0.

Moreover, for fixed r > 0 and any fixed x− ∈ (0, 1) and x+ > 1

lim
p→∞

(

max
x∈[0,x−]

| f (x, p, r)|
)

= lim
p→∞

(

max
x∈[x+,∞)

| f (x, p, r)|
)

= 0.
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4. For fixed r > 0 with r ̸= 1 and fixed p > 0, regarding | f (x, p, r)| as a function of x only,

| f (x, p, r)| has a unique global maximum at x = r1/2p with

f (r1/2p, p, r) =
p(1 − r1/2)

1 + r1/2
,

and | f (r1/2p, p, r)| f p.

Proof. Follows using elementary differentiation and algebra.

Proposition 5.1 shows that ξ 7→ ξg′(ξ)/g(ξ) is a unimodal function which approaches

zero uniformly as n → 0, but which resembles a delta-function with its peak at ξ =

θg(g−/g+)1/2n → θg as n → ∞.

Now (5.8) and Proposition 5.1(1) show that if ξ j θg or for ξ k θg the steady state must

be asymptotically stable. From (5.8), a necessary condition for the steady state to be unstable

is that |ξg′(ξ)/g(ξ)| g 1, but from Proposition 5.1(4) we have

∣

∣

∣

∣

ξg′(ξ)
g(ξ)

∣

∣

∣

∣

f | f (r1/2n, n, r)| = n|1 − r1/2|
1 + r1/2

where r = rg = g−/g+. Thus a necessary condition for the steady state to be unstable is that

| f (r1/2n, n, r)| g 1. For g decreasing, the value rg = g−/g+ > 1, and this necessary condition

for instability becomes n > 1 and

rg =
g−

g+
g
(

1 +
2

n − 1

)2

. (5.12)

Since the steady state is unique, a steady state bifurcation cannot occur, and we therefore

investigate the existence of Hopf bifurcations. At a Hopf bifurcation, ¼ = ±iω, and (5.5) and

(5.6) reduce to

γ = ´e−µÄg′(ξ) cos(ωÄ), (5.13)

ω = −´e−µÄg′(ξ) sin(ωÄ). (5.14)

As ´, γ, ω, e−µÄ
> 0 and g′(ξ) < 0, we must have cos(ωÄ) < 0 < sin(ωÄ), and hence ωÄ ∈

(π/2 + 2kπ, π + 2kπ) for k ∈ N. We denote by ωk any solution of (5.13) and (5.14) with the

property that ωkÄ ∈ (π/2 + 2kπ, π + 2kπ) for k ∈ N.

Note that at a Hopf bifurcation, in addition to (5.13) and (5.14), equation (5.2) must also

be satisfied. These three equations can be rearranged as

γ =
´

ξ
e−µÄg(ξ), (5.15)

ω cot(ωÄ) = −γ, (5.16)

|g′(ξ)| =
√

γ2 + ω2

´e−µÄ
. (5.17)

We will consider these equations sequentially to show that γ and ω can be regarded as

functions of ξ, resulting in a single equation to solve for ξ. First note that for a smooth non-

linearity g(ξ), and for arbitrary ξ > 0, equation (5.15) gives a unique value of γ = γ(ξ) > 0.

Moreover, since g is monotonically decreasing, we also obtain that ξ 7→ γ(ξ) is monotonically

decreasing. Because of the remarks following Proposition 5.1 we will be particularly interested
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in the cases where ξ = θg and ξ = θg(g−/g+)1/2n. Using (5.15), (5.4) and (1.3) it is easy to see

that γ(θg) = (γ1 + γ2)/2 and γ(θg(g−/g+)1/2n) =
√

γ1γ2/(g−/g+)1/2n. This shows that the

γ value corresponding to the extremum of ξg′(ξ)/g(ξ) converges to the geometric mean of γ1

and γ2 as n → ∞, while the γ value corresponding to ξ = θg is equal to the arithmetic mean

of γ1 and γ2 independent of the value of n.

Next, for a given γ > 0, it follows from the properties of the cotangent function that the

equation (5.16) gives a sequence of solutions {ωk}kg0 with ωkÄ ∈ (π/2 + 2kπ, π + 2kπ) for

k = 0, 1, 2, . . ., with each ωk uniquely defined as a function of γ. Recall that Ä is constant

because we are considering v− = v+ = v. Thus the values ωk → ∞ as k → ∞. It follows

that solutions ωk of the equation (5.16) for fixed γ must satisfy cot(ωkÄ) → 0 and hence

ωkÄ → π/2 + 2kπ as k → ∞.

Since g is decreasing, the last equation (5.17) then becomes

g′(ξ) = −

√

γ2 + ω2
k

´e−µÄ
. (5.18)

Notice here that through (5.15) we have γ as a function of ξ, while from (5.16) we can regard

each ωk as an implicitly defined function of γ and hence of ξ. Thus it remains only to solve

(5.18) for ξ, or more precisely, we need to solve for a ξk for every ωk.

Combining (5.13) and (5.15) we see that at a Hopf bifurcation

ξg′(ξ)
g(ξ)

cos(ωÄ) = 1. (5.19)

Thus, the function ξ 7→ ξg′(ξ)/g(ξ) also plays a role for Hopf bifurcations. Consequently,

instead of solving (5.18) directly for ξ, we proceed by combining (5.15) and (5.18) which leads

to

´e−µÄ =
γξ

g(ξ)
= −

√

γ2 + ω2
k

g′(ξ)
,

and hence
ξg′(ξ)
g(ξ)

= −
√

1 + (ωk/γ)2. (5.20)

Combining (5.20) and (5.10), it remains to find ξ that solves

n(g+ − g−)(ξ/θg)n

(1 + (ξ/θg)n)(g− + g+(ξ/θg)n)
= −

√

1 + (ωk/γ)2. (5.21)

We already considered the behaviour of the left-hand side of (5.21) in Proposition 5.1. The

behaviour of the right-hand side is considered in the following proposition.

Proposition 5.2. Let sk(ξ) =
√

1 + (ωk/γ)2 where γ = γ(ξ) is defined by (5.15) and ωk satisfies

ωkÄ ∈ (π/2 + 2kπ, π + 2kπ) and is a function of γ and hence of ξ through (5.16). Then

1.

(

1 +
(

π(2k+1/2)
´Äe−µÄ gU

)2
ξ2

)
1
2

= mk(ξ) f sk(ξ) f Mk(ξ) =

(

1 +
(

π(2k+1)
´Äe−µÄ g0

)2
ξ2

)
1
2

.

2. 1 < sk(ξ) < 1 + π(2k+1)
´Äe−µÄ g0

ξ for all ξ > 0.
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Proof. Using (5.15)

sk(ξ) =

(

1 +

(

ωk

´e−µÄg(ξ)

)2

ξ2

)
1
2

.

Recalling (1.5) and also using the bounds on ωkÄ, the inequalities in Proposition 5.2(1), and the

expressions for the bounds mk(ξ) and Mk(ξ) follow easily, while Proposition 5.2(2) is weaker

than Proposition 5.2(1).

Recall that for a Hopf bifurcation, we need to solve (5.20) for ξ, but this is the same as

solving f (ξ/θg, n, g−/g+) = −sk(ξ), where the relevant properties of f and sk are stated in

Propositions 5.1 and 5.2. Propositions 5.2(1) defines bands [mk(ξ), Mk(ξ)] within which each

sk(ξ) lies. Since |sk(ξ)| > 1 and limξ→0 f (ξ/θg, n, g−/g+) = limξ→∞ f (ξ/θg, n, g−/g+) = 0,

for all ξ sufficiently large or small we have f (ξ/θg, n, g−/g+) > −sk(ξ). On the other hand,

considering ξ = θg, by Proposition 5.1(2), f (1, n, g−/g+) → −∞ as n → ∞ while sk(θg) f
Mk(θg) is bounded. Consequently, for n sufficiently large f (1, n, g−/g+) < −sk(ξ). It follows

that there are at least two points ξ−k < θg < ξ+k for which f (ξ±k /θg, n, g−/g+) = −sk(ξ
±
k ), and

hence which solve (5.21). With the corresponding values of γ and ωk defined by (5.15) and

(5.16) this defines two solutions of (5.15)–(5.17).

We already noted that the steady state must be stable, and hence cannot undergo a Hopf

bifurcation for ξ sufficiently small or large. On the other hand, Hopf bifurcations must occur

for n sufficiently large, as for large enough n the function f will pierce through the band

sk(ξ) ∈ [mk(ξ), Mk(ξ)] for ξ ≈ 1. In particular, a sufficient (but not necessary) condition for

this to occur is that Mk(θg) < − f (1, n, g−/g+), or equivalently that

n > 2
(g−/g+) + 1

(g−/g+)− 1

(

1 +

(

πθg(2k + 1)

´Äe−µÄg0

)2
)

1
2

. (5.22)

This condition follows from evaluation of the function f at x = 1. A more complicated but

tighter bound can be derived using the maximum of f . Therefore another sufficient condition

to ensure that the k-th Hopf bifurcation occurs is that

Mk(θg(g−/g+)1/(2n)) < − f ((g−/g+)1/(2n), n, g−/g+).

While there is a unique steady state ξ for the case of decreasing g with constant Ä, the

location and properties of this steady state will depend on the values of the other parameters.

The following theorem collects together our results for this case.

Theorem 5.3. Let ξ be the steady state of the DDE (1.1), (1.2) with constant delay Ä and nonlinearity

g defined by (1.3) with g monotonically decreasing (so g− > g+). Then:

1. If | ξg′(ξ)
g(ξ)

| < 1, then the steady state ξ is asymptotically stable.

2. If n f 1, or n > 1 and rg = g−

g+ <

(

1 + 2
n−1

)2
, then the steady state ξ is asymptotically stable.

3. For any fixed n > 1, and for 0 < ξ j θg or ξ k θg, or equivalently for γ k γ2 or 0 < γ j γ1,

the steady state is asymptotically stable.

4. For any fixed ξ ̸= θg, let γ = γ(n, ξ) be the value of γ such that (5.2) is satisfied and hence ξ is

a steady state. Or, for any fixed γ with 0 < γ < γ1 or γ > γ2 let ξ = ξ(n, γ) satisfy (5.2) and

hence be a steady state. Then ξ is asymptotically stable for all n sufficiently large.
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5. Let (5.22) be satisfied for fixed n g 2 and fixed k g 0. Then as γ is varied

(a) There are two families of (at least) k + 1 Hopf bifurcations. One exists for γ <√
γ1γ2/(g−/g+)1/2n and the other for γ > (γ1 + γ2)/2. In the first family, the charac-

teristic values ¼j = iωj satisfy ωjÄ ∈ (π/2 + 2jπ, π + 2jπ) for j = 0, 1, . . . , k and cross

the imaginary axis from left to right as γ is increased, while in the second family they cross

the imaginary axis from right to left.

(b) For ξ ∈ [θg, θg(g−/g+)1/(2n)] or equivalently for γ ∈ [
√

γ1γ2/(g−/g+)1/2n, (γ1 +

γ2)/2] the steady state is unstable with at least k+ 1 pairs of complex conjugate characteris-

tic values ¼j = ³j ± iωj with ³j > 0 and ωjÄ ∈ (π/2 + 2jπ, π + 2jπ) for j = 0, 1, . . . , k.

6. Let γ ∈ (γ1, γ2) be fixed. Then as n is increased there is an infinite sequence of Hopf bifurcations

where the real part of ¼k = ³k ± iωk becomes positive with ωkÄ ∈ (π/2 + 2kπ, π + 2kπ) for

k = 0, 1, 2, . . .

Proof. (1) and (2) were already shown immediately after the proof of Proposition 5.1.

The first part of (3) then follows from Proposition 5.1(1), since limξ→0 f (ξ/θg, n, g−/g+) =

limξ→∞ f (ξ/θg, n, g−/g+) = 0 implies |ξg′(ξ)/g(ξ)| < 1 < sk(ξ) and ξg′(ξ)/g(ξ) = −sk(ξ)

cannot hold for ξ sufficiently small (0 < ξ j θg) or large (ξ k θg). The second part follows

from (5.15) on noting that g monotonically decreasing implies that γ(ξ) is monotonically

decreasing with limξ→0 γ(ξ) = +∞ and limξ→∞ γ(ξ) = 0.

For the first part of (4), consider a steady state at a fixed value of ξ as n is varied, with the

other parameters fixed except for γ = γ(n, ξ) which is determined by (5.2). The result then

follows directly from the first part of Proposition 5.1(3). To prove the second part of (4) note

that when g− > g+ from (1.3) we have g− > g(ξ) > g+ which using (5.4) is equivalent to

γ2 >
´e−µÄg(ξ)

θg
> γ1.

Fix γ > 0 and using (5.15), we further rewrite this as

γ2

γ
>

ξ

θg
>

γ1

γ
. (5.23)

Consequently, for ξ = ξ(n, γ) satisfying (5.2), if γ < γ1 then we have ξ > θgγ1/γ > θg

while γ > γ2 implies ξ < θgγ2/γ < θg. The result then follows from the second part of

Proposition 5.1(3).

For (5), equation (5.22) implies that

− f (1, n, g−/g+) > Mk(θg) > Mk−1(θg) > . . . > M0(θg).

However, sj(ξ) g 1 for all ξ ∈ R and limx→0 f (x, n, g−/g+) = limx→∞ f (x, n, g−/g+) = 0.

Consequently for each j ∈ {0, 1, . . . , k} there are at least two values of ξ which solve

− f (ξ/θg, n, g−/g+) = sj(ξ). The largest such ξ with ξ > θg(g−/g+)1/(2n) and the small-

est with ξ < θg define the required Hopf bifurcations. Since, as already noted, γ(ξ) de-

fined by (5.15) is a monotonically decreasing function of ξ with γ(θg) = (γ1 + γ2)/2 and

γ(θg(g−/g+)1/(2n)) =
√

γ1γ2/(g−/g+)1/2n, the result follows.

For (6) we consider the behaviour of the Hopf bifurcation points as n → ∞. Apply-

ing Proposition 5.1 (and recalling that g− > g+ because g is decreasing), the function

|ξg′(ξ)/g(ξ)| takes its maximum at ξ = θg(g−/g+)1/2n
> θg, while also |θgg′(θg)/g(θg)| =
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Figure 5.2: Bifurcations of (1.1)–(1.2) for (g ³, v ´) with parameters ´ = 1.4, µ = 0.2,
g− = 1, g+ = 1/2, θg = 1, γ = a = 1, and v = v− = v+ = 2. (a) The limiting case with
g defined by (1.6) showing the stable (green solid line) and singular (black dashed line)
steady states. (b) With smooth nonlinearity g defined by (1.3) and n = 50. Solid lines
denote stable objects including the stable steady state (green) and a stable limit cycle
(represented by maximum and minimum of x(t) on the periodic solution). Dashed lines
represent unstable steady states which have two eigenvalues with positive real part (in
black). (c) As in (b) but with n = 23. (d) Two-parameter continuations in n and γ of
the Hopf bifurcations defined by (5.15)–(5.17) with the other parameters as above. Solid
curves indicate the parts of the branch where there are no characteristic values with
positive real part (and hence a stability change at the bifurcation), and dashed lines
indicate the parts of the branch where there are already unstable characteristic values.
The outermost curve of Hopf bifurcations is associated with the stability change seen
in (b). The dash-dotted vertical black lines denote γ = γ1 and γ = γ2, the locations of
the Hopf bifurcations in the limiting case as n → ∞. (e) Profiles of the stable periodic
orbits from the outermost curve of Hopf bifurcations in (d) at γ = 1 for different values
of the continuation parameter n. (f) The same periodic orbits as in (e), but now shown
as a projection onto the plane (x(t), x(t − Ä)) where Ä = 0.5. The arrow indicates the
direction of the flow. The square denotes the singular steady state in the limiting case.
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| f (1, n, g−/g+)| k 1. Consequently for fixed k the two Hopf bifurcation points, ξ−k and ξ+k
satisfy ξ−k < θg < θg(g−/g+)1/2n

< ξ+k . Using Proposition 5.1(3) we conclude that ξ±k → θg as

n → ∞.

Also for fixed k, as n → ∞, the value of ωk f (2k + 1)π/Ä remains bounded, as does γ by

(4). Consequently for (5.18) to be satisfied it follows that g′(ξk) must also remain bounded as

n → ∞. Then in the limit as n → ∞ the Hopf bifurcations must converge to the “corners” of

g(ξ) where ξ = θg and γ = γ1 or γ = γ2. Consequently for any fixed γ ∈ (γ1, γ2) as n → ∞

there is an infinite sequence of Hopf bifurcations.

Figure 5.2 illustrates the behaviour of (1.1)–(1.2) for (g ³, v ´). Panels (b)–(f) were com-

puted numerically using ddebiftool as described in Appendix C.

Figure 5.2(a) and (b) show the similarities between the dynamics with the piecewise con-

tinuous nonlinearity (1.6) and the smooth Hill function g defined in (1.3) with n = 50. The

singular steady state in (a) becomes an unstable steady state in the smooth case, with a bubble

of stable periodic orbits existing between the pair of Hopf bifurcations where the steady state

changes stability. The stable periodic orbits at γ = 1 for increasing values of n are shown

as profiles in Figure 5.2(e) and projected onto the (x(t), x(t − Ä))-plane in Figure 5.2(f). The

apparent limiting behaviour that is revealed is the topic of [31].

When the value of n is decreased, the interval of γ values between the Hopf bifurcations

shrinks, until for n sufficiently small the steady state is always stable, as seen in Figure 5.2(c).

Interestingly, even though there is no bifurcation in this case, the graph in Figure 5.2(c) still

has a plateau around where the singular steady states exist in Figure 5.2(a).

Figure 5.2(d) shows two-parameter continuations in the (γ, n) plane of the Hopf bifur-

cations. This reveals the Hopf bifurcations associated with ωk for k = 0, 1, . . . , 4, with each

successive Hopf bifurcation only existing for progressively larger values of n, as implied by

(5.22). In particular there is no Hopf bifurcation for n < 24 and a second Hopf bifurcation is

only seen if n > 100. This is why no Hopf bifurcation is seen in Figure 5.2(c) with n = 23, and

only one pair of Hopf bifurcations is seen in Figure 5.2(b) with n = 50.

Figure 5.2(d) also illustrates Theorem 5.3 (points 5 and 6) where the additional Hopf bifur-

cations occurring as n increases approach the vertical asymptotes γ = γ1 and γ = γ2 in the

limit as n → ∞. Notice also the existence of Hopf bifurcations with γ > γ2 in Figure 5.2(d);

so it is possible for the steady state to be unstable outside the interval γ ∈ [γ1, γ2], albeit only

for a finite range of values n by Theorem 5.3 (point 3).

5.2 Constant delay with g increasing (g ↑, v ↔)

In this section we study (1.1)–(1.2) with constant delay again, but in contrast to the previous

section we assume that g is increasing. We thus assume g− < g+ in (1.3) and (1.6), with

v− = v+ = v± so the delay Ä = a/v± is constant, independent of ξ.

When g is increasing, it is possible for multiple steady states to coexist. For example,

considering the limiting case where g is given by (1.6), as shown in Figure 5.3, there are up

to three coexisting steady states, including a singular steady state, as the slope of the line γξ

changes. The corners defined by (5.4) give rise to fold bifurcations due to a change in the

number of steady states. Since these bifurcations involve a singular steady state they are not

truly fold bifurcations but we use this term since, as we show below, they reflect the presence

of true fold bifurcations for the smooth nonlinearity g defined by (1.3) with g′(ξ) k 0. This is

illustrated in Figure 5.4(a) where there are two fold bifurcations between stable and singular

steady states, with the outer steady states stable, and the middle steady state is singular.
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Figure 5.3: Illustration of how the number of steady states of (1.1) given by (5.2) changes
with the intersections of ξ 7→ ´e−µÄ g(ξ) and ξ 7→ γξ. These are shown in the limiting
case with v± = v− = v+ so Ä = a/v± is constant, and g− < g+ in (1.6) so g is piecewise
constant and monotonically increasing: (g ↑, v ´).
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Figure 5.4: Bifurcations of (1.1)–(1.2) with (g ↑, v ´) and parameters ´ = 2, µ = 0.02,
g− = 0.1, g+ = 1, θg = 1, γ = 1, a = 2 and v = v− = v+ = 2. (a) The limiting case with
g defined by (1.6). Stable steady states are shown as green solid lines, and the singular
steady state as a black dashed line. (b) With a smooth nonlinearity g defined by (1.3)
with n = 30. (c) Two-parameter continuations in n and γ of the fold (blue) and the
Hopf (black) bifurcations with the other parameters as above. The dashed vertical lines
denote γ = γ1 and γ = γ2, the location of the fold bifurcations in the limiting case as
n → ∞. The red dash-dotted curve denotes the bound on the fold bifurcations given by
(5.28).
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With g defined by the piecewise constant function (1.6), as in Section 5.1, for the non-

singular steady states we have A = g′(ξ) = 0. The characteristic equation is again of the form

(4.11), so these steady states must be stable. Only the singular steady state may be unstable,

and since it coexists with two stable steady states, it is natural to regard it as unstable even

though the dynamical system is infinite dimensional and the characteristic equation is not

defined at the singular steady state. The bifurcation diagram for this case is illustrated in

Figure 5.4(a).

For the smooth nonlinearity g(ξ) defined by (1.3), from (4.9) the characteristic function is

given by

∆(¼) = ¼ + γ − ´e−µÄg′(ξ)e−¼Ä. (5.24)

Considering ¼ ∈ R first, note that ∆(¼) is asymptotic to ¼ + γ for ¼ k 0. On the other hand,

using (5.2) we find

∆(0) = γ

(

1 − ξg′(ξ)
g(ξ)

)

. (5.25)

Consequently when
ξg′(ξ)
g(ξ)

> 1 (5.26)

there is always a real characteristic value ¼ > 0 and the steady state is unstable. Moreover

there is a characteristic value ¼ = 0 if and only if

ξg′(ξ)
g(ξ)

= 1, (5.27)

and the results developed in Section 5.1, and in particular Proposition 5.1, can be applied to

the fold bifurcations. Thus for n k 0 there will be two fold bifurcations ξ± ≈ θg: one with

γ ≈ γ1 and the other with γ ≈ γ2, where γ1 and γ2 are defined by (5.4) with γ2 < γ1 since g

is increasing.

To find the fold bifurcations, equations (5.27) and (5.15) must be solved together. We first

do this numerically. Figure 5.4(b) shows the resulting bifurcation diagram for the smooth

nonlinearity g(ξ) defined by (1.3) with n = 30, revealing, as expected, two smooth fold bi-

furcations, with an intermediate branch of unstable steady states between the stable steady

states.

To further investigate when multiple steady states arise for smoothly increasing g, note

that a necessary condition for multiple coexisting steady states is that maxξg0{h′(ξ)} g 0.

This imposes a constraint on the parameters as follows. The function g has a single point of

inflection x̄ with g′′(x̄) = 0, which can be computed by differentiating g twice to find

x̄ = θg

(

n − 1

n + 1

)1/n

.

Note that x̄ > 0 requires the restriction n > 1. With x̄, we can compute the maximal value of

the derivative

max
ξg0

{h′(ξ)} = h′(x̄) = ´e−µÄg′(x̄)− γ = ´e−µÄ(g+ − g−)
(n + 1)1+1/n(1 − n)1−1/n

4nθg
− γ.

Therefore, if there are multiple steady states, the parameters must satisfy

γ f ´e−µÄ(g+ − g−)
(n + 1)1+1/n(n − 1)1−1/n

4nθg
. (5.28)
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Figure 5.4(c) shows a two-parameter continuation of the fold bifurcations for increasing

g. For large n the folds approach the asymptotes γ = γ1 and γ = γ2 defined by the limiting

case. As n decreases the two fold bifurcations move closer together until they collide in a

cusp bifurcation. At the cusp, the three steady states coincide, and at this point h(ξ) is a

monotonically decreasing function of ξ with a zero of multiplicity three at the steady state ξ̄.

Consequently not only is h(ξ̄) = h′(ξ̄) = 0 at this point, but also the function h′(ξ) attains

its maximum at ξ̄ and the cusp point lies on the bounding curve defined by (5.28), as seen in

Figure 5.4(c).

The analysis of Hopf bifurcations from Section 5.1 can be repeated with only minor

changes for the case of increasing g. Characteristic values again satisfy (5.5) and (5.6), and

at a Hopf bifurcation (5.13) and (5.14). Since g′(ξ) > 0, we require sin(ωÄ) < 0 < cos(ωÄ)

and hence

ωÄ ∈ (2k + 3/2)π, (2k + 2)π), k ∈ N.

Equations (5.15), (5.16) and (5.17) can again be considered sequentially, and reduced to a single

equation to solve for ξ, where for increasing g, equation (5.17) becomes

g′(ξ) =

√

γ2 + ω2
k

´e−µÄ
. (5.29)

This last equation is most easily considered by combining it with (5.15) to obtain

ξg′(ξ)
g(ξ)

=
√

1 + (ωk/γ)2, (5.30)

where ξg′(ξ)/g(ξ) is still given by (5.10) and Propositions 5.1 and 5.2 both apply.

We conclude that as γ is varied there is a sequence of Hopf bifurcations parameterized by

a frequency ωk → ∞ satisfying ωkÄ ∈ ((2k+ 3/2)π, (2k+ 2)π) for k ∈ N, where for each fixed

k there is a minimal n at which this bifurcation exists. Furthermore, this minimal n grows with

k. Additionally, for any fixed k as n → ∞ the bifurcation points satisfy γ → γ1 and γ → γ2.

Figure 5.4(b) shows that the steady states lose stability at the fold bifurcation and the resulting

unstable steady state undergoes a Hopf bifurcation. This indicates that the resulting periodic

orbits are unstable and thus not consequential for the asymptotic dynamics in contrast to the

case of decreasing g. The two-parameter continuation of the first Hopf bifurcation is shown

in Figure 5.4(c).

We collect our results from this section together in the following theorem. While there are

many similarities between Theorems 5.3 and 5.4, the presence of fold bifurcations introduces

some important differences. Note also that since g is increasing, in this section we have

rg = g−/g+ < 1 and also γ1 > γ2.

Theorem 5.4. Let ξ be a steady state of the DDE (1.1), (1.2) with constant delay Ä and nonlinearity g

defined by (1.3) with g monotonically increasing (so g− < g+). Then

1. The steady state ξ is asymptotically stable if
ξg′(ξ)
g(ξ)

< 1, and unstable if
ξg′(ξ)
g(ξ)

> 1.

2. For any fixed ξ ̸= θg let γ = γ(n, ξ) be the value of γ such that (5.2) is satisfied and hence ξ is

a steady state. Or, for any fixed γ with 0 < γ < γ2 or γ > γ1 let ξ = ξ(n, γ) satisfy (5.2) and

hence be a steady state. Then ξ is asymptotically stable for all n sufficiently large.

3. If n f 1, or n > 1 and rg = g−

g+ >

(

1 − 2
n+1

)2
, then the steady state ξ is asymptotically stable.
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4. If n > 1 and r = g−

g+ <

(

1 − 2
n+1

)2
, then there exists ξ− < θg(g−/g+)1/2n

< ξ+ and

γ(ξ−) <
√

γ1γ2/(g−/g+)1/2n
< γ(ξ+) such that as γ is varied, there is one branch of

stable steady states with ξ < ξ− and γ > γ(ξ−) and another stable branch with ξ > ξ+ and

γ < γ(ξ+). For γ ∈ (γ(ξ−), γ(ξ+)) the two stable branches of steady states co-exist with a

branch of unstable steady states which exists between fold bifurcations at (ξ, γ) = (ξ−, γ(ξ−))
and (ξ, γ) = (ξ+, γ(ξ+)).

5. Let fixed n g 2 and fixed k g 0 satisfy

n > 2
1 + (g−/g+)

1 − (g−/g+)

(

1 +

(

2πθg(k + 1)

´Äe−µÄg0

)2
)

1
2

. (5.31)

Then as γ is varied

(a) There are two families of (at least) k + 1 Hopf bifurcations from the unstable steady-state.

One exists for γ <
√

γ1γ2/(g−/g+)1/2n and the other for γ > (γ1 + γ2)/2. In the first

family, the characteristic values ¼j = ³j ± iωj with ωjÄ ∈ (3π/2 + 2jπ, 2π + 2jπ) for

j = 0, 1, . . . , k cross the imaginary axis from left to right as γ is increased, while in the

second family they cross the imaginary axis from right to left.

(b) For ξ ∈ [θg(g−/g+)1/(2n), θg], or equivalently for γ ∈ (
√

γ1γ2/(g−/g+)1/2n, (γ1 +

γ2)/2), the unstable steady state has one positive real characteristic value and at least

k + 1 pairs of complex conjugate characteristic values ¼j = ³j ± iωj with ³j > 0 and

ωjÄ ∈ (3π/2 + 2jπ, 2π + 2jπ) for j = 0, 1, . . . , k.

6. Let γ ∈ (γ2, γ1) be fixed. Then as n is increased there is an infinite sequence of Hopf bifurcations

on the branch of unstable equilibria where the real part of ¼k = ³k ± iωk becomes positive with

ωkÄ ∈ (3π/2 + 2kπ, 2π + 2kπ).

Proof. The first part of (1) follows from (5.8), while the second part follows from (5.24)–(5.26).

The proof of the first part of (2) is identical to the proof of the first part of (4) of The-

orem 5.3. To show the second part of (2), note that when g+ > g− from (1.3) we have

g+ > g(ξ) > g− which, using (5.4), is equivalent to

γ1 >
´e−µÄg(ξ)

θg
> γ2.

Fix γ > 0 and using (5.15), we further rewrite this as

γ1

γ
>

ξ

θg
>

γ2

γ
.

Hence, for ξ = ξ(n, γ) satisfying (5.2) if γ > γ1 then ξ < θgγ1/γ < θg. On the other

hand, if γ < γ2 then ξ > θgγ2/γ > θg. The result follows from (1) and the second part of

Proposition 5.1(3)

Statement (3) is shown similarly to the corresponding result in Theorem 5.3, noting that

since g is increasing rg = g−/g+ < 1, which results in a different inequality than the one

found in (5.12).

To show (4) consider the curve of steady states (ξ, γ(ξ)) for ξ > 0 where γ(ξ) is defined

by (5.15). Using Proposition 5.1, the conditions of (4) imply that ξg′(ξ)/g(ξ) has a maximum

value larger than 1 at ξ = θg(g−/g+)1/2n. Let ξ− < θg(g−/g+)1/2n
< ξ+ be the points where
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θv

´ge−µÄ−

´ge−µÄ+

Figure 5.5: Steady states of (1.1) are given by (5.2), and hence occur at the intersections
of ξ 7→ ´e−µÄ(ξ)g and ξ 7→ γξ. These are illustrated for various γ > 0 in the limiting
case of (1.6) and (1.7) with g± = g− = g+, so g(ξ) = g± is a constant function, and
v− > v+, so v is piecewise constant and monotonically decreasing : (g ´, v ³). Then
Ä(ξ) = a/v(ξ) is state-dependent; Ä(ξ) = Ä− = a/v− for ξ < θv, Ä(ξ) = Ä+ = a/v+ for
ξ > θv and Ä(ξ) is set-valued when ξ = θv.

ξ−g′(ξ−)/g(ξ−) = ξ+g′(ξ+)/g(ξ+) = 1. Then the steady state is stable for ξ < ξ− and

ξ > ξ+, and unstable for ξ ∈ (ξ−, ξ+). Now differentiating (5.15) we find that

γ′(ξ) = − ´

ξ2
e−µÄg(ξ) +

´

ξ
e−µÄg′(ξ) =

´

ξ2
e−µÄg(ξ)

[

ξg′(ξ)
g(ξ)

− 1

]

=
γ(ξ)

ξ

[

ξg′(ξ)
g(ξ)

− 1

]

. (5.32)

Thus γ(ξ) is a decreasing function of ξ when the steady state is stable, and an increasing

function when it is unstable. From this (4) follows.

The proofs of (5) and (6) are similar to the proof of Theorem 5.3, with the main difference

being that for a Hopf bifurcation from the unstable steady state we require ωkÄ ∈ (3π/2 +

2kπ, 2π + 2kπ), while for g increasing a sufficient condition to obtain a solution of (5.30) is

that Mk(θg) < f (1, n, g−/g+).

It would be interesting if the Hopf and fold bifurcations could exchange positions on the

branch, so that the steady state lost stability in a Hopf bifurcation instead of a fold bifurcation.

However, this cannot happen with a constant delay because, as the theorem shows, stability

is always lost when ξg′(ξ)/g(ξ) = 1 at which point there is a zero characteristic value giving

rise to a fold bifurcation.

5.3 State-dependent delay with v decreasing and g constant (g ↔, v ↓)

To understand the dynamics of (1.1)–(1.2) with a state-dependent delay, we impose g± :=

g− = g+ in (1.3) and (1.6), so g(ξ) = g± is a constant function. We first consider a decreasing

function v with v− > v+ in (1.3) and (1.7).

It is convenient to let Ä+ := a/v+ and Ä− := a/v−. Then at a steady state ξ with v− > v+,

equation (5.1) implies Ä(ξ) is an increasing function of ξ with Ä−
< Ä(ξ) < Ä+, so e−µÄ(ξ) is

a decreasing function of ξ. Under these circumstances, h(ξ) is monotonically decreasing and

equation (5.2) has exactly one solution, and so there is always a unique steady state.

Figure 5.5 illustrates the uniqueness of the steady state in the limiting case when v defined
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by (1.7) is piecewise constant. The steady states at the corners are associated with

γ3 =
´g±e−µÄ+

θv
and γ4 =

´g±e−µÄ−

θv
. (5.33)

As discussed in Section 5.1, the steady state is stable if γ ∈ (0, γ3) ∪ (γ4, ∞) as then A =

g′(ξ) = 0 and the characteristic equation (4.8) reduces to (4.11) with exactly one negative real

characteristic value. Consequently, the steady state may only be unstable in the singular case

for γ ∈ (γ3, γ4).

Since A, which is given by (4.4), is undefined for singular steady states, the characteristic

equation (4.10) cannot be used to study the stability of the singular steady states. So, instead

we consider the stability of the steady states for the smooth velocity nonlinearity v defined in

(1.3). There will be some similarities to the analysis in Section 5.1, but the problem studied

in this section with state-dependent delay is significantly more complicated than the constant

delay problem considered before.

With g constant and v defined by (1.3) the characteristic equation is of the form (4.10).

Recalling the definition of A from (4.4) and using (5.2), we obtain at a steady state ξ

A = ´
v′(ξ)
v(ξ)

e−µÄ(ξ)g± = γ
ξv′(ξ)
v(ξ)

< 0, (5.34)

since v− > v+ implies v′(ξ) < 0. It follows that the right-hand side of (4.10) is negative

when ¼ g 0, and so there are no non-negative real characteristic values. This is not surprising

since we already know that the steady state is unique, and therefore there are no steady-state

bifurcations.

Furthermore, since v(ξ) is a Hill function, it follows that

ξv′(ξ)
v(ξ)

= f (ξ/θv, m, v−/v+), (5.35)

where f is defined by (5.11). Thus Proposition 5.1 will be relevant in what follows.

To investigate the stability of the steady state we consider complex characteristic values.

Let ¼ = ³ + iω, ω > 0 then (4.10) implies

³ + iω = −γ + A(1 − e−(³+iω)Ä(ξ))

(

1 +
µ

³ + iω

)

,

= −γ +
A

³2 + ω2

[

(1 − e−³Ä(ξ) cos ωÄ(ξ))(³2 + ω2 + µ³) + e−³Ä(ξ) sin ωÄ(ξ)µω]

+ i
A

³2 + ω2
[e−³Ä(ξ) sin ωÄ(ξ)(³2 + ω2 + µ³)− (1 − e−³Ä(ξ) cos ωÄ(ξ))µω].

Equating the real and imaginary parts yields

³ + γ =
A

³2 + ω2

[

(1 − e−³Ä(ξ) cos ωÄ(ξ))(³2 + ω2 + µ³) + e−³Ä(ξ) sin ωÄ(ξ)µω
]

,

ω =
A

³2 + ω2

[

e−³Ä(ξ) sin ωÄ(ξ)(³2 + ω2 + µ³)− (1 − e−³Ä(ξ) cos ωÄ(ξ))µω
]

.

Isolating e−³Ä(ξ) sin ωÄ(ξ) and 1 − e−³Ä(ξ) cos ωÄ(ξ) respectively gives

A
(

1 − e−³Ä(ξ) cos ωÄ(ξ)
)[

(³ + µ)2 + ω2
]

= (³ + γ)(³2 + ω2 + µ³)− µω2, (5.36)

Ae−³Ä(ξ) sin ωÄ(ξ)
[

(³ + µ)2 + ω2
]

= ω
(

(2³ + γ)µ + ³2 + ω2
)

. (5.37)
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Notice that since A < 0, for ³ g 0 the left-hand side of (5.36) is non-positive. On the other

hand, when

γ > µ (5.38)

and ³ g 0 then the right-hand side of (5.36) is strictly positive. Consequently if (5.38) holds,

then all the characteristic values must have ³ < 0 and the steady state is asymptotically stable.

Next we show that the steady state is also stable if γ f µ and

∣

∣

∣

∣

ξv′(ξ)
v(ξ)

∣

∣

∣

∣

<
1

µÄ(ξ)
. (5.39)

To do so, for contradiction suppose that ¼ = ³ + iω is a characteristic value with ³ g 0 and

ω > 0 where γ f µ and (5.39) holds. Then | sin ωÄ(ξ)| f |ωÄ(ξ)| and (5.39) implies

∣

∣

∣

ξv′(ξ)
v(ξ)

sin ωÄ(ξ)
∣

∣

∣
<

ω

µ
. (5.40)

Consequently, using (5.34),

∣

∣

∣
Ae−³Ä(ξ) sin ωÄ(ξ)

[

(³ + µ)2 + ω2
]

∣

∣

∣
<

γω

µ

(

(³ + µ)2 + ω2
)

= ω
(

(2³ + µ)γ +
γ

µ
(³2 + ω2)

)

f ω
(

(2³ + γ)µ + (³2 + ω2)
)

.

However, this contradicts the assumption that ¼ = ³ + iω satisfies (5.37). We thus conclude

that the steady state is asymptotically stable whenever (5.38) or (5.39) is satisfied.

Since the right-hand side of (5.39) is bounded below by 1/µÄ+, it follows from Proposi-

tion 5.1(1) that the steady state is stable for 0 < ξ j θv and for ξ k θv.

To determine when the steady state may be unstable we investigate the basic spectral con-

dition for Hopf bifurcation, namely, the existence of a pair of complex conjugate eigenvalues

on the imaginary axis. A proof that Hopf bifurcations actually occur for our equations would,

of course, require in addition that a pair of eigenvalues crosses the imaginary axis at nonzero

speed, that a nonresonance condition is satisfied, and furthermore that the right hand side of

the delay differential equation has certain higher order smoothness properties, see [14, 30, 53]

for the case of state-dependent delays.

Assume that ¼ = ±iω, ω > 0 solves equation (4.10). Then with ³ = 0 equations (5.36) and

(5.37) reduce to

A(1 − cos(ωÄ))(ω2 + µ2) = ω2(γ − µ), (5.41)

A sin(ωÄ)(ω2 + µ2) = ω(ω2 + γµ). (5.42)

Since A < 0 and the right-hand side of (5.42) is positive, at any Hopf bifurcation we must

have sin(ωÄ) < 0 to satisfy (5.42). Moreover, the left-hand side of (5.41) is negative, and so a

Hopf bifurcation is only possible if the right-hand side is also negative, that is if

γ < µ. (5.43)

In Section 5.1 it was so simple to rewrite (5.5) and (5.6) as (5.16) and (5.17) that we did so

without comment. Equation (5.17) involves the derivative g′(ξ); here the analogous term is

v′(ξ) which is part of A. We want to rewrite (5.41) and (5.42) as one equation for ω which is
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independent of v′(ξ) and one equation for v′(ξ) which contains no trigonometric functions.

To accomplish this we make use of half-angle formulae.

Let U = ωÄ/2 then

tan
ωÄ

2
= tan U =

2 sin2 U

2 sin U cos U
=

1 − cos(ωÄ)

sin(ωÄ)
,

and hence using (5.42) and (5.41)

tan
ωÄ

2
=

ω(γ − µ)

ω2 + γµ
. (5.44)

We next simplify (5.42) using another half-angle formula. Still with U = ωÄ/2, from the

standard formula

sin ωÄ =
2 tan U

1 + tan2 U
,

on substituting for tan U from (5.44) we obtain

sin ωÄ =
2ω(γ − µ)(ω2 + γµ)

(ω2 + γ2)(ω2 + µ2)
.

Substituting this into (5.42), rearranging and using (5.34) gives

ξv′(ξ)
v(ξ)

=
ω2 + γ2

2γ(γ − µ)
. (5.45)

At a Hopf bifurcation equations (5.2), (5.41) and (5.42) must all be satisfied. This is equiv-

alent to solving

γ =
´g±

ξ
e−µÄ(ξ), (5.46)

along with (5.44) and (5.45).

We will follow similar steps as in Section 5.1, and consider (5.46), (5.44) and (5.45) sequen-

tially, using the first two equations to define γ and ωk as functions of ξ, so that it only remains

to solve (5.45) for ξ. But because of the state-dependent delay and the constraint (5.43) the

situation is not as simple as in the constant delay case considered in the previous two sections.

Note first that for any ξ > 0 equation (5.46) gives a unique value of γ = γ(ξ). Moreover,

since as already noted, Ä is monotonically increasing it follows that γ is a monotonically

decreasing function of ξ.

For γ satisfying (5.43), the right-hand side of (5.44) is negative. Then because of the

properties of the tan function in (5.44) there will be at least one solution ωÄ to (5.44) satisfying

ωÄ ∈ ((2k + 1)π, (2k + 2)π) for k = 0, 1, 2, . . .. We denote by ωk any solution of (5.44) for

which ωkÄ(ξ) ∈ ((2k + 1)π, (2k + 2)π).

At this point, we have defined γ and ωk as functions of ξ. We still need to solve for

ξ, or ξk from (5.45). We already considered the behaviour of the left-hand side of (5.45) in

Proposition 5.1, so we now consider the behaviour of the right-hand side. Let

rk(γ) =
ω2

k + γ2

2γ(γ − µ)
. (5.47)

Usually we will take γ = γ(ξ), defined by (5.46), but in the proposition below we con-

sider rk(γ) for general γ. Note that a solution of (5.45) corresponds to a solution of

f (ξ/θv, m, v−/v+) = rk(γ(ξ)), and since v is decreasing both f and rk will be negative at

such a solution, thus from (5.47) we require γ < µ.
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Proposition 5.5. Let rk(γ) be defined by (5.47) and ωk satisfy ωkÄ ∈ ((2k + 1)π, (2k + 2)π) for

integer k g 0. Then for γ ∈ (0, µ) it holds that

1. |rk(γ)| g 2

(

ωk

µ

)2

.

2. rk(γ) → −∞ as γ → 0 or γ → µ,

3. |rk(γ)| f
(2k + 2)2(π/Ä−)2 + γ2

2γ(µ − γ)
.

Proof. The proof is elementary.

While there is a unique steady state ξ for the case of decreasing v with constant g, just as

in Section 5.1 the location and properties of this steady state will depend on the values of the

other parameters. The following theorem collects together our results for this case.

Theorem 5.6. Let ξ be the steady state of the DDE (1.1), (1.2) with g(ξ) = g± constant, and v

monotonically decreasing, so v− > v+ and the state-dependent delay Ä defined by (1.3) evaluated at

the steady state is Ä(ξ) = a/v(ξ). Then

1. If
∣

∣

ξv′(ξ)
v(ξ)

∣

∣ <
1

µÄ(ξ)
then the steady state ξ is asymptotically stable.

2. The steady state ξ is asymptotically stable if m f 1/(µÄ(ξ)), or if both m > 1/(µÄ(ξ)) and

r = rv = v−
v+ <

(

1 + 2
mµÄ(ξ)−1

)2
.

3. For any fixed m > 0, and for 0 < ξ j θv or ξ k θv, or equivalently for γ k γ4 or 0 < γ j γ3,

the steady state is asymptotically stable.

4. If γ > µ the steady state is asymptotically stable.

5. For any fixed ξ ̸= θv let γ = γ(m, ξ) be the value of γ such that (5.2) is satisfied and hence ξ is

a steady state. Or, for any fixed γ with 0 < γ < γ3 or γ > γ4 let ξ = ξ(m, γ) satisfy (5.2) and

hence be a steady state. Then ξ is asymptotically stable for all m sufficiently large.

6. Let µ > γ3.

(a) For any k > 0, for all m = m(k) sufficiently large there are two families of (at least) k + 1

Hopf bifurcations as γ is varied. In the first family, the characteristic values ¼j = ³j ± iωj

with ωjÄ ∈ ((2j + 1)π, (2j + 2)π) for j = 0, 1, . . . , k cross the imaginary axis from left to

right as γ increases, while in the second family they cross the imaginary axis from right to

left.

(b) Let γ ∈ (γ3, min{γ4, µ}) be fixed. Then as m is increased there is an infinite sequence

of Hopf bifurcations where the real part of ¼k = ³k ± iωk becomes positive with ωkÄ ∈
((2k + 1)π, (2k + 2)π).

Proof. Statements (1) and (4) were already shown; see equations (5.34), (5.39) and (5.38).

Claim (2) follows from (1) using Proposition 5.1, since

∣

∣

∣

∣

ξv′(ξ)
v(ξ)

∣

∣

∣

∣

f | f (r1/2m
v , m, rv)| =

m|1 − r1/2
v |

1 + r1/2
v

where rv = v−/v+ > 1.
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Claim (3) also follows from (1), similarly to the proof of Theorem 5.3(3).

Statement (5) is derived similarly to Theorem 5.3 (4), by using (5.46) and (5.33) to show

that e−µÄ+
< e−µÄ(ξ)

< e−µÄ−
implies that γ3/γ < ξ/θv < γ4/γ.

Finally, (6) is more delicate to prove. As noted before Proposition 5.5, to find a Hopf

bifurcation we need to solve f (ξ/θv, m, v−/v+) = rk(γ(ξ)). Since for ξ ̸= θv the function

f (ξ/θv, m, v−/v+) → 0 as m → ∞, we begin by considering ξ = θv. Recall that γ(ξ) defined

by (5.46) is a monotonically decreasing function of ξ. Moreover, using (1.3) we see that Ä(θv) =

2a/(v− + v+) ∈ (Ä−, Ä+), which is independent of the value of m. Then

γ(θv) =
´g±

θv
e−µÄ(θv) ∈ (γ3, γ4), (5.48)

and γ(θv) is also independent of the value of m.

Now there are two cases to consider. First consider the case where γ(θv) < µ. If

m > 2
(v−/v+) + 1

(v−/v+)− 1

(

(2k + 2)2(π/Ä(θv))2 + γ(θv)2

2γ(θv)(µ − γ(θv))

)

, (5.49)

then

f (1, m, v−/v+) = −m(v−/v+ − 1)

2(v−/v+ + 1)
<

(

(2k + 2)2(π/Ä(θv))2 + γ(θv)2

2γ(θv)(γ(θv)− µ)

)

f rj(γ(θv)), j = 0, 1, . . . , k.

Here the equality comes from definition of f , the strict inequality from (5.49) and the last

inequality follows from a similar argument that proves Proposition 5.5(3), the only difference

being that here we use the actual value of Ä(θv) in the inequality, rather than the bound Ä−.

With this inequality as the starting point, we examine what happens when we increase

ξ away from θv. If ξ is increased then γ(ξ) decreases with limξ→∞ γ(ξ) = 0. But rj(γ(ξ))

and f (ξ/θv, m, v−/v+) are both continuous functions of ξ with limξ→∞ rj(γ(ξ)) = −∞ and

limξ→∞ f (ξ/θv, m, v−/v+) = 0. Consequently for each j = 0, 1, . . . , k there exists a ξ such that

f (ξ/θv, m, v−/v+) = rj(γ(ξ)).

If instead ξ is decreased from θv then limξ→0 γ(ξ) = +∞, so γ(ξ) > µ for ξ sufficiently

small. However, for γ(ξ) < µ we have limγ·µ rj(γ) = −∞, while f (ξ/θv, m, v−/v+) is

bounded, so again for each j = 0, 1, . . . , k there exists a ξ such that f (ξ/θv, m, v−/v+) =

rj(γ(ξ)).

Solutions of this equation define the Hopf bifurcation points, which gives the required

Hopf bifurcations when γ(θv) < µ. To summarize the argument up to this point, for a fixed

k and any large enough m = m(k) satisfying (5.49), we found two families of k + 1 Hopf

bifurcations, one for ξ j < θv and one for ξ j > θv, by finding appropriate γ(ξ j) that satisfy

f (ξ j/θv, m, v−/v+) = rj(γ(ξ j)) for each j = 0, . . . , k. See Figure 5.7(d) for illustration of these

families as functions of the parameters m and γ.

Now consider the more delicate case where γ3 < µ f γ(θv) < γ4. The above argument

fails in that case as | f (ξ/θv, m, v−/v+)| k 0 for ξ = θv but the corresponding γ is γ(θv), with

γ(θv) > µ, and by (4) the steady state would be asymptotically stable. Instead, noting that γ(ξ)

defined by (5.46) is monotonically decreasing, this function is invertible and we can instead

consider ξ = ξ(γ) as a function of γ. Fix γ ∈ (γ3, µ), and consider the behaviour as m → ∞.

In this case the function v(ξ) defined by (1.3) approaches the piecewise constant function (1.7),

and the steady-state function h(ξ) (recall (5.2)) approaches the case illustrated in Figure 5.5.
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Since γ is fixed with γ ∈ (γ3, µ) ¢ (γ3, γ4), we find ξ → θv and v′(ξ) → −∞ while v(ξ)

and ξ remain bounded and bounded away from zero. Consequently, for m sufficiently large
ξv′(ξ)
v(ξ)

< rj(γ) for j = 0, 1, . . . , k. From here the argument proceeds as in the case γ(θv) < µ.

Statement (6)b also follows trivially in the case that γ3 < µ f γ(θv) < γ4.

Although Theorem 5.6(6) is stated for one-parameter continuation in m or γ, we can

also draw conclusions for two-parameter continuation of the Hopf bifurcations in the (γ, m)-

parameter plane.

The argument used in the proof of Theorem 5.6(6) in the case when µ ∈ (γ3, γ4) shows that

for any γ− > γ3 the k-th Hopf bifurcation occurs for γ ∈ (γ3, γ−) for all m sufficiently large.

Then because of Theorem 5.6(5) the k-th Hopf bifurcation approaches γ = γ3 as m → ∞, and

in the (γ, m)-parameter plane the left side of the Hopf bifurcation curves asymptote to γ = γ3

as m → ∞. Similarly for any γ+ < µ the other instance of the k-th Hopf bifurcation occurs

for γ ∈ (γ+, µ) for all m sufficiently large, and the right side of the Hopf bifurcation curves

asymptote to γ = µ as m → ∞.

In the case that µ > γ4, a similar argument can be applied to show that the k-th Hopf

bifurcation curve asymptotes to γ = γ3 and γ = γ4 in the (γ, m)-parameter plane.

There are nevertheless differences between the cases where γ converges to γ3 or γ4 as

m → ∞ and the case where γ → µ as m → ∞. To see this consider for fixed k the limit as

m → ∞ when v approaches the piecewise constant function (1.7). Then from Theorem 5.6, we

have ξ → θv, and γ ∈ [γ3, min{γ4, µ}]. Since Ä(ξ) ∈ [a/vU , a/vL] and ωkÄ(ξ) f (2k + 2)π

it also follows that ωk is bounded. Thus the numerator of the right-hand side of (5.45) also

remains bounded. Now there are two cases to consider.

First suppose that as m → ∞ and ξ → θv that v′(ξ) becomes unbounded, that is v′(ξ) →
−∞, or equivalently that A → −∞. Then the left-hand side of (5.45) becomes unbounded in

the limit as m → ∞. Since the numerator of the right-hand side is bounded, we must have

γ − µ = O(1/A) → 0 to satisfy equation (5.45). To summarize, if v′(ξ) → −∞ as m → ∞ we

must have that γ → µ in this limit.

On the other hand, if A < 0 remains finite as m → ∞, because γ, ξ and v(ξ) are bounded

and bounded away from zero in the limit, the only possibility in (5.34) is that v′(ξ) also

remains finite. But as m → ∞ the function v(ξ) approaches a step function, and the only places

where v′(ξ) is non-zero and finite are near the corners of the limiting velocity nonlinearity.

Consequently, the only possibility for a Hopf bifurcation to exist for arbitrary m is that the

steady state at which this Hopf bifurcation happens converges to the corners of the limiting

velocity nonlinearity. That is, in the limit as m → ∞ with A < 0 finite, we must have that

γ → γ3 or γ → γ4 with ξ → θv, where γ3 and γ4 are defined by (5.33).

Below we illustrate the different possible behaviours allowed by Theorem 5.6 in the three

cases: µ < γ3, µ ∈ (γ3, γ4) and µ > γ4.

Case 1: We begin with the case µ < γ3. By Theorem 5.6 (point 4) the steady state must be

stable whenever γ > µ, while for γ f µ we have γ f µ < γ3 so by Theorem 5.6(point 5) the

steady state is stable for all m sufficiently large, or by Theorem 5.6 (point 3) it is stable for all

γ sufficiently small.

Figure 5.6 shows an example of the behaviour of (1.1)–(1.2) for (g ´, v ³) with µ < γ3 <

γ4. Panel (b) shows the smooth case for several different values of m, which reveals that the

steady state is always stable. Panel (a) shows the behavior in the limiting case with (1.7). In

this case the singular steady state can only become a stable steady state for large finite m.

In the model (1.1)–(1.2) we consider the parameters γ and µ to be independent, but de-
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Figure 5.6: Bifurcation diagram of (1.1)–(1.2) with (g ´, v ³) and parameters ´ = 3, µ =
0.5, g− = g+ = 1, γ = 1, θv = 1, a = 2, v− = 2 and v+ = 1. (a) The limiting case with v
defined by (1.7). The stable steady state is shown as a green solid line. (b) With smooth
velocity nonlinearity v defined by (1.3) with m = 1, 10, 80, 200 as indicated by color.
The steady state is always stable.

pending on how the model is derived, that may not be the case. For example, the current

model (1.1)–(1.2) can be derived as a reduction of the operon model in [18]. In the model in

[18] the parameter equivalent to γ is an effective removal rate which is the sum of the actual

degradation rate with the dilution because of the growth rate µ. Consequently, in the model of

[18], and in similar systems modelling gene regulatory dynamics in a growing cell, we obtain

the natural parameter constraint γ > µ, and expect dynamics corresponding to Figure 5.6.

Case 2: Next, in Figure 5.7, we illustrate the behavior of (1.1)–(1.2) for (g ´, v ³) with

µ ∈ (γ3, γ4). Panel (a) depicts the behavior of the limiting case with piecewise constant

v defined by (1.7). Panel (b) shows the case of the smooth velocity nonlinearity (1.3) with

m = 100. The steady state close to x = θv undergoes a pair of Hopf bifurcations creating a

bubble of stable periodic orbits which coexist with the unstable steady state for an interval of

values of γ which is a subinterval of (γ3, µ). As required by Theorem 5.6(4) the steady state

is asymptotically stable for γ > µ. Thus, in contrast to the previous case, the singular steady

state may become either a stable or unstable steady state for very large finite values of m.

Panel (c) is similar to panel (b) but for m = 32. In this case the steady state is always stable,

and no Hopf bifurcations are seen.

Figure 5.7(d) shows a two-parameter continuation of the first three Hopf bifurcations il-

lustrating Theorem 5.6(4-6). The steady state is stable below and outside the outermost Hopf

curve and unstable otherwise, and Hopf bifurcations appear sequentially for increasing values

of m. The bifurcation curve of first Hopf bifurcation (corresponding to k = 0 in the analysis

above) is clearly seen to asymptote to γ = γ3 and γ = µ as m → ∞. The subsequent Hopf

bifurcations also approach these limits as m becomes larger, but do so more slowly.

For the parameter values shown in Figure 5.7 the inequalities γ3 < γ(θv) < µ < γ4 hold.

Consequently, (5.49) applies and gives a sufficient condition on m to ensure that the k-th Hopf

bifurcation arises. For the given parameters (see the caption of Figure 5.7) these sufficient

conditions are approximately m > 84, 316 and 703 for k = 0, 1, 2 respectively, whereas in

Figure 5.7 the corresponding Hopf bifurcation curves have minimal m values of approximately

m = 34, 147, and 336. Therefore, at least in this case, the sufficient condition is not tight. No

Hopf bifurcations are seen for m < 34 in panel (d), which explains why no Hopf bifurcations
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Figure 5.7: Bifurcation diagram of (1.1)–(1.2) with (g ´, v ³) and parameters ´ = 3, µ =
0.3, g− = g+ = 1, γ = 1, θv = 1, a = 3, v− = 0.5 and v+ = 0.2. (a) The limiting case with
v defined by (1.7). The stable steady state is shown as a green solid line, and the singular
steady state as a black dashed line. (b) With a smooth velocity nonlinearity v defined
by (1.3) with m = 100. Solid lines represent stable objects including the stable steady
state (in green), and envelope of the periodic orbit (in red and blue). Dashed lines
represent unstable steady states which have two eigenvalues with positive real part (in
black). (c) As in (b) but with m = 32. (d) Two-parameter continuations in m and γ
of the Hopf bifurcations (shown as solid curves) with the other parameters as above.
The outermost curve of Hopf bifurcations is associated with the stability change seen
in (b). The black dash-dotted line denotes γ = γ3 = 0.0333 and the red dash-dotted
line denotes γ = µ = 0.3, the location of the Hopf bifurcations in the limiting case as
m → ∞. Note that γ(θv) = 0.2293 < µ < γ4 = 0.4959. (e) Profiles of the stable periodic
orbits from the Hopf bifurcations in (b) at γ = 0.13 and m ∈ [56, 200] as indicated by
the color map. (f) Projection of the phase space dynamics into the (x(t), x(t − Ä̂)) plane
at γ = 0.13 where Ä̂ = Ä(θv) = 60/7. The arrow indicates the direction of the flow. The
square marks the unstable steady state in the limiting case at the threshold.
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were detected for m = 32 in (c).

As m increases, the stable periodic orbits created in the Hopf bifurcation at γ = 0.13 ∈
(γ3, µ) are shown in Figure 5.7(e) and (f). Panel (e) shows the profiles of these orbits, while

in (f) we show their projection into the (x(t), x(t − Ä̂)) plane. Note that since the delay Ä is

state-dependent we do not use the actual delay for this projection, but we took Ä̂ = Ä(θv).

The limiting behaviour as m → ∞ is quite different from the constant delay case considered

in Section 5.1. Not only is the shape of the profile different, but comparing Figure 5.7(f) and

Figure 5.2(f) we see that the direction of rotation of the orbits, as indicated by the arrows, is

reversed in the two examples.

Case 3: The final case to consider for (1.1)–(1.2) with (g ´, v ³) is when γ3 < γ4 < µ, and

this is illustrated in Figure 5.8. Panels (a)–(c) show the dynamics for the limiting case with the

piecewise constant velocity nonlinearity (1.7) and for the smooth case with the Hill function

from (1.3) with m = 250 and m = 100 respectively. For the limiting case in (a) the singular

steady state with x = θv appears as a straight line segment for γ ∈ (γ3, γ4). The singular

steady states become unstable steady states in the smooth case as shown in (b), and there is a

bubble of stable periodic orbits between the pair of Hopf bifurcations.

Figure 5.8(d) shows the locus of the principal Hopf bifurcation for a two-parameter contin-

uation in m and γ. Below and outside the curve of Hopf bifurcations the steady state is stable,

while between the Hopf bifurcations it is unstable. We see that the Hopf bifurcation curves

approach γ3 and γ4 as m → ∞, as follows from Theorem 5.6. Since γ4 < µ and necessarily

γ(θv) ∈ (γ3, γ4) we are guaranteed that γ(θv) < µ, so for all such examples Theorem 5.6 guar-

antees that there are infinitely many Hopf bifurcations. However, they may occur for very

large values of m. For the example depicted in Figure 5.8, only one Hopf bifurcation is ob-

served with m g 117. For the parameter values of this example the sufficient condition (5.49)

(with k = 0, 1) ensures a first Hopf bifurcation for m > 152, while a second one is ensured for

m > 602, which is outside the parameter range considered in Figure 5.8.

If the value of the Hill coefficient m is reduced sufficiently then there are no longer any

Hopf bifurcations and the steady state remains stable, as seen in Figure 5.8(c). Interestingly,

even though there are no longer any Hopf bifurcations in this case, the dependence of the

steady state x on γ is still very similar to (a) and (b), with an obvious plateau visible in the

graph of x in Figure 5.8(c) for γ ∈ (γ3, γ4).

Figure 5.8(e) and (f) respectively show the profiles and the (x(t), x(t− Ä̂))-space projections

of the stable periodic orbits at γ = 0.4 as m increases, where we choose Ä̂ = Ä(θv). The

periodic orbits approach a certain structure as m → ∞. Note that the direction of rotation in

both Figure 5.8(f) and Figure 5.7(f) is clockwise, while in Figure 5.2(f) it is counterclockwise.

5.4 State-dependent delay with v increasing and g constant (g ↔, v ↑)

Here we again consider the model (1.1)–(1.2) with a constant function g(ξ) = g± and state-

dependent delay, but now we consider the case of increasing v, so v− < v+ in (1.3) and (1.7):

(g ´, v ↑).
As illustrated in Figure 5.9, it is possible for up to three steady states to coexist due to the

fold bifurcations at the corners associated with γ = γ3 and γ = γ4. Note that in Section 5.3

we had γ3 < γ4. Since the function v is increasing in this section, it follows from the definition

(5.33) that now γ4 < γ3. In the limiting case where v is defined in (1.7), at the non-singular

steady states the characteristic equation is of the form (4.11), and hence these steady states are

stable. For γ ∈ (γ4, γ3) the two stable steady states co-exist with a singular steady state, at
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Figure 5.8: Bifurcation diagram of (1.1)–(1.2) with (g ´, v ³) and parameters ´ = 3, µ =
1.5, g− = g+ = 1, γ = 1, θv = 1, a = 2, v− = 2 and v+ = 1. (a) The limiting case with v
defined by (1.7). The stable steady state is shown as a green solid line, and the singular
steady state as a black dashed line. (b) With a smooth velocity nonlinearity v defined
by (1.3) with m = 250. Solid lines represent stable objects including the stable steady
state (in green) and a stable limit cycle (represented by maximum and minimum of x(t)
on the periodic solution). Dashed lines represent unstable steady states which have
two eigenvalues with positive real part (in black). (c) As in (b) but with m = 100.
(d) Two-parameter continuations in m and γ of the Hopf bifurcations seen in (b). The
dash-dotted lines denote γ = γ3 = 0.1494 and γ = γ4 = 0.6694, the location of the
Hopf bifurcations in the limiting case as m → ∞. (e) Profile of the stable periodic
orbits from the Hopf bifurcations in (b) at γ = 0.4. The color map indicates values
of the continuation parameter m. (f) Projection of the phase space dynamics into the
(x(t), x(t − Ä̂)) plane at γ = 0.4 where Ä̂ = Ä(θv) = 4/3. The arrow indicates the
direction of the flow. The square marks the unstable steady state in the limiting case at
the threshold.
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θg

´e−µÄ+
g

´e−µÄ−
g

Figure 5.9: Illustration of how the number of steady states of (1.1), which are given by
(5.2), changes with the intersections of ξ 7→ ´e−µÄ(ξ)g and ξ 7→ γξ. These are shown
in the limiting case of (1.6) and (1.7) with g± = g− = g+, so g(ξ) = g± is a constant
function, and v− < v+ so v is piecewise constant and monotonically increasing: (g ´
, v ↑). Then Ä(ξ) = a/v(ξ) is state-dependent; Ä(ξ) = Ä− = a/v− for ξ < θv, Ä(ξ) =
Ä+ = a/v+ for ξ > θv and Ä(ξ) is set-valued when ξ = θv.

which the characteristic function is not defined. This leads us to consider the smooth velocity

nonlinearity (1.3).

Because the smooth velocity nonlinearity approaches the step function shown in Figure 5.9

as m → ∞, it follows that for all m sufficiently large there will be a pair of fold bifurcations at

(ξ, γ) = (ξ−, γ(ξ−)) and (ξ, γ) = (ξ+, γ(ξ+)), with (ξ−, γ(ξ−)) → (θv, γ4) and (ξ+, γ(ξ+)) →
(θv, γ3) as m → ∞. To study the associated bifurcations consider the characteristic equation

which has the form (4.10). Writing the characteristic function ∆(¼) as

∆(¼) = ¼ + γ − A + Ae−¼Ä(ξ) − µA
∫ 0

−a/v(ξ)
e¼sds, (5.50)

it follows from (5.2) that at a steady state

∆(0) = γ − µA
∫ 0

−a/v(ξ)
1ds = γ − µÄ(ξ)A = γ − µÄ(ξ)γ

ξv′(ξ)
v(ξ)

= γµÄ(ξ)
( 1

µÄ(ξ)
− ξv′(ξ)

v(ξ)

)

. (5.51)

Hence, ¼ = 0 is a characteristic value if and only if

ξv′(ξ)
v(ξ)

− 1

µÄ(ξ)
= 0. (5.52)

In addition, note that
ξv′(ξ)
v(ξ)

>
1

µÄ(ξ)
(5.53)

implies that ∆(0) < 0. At the same time, it is easily seen that for real ¼ the characteristic

function satisfies ∆(¼) → +∞ as ¼ → +∞. We conclude that when (5.53) is satisfied there is

a real positive characteristic value and hence the steady state is unstable.

We now show that fold bifurcations occur when (5.52) is satisfied. To that end, consider

the curve of solutions (γ(ξ), ξ) where γ(ξ) is defined by (5.46), which by (5.2) is the locus of

steady states in (γ, ξ)-plane. Differentiating this relationship with respect to ξ we find

γ′(ξ) = −γ(ξ)

ξ

(

1 + µξÄ′(ξ)
)

.
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However, Ä(ξ) = a/v(ξ) implies that

Ä′(ξ) = − av′(ξ)
v(ξ)2

= −v′(ξ)Ä(ξ)
v(ξ)

. (5.54)

Thus

γ′(ξ) = −γ(ξ)

ξ

(

1 − µξ
v′(ξ)Ä(ξ)

v(ξ)

)

=
µÄ(ξ)γ(ξ)

ξ

( ξv′(ξ)
v(ξ)

− 1

µÄ(ξ)

)

. (5.55)

Hence sgn(γ′(ξ)) = sgn
(

ξv′(ξ)
v(ξ)

− 1
µÄ(ξ)

)

, and γ′(ξ) changes sign when the left-hand side of

(5.52) changes sign, which ensures that fold bifurcations occur at these points in the (γ, ξ)-

plane.

While the above analysis appears similar to the constant delay case considered in Sec-

tion 5.2, the state-dependency of the delay introduces two significant differences.

First, with a state-dependent delay and increasing v, fold bifurcations occur when (5.52)

is satisfied, whereas in Section 5.2 with increasing g we found fold bifurcations when (5.27)

is satisfied. Thus for the constant delay case the fold bifurcations occur when the unimodal

function ξ 7→ f (ξ/θg, n, g−/g+) = ξg′(ξ)/g(ξ) is equal to 1, and so there is at most one pair of

fold bifurcations. In contrast, for the state-dependent delay case, fold bifurcations occur when

the unimodal function (5.35) is equal to 1/µÄ(ξ). For increasing v, the function ξ 7→ 1/µÄ(ξ) is

also an increasing function, thus the fold bifurcation occurs at the intersections of a unimodal

function with an increasing function. Clearly, such functions may have multiple pairs of

intersections and hence multiple pairs of fold bifurcations. From Proposition 5.1, for the Hill

function v(ξ) defined by (1.3) we have that ξ 7→ ξv′(ξ)/v(ξ) is monotonically decreasing for

ξ > θv(v−/v+)1/2m, so there will be at most one intersection with the increasing function

ξ 7→ 1/µÄ(ξ) on this interval. Thus if there are additional fold bifurcations they must occur

for ξ < θv(v−/v+)1/2m
< θv. In the current work, we will not look for these additional fold

bifurcations, nor will we show that they cannot exist. Even if it were possible to show that

they cannot exist when v is defined by (1.3), we would expect that additional fold bifurcations

could be induced by suitable modifications to the velocity nonlinearity.

A second difference between the state-dependent and constant delay cases concerns the

stability of the steady state near the fold bifurcation. Note that the argument after (5.39)

in Section 5.3 still applies to show that the steady state is stable if γ f µ and (5.39) holds.

Consequently, a fold bifurcation which occurs for γ < µ must involve a stable steady state

which loses stability at the fold bifurcation. However, this argument does not apply when

γ > µ, and we will see examples where stable steady states lose stability in a Hopf bifurcation

with γ > µ, and also fold bifurcations where the steady state is unstable on both sides of the

bifurcation (with different numbers of unstable characteristic values). This contrasts with the

constant delay case in Section 5.2 where we showed that a stable steady state can only lose

stability at a fold bifurcation.

As was the case when v was decreasing, Hopf bifurcations are governed by equations

(5.41) and (5.42). However, since v is increasing we now have A > 0. At a Hopf bifurcation

the right-hand side of (5.42) is strictly positive, and hence sin(ωÄ) > 0. Since sin(ωÄ) > 0

implies cos(ωÄ) < 1, it then follows that the left-hand side of (5.41) is also strictly positive,

and a Hopf bifurcation is only possible if the right-hand side is also strictly positive, that is if

γ > µ. (5.56)

As in Section 5.3, we find Hopf bifurcations by sequentially solving (5.46), (5.44) and

(5.45). Equation (5.44) has infinitely many solutions ωk(γ(ξ)) for k = 0, 1, . . . with ωkÄ ∈
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(2kπ, (2k + 1)π). Finally, to solve (5.45) with v′(ξ) > 0, we need to determine ξ that satisfies

f (ξ/θv, m, v−/v+) = rk(γ(ξ)) > 0 (defined in (5.47)). Usually we will take γ = γ(ξ), defined

by (5.46), but in the proposition below we consider rk(γ) for general γ.

Proposition 5.7. Let rk(γ) be defined by (5.47) and ωk satisfy ωkÄ ∈ (2kπ, (2k + 1)π) for integer

k g 0. Then for γ > µ it holds that rk(γ) > 0 and

1. rk(γ) is monotonically decreasing,

2. rk(γ) → +∞ as γ → µ and rk(γ) → 1/2 as γ → +∞,

3. rk(γ) f
(2k + 1)2(π/Ä+)2 + γ2

2γ(γ − µ)
.

Proof. The proof is elementary.

The following lemma will be needed in the proof of Theorem 5.9.

Lemma 5.8. For x > 0 let f (x) = 1
x (1 − e−x) then f (x) is strictly monotonically decreasing for

x > 0 with

1 = lim
x→0

f (x) > lim
x→+∞

f (x) = 0. (5.57)

Proof. The two limits in (5.57) are easily verified. To show the monotonicity of f (x) first

differentiate to obtain

f ′(x) = − 1

x2

[

1 − (x + 1)e−x
]

.

The assumption f ′(x) = 0 for some x > 0 yields ex = 1 + x which is impossible for x ̸= 0.

Using continuity we infer that on (0, ∞) there is no sign change of f ′(x), and that f ′(x) is

strictly monotonic for x > 0. Because of (5.57) f is decreasing.

The following theorem collects our results for the case of increasing v with constant g.

Theorem 5.9. Let ξ be a steady state of the DDE (1.1), (1.2) with g(ξ) = g± constant, and v

monotonically increasing, so v− < v+, and the state-dependent delay Ä defined by (1.3) evaluated at

the steady state is Ä(ξ) = a/v(ξ). Then

1. If ξv′(ξ)
v(ξ)

<
1

Ä(ξ)max{µ,γ} then the steady state ξ is asymptotically stable, while if ξv′(ξ)
v(ξ)

>
1

µÄ(ξ)
it

is unstable.

2. For any fixed ξ ̸= θv let γ = γ(m, ξ) be the value of γ such that (5.2) is satisfied and hence ξ is

a steady state. Or, for any fixed γ with 0 < γ < γ4 or γ > γ3 let ξ = ξ(m, γ) satisfy (5.2) and

hence be a steady state. Then ξ is asymptotically stable for all m sufficiently large.

3. The steady state ξ is asymptotically stable if m f 1/(Ä(ξ)max{µ, γ}), or both m >

1/(Ä(ξ)max{µ, γ}) and 1 g v−
v+ >

(

1 − 2
mÄ(ξ)max{µ,γ}+1

)2
.

4. For any fixed m > 0, and for ξ k θv, or equivalently for 0 < γ j γ4, the steady state is

asymptotically stable. For any fixed m > 1, and for 0 < ξ j θv or equivalently for γ k γ3 the

steady state is asymptotically stable.
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5. If m > 1/(µÄ+) and v−
v+ <

(

1 − 2
1+mµÄ+

)2
then there exist ξ− < θv(v−/v+)1/2m

< ξ+ with

γ(ξ−) < γ(ξ+) such that as γ is varied there is a branch of steady states with ξ < ξ− and

γ > γ(ξ−) and another branch with ξ > ξ+ and γ < γ(ξ+). For γ ∈ (γ(ξ−), γ(ξ+)) these

two branches of steady states co-exist with a branch of unstable steady states which exists between

fold bifurcations at (ξ, γ) = (ξ−, γ(ξ−)) and (ξ, γ) = (ξ+, γ(ξ+)).

6. Let µ < γ3.

(a) For any k > 0, for all m = m(k) sufficiently large there are two families of (at least) k + 1

Hopf bifurcations as γ is varied. In the first family, the characteristic values ¼j = ³j ± iωj

with ωjÄ ∈ (2jπ, (2j + 1)π) for j = 0, 1, . . . , k cross the imaginary axis from left to right

as γ is increased, while in the second family they cross the imaginary axis from right to left.

For all j sufficiently large these bifurcations occur on the branch of unstable steady states

between the fold bifurcations identified in (5).

(b) Let γ ∈ (max{γ4, µ}, γ3) be fixed. Then as m is increased there is an infinite sequence

of Hopf bifurcations where the real part of ¼k = ³k ± iωk becomes positive with ωkÄ ∈
((2kπ, (2k + 1)π). All but finitely many of these bifurcations are located on the branch of

unstable steady states between the fold bifurcations.

Proof. The last part of (1) is shown after (5.53). To establish asymptotic stability we show that

Re(¼) < 0 for all of the characteristic values that solve (4.10). From ξv′(ξ)/v(ξ) < 1/µÄ(ξ)

and (5.51) it follows immediately that ¼ = 0 is not a characteristic value. To show that ¼ > 0

is not a characteristic value, evaluating the integral in (5.50) we obtain

∆(¼) = ¼ + γ − (1 − e−¼Ä(ξ))
A

¼
(¼ + µ).

But

A = γ
ξv′(ξ)
v(ξ)

<
γ

Ä(ξ)max{µ, γ} ,

hence

∆(¼) > ¼ + γ − 1

¼Ä(ξ)
(1 − e−¼Ä(ξ))

γ

max{µ, γ} (¼ + µ) > ¼ + γ − γ

max{µ, γ} (¼ + µ),

where the last inequality follows from Lemma 5.8. Now there are two cases to consider. If

γ > µ then

∆(¼) > ¼ + γ − (¼ + µ) = γ − µ > 0.

On the other hand, if γ f µ then

∆(¼) > ¼ + γ − γ

µ
(¼ + µ) = ¼

(

1 − γ

µ

)

g 0.

In both cases the characteristic function satisfies ∆(¼) > 0 for all ¼ > 0 so there are no real

positive characteristic values.

To complete the proof of (1) it remains to show that there are no complex characteristic

values ¼ = ³ + iω with ³ g 0 and ω > 0. For the case γ f µ the proof is the same as in

Section 5.3 (where (5.39) holds independent of the sign of v′(ξ)). For the remaining case, if
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γ > µ the assumption of the theorem reads ξv′(ξ)
v(ξ)

<
1

γÄ(ξ)
. Let ¼ = ³ + iω be a characteristic

value with ³ g 0 and ω > 0 then

|Ae−³Ä(ξ) sin ωÄ(ξ)
[

(³ + µ)2 + ω2
]

| f AωÄ(ξ)
[

(³ + µ)2 + ω2
]

= γ
ξv′(ξ)
v(ξ)

ωÄ(ξ)
[

(³ + µ)2 + ω2
]

< ω
[

(³ + µ)2 + ω2
]

< ω
(

(2³ + γ)µ + ³2 + ω2
)

.

Consequently (5.37) is violated, and so there is no such characteristic value. Thus ³ < 0 for all

characteristic values and the steady state is asymptotically stable.

Statement (2) is derived similarly to Theorem 5.3(4), by first using (5.46) and (5.33) to show

that e−µÄ−
< e−µÄ(ξ)

< e−µÄ+
implies that γ4/γ < ξ/θv < γ3/γ, then applying Proposition 5.1

and (1).

Statement (3) follows from (1) using Proposition 5.1 (point 4), since

ξv′(ξ)
v(ξ)

f f (r1/2m
v , m, rv) =

m(1 − r1/2
v )

1 + r1/2
v

,

where rv = v−/v+ ∈ (0, 1). Statement (4) also follows from (1), using Proposition 5.1 (point

1), similar to Theorem 5.3 and Theorem 5.6, where for the second part of (4), m > 1 ensures

that

f (ξ/θv, m, v−/v+)γ(ξ) =
m(1 − v−/v+)(ξ/θv)m

(

1 + (ξ/θv)m
)(

v−/v+ + (ξ/θv)m
)

´g±

ξ
e−µÄ(ξ) → 0 as ξ → 0.

To show (5), note that the parameter constraints ensure that f (ξ/θv, m, v−/v+) = ξv′(ξ)
v(ξ)

>

1
µÄ(ξ)

when ξ = θv(v−/v+)1/2m. Then since f (ξ/θv, m, v−/v+) → 0 as ξ → 0 and as ξ → ∞ it

follows that there exists ξ+ > θv(v−/v+)1/2m and ξ− < θv(v−/v+)1/2m which both solve (5.52).

We take ξ− to be the largest ξ which solves (5.52) with ξ− < θv(v−/v+)1/2m, while as discussed

after (5.55), ξ+ is unique. Then it follows from (5.52), (5.55) and the adjacent arguments that

there is a pair of fold bifurcations at (ξ, γ) = (ξ−, γ(ξ−)) and (ξ, γ) = (ξ+, γ(ξ+)), which are

connected by a branch of unstable steady states, and no other fold bifurcation (besides ξ = ξ+)

with ξ > ξ−. For ξ > ξ+, it follows from (5.55) that γ′(ξ) < 0 and hence this branch exists for

ξ ∈ (ξ+, ∞) and γ ∈ (0, γ(ξ+)). If γ(ξ+) < µ then the whole of this branch of steady states is

stable, otherwise by (1) it is stable for all ξ sufficiently large, given by condition γ(ξ) < µ.

For the branch which exists for ξ ∈ (0, ξ−), it follows from (5.46) that γ(ξ) → +∞ as ξ → 0.

Hence γ(ξ) takes all values in [γ(ξ−),+∞) for ξ ∈ (0, ξ−). However, as discussed after (5.55),

it is possible for this branch to have additional fold bifurcations. If there are no additional fold

bifurcations and γ(ξ−) < µ then the branch of steady states is stable for γ ∈ (γ(ξ−), µ). Also,

if m > 1 by (4) it is stable for all ξ sufficiently small, or, equivalently, for all γ(ξ) sufficiently

large.

To show (6), first consider the case when γ(θv) defined by (5.48) satisfies γ(θv) > µ. If

m > 2
1 + (v−/v+)

1 − (v−/v+)

(

(2k + 1)2(π/Ä(θv))2 + γ(θv)2

2γ(θv)(γ(θv)− µ)

)

, (5.58)
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then

f (1, m, v−/v+) =
m(1 − v−/v+)

2(1 + v−/v+)
>

(

(2k + 1)2(π/Ä(θv))2 + γ(θv)2

2γ(θv)(γ(θv)− µ)

)

g rj(γ(θv)), j = 0, 1, . . . , k.

Here the equality comes from the definition of f , the strict inequality from (5.58) and the last

inequality follows from a similar argument as in the proof of Proposition 5.7 (point 3), but

using the actual value of Ä(θv) in the inequality, rather than the bound Ä+.

With this inequality as the starting point, increasing ξ away from θv we have

limξ→∞ γ(ξ) = 0. But rj(γ(ξ)) and f (ξ/θv, m, v−/v+) are both continuous functions of ξ with

limξ→∞ rj(γ(ξ)) = ∞ and limξ→∞ f (ξ/θv, m, v−/v+) = 0. Consequently for each j = 0, 1, . . . , k

there exists a ξ such that f (ξ/θv, m, v−/v+) = rj(γ(ξ)).

Similarly, for ξ decreasing from θv (see also the proof of Theorem 5.6) it follows for each

j = 0, 1, . . . , k that there exists a ξ such that f (ξ/θv, m, v−/v+) = rj(γ(ξ)). As in the proof of

Theorem 5.6 this defines the required Hopf points for the two families of k + 1 Hopf bifurca-

tions.

This argument fails in the more delicate case where γ4 < γ(θv) f µ < γ3. In this case

fix γ ∈ (µ, γ3), and consider the behaviour as m → ∞. Since γ(ξ+) → γ4 and γ(ξ−) → γ3,

it follows that γ ∈ (γ(ξ+), γ(ξ−)) for all m sufficiently large. Then since γ(ξ) defined by

(5.46) is monotonically increasing for ξ ∈ (ξ−, ξ+), this function is locally invertible and we

can instead consider ξ = ξ(γ) as a function of γ. From here the argument proceeds as in the

proof of Theorem 5.6(6).

We now present several examples to illustrate the complex dynamics allowed by Theo-

rem 5.9. There are essentially three main cases to consider depending on whether µ falls

above, below or within the interval (γ4, γ3). As in Section 5.3 we start with the simplest case

where there are no Hopf bifurcations.

Case 1: γ4 < γ3 < µ. This is illustrated in Figure 5.10. Panel (a) shows one-parameter

continuations of the steady-states in γ for several fixed values of m, along with the limiting

case (1.7), while panel (b) shows the two-parameter continuation of fold bifurcations of steady-

states in the (γ, m) plane. We see that for all m sufficiently large there is a pair of fold

bifurcations at (ξ, γ) = (ξ−, γ(ξ−)) and (ξ, γ) = (ξ+, γ(ξ+)), with (ξ−, γ(ξ−)) → (θv, γ4) and

(ξ+, γ(ξ+)) → (θv, γ3) as m → ∞. As required by Theorem 5.9, the steady state is always

unstable between the fold bifurcations, while we observe it to always be stable otherwise.

Similar to the analysis in Section 5.2 that led to (5.28), imposing max{h′(x)} g 0 leads to

the necessary condition

γ f −´µÄ′(ξ)e−µÄ(ξ)g± (5.59)

for the coexistence of three steady states. However, the algebra to turn this into an explicit

condition (compare (5.59) with (5.28)) is challenging with a state-dependent delay (5.1), so

instead we apply this condition numerically. The red dash-dotted curve in Figure 5.10(b)

depicts the condition (5.59). For any fixed m, this curve provides an upper bound on γ for

the existence of fold bifurcations and hence multiple coexisting steady states. By the same

argument as in Section 5.2 the cusp bifurcation must lie on this curve. This can be seen in

Figure 5.10(b) where the cusp point (γ, m) = (0.4844, 5.0002) lies on this bounding curve.

Because of (5.56), there can be no Hopf bifurcations for γ < µ, and since the fold bifur-

cations all occur for γ < µ, there can be no Hopf bifurcations between the folds, as seen
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Figure 5.10: Bifurcation diagram of (1.1)–(1.2) with (g ´, v ↑) and parameters ´ = 1.4,
µ = 0.8, g− = g+ = 1, γ = θv = a = 1, v− = 0.5 and v+ = 1. By (5.33) this implies
γ4 = 0.2827 < γ3 = 0.6291 < µ (Case 1). (a) One parameter continuation of the steady
state in γ for the velocity functions in (1.7) and in (1.3) with different fixed values of m.
For m < 5 the steady state is always stable. For m > 5 it is unstable between two fold
bifurcations, and for large m approaches the limiting case (1.7) (denoted by m = ∞ in
the figure). (b) Two-parameter continuation of the fold bifurcations in the (γ, m)-plane,
with a cusp point at (γ, m) = (0.4844, 5.0002). The red dash-dotted curve denotes the
bound on the fold bifurcations given by (5.59).

in Figure 5.10. For γ > µ, Theorem 5.9 ensures that the steady state is stable for γ suffi-

ciently large or for m sufficiently large. In Figure 5.10 we see that actually there are no Hopf

bifurcations at all and the steady state is stable for all values of γ > µ and for all m > 0.
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Figure 5.11: One parameter bifurcation diagrams of (1.1)–(1.2) with (g ´, v ↑) for
varying γ and smooth increasing v defined by (1.3), with the exponent m in the velocity
nonlinearity defined by (a) m = 50 and (b) m = 2. The other parameters are taken to
be ´ = 1.4, µ = 0.2, g− = g+ = 1, θv = 1, a = 1, v− = 0.1 and v+ = 2. By (5.33) this
implies γ4 = 0.1895 < µ < γ3 = 1.2668 (Case 2). Solid lines represent stable objects
(with stable steady states shown in green), and dashed lines represent unstable objects
(with unstable steady states shown in green, black or grey depending on the number of
unstable characteristic values). In (a) a branch of unstable periodic orbits is represented
by the 2-norm (5.60) of the periodic solution (red dashed line in inset), while in (b) red
and blue lines represent the maximum and minimum values of x(t) on the periodic
orbit.
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Case 2. The case µ ∈ (γ4, γ3) is illustrated in Figures 5.11–5.14. Figure 5.11 shows two

one-parameter continuations in γ for different values of m. At first glance, Figure 5.11(a)

for which m k 0, looks much like the corresponding constant delay case with increasing g

illustrated in Figure 5.4(b) in Section 5.2. In both of these examples there are two fold bifur-

cations, leading to an interval of bi-stability of steady states, and Hopf bifurcations between

the fold bifurcations leading to unstable periodic orbits. However, as shown in the inset of

Figure 5.11(a), for the state-dependent delay with µ < γ3 the upper branch of stable steady

states, which exists for x > θv, loses stability in a (subcritical) Hopf bifurcation, and not at the

fold bifurcation. Recall that for the constant delay case considered in Section 5.2 we showed

that the steady-state could only lose stability in a fold bifurcation.

Figure 5.11(b) illustrates the dynamics for a much smaller value of m, but with the other

parameters unchanged. In this case m is too small for fold bifurcations to occur, but we still

find a pair of Hopf bifurcations, one supercritical and one subcritical, leading to a stable

periodic orbit, and also a very narrow interval of bistability of this periodic orbit and a stable

steady state between the subcritical Hopf bifurcation and a saddle-node of periodic orbits

bifurcation. This is quite different from the dynamics seen before where, for decreasing g or

v respectively in Sections 5.1 and 5.3, only supercritical Hopf bifurcations were observed, and

for increasing g in Section 5.3 where Hopf bifurcations only occur between the pair of fold

bifurcations.

The branches of periodic orbits in Figure 5.11(a) and (b) are represented differently. In

Figure 5.11(a) we plot the L2 norm of the periodic solution of period T, defined as

∥x∥2 =

(

1

T

∫ T

t=0
|x(t)|2dt

)1/2

. (5.60)

In contrast, in Figure 5.11(b) we display the branch of periodic orbits by plotting both max x(t)

and min x(t) over the periodic orbit, which clearly shows the amplitude of the periodic solu-

tion. Both representations can be useful on bifurcation diagrams since at a Hopf bifurcation

all three expressions are equal to the steady state value and therefore the periodic orbits em-

anate from the steady states at Hopf bifurcations. However, the representation (5.60) has the

additional property that ∥x∥2 → xs as the solution approaches a homoclinic orbit to a saddle

steady state xs. An example of this is seen in Figure 5.11(a) where the branch of unstable

periodic orbits emanating from the subcritical Hopf bifurcation appears to terminate in a ho-

moclinic bifurcation at the middle steady state. We will investigate homoclinic bifurcations

below, and so we will mainly use the L2 norm (5.60) to represent periodic orbits.

To investigate this example further in Figure 5.12 we present two-parameter continuations

of the bifurcations in γ and m, with all the other parameter values the same as in Figure 5.11.

Figure 5.12(a) shows how the γ-m parameter plane is divided into regions where there are

0, 1 or 2 stable steady states. These regions are partly bounded by a curve of fold bifurcations,

but mainly by a curve of Hopf bifurcations, with the two bifurcation curves meeting at a

Bogdanov–Takens (BT) bifurcation point, at which the characteristic equation has a double

zero characteristic value.

Figure 5.12(b) shows the locus of the fold bifurcations, along with codimension-two bi-

furcations which occur on this branch. Different line types/colours are used to indicate the

number of unstable characteristic values (not counting the zero characteristic value associated

with the fold bifurcation itself). Since (ξ+, γ(ξ+)) → (θv, γ4) as m → ∞, and µ > γ4, it follows

that γ(ξ+) < µ for all m sufficiently large. As explained before Proposition 5.7, these fold

bifurcations which occur for γ < µ always involve a stable steady state. The fold bifurcations
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Figure 5.12: Two parameter (Case 2) bifurcation diagrams of (1.1)–(1.2) with (g ´, v ↑)
and smooth increasing v defined by (1.3). The bifurcation parameters are γ and m, with
the other parameters for all the panels taken as stated in the caption to Figure 5.11. (a)
The parameter space is divided into regions where there are 0, 1 or 2 stable steady states
as indicated. These regions are partly bounded by a curve of Hopf bifurcations (black),
and partly by a curve of fold bifurcations (blue). These two curves meet in a Bogdanov–
Takens (BT) bifurcation point at (γ, m) = (1.1795, 3.0209). (b) Two-parameter continua-
tion of the fold bifurcations only. The fold curve is drawn according to the number of
characteristic values with positive real part; solid blue for zero, dashed blue for one, and
dashed light blue for three. The dashed vertical blue lines denote γ = γ3 and γ = γ4,
given by (5.33), the location of the fold bifurcations in the limiting case as m → ∞. The
red dash-dotted curve denotes the bound on the fold bifurcations given by (5.59). There
is a cusp point at (γ, m) = (2.0321, 2.1058). The same BT point is detected again as well
as two fold-Hopf points at (γ, m) = (1.7153, 2.4612) and (γ, m) = (1.9354, 2.1748). (c)
Continuation of the branch of Hopf bifurcations emanating from the BT point (in black),
with the branch of fold bifurcations shown in blue for scale. These Hopf bifurcations
always involve a stable steady state that loses stability, either in a supercritical Hopf
bifurcation to a stable periodic orbit (the solid black curve), or in a subcritical Hopf
bifurcation to an unstable periodic orbit (the dotted-dashed black curve). Two Bautin
bifurcations at (γ, m) = (1.0721, 4.6069) and (5.3352, 1.2929) where the criticality of the
Hopf bifurcation changes are denoted by red stars. (d) Continuation of the branch of
Hopf bifurcations which passes through both fold-Hopf points. This bifurcation curve
only involves unstable steady states. The dashed black curve represents Hopf bifur-
cations with one unstable eigenvalue, and the dashed gray curve with two unstable
eigenvalues. The change in number of eigenvalues with positive real part occurs at the
fold-Hopf points.
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where a stable steady state is created/destroyed are shown as the solid blue segment of the

curve of fold bifurcations which is asymptotic to γ = γ4 in Figure 5.12(b). In contrast, the part

of the branch asymptotic to γ = γ3 as m → ∞ consists of fold bifurcations of two unstable

steady states (with different numbers of unstable characteristic values). The BT point, already

seen in Figure 5.12(a), separates these two parts of the branch of fold bifurcations. Conse-

quently, only part of the branch of fold bifurcations delineates the boundary between regions

of parameter space with different numbers of stable steady states. This contrasts starkly with

the constant delay case considered in Section 5.2 and the state-dependent case with µ > γ3

(shown in Figure 5.10), for both of which steady states only lose stability in a fold bifurcation.

Figure 5.12(c) shows the Hopf curve which terminates at the BT point. We verified nu-

merically that at all points on this curve the Hopf bifurcation is from a stable steady state

that loses stability. Close to the BT point, and at the other end of this branch as m → ∞, the

Hopf bifurcation is subcritical leading to an unstable periodic orbit. But on a large segment

of this curve (and in particular for the smallest values of m on the curve) the Hopf bifurcation

is supercritical leading to a stable periodic orbit. Two Bautin bifurcation points, where the

Hopf bifurcation changes criticality, separate the sub and supercritical segments of the curve.

Figure 5.12(a) shows the number of stable steady states in the γ-m parameter plane, and just

the parts of the bifurcation curves that delineate these regions. The region with no stable

steady states contains a stable periodic orbit (because of the supercritical Hopf bifurcation on

the left-side of this region).

Figure 5.12(d) shows another curve of Hopf bifurcations for the same problem. This curve

passes through the two fold-Hopf bifurcation points seen on the curve of fold bifurcations

in Figure 5.12(b). We notice that while these points are close together on the branch of fold

bifurcations (they are both close to, but on different sides of, the cusp point), as the inset

shows, they are on different legs of the branch of Hopf points, and hence far from each other

on this branch of Hopf bifurcations. The codimension-two fold-Hopf bifurcation points are

of interest, as such bifurcations are impossible for the constant delay model of Section 5.2.

However the Hopf bifurcations seen in this example all generate unstable periodic orbits

bifurcating from unstable steady states, and we will not study them further.

In Figure 5.13 we continue our study of the dynamics seen in Figures 5.11 and 5.12 by

showing one-parameter continuations of the dynamics and bifurcations as γ is varied for

different fixed values of the steepness parameter m in the Hill function (1.3). For m small there

is a unique stable steady state for each value of γ and no bifurcations occur. For m > 0.8355

there is still a unique steady state, but it is unstable between a pair of super-critical Hopf

bifurcations, where a branch of stable periodic orbits exists. This is illustrated in Figure 5.13(a)

for m = 1.2, where we see that the period of the periodic orbits is monotonically increasing

from the left Hopf point to the right Hopf point.

Increasing m further for m > 1.2929 we pass the lower Bautin bifurcation seen in Fig-

ure 5.12(c) and the right Hopf point becomes subcritical. The branch of periodic orbits is still

contiguous, but a fold bifurcation of periodic orbits born in the Bautin bifurcation divides the

branch of periodic orbits into an upper stable branch and a lower unstable branch. The period

is no longer monotonically increasing on the branch of periodic orbits, but attains a maximum

period near to the fold bifurcation of periodic orbits, but on the unstable branch of periodic

orbits (as illustrated for m = 2 in Figure 5.13(b)).

For m > 2.1058 the cusp bifurcation seen in Figure 5.12(b) introduces two fold bifurcations

of steady states (seen for m = 2.15 in Figure 5.13(c)). As m is increased further the maximum

period seen on the branch of periodic orbits increases dramatically and the point where the
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Figure 5.13: Case 2 one-parameter bifurcation diagrams for (g ´, v ↑) with varying γ
and different fixed values of m, with the other parameters the same as in Figures 5.11
and 5.12. Solid lines represent stable objects including stable steady states (in green)
and stable periodic orbits (represented by the 2-norm (5.60)). Dashed lines represent
unstable objects including unstable steady states (depending on the number of eigen-
values with positive real part, green for one, black for two and gray for three and
more) and unstable periodic orbits (represented by 2-norm (5.60)). Hopf bifurcations
are marked by blue stars, fold bifurcations of steady states by black squares, and ho-
moclinic bifurcations by red circles. For the branch of periodic orbits, Tl is the period at
the left Hopf bifurcation, and Tr at the right Hopf bifurcation. The point on the branch
where the largest period, Tmax, occurs is marked by a brown diamond.
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maximum period occurs approaches the intermediate steady state (see Figure 5.13(d)).

Comparing panels (d) and (e) of Figure 5.13 suggests that (1.1) undergoes a codimension-

two global bifurcation between these panels. The branches of periodic orbits emanating from

the Hopf bifurcations where the steady states lose stability no longer join up in panels (e)

and (f). Instead, each branch ends at a homoclinic bifurcation to the intermediate steady state

(at different values of the parameter γ). The panels shown suggest, but do not prove, that

as m is increased the branch of periodic orbits approaches the fold point with Tmax → ∞ at

the first point where a homoclinic bifurcation occurs. Further evidence is presented in the

two-parameter continuation of Figure 5.14(a) where the homoclinic curves seem to approach

the curve of folds. For larger values of m > 2.3, codimension-one homoclinic bifurcations to

the intermediate saddle steady state are found. Examples of dynamical systems with a single

branch of homoclinic bifurcations terminating at a fold bifurcation of steady states can be

found in [1, 35]. Our example is somewhat different from those, as we have two branches of

homoclinic bifurcations.

The homoclinic bifurcation on the branch emanating from the lower Hopf point in Fig-

ures 5.13(e) and (f) does not persist for large m, but instead the homoclinic bifurcation and the

Hopf bifurcation itself move towards the fold bifurcation and terminate at the BT-point found

previously. This is illustrated in a two-parameter continuation in Figure 5.14(a), which shows

the branch of fold bifurcations of steady states passing through the BT point, next to a branch

of Hopf bifurcations, then a branch of homoclinic bifurcations, the latter two branches both

terminating at the BT point tangential to the branch of fold bifurcations at that point. This

is well-known behaviour for Bogdanov–Takens bifurcations, and can be seen in the normal

form diagram for this bifurcation in Section 8.4 of [35]. Bogdanov–Takens bifurcations have

recently been analysed for constant delay DDEs in [6] (where Figures 5 and S8 resemble the

part of Figure 5.14(a) close to the BT point), but we are not aware of any systematic study of

them in state-dependent DDE problems.

While in the classical unfolding the bifurcation curves extend arbitrarily far from the BT

point, in our example in Figure 5.14(a) both the branch of homoclinic orbits and the branch of

fold bifurcations terminate. The branch of fold bifurcations terminates at a cusp bifurcation

with the other branch of fold bifurcations. The proximity of the cusp point to the BT point

suggests that our system may be close to a codimension-three Bogdanov–Takens–cusp (BTC)

point. While we are not aware of a systematic study of this bifurcation, they have been

observed in a neuron model in [1], and some of the bifurcation structures that we find resemble

those in [1].

The homoclinic bifurcation on the branch emanating from the upper Hopf point in Fig-

ures 5.13(e) and (f) is also shown in Figure 5.14(a) and persists for arbitrary large values of m

(it was already seen with m = 50 in Figure 5.11(a)), but there is a change in stability on this

branch for m > 4.6069 due to the Bautin bifurcation seen in Figure 5.12(c).

The maximum period of orbits from the one-parameter continuations described in Fig-

ure 5.13 are also shown as a curve in two-parameter space in Figure 5.12(a). This curve

approaches the right most curve of fold bifurcations with the period becoming unbounded as

it does so. Our computations of the two branches of homoclinic bifurcations also terminate

close to this point. We conjecture that the co-dimension two of the homoclinic orbits already

described in Figure 5.13 that occurs where the branch of maximum period orbits terminates

will occur on the branch of fold bifurcations. This would be consistent with the previously

mentioned examples of curves of homoclinic bifurcations which terminate at fold bifurcations

[1, 35].
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Figure 5.14: (a) Bifurcation diagram near the Bogdanov–Takens point shown in Fig-
ure 5.12 for (g ´, v ↑) shows a branch of Hopf bifurcations and a branch of homoclinic
bifurcations emerging from the BT point. The dashed brown line denotes the point in
parameter space where the largest period was encountered on the branches of periodic
orbits shown in Figure 5.13, with the period shown in the lower inset. The upper in-
set shows the ordering of the curves emerging from the BT point. (b) Profile of the
unstable periodic orbit with parameters ´ = 1.4, µ = 0.2, g− = g+ = 1, m = 2.35,
γ = 1.7550, θv = 1, a = 1, v− = 0.1, and v+ = 2. The blue curve shows the periodic
orbit with period T = 183. In the inset the part of the periodic orbit (in blue) near
to the intermediate steady state is overlayed by a linear approximation to the dynam-
ics in red (see text for details). (c) Projection of the periodic orbit from (b) onto the
space (x(t), x(t − Ä/2), x(t − Ä)) where Ä = 5.1926 is chosen to be the delay at the in-
termediate steady state represented by the orange dot. The solid black line represents
the dominant one-dimensional linear stable manifold associated with the characteris-
tic value −0.045. The parallelogram denotes the plane associated with the dominant
unstable characteristic values ¼ = 0.0184 ± 1.4738i.

In Figure 5.14(b) and (c) we display one of the periodic orbits for m = 2.35 from the lower

branch of periodic orbits shown in Figure 5.13(e). The orbit is shown close to the homoclinic

bifurcation at the end of the branch, for which the period is large. Figure 5.14(c) shows a

phase space projection of the part of the orbit close to the intermediate steady state. In this

projection the orbit approaches the saddle steady state from above close to the dominant

stable direction (associated with the characteristic value with negative real part closest to zero

which is ¼ = −0.045), but with a growing oscillation about this point in the plane defined

by the dominant unstable direction (associated with the characteristic value with positive

real part closest to zero which is ¼ = 0.0184 ± 1.4738i). To further confirm that this linear
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behaviour is determining the dynamics near to the intermediate steady state x∗, in the inset

of Figure 5.14(b) we plot in red the curve

x(t) = x∗ + k1e−0.045t + k2e0.0184t cos(1.4738t),

for suitably chosen coefficients k j, and observe that it overlays the periodic solution over most

of the time interval shown. This behavior is similar to that associated with Shilnikov type

complex dynamics, but in contrast with the construction of a chaotic attractor of Shilnikov

type, the periodic orbit pictured in Figure 5.14(b) and (c) is unstable.

x

t

γ

T

γ

(a) (b)x

t

γ

T

γ

Figure 5.15: Profiles and periods of periodic orbits on the branches that approach ho-
moclinic bifurcations in Figure 5.13(e) with m = 2.35 for (a) the unstable periodic orbits
on the branch emanating from the subcritical Hopf bifurcation at γ = 1.734, and (b) the
stable periodic orbits on the branch emanating from the supercritical Hopf bifurcation
at γ = 1.240.

Figure 5.15(a) and (b) shows the profiles and periods on the two branches of periodic

solutions seen in Figure 5.13(e). Comparing these two panels we see that the periodic orbits

on the two branches are very different, with the unstable orbit in Figure 5.15(a) having a small

amplitude and with x(t) below the steady state value along the whole orbit on the entire

branch. In contrast stable periodic orbits shown in panel (b) have much larger amplitude.

Case 3: It remains to consider the case where µ < γ4 < γ3. Making a small change to

the parameters considered in the example in Figures 5.11 to 5.15 by changing the value of ´

from ´ = 1.4 to ´ = 2 but leaving the values of the other parameters unchanged, results in

µ = 0.2 < γ4 = 0.2707 < γ3 = 1.8097. However, although µ < γ4 in this case µ is close to γ4

and the dynamics and bifurcations are very similar to those shown in Figure 5.11, so we do

not show them here. Instead in Figure 5.16 we consider an example with µ j γ4 < γ3.

Theorem 5.9 suggests that stability may be lost in either a Hopf or a fold bifurcation,

but for the example in Figure 5.16 with µ j γ4 we see that the steady state always loses

stability at a Hopf bifurcation. Unlike the previous example, there is no longer a BT point,

and for all m sufficiently large the steady state loses stability in a subcritical Hopf bifurcation

close to the fold bifurcation, resulting in a short branch of periodic orbits that terminates in

a homoclinic bifurcation to the intermediate steady state created at the fold bifurcation, as

illustrated for m = 50 in Figure 5.16(b)–(d). For m small, below the cusp bifurcation at m =

5.0007, γ = 0.7572, the Hopf bifurcations are supercritical leading to a branch of stable periodic

orbits between the Hopf bifurcations, similar to Figure 5.13(a). As seen in Figure 5.16(b) the

Hopf bifurcations and homoclinic points are very close to the fold bifurcations. This makes
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Figure 5.16: Bifurcation diagrams of (1.1)–(1.2) with (g ´, v ↑) and parameters ´ = 1,
µ = 0.1, g− = g+ = 1, θv = 1, a = 2, v− = 0.2 and v+ = 1. By (5.33) this implies µ <

γ4 = 0.3679 < γ3 = 0.8187 (Case 3). (a) The limiting case with v defined by (1.7). The
stable steady state is shown as a green solid line, and the singular steady state as a black
dashed line. (b) With smooth velocity nonlinearity v defined by (1.3) with m = 50. Solid
lines represent stable steady states (in green). Dashed lines represent unstable objects
including unstable steady states (depending on the number of eigenvalues with positive
real part, green for one, and gray for three and more) and unstable periodic orbits
(represented by 2-norm (5.60)). (c) and (d) Profiles and periods of the periodic orbits on
the branches shown in (b) that terminate at homoclinic bifurcations and emanate from
the subcritical Hopf bifurcations at (c) γ = 0.4175 and (d) γ = 0.758. (e) Two-parameter
continuations in m and γ of the fold and the Hopf bifurcations with other parameters
as above. The dashed vertical blue lines denote γ = γ3 and γ = γ4 the location of the
fold bifurcations in the limiting case as m → ∞. The red dash-dotted curve denotes
the bound on the fold bifurcations. (f) Two parameter continuation of the curve of
Hopf bifurcations, with the two Bautin bifurcation points and the criticality of the Hopf
bifurcation indicated. The Hopf bifurcations delineate the parameter space into regions
where there is 0, 1 or two stable steady states, as indicated. Also shown in the insets is
the maximum period curve (similar to Figures 5.13 and 5.14), which terminates at the
point marked Fh2 with infinite period.
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numerical continuation of the branches of homoclinic bifurcations very delicate, and so we

do not show the curves of homoclinic bifurcations in the two parameter continuations in

Figure 5.16(e) and (f). Instead in the insets in Figure 5.16(f) we show the curve formed by

the periodic orbits of maximum periods from the one-parameter continuations in γ; as was

done in case (b) in Figures 5.13 and 5.14. This curve is born from the Bautin bifurcation point

and terminates at the point labelled Fh2 on the curve of fold bifurcations, where the period

becomes infinite. We expect two curves of homoclinic bifurcations to be born at this point,

and to persist for arbitrarily large m (as seen in (b) for m = 50).

5.5 Summary

We briefly summarize the results of Section 5. We have separately studied cases with constant

delay and decreasing (Section 5.1) and increasing (Section 5.2) function g, and then the cases

with constant g but with state dependent delay with velocity v decreasing (Section 5.3) or

increasing (Section 5.4). These results can be compared between constant and state-dependent

cases but with the same type of nonlinearity (Section 5.1 and 5.3, and Section 5.2 and 5.4), or

between the two types of nonlinearity with the same type of delay (Section 5.1 and 5.2, and

Section 5.3 and 5.4), as we will do below.

In general, the dynamics with state-dependent delay is significantly richer than that of the

corresponding constant delay case. For decreasing non-linearity (Section 5.1 vs Section 5.3)

in the constant delay case there is a range (γ1, γ2) of the parameter γ where the unique

equilibrium undergoes a series of Hopf bifurcations as the Hill coefficient n → ∞ (Figure 5.2).

In contrast, in the state dependent case a new constraint becomes important as we show that

Hopf bifurcations can only occur for γ < µ. Therefore, if the µ is below the range (γ3, γ4)

the unique equilibrium is always stable (Figure 5.6), when it is above (γ3, γ4) we recover the

result from Section 5.1 (Figure 5.8), and when µ ∈ (γ3, γ4), the result of Section 5.1 is confined

to values of γ ∈ (γ3, γ4) ∩ {γ < µ} = (γ3, µ); see Figure 5.7.

When the feedback nonlinearity is increasing with constant delay (Section 5.2) the system

has multiple equilibria for γ in an interval which approaches (γ2, γ1) in the limit as the

feedback nonlinearity approaches a piecewise constant function. The stable equilibria always

lose stability at fold bifurcations at the ends of the interval, leading to bistability of steady

states for this interval of γ values. Hopf bifurcations can only occur on the middle branch of

unstable equilibria.

As documented in Section 5.4, this scenario changes dramatically for state dependent de-

lays. For increasing v there is again a constraint and we show that Hopf bifurcations can only

occur for γ > µ. Consequently if µ > γ3 there are no Hopf bifurcations. On the other hand,

when µ < γ3 new dynamics are observed. In this case stable equilibria can now lose stability

in a Hopf bifurcation and the interaction of the Hopf and fold bifurcation curves in two-

parameter continuation in γ and the Hill coefficient leads to existence of Bogdanov–Takens

points, fold-Hopf points and a possible double homoclinic bifurcation. This last scenario,

documented in Figure 5.13, suggests that a curve of periodic orbits connecting subcritical and

supercritical Hopf bifurcations of the stable equilibria, collides with a fold bifurcation where

the equilibrium also admits a homoclinic orbit. Continuation of the curve of periodic orbits

in two-parameter space suggests that the curve splits into two curves of periodic orbits each

terminating at a homoclinic bifurcation at the middle equilibrium branch, but at different val-

ues of parameter γ. A less dramatic result, but perhaps more important for applications, is

the observation of bistability between a stable fixed point and a stable periodic orbit in Fig-
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ure 5.13(b), a scenario that is impossible in the constant delay case of the Goodwin operon

model considered in Sections 5.1 and 5.2.

6 Dynamics with two Hill functions

We now consider the model (1.1), (1.2) with both the functions g and v non-constant at the

same time. In the limiting case these functions are defined by (1.6) and (1.7), and when

θv ̸= θg, the steps in the functions occur for different values of x, so they reduce to the cases

considered in Section 5 with v constant for x in a neighbourhood of θg, and g constant for x

in a neighbourhood of θv. With smooth nonlinearities defined by (1.3) and large exponents

m k 0, n k 0, when θv ̸= θg we will see dynamics and bifurcations near x = θg similar to

those observed in Sections 5.1 and 5.2, and similar to Sections 5.3 and 5.4 near x = θv. On the

other hand, when θv = θg new dynamics are observed.

Recall the notation (g ³, v ³) that indicates the monotonicity type of functions g and v,

introduced in Section 1. Note that if v− > v+ then v(x) is a decreasing function of x, then Ä(x)

given by (5.1) is an increasing function of x, and therefore e−µÄ(x) is a decreasing function of x.

It follows immediately that for (g ³, v ³) the function h(x) (see (5.2)) is strictly monotonically

decreasing and hence for g and v both monotonically decreasing there is exactly one steady

state.

If either or both of g or v is increasing then it is possible to have fold bifurcations and

additional steady states. To see this, consider a steady state ξ with both v and g given by (1.3),

in which case the characteristic equation has the form (4.8), which can be written as ∆(¼) = 0

with

∆(¼) = ¼ + γ(ξ)− A(ξ)− (Q(ξ)− A(ξ))e−¼Ä(ξ) − µA(ξ)
∫ 0

−Ä(ξ)
e¼sds (6.1)

where (recalling (4.4) and (5.15))

Q(ξ) := ´e−µÄ(ξ)g′(ξ) = γ
ξg′(ξ)

g(ξ)
, A(ξ) = ´

v′(ξ)

v(ξ)
e−µÄ(ξ)g(ξ) = γ

ξv′(ξ)

v(ξ)
.

The properties of A(ξ) and Q(ξ) were already described in Proposition 5.1. Now

∆(0) = γ(ξ)− Q(ξ)− µA(ξ)
∫ 0

−Ä(ξ)
1ds = γ(ξ)− Q(ξ)− µÄ(ξ)A(ξ)

= γ(ξ)
(

1 −
ξg′(ξ)

g(ξ)
− µÄ(ξ)

ξv′(ξ)

v(ξ)

)

.

Hence, ¼ = 0 is a characteristic value if and only if

M(ξ) :=
ξg′(ξ)

g(ξ)
+ µÄ(ξ)

ξv′(ξ)

v(ξ)
− 1 = 0. (6.2)

In addition, we note that M(ξ) > 0 implies that ∆(0) < 0. At the same time, for real ¼ the

characteristic function satisfies ∆(¼) → +∞ as ¼ → +∞. We conclude that when M(ξ) > 0

there is a real positive characteristic value and hence the steady state is unstable.

We now show that fold bifurcations occur when (6.2) is satisfied. To that end, consider the

curve of solutions (γ(ξ), ξ) where γ(ξ) is defined by

γ(ξ) =
´g(ξ)

ξ
e−µÄ(ξ), (6.3)
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which by (5.2) is the locus of steady states in the (γ, ξ)-plane. Differentiating this relationship

with respect to ξ we find

γ′(ξ) = −
γ(ξ)

ξ
+

γ(ξ)g′(ξ)

g(ξ)
− γ(ξ)µÄ′(ξ).

Using (5.54) we obtain

ξγ′(ξ) = γ(ξ)

(

ξg′(ξ)

g(ξ)
+ µÄ(ξ)

ξv′(ξ)

v(ξ)
− 1

)

= γ(ξ)M(ξ). (6.4)

Hence sgn(γ′(ξ)) = sgn(M(ξ)), and γ′(ξ) changes sign when M(ξ) does, which ensures that

fold bifurcations occur at these points in the (γ, ξ)-plane.

Note that this is a direct generalisation of the fold bifurcations found in Section 5 as (6.2)

reduces to (5.27) when v is a constant function, and to (5.52) when g is constant.

Next we determine when Hopf bifurcations may arise for the general case where both g

and v are non-constant. For ¼ ̸= 0, using (6.1) we can rewrite the characteristic equation

∆(¼) = 0 as

¼ = −γ + A(ξ)(1 − e−¼Ä(ξ))
(

1 +
µ

¼

)

+ Q(ξ)e−¼Ä(ξ). (6.5)

At a Hopf bifurcation we set ¼ = iω, with ω ̸= 0, and from (6.5) obtain

iω = −γ + A(ξ)(1 − e−iωÄ)
(

1 +
µ

iω

)

+Q(ξ)e−iωÄ

= −γ + A(ξ)(1 − cos ωÄ + i sin ωÄ)

(

ω2 − iωµ

ω2

)

+ Q(ξ)(cos ωÄ − i sin ωÄ).

Taking real and imaginary parts, this reduces to

γ = A(ξ)
(

1 − cos ωÄ +
µ

ω
sin ωÄ

)

+ Q(ξ) cos ωÄ, (6.6)

ω = A(ξ)
(

sin ωÄ −
µ

ω
(1 − cos ωÄ)

)

− Q(ξ) sin ωÄ. (6.7)

Note that when ωÄ = 2kπ for k ∈ Z the last equation reads ω = 0, which contradicts the

requirement that ω ̸= 0 for a Hopf bifurcation. It follows that at a Hopf bifurcation

| cos(ωÄ)| < 1. (6.8)

The equations (6.6) and (6.7) can each be rearranged in two ways: first, as A(ξ)(1 −

cos ωÄ) = other terms, or, second, as A(ξ) sin ωÄ = other terms. Doing so, then equating

the same expressions from the two equations gives

A(ξ) sin ωÄ(ω2 + µ2) = ω(γµ + ω2) + Q(ξ)(ω sin ωÄ − µ cos ωÄ), (6.9)

A(ξ)(1 − cos ωÄ)(ω2 + µ2) = ω2(γ − µ)− Q(ξ)(ω2 cos ωÄ + µω sin ωÄ). (6.10)

Note that when g+ = g− so g is constant and Q(ξ) = 0 these equations reduce to (5.41) and

(5.42). On the other hand when v+ = v− so v′(ξ) = 0 and hence A(ξ) = 0, equations (6.9)

and (6.10) can be shown to reduce to (5.13) and (5.14).

Using (6.8), the left-hand side of (6.10) has the sign of A(ξ) (recall also (5.41) which has an

identical left-hand side).
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When Q(ξ) = 0, the right-hand side of (6.10) has the sign of γ − µ. For the general case

with Q(ξ) ̸= 0, since | cos ωÄ| f 1 and | sin ωÄ| f ωÄ, we obtain

|Q(ξ)(ω2 cos ωÄ + µω sin ωÄ)| f |Q(ξ)|(ω2| cos ωÄ|+ µω| sin ωÄ|) f |Q(ξ)|ω2(1 + µÄ).

Then, when A(ξ) < 0, and hence v is a decreasing function, the left-hand side of (6.10) is

negative, while the right-hand side satisfies

ω2(γ − µ)− Q(ξ)(ω2 cos ωÄ + µω sin ωÄ) g ω2(γ − µ)− |Q(ξ)|ω2(1 + µÄ)

= ω2(γ − µ − |Q(ξ)|(1 + µÄ)). (6.11)

Consequently, there can be no Hopf bifurcations if γ > µ + |Q(ξ)|(1 + µÄ).

Similarly for the case that A(ξ) > 0 (and hence v is an increasing function), the left-hand

side of (6.10) is positive, while the right-hand side satisfies

ω2(γ − µ)− Q(ξ)(ω2 cos ωÄ + µω sin ωÄ) f ω2(γ − µ) + |Q(ξ)|ω2(1 + µÄ)

= ω2(γ − µ + |Q(ξ)|(1 + µÄ)). (6.12)

Thus, when A(ξ) > 0 there can be no Hopf bifurcations if γ < µ − |Q(ξ)|(1 + µÄ).

Note that both the conditions here reduce to the previous ones in the limit as Q(ξ) → 0, or

equivalently as g′(ξ) → 0. As in Section 5, we will deal with this by considering the different

combinations of increasing and decreasing functions v and g separately.

6.1 Two Hill functions with θg ̸= θv

With g and v both varying and θg ̸= θv, the dynamics will be comparable to a combination

of the four simplified cases as discussed in Section 5.1–5.4. In particular, if both g and v

are decreasing functions, there is always exactly one steady state. The dynamics in the case

(g ³, v ³) will be similar to the case in Section 5.1 near to x = θg and similar to the case in

Section 5.3 near to x = θv. The singular steady states in the limiting case give rise to steady

states in the smooth case which may undergo Hopf bifurcations where the stability of steady

state changes, as illustrated in Sections 5.1 and 5.3.

For the cases when g and v have opposite monotonicity, there are up to three coexisting

steady states. The bifurcations occurring near the two respective thresholds agree with the

examples in Section 5. Since the dynamics can be explained using the results of Section 5 we

only briefly consider the dynamics with θg ̸= θv and present two examples, one with (g ³, v ↑)

in Section 6.1.1, and another for (g ↑, v ↑) in Section 6.1.2. In this last example, it is possible

for up to five steady states to coexist with sufficiently steep nonlinearity.

The constants γj for j = 1, 2, 3, 4 introduced in (5.4) and (5.33) in Section 5 will also play

a role here. When θv ̸= θg we again define these using (5.4) and (5.33). However, since both

the functions g and v are non-constant we need to define a value for Ä in (5.4) and for g in

(5.33). We proceed as follows. For γ1 and γ2 given by (5.4), the required value of Ä is Ä(θg)

and hence we take Ä = Ä− if θv > θg and Ä = Ä+ if θv < θg. Similarly in (5.33) we take g = g−

if θg > θv and g = g+ if θg < θv.

6.1.1 Decreasing g and increasing v (g ³, v ↑, θg ̸= θv)

When g and v have opposite monotonicity, either (g ³, v ↑) or (g ↑, v ³), and θg ̸= θv, there are

up to three coexisting steady states in the limiting case. Figure 6.1 shows such an example in

the case (g ³, v ↑, θv < θg).
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θv θg

´g−e−µÄ+

´g+e−µÄ+

´g−e−µÄ−

Figure 6.1: Steady states of (1.1), given by (5.2), occur at the intersections of ξ 7→
´e−µÄ(ξ)g(ξ) and ξ 7→ γξ. These are illustrated for various γ in the limiting case of (1.6)
and (1.7) for (g ³, v ↑, θv < θg). The red lines denote the slopes γj, illustrated here with
γ4 < γ1 < γ2 < γ3. There is a singular steady state at ξ = θv for γ ∈ (γ4, γ3) and at
ξ = θg for γ ∈ (γ1, γ2).

Figure 6.1 shows that if γ ∈ (γ4, γ3) then there are three steady states in the limiting

case. At most two of these steady states will be stable, with the intermediate steady state at

x = θv singular. If the intervals (γ1, γ2) and (γ4, γ3) overlap then it is possible to have one

stable steady state coexisting with two singular steady states. Such a scenario is illustrated in

Figure 6.2(a) which has two singular steady states and one stable steady state for γ ∈ (γ1, γ2).

The number of steady states changes when γξ intersects ´e−µÄ(ξ)g(ξ) at the corners along

θv at parameter values γ3 and γ4. The singular ‘fold’ bifurcations give rise to classical fold

bifurcations in the case of smooth nonlinearities defined by (1.3), as seen in Figure 6.2(b) for

the case m = n = 40. We note from (6.2) that since g′ and v′ have opposite signs, we require

ξv′(ξ)/v(ξ) > 1/(µÄ(ξ)) for a fold bifurcation to occur, and so for m = n a somewhat larger

value of the steepness parameter m is required to obtain a fold bifurcation than would have

been the case with constant g (for which, by (5.52), fold bifurcations occur when ξv′(ξ)/v(ξ) =

1/(µÄ(ξ)) is satisfied).

In the example presented in Figure 6.2 the function v is increasing with µ < γ4, and so

we expect to see similar behaviour for x ≈ θv as in Case 3 of Section 5.4, while since g is

decreasing the behaviour for x ≈ θg should be similar to that seen in Section 5.1. This is

indeed what is observed.

Since v is increasing, from (6.10) and (6.12) it is necessary that γ > µ − |Q(ξ)|(1 + µÄ)

for Hopf bifurcations to occur. However, this does not impose any additional constraints

as in this example µ − |Q(ξ)|(1 + µÄ) < µ < minj={1,2,3,4} γj, and as we already saw in

Section 5, Hopf bifurcations typically occur for γ > minj={1,2,3,4} γj. So the steady state can

lose stability in a Hopf bifurcation close to the fold point. This is seen in Figure 6.2(b) close

to (γ, x) = (γ3, θv) and is similar to the behaviour observed in Cases 2 and 3 in Section 5.4.

Figure 6.2(c) shows two-parameter continuations of these bifurcations. Apart from the Hopf

bifurcations giving rise to a stable periodic orbit for γ ∈ (γ1, γ2) the rest of the dynamics

observed are remarkably similar to those seen in Figure 5.12 with v increasing and constant

g. In particular, as the steepness of the nonlinearities given by m = n increases, the fold

bifurcations approach γ = γ4 and γ = γ3 with the steady states at which they happen

approaching θv, the fold bifurcations disappear at a cusp point (at γ = 2.1535), while the Hopf
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Figure 6.2: Bifurcations of (1.1)–(1.2) in the case (g ³, v ↑, θv < θg) with parameters
´ = 1.4, µ = 0.2, g− = 1 > g+ = 0.54, θv = 0.5 < θg = 1, a = 1, and v− = 0.1 < v+ = 2.
With these parameters µ < γ4 = 0.3789 < γ1 = 0.6334 < γ2 = 1.2668 < γ3 =
2.5335. (a) The limiting case with g defined by (1.6) and v defined by (1.7). The stable
steady state is shown as a green solid line, and the singular steady state as a black
dashed line. (b) With smooth nonlinearity g and v defined by (1.3) with m = n = 40.
Periodic solutions are represented by maximum (in red) and minimum (in blue) of
x(t) on the solution. (c) Two-parameter continuations in m = n and γ of the fold and
the Hopf bifurcations with the other parameters as above. There is a cusp point at
(γ, m) = (3.8948, 2.1535), a BT point at (γ, m) = (1.5502, 4.2073) and fold-Hopf points
at (γ, m) = (2.3399, 3.0346), (3.2632, 2.4198), (2.9741, 2.8976) and (2.3178, 9.3191). (d)
Profile of the stable periodic orbits at γ = 1 emanating from the Hopf bifurcations in
(c). The color map indicates values of the continuation parameter m = n.

bifurcations and stable periodic orbits can occur for smaller values of m > 0.8079. There is

also a Bogdanov–Takens bifurcation, fold-Hopf bifurcations at which Hopf bifurcations cross

the fold points, and for the fold close to γ = γ3 the steady state loses stability in a subcritical

Hopf bifurcation for arbitrary large m = n, and not at the fold bifurcation.

The most significant difference between the example shown in Figure 6.2 and Cases 2

and 3 from Section 5.4 is the pair of Hopf bifurcations seen for x ≈ θg and γ ∈ (γ1, γ2). In

Figure 6.2(c) the steady state is seen to lose stability between a pair of Hopf bifurcations for

m > 23. Since for m = n k 0 the function v is essentially constant except for θ ≈ θv, it follows

that v is close to constant for θ ≈ θg and so these Hopf bifurcations and the resulting periodic

orbits follow the dynamics explored in Section 5.1. Indeed, the dynamics associated with the

Hopf bifurcations and periodic orbits for x ≈ θg seen in Figure 6.2 is remarkably similar to
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that seen for constant v and decreasing g in Figure 5.2 of Section 5.1. The Hopf bifurcations

are supercritical, generating a stable periodic orbit which co-exists with the unstable steady

state between the pair of Hopf bifurcations. The amplitude of the periodic orbit is shown for

m = n = 40 in Figure 6.2(b), from which we see that it is always small and shrinks to zero at

the Hopf bifurcations at each end of the interval.

Figure 6.2(d) depicts the profile of such stable periodic orbits for a fixed value of γ in

between the two Hopf bifurcations. As m = n → ∞, the periodic orbits appear to approach a

limiting profile. Notice that this stable periodic orbit oscillates around θg but does not cross

the other threshold at θv = 0.5. Thus in the limiting case as m = n → ∞ the delay will be

constant and equal to Ä+ on this periodic orbit. In [31] we construct slowly oscillating periodic

solutions for both constant and threshold delays, and using those constructions it can be seen

that the limiting profile in Figure 6.2(d) is a slowly oscillating periodic solution.

6.1.2 Increasing g and increasing v (g ↑, v ↑, θg ̸= θv)

θv θg

´g+e−µÄ+

´g−e−µÄ−

´g−e−µÄ+

Figure 6.3: Steady states of (1.1), given by (5.2), occur at the intersections of ξ 7→
´e−µÄ(ξ)g(ξ) and ξ 7→ γξ. These are illustrated for various γ in the limiting case of (1.6)
and (1.7) for (g ↑, v ↑, θv < θg). The red lines denote γ = γ4, γ2, γ1, γ3 in ascending
order.

When v and g are both increasing with θg ̸= θv there are up to five coexisting steady states

in the limiting case as shown in Figure 6.3. The four corners at the respective thresholds

θg and θv are associated with the emergence of fold bifurcations. A necessary and sufficient

condition to obtain five coexisting steady states is that (γ2, γ1) ∩ (γ4, γ3) ̸= ∅. Note that since

g is now increasing the values γ2 < γ1 have the opposite order than in previous example, see

(5.4).

Figure 6.4(a) shows such an example, with five co-existing steady states in the limiting

case when γ ∈ (γ2, γ1). Referring to the discussion in Sections 5.2 and 5.4, in the limiting case

the non-singular steady states are always stable, leading to tristability of steady states in this

parameter interval. This then leads to tristability of steady states for smooth nonlinearities

with m = n sufficiently large, as depicted in Figure 6.4(b).

Following the discussion in Sections 5.2 and 5.4, the intermediate singular steady states

become unstable steady states between the fold bifurcations in the smooth case. However, the

behaviour is not the same at each of the folds. In the example presented in Figure 6.4 we have

µ ∈ (γ4, γ3), and so we expect to see similar behaviour for x ≈ θv as in Case 2 of Section 5.4,
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Figure 6.4: Bifurcation diagram of (1.1)–(1.2) for (g ↑, v ↑, θv < θg) with parameters
´ = 1.4, µ = 0.2, g− = 0.5, g+ = 1, γ = 0.8, θg = 1, θv = 0.5, a = 1, v− = 0.1 and
v+ = 2. With these parameters γ4 = 0.1895 < γ2 = 0.6334 < γ1 = γ3 = 1.2668.
(a) The limiting case with g defined by (1.6) and v defined by (1.7). The stable steady
state is shown as a green solid line, and the singular steady state as a black dashed
line. (b) With smooth nonlinearity g and v defined by (1.3) with m = n = 20. (c) Two-
parameter continuations in m = n and γ of the fold and the Hopf bifurcations with
the other parameters as above. There are two cusp points at (γ, m) = (2.0329, 2.1053)
and (0.84265, 5.7871), a BT point at (γ, m) = (1.2009, 2.9825), two fold-Hopf points at
(γ, m) = (1.6820, 2.5172) and (1.9519, 2.1629), and two Bautin bifurcations at (γ, m) =
(5.4365, 1.2928) and (1.0709, 4.6890).

while since g is increasing the behaviour for x ≈ θg should be similar to what was observed

in Section 5.2, and this is what we observe.

For the fold bifurcation near (γ, ξ) = (γ4, θv), the steady state loses stability at the fold for

all m sufficiently large (seen for m = n = 20 in Figure 6.4(b)). Since v is increasing, from (6.12)

there can be no Hopf bifurcations for γ < µ − |Q(ξ)|(1 + µÄ). However, limm→∞ Q(ξ) = 0 for

ξ ̸= θg, and since γ4 < µ there can be no Hopf bifurcations near to the fold for m sufficiently

large. The same is not true for the fold close to (γ, ξ) = (γ3, θv), where since γ3 > µ the steady

state may lose stability in a Hopf bifurcation near to the fold point, which is indeed what is

seen for all m sufficiently large. This is similar to the behaviour seen in the previous example

in Figure 6.2 and to Cases 2 and 3 in Section 5.4.

Following the theory of Sections 5.2 and 5.4, as m = n is increased there will also be

an infinite sequence of Hopf bifurcations on the unstable branches that cross θg and θv. For

the branch that crosses x = θg these Hopf bifurcations will be confined between the fold
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bifurcations as m = n is increased. No Hopf bifurcations are seen on this branch in Fig-

ure 6.4(b) because the value of m is too small, with the first Hopf bifurcation only occurring

for m = n ≈ 61.
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γγ4 γ2 γ1 µ

Figure 6.5: Bifurcations of (1.1)–(1.2) in the case (g ↑, v ↑, θv < θg) with smooth non-
linearities g and v defined by (1.3) with m = n = 100, and other parameters ´ = 1.4,
µ = 1, g− = 0.5 > g+ = 1, θv = 0.5 < θg = 1, a = 1, and v− = 0.5 < v+ = 2. With
these parameters γ4 = 0.1895, γ2 = 0.4246, and γ1 = γ3 = 0.8491.

Figure 6.5 shows another example for (g ↑, v ↑, θg ̸= θv), but this time with µ > γ3 which

corresponds to Case 1 in Section 5.4. In this example no Hopf bifurcations are observed on

the unstable branch that crosses ξ = θv. This follows from (6.12) because there can be no

Hopf bifurcations for γ < µ − |Q(ξ)|(1 + µÄ), and |Q(ξ)| → 0 as n → ∞ for ξ ̸= θg. On

the other hand, a pair of Hopf bifurcations is observed on the branch of unstable steady

states that crosses ξ = θg. In this case (6.12) does not preclude Hopf bifurcations because

Proposition 5.1(2), with f (x, p, r) given by Q(ξ) with parameter p = n from g, shows that

|Q(ξ)| can be arbitrarily large for ξ ≈ θg as n → ∞.

6.2 Two Hill functions with θg = θv

The cases of (g ↑, v ↑, θv = θg) and (g ³, v ³, θv = θg) where both functions are either increasing

or decreasing are reasonably straightforward. However, the two cases for which one function

is increasing and the other decreasing, (g ³, v ↑, θv = θg) and (g ³, v ↑, θv = θg) are altogether

more delicate and surprising.

6.2.1 g and v both increasing or decreasing (g ↑, v ↑, θg = θv) and (g ³, v ³, θg = θv)

In both these cases ξ 7→ ´e−µÄ(ξ)g(ξ) is monotonic, so the existence of steady states is straight-

forward following the theory in Section 5. Writing θgv for the value of θ when θg = θv, and

defining

γ13 =
´e−µÄ+

g+

θgv
and γ24 =

´e−µÄ−
g−

θgv
, (6.13)

with g and v both decreasing, there is always a unique steady state. In the limiting case of

piecewise constant nonlinearities (1.6)–(1.7), this steady state is stable for γ < γ13 and γ > γ24,

and is singular for γ ∈ (γ13, γ24). In the smooth case, this gives rise to a unique stable steady

state for very small or very large γ. The question then arises as to when the steady state may
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lose stability in a Hopf bifurcation for γ in or near the interval (γ13, γ24). From (6.11) when g

and v are both decreasing Hopf bifurcations cannot occur if

γ > µ + |Q(ξ)|(1 + µÄ) = µ + γ(1 + µÄ)

∣

∣

∣

∣

ξg′(ξ)

g(ξ)

∣

∣

∣

∣

. (6.14)

Thus when g is a constant function, which implies that Q = 0, there can only be Hopf

bifurcations when γ < µ as seen in Section 5.3. In contrast, by Proposition 5.1, we have

|θgvg′(θgv)/g(θgv)| → ∞ as n → ∞ while (6.14) cannot be satisfied when |ξg′(ξ)/g(ξ)| > 1.

Consequently for n large there is no constraint preventing Hopf bifurcations, and we expect

to see Hopf bifurcations for ξ ≈ θgv for n sufficiently large, just as we did in Section 5.1.
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Figure 6.6: Bifurcation diagram of (1.1)–(1.2) for (g ³, v ³, θg = θv) with parameters
´ = 3, µ = 0.5, γ = 1, θg = θv = θvg = 1, a = 1, g− = 1 > g+ = 0.1, and
v− = 1 > v+ = 0.5. With these parameters γ13 = 0.1104 and γ24 = 1.8196. (a)
With nonlinearities g and v defined by (1.3) with m = n = 200. The Hopf bifurcations
associated with stability change occur at (γ, x) = (0.2333, 1.0018) with ω = 2.3128
and (γ, x) = (1.8669, 0.9659) with ω = 2.3155. Stable periodic orbits are represented
by maximum (in red) and minimum (in blue) of x(t) on the periodic solution. (b)
Two-parameter continuations in m = n and γ of the Hopf bifurcations with the other
parameters as above. (c) Profile of the stable periodic orbits with γ = 0.4. The color map
indicates values of the continuation parameter m = n. (d) Profile of the stable periodic
orbit with m = 200 and γ = 1.3 and the other parameters as above. The associated
steady state is at x∗ = 0.9848. The period of the periodic orbit T = t4 = 2.8772.

Figure 6.6 illustrates the case of g and v both decreasing with θv = θg = θgv. Panel (a)

shows the dynamics for smooth nonlinearities g defined by (1.3) with m = n = 200. In this
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case the steady state is unstable between two supercritical Hopf bifurcations. These Hopf

bifurcations occur close to but slightly to the right of the limiting values γ13 and γ24. The

resulting periodic orbit is stable on the whole of the interval between the Hopf bifurcations.

Figure 6.6(b) shows a two-parameter continuation of the curve of Hopf bifurcations at

which the stable periodic orbit is created. The amplitude plot of the periodic orbits in panel

(a) of Figure 6.6 suggests that different behavior is seen near the two Hopf points, and this is

illustrated in the periodic solution profiles shown in panels (c) and (d). In (c) with γ = 0.4, as

m = n is increased the profile of the periodic orbit converges to a limiting profile (which we

construct in [31]). The situation is different with γ > 1 as shown in panel (d) with γ = 1.3 and

m = n = 200. While there is again a large period periodic orbit, the profile is quite different,

with x(t) never much greater than x∗ even though there is a large segment t ∈ (t0, t2) of the

periodic orbit for which x(t) > x∗. This large subinterval of the periodic orbit on which the

solution is nearly constant looks quite different to the periodic orbits seen in (c).

The case of (g ↑, v ↑, θv = θg) is analogous to the scenarios considered in Sections 5.2

and 5.4 which lead to a pair of fold bifurcations when (6.2) is satisfied, and an interval of γ

values for which two stable steady states coexist with an unstable steady state. Because v and

g are both increasing, the functions ξ 7→ ξg′(ξ)/g(ξ) and ξ 7→ µÄ(ξ)ξv′(ξ)/v(ξ) are both pos-

itive, and moreover θgvg′(θgv)/g(θgv) and µÄ(θgv)θgvv′(θgv)/v(θgv) are increasing functions of

n and m, respectively. Since the condition (6.2) is more easily satisfied in this case than when

one of these functions is zero or decreasing, fold bifurcations can occur for smaller values of

m or n for (g ↑, v ↑, θv = θg) than was seen for (g ↑, v ´) or (g ´, v ↑). As m = n → ∞ the

interval of bistability converges to (γ24, γ13). Equation (6.12) imposes a constraint on Hopf

bifurcations to occur when g and v are both increasing. However, since Q(θg) → ∞ as n → ∞,

Hopf bifurcations can occur for all n sufficiently large.

6.2.2 g and v with opposing monotonicity (g ↑, v ³, θg = θv) and (g ³, v ↑, θg = θv)

These cases are altogether more delicate and surprising, and need explaining in some detail.

For the smooth nonlinearities when the power m or n is large, and the function g(x) or v(x) is

close to a step function, we will informally refer to the part of the function with large gradient

as the interface. When m k n the v(x) function will have a much narrower interface than the

function g(x), while g(x) will have a narrower interface when n k m. These interfaces are

centred at x = θv and x = θg, so when θg = θv they will overlap or if m k n or m j n the

interval on which one interface occurs will be inside the interval on which the other interface

occurs. When g and v have opposing monotonicity the dynamics of (1.1)–(1.2) will be very

different depending on which interface is narrower.

From (6.2) there will be a fold bifurcation when

0 = M(ξ) =
ξg′(ξ)
g(ξ)

+ µÄ(ξ)
ξv′(ξ)
v(ξ)

− 1.

When v is increasing by Proposition 5.1

lim
m→∞

θvv′(θv)

v(θv)
= +∞, and lim

ξ→0

ξv′(ξ)
v(ξ)

= lim
ξ→+∞

ξv′(ξ)
v(ξ)

= 0, (6.15)

which ensures that a fold bifurcation must occur for m sufficiently large when n is held con-

stant. If g is decreasing then ξg′(ξ)/g(ξ) < 0 and the value of m required for a fold bifurcation

to occur will be larger than when this term is non-negative, that is, when g is constant or in-

creasing. Those cases were considered in Sections 5.4 and 6.2.1. An analogous argument to



66 T. Gedeon, A. R. Humphries, M. C. Mackey, H.-O. Walther and Z. Wang

(6.15) shows that when g is increasing a fold bifurcation will occur for n sufficiently large

when m is held constant.

A more delicate question is, what happens when m → ∞ and n → ∞ with g and v having

opposite monotonicities. In that case one could expect that whichever of the terms ξg′(ξ)/g(ξ)

or ξv′(ξ)/v(ξ) grows faster as m, n → ∞ will determine where and whether fold bifurcations

occur, however, as we will see, the behaviour is more nuanced than that.

We will now consider the case (g ³, v ↑, θg = θv = θgv) for which 0 < rv < 1 < rg, where

rg = g−/g+ and rv = v−/v+. Evaluating M(θgv) using Proposition 5.1(2) we obtain

M(θgv) =
θgvg′(θgv)

g(θgv)
+ µÄ(θgv)

θgvv′(θgv)

v(θgv)
− 1 =

n(1 − rg)

2(1 + rg)
+ µÄ(θgv)

m(1 − rv)

2(1 + rv)
− 1. (6.16)

Then if

µÄ(θgv)
(1 − rv)

(1 + rv)
>

(rg − 1)

(1 + rg)
, (6.17)

it follows that M(θgv) → +∞ as m = n → ∞, and in particular M(θgv) > 0 for all m = n

sufficiently large. This ensures that there is a pair of fold bifurcations as γ is varied with

m = n sufficiently large.

Of course, since m and n appear in the different nonlinearities v and g modelling different

processes, there is no reason beyond mathematical convenience to assume that m = n. So,

it is interesting to consider whether fold bifurcations still occur as m → ∞ and n → ∞

independently.

The condition (6.17) was arrived at by evaluating M(θgv), which has a convenient form

because of Proposition 5.1(2). However, we will show below that it is not a necessary condition

for existence of fold bifurcations. To see this, note that for the case we consider we have

0 < rv < 1 < rg, and hence

r1/2m
v θgv < θgv < r1/2n

g θgv. (6.18)

From Proposition 5.1(4) the positive function ξv′(ξ)/v(ξ) achieves its maximum at ξ =

r1/2m
v θgv < θgv and the negative function ξg′(ξ)/g(ξ) achieves its minimum at ξ = r1/2n

g θgv >

θgv. Thus, for ξ ∈ (r1/2m
v θgv, r1/2n

g θgv) we have ξv′(ξ)/v(ξ) and ξg′(ξ)/g(ξ) as well as Ä(ξ)

all decreasing functions of ξ and it follows that M(ξ) is decreasing for ξ ∈ (r1/2m
v θgv, r1/2n

g θgv)

as well as satisfying limξ→±∞ M(ξ) = −1. Consequently, we expect M(ξ) to obtain its max-

imum value for ξ ⪅ r1/2m
v θgv. If this maximum value is positive, then (6.2) will have at least

two solutions, indicating two fold bifurcations for different ξ values, one on each side of this

maximum. While we will not consider the other case of (g ↑, v ³, θg = θv = θgv) in detail,

we note that in that case g would be the increasing function, with rg = g−/g+ < 1 < rv, and

for ξ ∈ (r1/2n
g θgv, r1/2m

v θgv) we would have ξg′(ξ)/g(ξ) positive and decreasing, ξv′(ξ)/v(ξ)

negative and decreasing, and Ä(ξ) increasing, from which it follows that M(ξ) is decreasing

for ξ ∈ (r1/2n
g θgv, r1/2m

v θgv), so M(ξ) would obtain its maximum value for ξ < θgv.

To study the steady states and fold bifurcations of (1.1)–(1.2) for (g ³, v ↑, θg = θv = θgv)

we will work directly with the function h(ξ) defined in (5.2). Suppose the parameters are

chosen so that ´e−µÄ−
g− > ´e−µÄ+

g+. Then

´e−µÄ−
g− = lim

ξ→0
´e−µÄ(ξ)g(ξ) > lim

ξ→+∞

´e−µÄ(ξ)g(ξ) = ´e−µÄ+
g+. (6.19)

Figure 6.7 depicts such an example for which ´e−µÄ(ξ)g(ξ) is a monotonically decreasing

function of ξ in both the smooth case and the limiting case as m = n → ∞, so that there is
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Figure 6.7: Bifurcations of (1.1)–(1.2) for (g ³, v ↑, θg = θv = θgv) with ´ = 1.4, µ = 0.2,
g− = 1, g+ = 0.5, θg = θv = θgv = 1, a = 1, v− = 1 and v+ = 2. With these parameters

´e−µÄ−g− > ´e−µÄ(θgv)g(θgv) > ´e−µÄ+g+. (a) With smooth nonlinearity g and v defined
by (1.3) with m = n = 100. (b) Two-parameter continuations in m = n and γ of the Hopf
bifurcation at which the steady state loses stability with the other parameters as above.
The vertical lines at γ = γ13 = 0.6334 and γ = γ24 = 1.1462 denote the location of the
Hopf bifurcations in the limiting case as m = n → ∞. (c) Graphs of ξ 7→ ´e−µÄ(ξ)g(ξ)
and ξ 7→ γξ with m = n = 100 and γ = 1. Since ξ 7→ ´e−µÄ(ξ)g(ξ) is monotonically
decreasing there is a unique intersection and hence a unique steady state for and γ > 0.
(d) Graph of ξ 7→ ´e−µÄ(ξ)g(ξ) in the limiting case, with the black dot denoting the

value of ´e−µÄ(θgv)g(θgv). The inset depicts the continuation of the steady states in the
limiting case with g and v defined by (1.6) and (1.7). Stable steady states are shown as
green solid lines, and the singular steady state as a black dashed line.

always a unique steady state. One could easily and incorrectly assume that ξ 7→ ´e−µÄ(ξ)g(ξ)

will be monotonically decreasing whenever (6.19) holds. However, this is not always true, and

indeed is never true when (6.17) holds. To show this, recalling the definitions of g and v given

by (1.3) in the smooth case, notice that at the threshold, the function values are independent

of the nonlinearity m or n, with

g(θg) =
g− + g+

2
and v(θv) =

v− + v+

2
. (6.20)

Thus for (g ³, v ↑, θg = θv = θgv) and 0 < rv < 1 < rg it holds that

g− > g(θgv) > g+, (6.21)
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while v+ > v(θgv) > v− implies

Ä−
> Ä(θgv) > Ä+. (6.22)

Then (6.17) implies that

µÄ− (1 − rv)

(1 + rv)
> µÄ(θgv)

(1 − rv)

(1 + rv)
>

rg − 1

1 + rg
> ln

(

1 +
rg − 1

1 + rg

)

= ln

(

2rg

1 + rg

)

. (6.23)

But
2rg

1 + rg
=

2g−/g+

1 + g−/g+
=

2g−

g+ + g−
=

g−

g(θgv)
,

and

Ä− (1 − rv)

(1 + rv)
=

a

v−

(v+ − v−

v− + v+

)

=
a

v−
− 2a

v− + v+
= Ä− − Ä(θgv).

Thus

µÄ− (1 − rv)

(1 + rv)
> ln

(

2rg

1 + rg

)

⇐⇒ µ(Ä− − Ä(θgv)) > ln(g−/g(θgv))

⇐⇒ e−µ(Ä(θgv)−Ä−)
> g−/g(θgv)

⇐⇒ ´e−µÄ(θgv)g(θgv) > ´e−µÄ−
g−.

Thus if the parameters are chosen so that (6.17) and (6.19) both hold then

´e−µÄ(θgv)g(θgv) > ´e−µÄ−
g− > ´e−µÄ+

g+, (6.24)

and the function ξ 7→ ´e−µÄ(ξ)g(ξ) is not monotonic. This was not the case for the example

in Figure 6.7, but below we will demonstrate examples where both (6.17) and (6.24) hold, and

more interesting dynamics arise. Moreover, the inequalities in (6.23) are not all tight, and we

will also show that it is possible to obtain (6.24) for parameters for which (6.17) does not hold.

ξ̂ ξ̄

´e−µÄ−
g−

´e−µÄ+
g+

θgv

Figure 6.8: An illustration of ´e−µÄ(ξ)g(ξ) and γ̂ξ in the case (g ³, v ↑, θg = θv = θgv)
for both smooth nonlinearities and in the limiting case m = n → ∞ when (6.24) holds.

Now suppose that (6.24) holds and consider h(ξ) defined in (5.2). This situation is illus-

trated in Figure 6.8. Recall (6.13) and also let

γgv :=
´e−µÄ(θgv)g(θgv)

θgv
. (6.25)
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We will now show that when γ ∈ (γ24, γgv) for all m sufficiently large there are three steady

states. From (5.2), we have h(0) = ´e−µÄ−
g− > 0 and h(ξ) → −∞ as ξ → +∞. Moreover,

(6.25) and γ < γgv implies

h(θgv) = ´e−µÄ(θgv)g(θgv)− γθgv = γgvθgv − γθgv = (γgv − γ)θgv > 0.

From h(θgv) > 0 the intermediate value theorem immediately yields the existence of one

steady state ξ > θgv; to show that there are three steady states it suffices to show that there

exists ξ̄ ∈ (0, θgv) with h(ξ̄) < 0.

For any γ̂ ∈ (γ24, γgv) we have γ̂θgv ∈ (´e−µÄ−
g−, ´e−µÄ(θgv)g(θgv)) so for some ε > 0 it

holds that γ̂θgv = ´e−µÄ−
g− + 2γ̂ε. This implies that the point ξ̂ (shown in Figure 6.8) where

the line γ̂ξ intersects ´e−µÄ−
g− satisfies ξ̂ = ´e−µÄ−

g−/γ̂ = θgv − 2ε. Let

ξ̄ = θgv − ε =
1

2
(ξ̂ + θgv) ∈ (ξ̂, θgv).

Then

γ̂ξ̄ = γ̂(θgv − ε) = ´e−µÄ−
g− + 2γ̂ε − γ̂ε = ´e−µÄ−

g− + γ̂ε.

We have g(ξ̄) < g− since g is strictly decreasing, and then

h(ξ̄) = ´e−µÄ(ξ̄)g(ξ̄)− γ̂ξ̄ < ´e−µÄ(ξ̄)g− − (´e−µÄ−
g− + γ̂ε) = ´(e−µÄ(ξ̄) − e−µÄ−

)g− − γ̂ε.

Since ξ̄ < θgv, using the pointwise limit of the Hill function to its piecewise constant limit we

have limm→∞ Ä(ξ̄) = Ä−. It then follows from the previous equation that there exists m > 0

such that h(ξ̄) < 0, which shows that h(ξ) has at least three sign changes, and so there are

three co-existing steady states.

When m > 1 and n > 1 it is easy to verify that

lim
ξ→0

d

dξ

(

´e−µÄ(ξ)g(ξ)
)

= lim
ξ→+∞

d

dξ

(

´e−µÄ(ξ)g(ξ)
)

= 0,

from which it follows that there is a unique steady state for all γ sufficiently small or large.

Bifurcations from this steady state will depend on the nonlinearities g and v.

In the case of smooth nonlinearities when one of m or n is held fixed while the other one

is increased to infinity the arguments of Sections 5 can be adapted to show that in the limiting

case m → ∞ the fold bifurcations occur at

γ4 =
´e−µÄ−

g(θgv)

θgv
< γ3 =

´e−µÄ+
g(θgv)

θgv
. (6.26)

with singular solutions for γ ∈ (γ4, γ3). Similarly, with m fixed in the limiting case n → ∞,

singular solutions occur for γ ∈ (γ1, γ2) where

γ1 =
´e−µÄ(θgv)g+

θgv
< γ2 =

´e−µÄ(θgv)g−

θgv
. (6.27)

With g decreasing, whether fold bifurcations occur at the ends of this interval will depend

also on the steepness of v. These limiting cases correspond to solutions of h(ξ) = 0 where the

line γξ intersects the curve ´e−µÄ(ξ)g(ξ) at its maxima and minima which are illustrated in

panels (a) and (c) of Figure 6.9 when one of the values m, n is fixed and the other tends to ∞.
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Figure 6.9: Illustrations of the behaviour of the function ξ 7→ ´e−µÄ(ξ)g(ξ) in the case

(g ³, v ↑, θg = θv = θgv) with ´e−µÄ(θgv)g(θgv) > ´e−µÄ− g− > ´e−µÄ+ g+ as m and/or
n tend to infinity, showing that different maxima and minima are possible depending
on the limits taken. The insets show the function on the interval ξ ∈ [0, 2θgv] while the
main panels show the behaviour for ξ ≈ θgv. The values of m and n are taken to be
(a) m = 10 fixed and n → ∞, (b) m2 = n → ∞, (c) n = 10 fixed and m → ∞, and,
(d) n =

√
m → ∞. The values of the other parameters are ´ = 1.4, µ = 0.2, g− = 1,

g+ = 0.5, θg = θv = θgv = 1, a = 1, v− = 0.3 and v+ = 2.

Panels (b) and (d) of Figure 6.9 illustrate what happens when m and n both tend to infinity,

but one is increased much faster than the other, showing that the same extrema are observed

as when the more slowly increasing exponent is held fixed. Since the maxima and minima

of the nonlinearities converge to different values depending on whether m or n is increasing

faster, and the limiting locations of the fold bifurcations are determined by the extrema, the

location of the fold bifurcations as m → ∞ and n → ∞ will depend on how these limits are

approached. We will investigate the dynamics for different relationships between m and n

below.

Since the value of ´e−µÄ(θgv)g(θgv) is independent of m and n, the maximum of ξ 7→
´e−µÄ(ξ)g(ξ) cannot be smaller than this value, which imposes the bound that the right-

most fold bifurcation must occur for γ g γgv. Using (5.2) and (6.2) it is easy to show that

h′(ξ) = γM(ξ) when h(ξ) = 0, that is at a steady state. Consequently, if M(θgv) = 0 the right

fold bifurcation will occur at ξ = θgv with γ = γgv, while if M(θgv) < 0 then h′(θgv) < 0 so the

fold bifurcation occurs for ξ < θgv and γ > γgv. Similarly, if M(θgv) > 0 the fold bifurcation

will occur for ξ > θgv and γ > γgv. These situations are illustrated in Figures 6.10 and 6.11
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Figure 6.10: Bifurcations of (1.1)–(1.2) in the case (g ³, v ↑, θg = θv = θgv) with

´e−µÄ(θgv)g(θgv) > ´e−µÄ−g− > ´e−µÄ+g+ and m = n. Parameter values are ´ = 10,
µ = 0.2, g− = 1, g+ = 1/10, θgv = 1, v− = 1, v+ = 2 and a = 18.4091, for which
M(θgv) = −1 when m = n. (a) With smooth nonlinearity g and v defined by (1.3)
with m = n = 10, and inset showing the limiting case as m = n → ∞. (b) The be-
haviour of ξ 7→ ´e−µÄ(ξ)g(ξ) as m = n → ∞ with the inset showing that the maximum

of the function is ´e−µÄ(θgv)g(θgv) in the limiting case. (c) Two-parameter continuation
in m = n and γ of the fold bifurcation with the other parameters as above. The fold
bifurcations are always associated with unstable steady states, and there is a cusp point
at (γ, m) = (0.5271, 4.2830). In the limiting case as m = n → ∞ the folds occur at
γ = γ24 = 0.2518 (recall (6.13)) and γ = γgv = 0.4725. (d) Two-parameter continuation
in m = n and ξ of the fold bifurcations with the other parameters as above.

which we now describe in more detail.

From (6.16), for any parameter set with 0 < rv < 1 < rg taking

m =
1

µÄ(θgv)

1 + rv

1 − rv

[

2 + n
rg − 1

rg + 1

]

,

ensures that M(θgv) = 0. However, for the example in Figure 6.10, we prefer to set m = n and

choose the other parameters to enforce equality in (6.17), which ensures that M(θgv) = −1

for all m = n > 0. This results in a fold bifurcation at γ = γgv in the limiting case as

m = n → ∞, since as already noted M(ξ) is decreasing at ξ = θgv and also both ξv′(ξ)/v(ξ)

and ξg′(ξ)/g(ξ) become increasingly steep as m = n → ∞ so the point ξ at which M(ξ) = 0

approaches θgv as m = n → ∞. This is illustrated in Figure 6.10 where panel (b) shows that

the maximum of ξ 7→ ´e−µÄ(ξ)g(ξ) tends to ´e−µÄ(θgv)g(θgv) as m = n → ∞ while panels (c)
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Figure 6.11: (a) and (b) The behaviour of ξ 7→ ´e−µÄ(ξ)g(ξ) as m = n → ∞ in the case

(g ³, v ↑, θg = θv = θgv) with ´e−µÄ(θgv)g(θgv) > ´e−µÄ− g− > ´e−µÄ+ g+ with the same
parameter values as in Figure 6.10 except for the value of a. In (a) a = 22.1591 and in (b)

a = 14.6591. The insets show that limm=n→∞ maxξ{´e−µÄ(ξ)g(ξ)} > ´e−µÄ(θgv)g(θgv),
with the maximum indicated by the dashed line in the inset, and the value at θgv by the
black dot. (c) and (d) show the corresponding two-parameter continuations in m = n
and either (c) γ or (d) ξ of the fold bifurcations with the left panel showing the case
of a = 22.1591 and the right panel for a = 14.6591. The fold bifurcations are always
associated with unstable steady states. In (c) the asymptote denoted γ∗ for the fold
bifurcation is obtained dividing the maximum value of ´e−µÄ(ξ)g(ξ) from (a) and (b)
by θgv and is seen to be strictly larger than γgv in both cases.

and (d) show that the corresponding fold bifurcation asymptotes to γ = γgv and ξ = θgv as

m = n → ∞.

Figure 6.11 illustrates two examples with the same parameters as in Figure 6.10, except for

the length parameter a. Changing just the length parameter a leaves the ratio rv unchanged,

but changes the value of Ä(θgv) as well as Ä− and Ä+. With a = 22.1591 and m = n it

follows that M(θgv) = n/12 − 1 and limm=n→∞ M(θgv) = +∞, while for a = 14.6591 we

have M(θgv) = −n/12 − 1 with limm=n→∞ M(θgv) = −∞. As Figure 6.11(a) and (b) show,

for both of these parameter sets, (6.24) is satisfied and ξ 7→ ´e−µÄ(ξ)g(ξ) is non-monotone. It

is also clear from the insets in these panels that in contrast to Figure 6.10, the maximum of

ξ 7→ ´e−µÄ(ξ)g(ξ) is now strictly larger than ´e−µÄ(θgv)g(θgv) for all m = n k 0. Consequently,

as seen in Figure 6.11(c), the rightmost curve of fold bifurcations asymptotes to a value of

γ which is strictly larger than γgv as m = n → ∞. As Figure 6.11(d) shows in both cases

the location of this fold bifurcation converges to θgv as m = n → ∞. When M(θgv) > 0



Dynamics of a state-dependent delay-differential equation 73

the maximum of ´e−µÄ(ξ)g(ξ) occurs for ξ > θgv and consequently for the fold bifurcation as

m = n → ∞, ξ → θgv from above and γ → γ∗ from below for some γ∗ strictly larger than γgv.

For M(θgv) < 0 the convergence is from the other side, but again γ → γ∗ for some γ∗ strictly

larger than γgv.

We remark that for the example with a = 14.6591 in Figure 6.11, because M(θgv) < −1 the

condition (6.17) is violated, even though the condition (6.24) is satisfied, demonstrating as we

claimed earlier that (6.17) is not a necessary condition to obtain (6.24). This also shows that

it is insufficient to just evaluate the value of M(θgv) to determine whether fold bifurcations

occur.

In Figures 6.12 and 6.13 we return to the parameter set first considered in Figure 6.9 for

which ´e−µÄ(θ)g(θ) > ´e−µÄ−
g− > ´e−µÄ+

g+. Now, we also consider the Hopf bifurcations

and resulting periodic orbits. With these parameters M(θgv) < 0 when m = n > 0 with

M(θgv) → −∞ as m = n → ∞ and so the upper fold bifurcation approaches γ∗ for some

γ∗
> γgv from above as m = n → ∞, as seen in Figure 6.12(c), similar to the left panel of

Figure 6.11(c). The other fold bifurcation is seen in Figure 6.12(c) to approach γ = γ24 as

m = n → ∞, as ξ 7→ ´e−µÄ(ξ)g(ξ) evolves from the smooth function shown in Figure 6.12(b) to

its limiting form as in Figure 6.12(d). This agrees with the arguments under Figure 6.8 above.

For the one parameter continuation shown in Figure 6.12(a) the steady state is stable for

all γ sufficiently large or sufficiently small, and loses stability in a Hopf bifurcation (and

not at the fold bifurcations). A two parameter continuation of these Hopf bifurcations in

Figure 6.12(c) shows that they approach γ13 and γ24 as m = n → ∞, similarly to how we saw

the Hopf bifurcations were forced to the ends of the interval of singular steady state solutions

in Section 5.1.

In Figure 6.12(a) there are no stable steady states for γ ∈ (0.624, 0.837), so we explored

the stable invariant objects in this case using both numerical bifurcation detection and con-

tinuation and numerical simulation of the DDE. Using ddebiftool we find that the Hopf bi-

furcation at γ = 0.624 is supercritical and generates a branch of stable periodic orbits, which

is illustrated in Figure 6.13. There is an apparent canard explosion [34] on this branch at

γ ≈ 0.629 where the amplitude of the periodic orbit increases dramatically. The continuation

of the branch fails in ddebiftool at this point, but since the periodic orbits are stable we are

able to continue them through the canard explosion using simulation with ddesd, and then

continue again with ddebiftool after the canard explosion, to obtain the continuous branch

of periodic solutions for m = n = 40 shown in Figure 6.12(a) and Figure 6.13. After the canard

explosion for γ ∈ (0.629, 0.84) the periodic orbit is stable with large amplitude and moderate

period (T ≈ 13) and evolves slowly as γ is varied. Then at γ ≈ 0.84 the period of the orbit

grows dramatically while the amplitude is roughly constant. In Figure 6.12(a) this branch is

represented by its 2-norm as the red curve. This curve appears to terminate on the middle

unstable branch of steady states when γ = 0.84. However, as seen in Figure 6.13(c) and (d)

the amplitude of these orbits remains large, so there is not a Hopf bifurcation at this end of

the branch.

The large period orbits shown in Figure 6.12(c) and (d) spend a lot of time close to the

unstable steady state on the middle branch between the folds, which is itself very close to the

threshold x = θgv, and resemble relaxation oscillations. This branch of periodic orbits most

likely ends in a homoclinic orbit to the unstable steady state with an infinite period. There

is also bistability between the stable periodic orbit and a stable steady state for a very small

range of parameters γ ∈ [0.837, 0.84].

In Figure 6.12 there are two fold bifurcations, as we have seen in many examples when
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parameters as in Figure 6.9. (a) With smooth nonlinearity g and v defined by (1.3)
with m = n = 40. The stable periodic orbits are represented by the 2-norm. (b)
Steady states occur at the intersections of ξ 7→ ´e−µÄ(ξ)g(ξ) and ξ 7→ γξ, with γξ
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Two-parameter continuation in m = n and γ of the fold bifurcations (in blue) and Hopf
bifurcations (black) with the other parameters as above. Solid curves indicate the parts
of the bifurcation branch where there are no characteristic values with positive real
part (and hence a stability change at the bifurcation), and dashed lines indicate where
the parts of the branch where there is at least one unstable characteristic value. In this
example the steady state always loses stability in a Hopf bifurcation, and not at the fold.
The four vertical lines denote γ13 and γ24 (recall (6.13)) and γgv (recall (6.25)), along with

γ∗ = 0.9305. (d) Plot of ξ 7→ ´e−µÄ(ξ)g(ξ) in the limiting case with g and v defined by

(1.6) and (1.7). The black dot marks the value of ´e−µÄ(θgv)g(θgv). The dashed line is
obtained by taking the Hausdorff limit of the smooth function, and extends above the
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inset panel depicts the continuation of steady states in the limiting case. Stable steady
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one of g and v is increasing. However, as Figure 6.14 shows, it is possible to obtain four fold

bifurcations by just changing the steepness of the nonlinearities and resulting width of the

interfaces of the nonlinearities. In Figure 6.14 we do this with n k m k 0. Since n is very

large the function g has a very sharp interface, and drops from very close to its maximum

value g+ to its minimum value g− while v is essentially unchanged and equal to v(θgv). This

results in the function ξ 7→ ´e−µÄ(ξ)g(ξ) having extrema close to ´e−µÄ(θgv)g− and ´e−µÄ(θgv)g+,

as shown previously in Figure 6.9(a) and (b). Outside of this narrow interface, g is essentially

constant, and therefore ´e−µÄ(ξ)g(ξ) is increasing, since v(ξ) is an increasing function. Thus

the function ξ 7→ ´e−µÄ(ξ)g(ξ) is increasing, then decreasing, then increasing again. For m

sufficiently large (so that the derivative of ´e−µÄ(ξ)g(ξ) is larger than γ) this creates two fold

bifurcations close to the ends of the inner interface for g in addition to the other two fold

bifurcations close to the edges of the outer interface of v.

Figure 6.15(a) shows that with n = 5m the second fold bifurcation exists for all m g 66.39.

As shown in Figure 6.15(b) one pair of fold bifurcations exists for ξ < θgv and the other for

ξ > θgv. This happens because θgv is in the middle of the sharp interface of g, the only (very

short) interval on which ´e−µÄ(ξ)g(ξ) is decreasing, with two of the corners giving rise to the

fold bifurcations on each side of θgv. Figure 6.15(b) shows that as n = 5m → ∞ all of the fold

bifurcations are squeezed into ξ = θgv, but in Figure 6.15(a) we see that the limiting γ values

of the folds all appear to be different. Because ´e−µÄ(ξ)g(ξ) → ´e−µÄ−g− as m, n → ∞ for all

ξ < θgv (and to ´e−µÄ+
g+ for ξ > θgv), two of the fold bifurcations asymptote to γ = γ24 and

γ = γ13 as m, n→ ∞, as shown in Figure 6.15(a). These are the outer two fold bifurcations for

the smallest and largest ξ values in Figure 6.15(b). The asymptotic γ values for the inner pair

of fold bifurcations depends on the relative widths of the interfaces of the g and v functions.

With n = 5m it appears that the limiting γ values are strictly inside the interval (γ1, γ2).

Different behaviour is observed if m, n approach infinity with different relationships. For

example, if n = m2 (as considered first in Figure 6.9(b)) then the g interface is much narrower

than for v and the inner folds asymptote to γ = γ2 and γ = γ1 while the outer folds still

asymptote to γ = γ24 and γ = γ13 as seen in Figure 6.15(d).

If n = mr → ∞ for r ∈ (0, 1) then the behaviour of ξ 7→ ´e−µÄ(ξ)g(ξ) and the bifurcations

are completely different, as shown in Figure 6.9(d) and Figure 6.15(c). In this case m k n so

the v interface is much narrower than the g interface. As g is decreasing this results in the

function ξ 7→ ´e−µÄ(ξ)g(ξ) being decreasing for ξ small and large, and increasing only on a

small interval about ξ = θgv corresponding to the narrow interface of v. In this scenario the

limiting form of the function ´e−µÄ(ξ)g(ξ) is still piecewise constant for ξ < θgv and ξ > θgv,

but now the function is decreasing rather than increasing at the corners corresponding to

γ24 and γ13, so these corners no longer result in fold bifurcations. Instead the folds occur

close to the local extrema of ´e−µÄ(ξ)g(ξ) seen in Figure 6.9(d), so that, for instance, when

n = m2/3 → ∞ the fold bifurcations in Figure 6.15(c) approach γ4 and γ3 defined by (6.26).

Figure 6.15(b) shows that the locations of the fold bifurcations are squeezed into ξ = θgv

as n = 5m → ∞ and the nonlinearities in (1.1)–(1.2) become piecewise constant for ξ ̸= θgv.

Similar behaviour was observed when n = mr → ∞ for r > 0 but we omit the figures. Notice

also that as already observed in the previous example, the outer Hopf bifurcations at which

the steady state changes stability approach γ24 and γ13 as in the limiting case as n = mr → ∞

in all of these examples.

Although there are four fold bifurcations in the example in Figures 6.14 and 6.15, because

of the location of the folds it is not possible to obtain five co-existing steady states.

As a final example we change just the parameters v± in the v function from the previous
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Figure 6.15: Two parameter continuations of the bifurcations of (1.1)–(1.2) when (g ³
, v ↑, θg = θv = θgv) with the same parameters as in Figures 6.9, 6.12 and 6.14, except
for m and n. The branches of fold bifurcations are shown as blue and red curves and
the Hopf bifurcations in black. Solid curves indicate the parts of the bifurcation branch
where there are no characteristic values with positive real part (and hence a stability
change at the bifurcation), and dashed lines indicate where the parts of the branch
where there is at least one unstable characteristic value. In all four examples the steady
state always loses stability at a Hopf bifurcation, and not at the fold bifurcation. (a)
and (b) Continuation of the fold bifurcations in γ and m with n = 5m, showing in
(a) the γ values of the fold bifurcations and (b) the value of the steady state ξ at the
fold bifurcation. Cusp bifurcations occur at (γ, m) = (0.6083, 66.3853) and (γ, m) =
(1.2480, 7.0681). (c) and (d) are similar to (a), except in (c) n = m2/3 and in (d) n = m2.
Cusp bifurcations occur in (c) at (γ, m) = (0.9577, 11.3879), and in (d) at (γ, m) =
(0.5909, 22.4752) and (γ, m) = (1.2484, 7.0591).

example, to obtain a new example with ´e−µÄ(θ)g(θ) > ´e−µÄ+
g+ > ´e−µÄ−g−, whose dy-

namics are explored in Figure 6.16. With m = n the dynamics with one and two parameter

continuations is very similar to the earlier case shown in Figure 6.12 with a single pair of fold

bifurcations and so we omit the figures here. But different choices of m and n lead to more

interesting dynamics shown in Figure 6.16. One-parameter continuation in γ with n and m

fixed with nk mk 0, as shown in Figure 6.16(a) reveals four fold bifurcations, a large inter-

val of γ values on which there are three coexisting steady states with two stable, and a small

interval for γ ∈ (0.5352, 0.5513) for which there are five co-existing steady states of which

one or two are stable. Figure 6.16(b) illustrates how these five steady states arise because for

n k m the downward g interface is much narrower than the interface for the increasing v
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Figure 6.16: Bifurcations of (1.1)–(1.2) when (g ³, v ↑, θg = θv = θgv) with ´ = 1.4,
µ = 0.2, g− = 1, g+ = 0.5, θg = θv = θgv = 1, a = 1, v− = 0.1 and v+ = 1. Apart
from m, n, v− and v+, these are the same parameters as in Figures 6.9 and 6.12–6.15.
(a) One parameter continuation of steady states in γ with smooth nonlinearities g and
v defined by (1.3) with m = 100 and n = 500. This reveals four fold bifurcations and up
to five coexisting steady states (at most two of which are stable). (b) Illustration of the
five steady states occurring in (a) at the intersections of ξ 7→ ´e−µÄ(ξ)g(ξ) and ξ 7→ γξ
with γ = 0.5480. (c) to (f) Two parameter continuations of the fold bifurcations (red
and blue) and Hopf bifurcations (black) with (c) n = 5m and (d) n = m2 (e) m varying
with n = 500 fixed and (f) n varying with m = 100 fixed. The bifurcation curves are
drawn according to the number of characteristic values with positive real part; solid for
zero and dashed for one or more. Cusp points are denoted by crosses. In (e) there is
a change of stability at the fold bifurcation between two Bogdanov–Takens bifurcations
(denoted by pink diamonds) at (γ, m) = (0.2, 165.62) and (γ, m) = (0.1938, 438.82),
otherwise in these examples the stability change is always at the Hopf bifurcation (as
was the case in Figure 6.15).
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function (compare with Figures 5.3 and 6.14). Panels (c) and (d) of Figure 6.16 show two-

parameter continuations with n = 5m and n = m2 which reveal that with these parameter

constraints all four fold bifurcations persist to arbitrary large values of m with one pair of fold

bifurcations contained in the interval (γ1, γ13) and the other in the interval (γ24, γ2) for all m

sufficiently large, just as was seen in Figure 6.15. But for the parameters used in Figure 6.16

we have (γ1, γ13) ¢ (γ24, γ2) so there are five coexisting steady states between the red curves

in Figure 6.16(c) and (d) for arbitrary large m.

In the examples shown in Figure 6.16(c) and (d) the stable steady states loses stability in a

Hopf bifurcation just before the fold bifurcation. As in the previous examples in this section

these Hopf bifurcations asymptote to γ24 and γ13 as m, n → ∞. In Figure 6.16(e) and (f) we

explore a different scenario, where we keep one of m or n fixed but much larger than zero,

and allow the other one to vary on the positive real line.

The value m = 0 in Figure 6.16(e) corresponds to the v function being constant, and since g

is decreasing, this corresponds to the scenario considered in Section 5.1. This is why the curves

of Hopf bifurcations, but not the folds, extend all the way down to m = 0. For 0 < m j n

the g function has a much narrower interface than the v function, so ´e−µÄ(ξ)g(ξ) will be

first increasing then decreasing and finally increasing again, similar to many of the examples

in this section. However for m k n k 0 the v function will have a narrower interface, so

´e−µÄ(ξ)g(ξ) will be first decreasing, like in Figures 6.9(d) and 6.15(c). Interesting dynamics is

observed with n k m > 0. In particular, in Figure 6.16(e) there is a pair of Bogdanov–Takens

bifurcations, and on the curve of fold bifurcations between these points a steady state loses

stability at the fold bifurcation, unlike the previous examples in this section, but similar to

examples in Section 5.4. In Figure 6.16(f) we explore varying n with mk 0 fixed. Thus when

n = 0 we are in the scenario of g fixed and v increasing explored in Section 5.4 which is why

fold bifurcations persist down to n = 0 in Figure 6.16(f). As n increases, once the interface

of the g function becomes narrow enough there is a cusp bifurcation which leads to a second

pair of fold bifurcations and five coexisting steady states for all n sufficiently large. For n

large the folds are contained in the intervals (γ24, γ2) and (γ1, γ13), but do not asymptote to

the ends of these intervals as n→ ∞ because m is held fixed and finite.

6.3 Summary

In Section 6 we have considered the situation where both functions g and v are non-constant.

We first derived formulae for the existence of both fold bifurcations (6.2) and Hopf bifurca-

tions (6.9)–(6.10), which reduce to formulae derived in Section 5 if either v or g is a constant

function.

In Section 6.1 we study the case when the thresholds are different; θg ̸= θv. Not sur-

prisingly, we recover the same dynamics and bifurcation structures as in Section 5 near each

threshold when mk 0, or nk 0 since in these limits the behavior localizes in the area where

the other function is essentially constant. In particular, in the case (g ³, v ³) the dynamics is

similar to that observed in Section 5.1 near x = θg and to that in Section 5.3 near x = θv. In

Section 6.1.1 we consider the example (g ³, v ↑) which supports bistability between an equi-

librium and periodic orbit and in Section 6.1.2 we examine (g ↑, v ↑) which can exhibit up to

five equilibria and tristability.

In Section 6.2 we look at the situation when θv = θg. First in Section 6.2.1 we consider a rel-

atively straightforward situation where both functions g and v are either increasing (g ↑, v ↑)

or both decreasing (g ³, v ³). Both of these cases are similar to their counterparts discussed in



80 T. Gedeon, A. R. Humphries, M. C. Mackey, H.-O. Walther and Z. Wang

Section 5.

The most interesting case is when θv = θg, but the monotonicity of g and v do not agree

i.e. (g ↑, v ³) and (g ³, v ↑). This is discussed in Section 6.2.2. The main result is that which

behavior dominates (i.e. the behavior observed for increasing g or v or behavior for decreasing

g or v) depends sensitively on the way in which m and n approach infinity. We capture this

informally in a concept of “interface width”; if mk n then the interface of v is much narrower

than the interface of g and vice versa.

Figure 6.9 illustrates that the function ξ 7→ ´e−µÄ(ξ)g(ξ) converges to different limits as

m and n go to infinity at different rates, indicating that the fold bifurcations will occur at

different places in these limits. We also observe that additional equilibria may appear when

m and n approach infinity at different rates (Figures 6.15 and 6.16). Finally, we observe a

canard-like explosion in amplitude of a periodic orbit that emanates from a Hopf bifurcation,

see Figure 6.13.

7 Conclusions

This paper is long and complicated, and hence difficult to summarize succinctly. Suffice

to say that we have introduced a generalization of a prokaryotic gene regulatory model, in

(1.1)–(1.2), originally developed in [18]. The generalization has both nonlinearities in terms

of feedback but also nonlinearities appearing in state dependent delays. Moreover the delays

are generated by a threshold condition. It is thus somewhat novel for both the mathematical

and modeling literature. The first three sections of the paper are concerned with establishing

important and relevant mathematical properties of the basic system (1.1)–(1.2). Section 2

establishes properties of the semiflow generated by (1.1)–(1.2), while Section 3 establishes

conditions for the existence of a global attractor of the semiflow. Section 4 deals with the

linearization of (1.1)–(1.2) which is of significant utility in the following Sections 5 and 6

where we examine the behaviour of (1.1)–(1.2) both numerically and analytically.

At the ends of both Sections 5 and 6 we have offered general synopses of the results of

each, which we will not repeat here. As an aid to the reader, in Table 7.1 we have listed all

of the figures in this paper illustrating dynamics for various combinations of g and v, along

with the types of bifurcations that we observed numerically in each case.

We have studied the threshold model (1.1), (1.2) directly without applying the time trans-

formation of Smith [55, 56] to convert the equations to a distributed delay DDE with constant

delay. We showed in Sections 5.3–6.2.2 that the dynamics of the model (1.1) with a threshold

delay is altogether richer and more surprising than the dynamics of the corresponding con-

stant delay model considered in Sections 5.1–5.1. In so doing we demonstrated that problems

with threshold delays can be analysed and studied numerically without time transforming the

problems to constant delay problems. Our methods are applicable to problems with multiple

delays including one or more threshold delays.

Much of the algebra in this paper is rooted in the use of monotone Hill functions for g(ξ)

and v(ξ) which is both relevant and quite justifiable for modeling in the biological realm. Our

algebra is helped by the use of the function ξ 7→ ξ f ′(ξ)/ f (ξ) which has a tractable form (5.11)

when f is a Hill function. Notice that if f (ξ) = Cξ p then

ξ f ′(ξ)

f (ξ)
= p,

so we can think of ξ f ′(ξ)/ f (ξ) as a description of a local power of a non-polynomial function.
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(g, v) Corresponding figure number and bifurcations

(g ³, v´) 5.1(´γ), 5.2(1,2,H,S)

(g ↑, v´) 5.3(´γ), 5.4(1,2,F,H,Cu)

(g´, v ³) 5.5(´γ), 5.6(1,S), 5.7(1,2,H,S), 5.8(1,2,H,S)

(g´, v ↑) 5.9(´γ), 5.10(1,2,F,S,Cu), 5.11(1,F,h,H,FP), 5.12(1,2,Ba,BT,FH,Cu),

5.13(1,F,FP,H,h), 5.14(2,F,H,h,BT,Cu), 5.15(1,H,h), 5.16(1,2,F,H,h,Cu,Ba,Fh2)

(g ³, v ↑) 6.1(´γ), 6.2(1,2,F,H,Cu,BT,FH), 6.7(´γ,1,2,H), 6.8(´γ), 6.9(´),

6.10(´,1,2,F,Cu), 6.11(´,2,F,Cu), 6.12(´γ,1,2,F,H,Cu), 6.13(1,H,h,Ca),

6.14(´γ,1,4F,H), 6.15(2,4F,H,Cu), 6.16(´γ,1,2,4F,5SS,H,Cu,BT)

(g ↑, v ↑) 6.3(´γ), 6.4(1,2,4F,5SS,H,Ba,BT,FH), 6.5(1,4F,5SS,H)

(g ³, v ³) 6.6(1,2,H)

(g ↑, v ³)

Table 7.1: Summary of various dynamic behaviours seen in Sections 5 and 6. The nota-
tion of ’n.m’ refers to figure ’m’ of Section ’n’ and the symbols after indicate the type
of continuation explored and the bifurcations observed. ´γ and ´ refers to a figure
in which ´e−µÄ g(ξ) (with or without γξ) is plotted to show qualitatively the number
of steady states of the system (1.1)–(1.2). 1 and 2 indicate that 1 and/or 2 parame-
ter numerical continuation was performed. The bifurcations observed are denoted by
F (Fold), FP (Fold of Periodic Orbits), H (Hopf), S (Stable-no bifurcation), and h (ho-
moclinic) and for higher co-dimension bifurcations: Ba (Bautin or generalized Hopf),
BT (Bogdanov-Takens), Cu (cusp), FH (fold-Hopf), Fh2 (fold-homoclinic). 4F denotes
examples with 4 fold bifurcations, 5SS denotes 5 co-existing steady states, and Ca a
canard. Note that ’left clicking’ on a number will take you to that figure, while ’Alt←’
will bring you back to this table.

While a similar approach could be adopted for other nonlinearities, the results would likely

be quantitatively different, but we expect that for monotone functions they would not show

qualitative alterations. However, if non-monotone nonlinearities were considered then we

expect that there would be substantial qualitative as well as quantitative differences.

Future directions. In [20] the authors examine the various dynamic patterns (what they

term ‘multi-synchronization’ or ‘multi-rhythmicity’) that emerge from models of biochemical

and cellular oscillators coupled to each other, and illustrate their considerations with examples

of the circadian oscillator and the cell cycle. While certainly of interest biologically, perhaps

the more interesting question is whether or not one could construct a catalog, or dictionary, of

possible dynamical behaviours arising from the coupling of N different dynamics generated

by DDEs as we have considered here.

In particular, consider

x′i(t) = ´ie
−µiÄi(t)

vi(xi(t)))

vi(xi(t− Äi(t)))
gi(xi(t− Äi(t)))− γixi(t) (7.1)

where for t g 0 the delay Äi(t) is defined by the threshold condition

ai =
∫ 0

−Äi(t)
vi(xi(t + s))ds =

∫ t

t−Äi(t)
vi(xi(s))ds (7.2)

for i = 1, . . . , N. Assuming that these systems are coupled through one or more of the param-

eters ´i, µi, γi, ai or through the functions Äi, vi, gi, then what can be said about the resulting
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dynamics? The paper [20] considered both ‘series’ and ‘parallel’ coupling between their two

dynamics, but one would have to precisely define what was meant by this within the context

of (7.1)–(7.2).

For N = 2 one might consider a system

x′1(t) = ´1x2e−µ1Ä1(t)
v1(x1(t)))

v1(x1(t− Ä1(t)))
g1(x1(t− Ä1(t)))− γ1x1(t),

x′2(t) = ´2x1e−µiÄ2(t)
v2(x2(t)))

v2(x2(t− Ä2(t)))
g2(x2(t− Ä2(t)))− γ2x2(t).

One could regulate the strength of the coupling by an additional constant i.e. by considering

the term ´1a1x2 rather than just ´1x2. This would allow an examination of the strength of

coupling while keeping ´’s the same for comparison with a single DDE oscillator. This seems

to be the simplest linear coupling; an alternative might be considering ´1(x2), ´2(x1) where

these are Hill functions. This coupling results in a positive mutual feedback in the sense that

more x1 makes g(x2) bigger and vice versa.

For stable oscillation in a single DDE we need at least one of the functions v or g to

be decreasing. Are there differences if we couple same kind oscillators (−,+) with (−,+)

or (+,−) with (+,−) on one hand and two different oscillators (+,−) with (−,+)? If we

mutually couple two DDEs in a way that they form a negative feedback loop, can we identify

oscillations that arise due to local negative feedback (i.e. the oscillator type (−,+) and (+,−))

and the global negative feedback, that arises from the mutual coupling of the oscillators? In

particular, consider two types of mutually coupled equations. First consider the coupling

through the nonlinearities g

x′1(t) = ´1e−µ1Ä1(t)
v1(x1(t)))

v1(x1(t− Ä1(t)))
g1(x2(t− Ä1(t)))− γ1x1(t),

x′2(t) = ´2e−µ2Ä2(t)
v2(x2(t)))

v2(x2(t− Ä2(t)))
g2(x1(t− Ä2t)))− γ2x2(t),

where both v1, v2 are decreasing, so that each equation can support oscillations with con-

stant input from the other oscillator (see Section 5.3). If both g1, g2 are also decreasing this

represents mutual inhibition between two oscillators and suggests the possible existence of

bistability.

Alternatively, one can consider coupling of the equations through the v functions rather

than nonlinearities g, with all functions v1, v2, g1, g2 still decreasing:

x′1(t) = ´1e−µ1Ä1(t)
v1(x2(t)))

v1(x2(t− Ä1(t)))
g1(x1(t− Ä1(t)))− γ1x1(t),

x′2(t) = ´2e−µ2Ä2(t)
v2(x1(t)))

v2(x1(t− Ä2(t)))
g2(x2(t− Ä2t)))− γ2x2(t).

Does either system support bistability between periodic solutions? If so, does the shape

of the periodic solutions reflect the fact that in mutually repressible coupled systems one

component is high while the other is low?

One can also consider larger system of equations that are cyclically coupled

x′1(t) = ´1e−µ1Ä1(t)
v1(x1(t)))

v1(x1(t− Ä1(t)))
g1(xN(t− Ä1(t)))− γ1x1(t), (7.3)

x′j(t) = ´ je
−µjÄj(t)

vj(xj(t)))

vj(xj(t− Äj(t)))
gj(xj−1(t− Äj(t)))− γjxj(t), j = 2, . . . , N. (7.4)
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We have already tackled a particular problem of this form in [18] where we considered

dM

dt
(t) = ´Me−µÄM(t) vM(E(t))

vM(E(t− ÄM(t)))
f (E(t− ÄM(t)))− γ̄M M(t),

dI

dt
(t) = ´ Ie

−µÄI(t)
vI(M(t))

vI(M(t− ÄI(t)))
M(t− ÄI(t))− γ̄I I(t),

dE

dt
(t) = ´E I(t)− γ̄EE(t).

which is exactly of the form (7.3),(7.4) with N = 3 and g2(x) = g3(x) = x and µ3 = Ä3 = 0.

To conclude, the work presented here opens many interesting questions on how the inter-

play between the character of the nonlinearity, state dependent delay and coupling affects the

local and global dynamics of DDEs.

Appendices

A Relation of (1.1)–(1.2) to the model of Gedeon et al. [18]

The Goodwin model [22] for operon dynamics considers a large population of cells, each of

which contains one copy of a particular operon. (M, I, E) respectively denote the mRNA,

intermediate protein, and effector protein concentrations. For a generic operon [21, 22, 24, 25,

46, 51] the dynamics are assumed to be given by

dM

dt
= ´M f (E)− γM M, (A.1)

dI

dt
= ´ I M− γI I, (A.2)

dE

dt
= ´E I − γEE. (A.3)

The production flux f of mRNA is assumed to be a function of the effector level E. Further-

more, the model assumes that the flux of protein and metabolite production are proportional

(at rates ´ I , ´E respectively) to the amount of mRNA and intermediate protein respectively.

All three of the components (M, I, E) are subject to degradation at rates γM, γI , γE. The pa-

rameters ´ I , ´E, γM, γI and γE have dimensions [time−1].

In [18] we extended the classic Goodwin model for the regulation of the bacterial operon

to a situation in which the cells are growing exponentially at a rate µ and have finite transcrip-

tional and translational velocities that are potentially dependent on the state of the system.

For the full model of [18], retain the notation of the original Goodwin operon model, denote

the transcriptional velocity by vM(E(t)) and the translational velocity by vI(M(t)), and let

γ̄i = γi + µ. Then the extension in [18] is

dM

dt
= ´Me−µÄM(t) vM(E)

vM(E(t− ÄM(t)))
f (E(t− ÄM(t)))− γ̄M M, (A.4)

dI

dt
= ´ Ie

−µÄI(t)
vI(M)

vI(M(t− ÄI(t)))
M(t− ÄI(t))− γ̄I I, (A.5)

dE

dt
= ´E I − γ̄EE. (A.6)
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These equations are supplemented by the two additional equations which implicitly define

the delays ÄM and ÄI by threshold conditions, namely

aM =
∫ t

t−ÄM(t)
vM(E(s))ds =

∫ 0

−ÄM(t)
vM(E(t + s))ds, (A.7)

aI =
∫ t

t−ÄI(t)
vI(M(s))ds =

∫ 0

−ÄI(t)
vI(M(t + s))ds. (A.8)

In our extended model [18], as in the original Goodwin [21] formulation, the function f is

a monotone increasing function for an inducible operon, and for a repressible operon f is a

monotone decreasing function.

To make the transition from the full model (A.4)–(A.6) presented in [18] to the apparently

simpler situation of (1.1)–(1.2) considered here is relatively straightforward. We simply need

two assumptions:

1. We first assume that the translational velocity vI is not regulated but is large with respect

to the other characteristic times in the system so the translational delay ÄI ≃ 0.

2. Our second assumption involves the existence of fast and slow variables [36, Section 2.3]

so there is a clear separation of time scales.

With these assumptions and the substitutions: E → x, ´ → γ̄I
´M ´ I ´E

γ̄Mγ̄I γ̄E
(or ´ → γ̄E

´M ´ I ´E

γ̄Mγ̄I γ̄E
),

f → g, and ÄM(t)→ Ä(t) we immediately obtain the system (1.1)–(1.2) that we study here.

One might think that (1.1) is somewhat novel but in fact similar formulations are available

in different situations. Below, in Appendix B we give several other examples of models in the

spirit of (1.1), but which differ in details that may or may not offer significant differences in

behaviour.

B Other examples

In this appendix, we mention four different examples of previously published studies which

can be thought of as extensions of the considerations in this paper.

A bistable genetic switch

The two types of operon dynamics originally considered were classified as either repressible

(in which the production flux function f in (A.1) is a decreasing function of its argument), or

inducible (in which f is an increasing function of its argument). In the language of dynamical

systems these are negative or positive feedback systems. However, there is a third type of

fundamental dynamical entity found in prokaryotes, namely the so called bistable switch in

which the effector produced by operon X inhibits the transcription of DNA from operon Y

and vice versa (which we might denote as a (−,−) system). The paradigmatic molecular

biology example of a bistable switch due to reciprocal negative feedback is the bacteriophage

(or phage) ¼, which is a virus capable of infecting E. coli bacteria. Originally described in [32]

and very nicely treated in [48], it is but one of many examples of mutually inhibitory bistable

switches that have been found since. Models of this process are to be found in [26], [50], and

[9] among others.

Consider a simple model for this process in which the dynamics of the intermediate of

both the X and Y operons is fast relative to the dynamics of the corresponding mRNA MX
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and MY, and effectors EX and EY. Then we can write down a reduced version of the model

(A.4)–(A.6) in the form

dMX

dt
= ´MX

e−µÄMX
(t) vMX

(EY)

vMX
(EY(t− ÄMX

(t)))
fX(EY(t− ÄMX

(t)))− γ̄MX
MX, (B.1)

dEX

dt
= ´EX

MX − γ̄EX
EX, (B.2)

dMY

dt
= ´MY

e−µÄMY
(t) vMY

(EX)

vMY
(EX(t− ÄMY

(t)))
f (EX(t− ÄMY

(t)))− γ̄MY
MY, (B.3)

dEY

dt
= ´EY

MY − γ̄EY
EY. (B.4)

Analysis of the network dynamics of ordinary differential equation systems [23, 47] sug-

gests that the system

dMX

dt
= ´MX

fX(EY)− γ̄MX
MX,

dEX

dt
= ´EX

MX − γ̄EX
EX,

dMY

dt
= ´MY

f (EX)− γ̄MY
,

dEY

dt
= ´EY

MY − γ̄EY
EY,

corresponding to (B.1)–(B.4) in both (++) and (−−) cases is a positive cyclic feedback sys-

tem [17] and will display bistability [23, 47]. The recent preprint [49] carefully analyzes the

boundary of bistability regions in both (++) and (−−) cases.

Based on the results from [18], inclusion of distributed delays could add additional equi-

libria, resulting in multistability. Adding delays also can change the range of bistability in the

parameter space.

System (+−) is a negative feedback system where we expect that the trivial equilibrium

will lose stability through Hopf bifurcation if the slope(s) of nonlinearities are sufficiently

steep at the equilibrium. Adding delays may result in additional stable equilibria and sec-

ondary Hopf bifurcations, as was observed in [18].

A forest growth model

In [39], the authors considered an age structured model for the growth of a single tree species

forest. They showed that the dynamics of the number of adult trees A is governed by

dA(t)

dt
= e−µÄ(t) f (A(t))

f (A(t− Ä(t))
rb(A(t− Ä(t)))− γA(t) (B.5)

in conjunction with the condition

∫ t

t−Ä(t)
f (A(s))ds = s̄. (B.6)

In (B.5) µ is the mortality rate of saplings, f is the velocity of maturation of saplings, r is the

birth rate, b is the reproduction (birth) function and γ is the mortality rate of adults.
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Figure B.1: The Burns and Tannock [7] model for the cell cycle consisting of a resting
phase (G0) and the proliferating phase P with the sub-phases G1, S (DNA synthesis), G2,
and M (mitosis and cytokinesis). It is assumed that cells can die from the proliferating
phase at a rate γ and exit into the differentiation pathway from G0 at a rate δ. Redrawn
from [37].

The G0 cell cycle model

The original G0 cell cycle model proposed by Burns and Tannock in [7] is illustrated in Fig-

ure B.1, and captures the essence of what is known of the cellular replication process at a

intermediate (cellular or non-molecular) level of sophistication and knowledge. The prolifer-

ating phase cells are denoted by P while the resting G0 phase cells are denoted by N.

In the elaboration of [37], it is presumed that cells die from the proliferative phase at a rate

γ so the flux of cells to death is γP, and differentiate from G0 at a rate δ so the differentiation

flux is δN. Cells in the G0 phase can, in addition to differentiating, re-enter the proliferative

phase at a rate ´ so the flux of cells into proliferation is ´N. Cells that enter the proliferative

phase are assumed to proceed through the stages G1, S, G2, and M in a lock step fashion that

takes a time Ä to complete if death does not intervene. Once mitosis is completed, cytokinesis

produces two daughter cells that then enter G0.

Based on the assumption that the rate ´ of cell entry from G0 into P, is a function of

the size N of G0, then it is straightforward to show that the dynamics of the augmented

Burns/Tannock cell cycle model are governed by the differential delay equation

dN

dt
= −[δ + ´(N)]N + 2e−γÄ NÄ ´(NÄ), (B.7)

where we have used the notation N ≡ N(t) and NÄ ≡ N(t− Ä). Equation (B.7) has been the

subject of an extensive bifurcation analysis in the work of [12].

Now we consider a slightly modified cell cycle model identical to the Burns/Tannock

model with the additional wrinkle that the velocity v with which cells move through the

proliferative phase of the cell cycle is under the control of the number N of non-proliferative

cells.

Remark B.1. One would think that the velocity of movement through the proliferative phase P

would be an increasing function of decreased N which would lead to a delay Ä that decreases

as N decreases. This would lead to cell density dependent inter-division times.

If we take the number of proliferative phase cells at time t and age a to be p(t, m), the

maximum age at cytokinesis to be am, and the velocity with which they move through the cell
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Figure B.2: A schematic representation of the recurrent inhibition circuit considered in
[15]. This figure is modified from the original publication.

cycle to be v(N(t)), then the evolution equation for p(t, m) is given by

∂p(t, m)

∂t
+ v(N(t))

∂p(t, m)

∂m
= −γp(t, m) (B.8)

and we have the initial condition

p(t, m = 0) = N(t)´(N(t)). (B.9)

Following the same derivation procedure as in [18], the final equation for the dynamics of the

non-proliferative cellular population N is given by

dN(t)

dt
= 2e−γÄ(t) v(N(t))

v(N(t− Ä(t)))
N(t− Ä(t))´(N(t− Ä(t))− (δ + ´(N(t)))N(t). (B.10)

We also have the additional condition that

am =
∫ t

t−Ä(t)
v(N(s))ds. (B.11)

Remark B.2. Note that, not unsurprisingly, the augmented cell cycle model is identical in

formulation with the forest growth model of [39].

A model for recurrent inhibition

A model for the dynamics of a recurrent inhibitory neural feedback circuit is considered in

[15], however the model was incomplete omitting the velocity ratio term which appears in all

of the other models here. The term v(x(t))/v(x(t − Ä(t))) in (1.1) is essential as shown in

[5, 10, 18] from conservation and flux arguments. Here, we complete the model of [15].

To capture the spirit of the recurrent inhibitory neural circuitry and offer a complete for-

mulation incorporating the ratio term, we consider the situation with dynamics described

by

dV(t)

dt
= γ(E−V(t))−

Σ(V(t))

Σ(V(t− Ä(t)))
G(F(V(t− Ä(t)), (B.12)

where V = E− I is the net potential in the neuron, E(I) is the excitatory (inhibitory) potential,

Σ is the velocity of propagation of the action potentials around the inhibitory loop back to the

soma, and G is the response of the neuron to the recurrent inhibitory drive. F ≈ ³V (³ > 0)

is the firing frequency of the cell, an increasing function of the postsynaptic potential V. In

conjunction with (B.12), if the length of the recurrent inhibitory pathway is L we have the

ancillary condition

L =
∫ t

t−Ä(t)
Σ(V(s))ds. (B.13)
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In [15] it was argued that Σ is an increasing function of the postsynaptic potential V so,

as a consequence the delay time Ä is a decreasing function of V. It was further noted that, on

physiological grounds, G is an increasing function of the firing frequency F for small values

of F and decreasing with increasing F past a certain maximum.

This model can be further generalized to a state dependent DDE with distributed state

dependent delays. This generalization relaxes the assumption that the length L is constant.

A more realistic assumption is that the lengths are distributed in population of neurons de-

scribed by a distribution KL. Note that this is equivalent to having variable firing threshold at

the soma that receives the inhibitory input. The model takes the form

dV(t)

dt
= γ(E−V(t))−

∫

∞

0

Σ(V(t))

Σ(V(t− ϕ(t)))
G(F(V(t− ϕ(t))KL

(

∫ t

t−ϕ
Σ(V(s))ds

)

dϕ, (B.14)

where V = E− I is the net potential in the neuron, E(I) is the excitatory (inhibitory) potential,

Σ is the velocity of propagation of the action potentials around the inhibitory loop back to the

soma, and G is the response of the neuron to the recurrent inhibitory drive. F ≈ ³V (³ > 0)

is the firing frequency of the cell, an increasing function of the postsynaptic potential V. To

derive this equation we note that the distribution of the recurrent loop lengths L is analogous

to the distributed maturation times in Kendrick–McCormack age structured models analyzed

in [8]. The analog to the Kendrick–McCormack model of the age distributed population is

∂tE(t, s) + ∂s(Σ(V(t))E(s, t)) = −h(s)E(s, t),

Σ(V(t))E(t, 0) = G(F(V(t))), E(t0, s) = f (s), s ∈ [0, ∞)

where s is a position along a loop, E(t, s) is the action potential at position s of the loop and

the propagation velocity Σ depends on the voltage at time t. The term h(s) is the discharge

of the action potential in the soma when the circuit has length s. The function h(s) can be

expressed (see [8]) using the distribution KL of circuit lengths as

h(s(t)) =
KL(s(t))

1−
∫ Ã

0 KL(s(Ã))dÃ

d

dt
s(t).

Solving the partial differential equation along the characteristics

d

dϕ
t(ϕ) = 1,

d

dt
s(t) = Σ(V(t))

gives the equation (B.14). For details of the derivation see [8].

C Numerical techniques

Our numerical techniques are documented in detail in [18,63–65], so here we will only briefly

summarise them, and note some extensions of the previous methods.

All of our computations are performed using MATLAB [43]. Mainly we perform nu-

merical continuation and bifurcation analyses using the MATLAB package ddebiftool [54].

Existing versions of ddebiftool are only implemented for discrete delays, and cannot be ap-

plied directly to problems with threshold delay. Since the largest possible delay is a/v0, to

implement threshold delay problems in ddebiftool we introduce up to 100 dummy constant

delays to discretize the time interval [t − a/v0, t] on a equally spaced mesh. The threshold
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delay Ä(t) that satisfies (1.2) can then be computed be applying numerical quadrature. The

implementation is explained in detail in [64, 65], and is a refinement of our earlier methods

[18, 63].

One of the features that makes ddebiftool, and numerical continuation in general, so

powerful is its ability to follow stable and unstable branches of solutions equally well. Occa-

sionally we also use numerical simulation of the DDE to find stable solutions. The standard

MATLAB solver for state-dependent DDEs is ddesd [52], but this is also only implemented for

discrete delays. To use it to solve (1.1)–(1.2) as an initial value problem we first differentiate

the threshold condition (1.2) to obtain

dÄ(t)

dt
= 1−

v(x(t))

v(x(t− Ä(t)))
, (C.1)

and then solve (1.1), (C.1) using ddesd. See [18, 63, 65] for implementation details, and also

[64] for an investigation of the differences between (1.1), (1.2) and (1.1), (C.1).

The numerical collocation underpinning the ddebiftool differential equation solver, is

best suited to smooth nonlinearities and solutions. When m or n is large and one of the Hill

functions in (1.3) approaches a step function issues may arise in the computations. Here we

mention some tricks we applied to compute the figures in those cases.

To circumvent underflow, overflow and division by zero errors in MATLAB when evaluat-

ing ´e−µÄ(ξ)g(ξ) near θg or θv (such as in Figure 6.9), we rewrite the Hill function as

g(x) =



















g− + g+(x/θg)n

1 + (x/θg)n
, x f θg,

g−(θg/x)n + g+

(θg/x)n + 1
, x > θg,

and similarly for v(x). It can still be delicate to continue branches of fold bifurcations when

m or n are large. In practice, when needed, we apply two different techniques for extending

branches of fold bifurcations to very large values of m and/or n. Firstly, the MATLAB non-

linear system solver fsolve [57] can be used to solve (6.2) for each fixed value of m or n, to

extend the branch to large values of these nonlinearity parameters. Alternatively, since M(ξ)

changes sign at the fold bifurcation, these can be revealed by performing a contour plot of

M(ξ) in the (ξ, m) or (ξ, n) plane and displaying only the M(ξ) = 0 curve. Furthermore, to

perform two-parameter continuation of the fold bifurcations in (γ, m) or (γ, n), we evaluate

the right hand side of (6.3) to get the corresponding γ for the fold bifurcation at ξ. We apply

such tricks extensively in Section 6.2.2.

We were unable to use ddebiftool subroutines for detecting codimension-two bifurcations

along the fold and the Hopf curves. This was likely due to the complexity of the stability

computations with the augmented system ddebiftool uses for two-parameter continuation

combined with the large number of delays in our implementation. To find the codimension-

two bifurcation points we compute the stability of the points on the codimension-one bifur-

cation branches and track the number of characteristic values with positive real part along

the branch. On the fold branch, a fold-Hopf bifurcation occurs when a complex conjugate

pair of characteristic values cross the imaginary axis. Fold-Hopf points are also found on a

branch of Hopf bifurcations at points where a single real characteristic value changes sign.

A Bogdanov–Takens point is characterised by a single real characteristic value changing sign

on a fold branch, at a point in parameter space where a branch of Hopf bifurcations also

terminates. Note that we do not compute the normal form coefficients of these bifurcations.
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