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Abstract—We propose a sustainable federated learning (FL)-
based monitoring system, namely susFL, for smart animal farms
to address the challenge of inconsistent health monitoring due
to fluctuating energy levels of solar sensors. This system equips
animals, such as cattle, with solar sensors with computational
capabilities, including Raspberry Pis, to train a local deep-
learning model on health data. These sensors periodically update
Long Range (LoRa) gateways, forming a wireless sensor network
(WSN) to detect diseases like mastitis. Our proposed susFL sys-
tem incorporates a game-theoretic approach, called mechanism
design, to select intelligent clients to optimize monitoring quality
while minimizing energy use. This strategy ensures the system’s
sustainability and resilience against various adversarial attacks,
including data poisoning and privacy threats, that could disrupt
FL operations. Our work in smart farm technologies sets a new
standard by developing an animal monitoring system that is
both energy-adaptive and resistant to attacks. Through extensive
experiments, we demonstrate that our FL-based monitoring
system significantly outperforms existing methods in prediction
accuracy, operational efficiency, system reliability (i.e., mean time
between failures or MTBF), and social welfare maximization by
the mechanism designer. Our experimental results show that
susFL significantly outperforms the state-of-the-art counter-
parts, including a 10% reduction in energy consumption, a 15%
increase in social welfare, and a 34% rise in Mean Time Between
Failures (MTBF) while maintaining the global model’s prediction
accuracy.

Index Terms—Smart farm, energy-aware, federated learning,
deep learning, solar sensors, sustainability.

I. INTRODUCTION

In modern agriculture, solar sensor-based smart farm tech-
nologies have revolutionized how farm production is moni-
tored and managed. By harnessing the power of these tech-
nologies, farms can achieve higher productivity and effi-
ciency [1]. Integrating solar energy with sensor technology
supports sustainable agricultural practices. In addition, it en-
sures continuous collection of a large volume of data and
real-time monitoring, enhancing operational effectiveness and
efficiency [2]. Despite such advantages, deploying solar sen-
sors in smart farming raises significant challenges, particularly
regarding energy consumption. Energy efficiency becomes
paramount as these sensors must operate autonomously over
extended periods. Therefore, developing energy-efficient ap-
proaches while maintaining continuous monitoring capabilities
is essential for the sustainability of smart farming solutions.
Moreover, as the scale and sophistication of smart farming
systems increase, the concerns surrounding the large volume
of data, and their security and privacy (e.g., farm operations,
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employee information, and financial data) have been raised.
The consequences of failing to protect this data adequately
are profound, ranging from economic losses due to opera-
tional disruptions to severe breaches of privacy in smart farm
systems [3]. However, implementing robust security measures
often comes at a high cost, presenting a substantial challenge
for sustainable smart farming operations.

In response to these challenges, our work develops a
monitoring system resistant to cyber and adversarial attacks
as well as energy-efficient. The aim of this work is to
provide a reliable framework that upholds both the operational
integrity and the privacy of the data to build an attack-resistant,
sustainable monitoring system for smart farm environments.

Federated learning (FL) is a suitable approach to address
these multifaceted challenges. Unlike traditional centralized
learning models, FL enables data to be processed locally at
the sensor level, drastically reducing the amount of data that
needs to be transmitted and thereby conserving energy. Addi-
tionally, by decentralizing the data processing, FL inherently
enhances data security and privacy, as sensitive information is
not required to be sent over the network. This methodology
not only aligns with the energy efficiency goals but also
fortifies the system against potential data breaches and cyber-
attacks, making it an ideal choice for our sustainable and
attack-resistant smart farm monitoring system. Our proposed
approach is named susFL, representing a sustainable FL
system in the presence of cyber and adversarial threats.

Our work made the following key contributions:

1) Sustainable FL. with energy-efficient client selection
via mechanism design: We utilize a game-theory-based
mechanism design strategy to enhance the sustainability
of smart farming systems by energy-adaptively selecting
clients (i.e., sensor-equipped animals). This method’s ef-
fectiveness is quantitatively assessed using the reliabil-
ity metric, called Mean-Time-Between-Failures (MTBF)
representing the sum of a system’s uptime, to build a
smart farm that conserves energy while maintaining high
operational reliability, addressing gaps in existing energy-
efficient solutions [4, 5].

2) Pioneering FL for disease detection in smart farm ani-
mals: Our work is the first to explore FL-based monitoring
systems for smart farms by identifying livestock illnesses.
Unlike previous studies [6-9], which did not apply FL
for animal disease detection, we leverage comprehensive
experiments with data from the Internet of Animal Health
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Things (IoAHT) [10], focusing on clinical mastitis in cows,
providing a solid foundation for validating FL in real-world
agricultural settings.

Robust hierarchical FL under adversarial attacks: We
address adversarial attacks in smart farm systems using a
hierarchical FL framework to maintain high global pre-
diction accuracy through data quality-aware aggregation.
Unlike [11-13], we evaluate the effect of attacks on
prediction accuracy and sensor node energy efficiency in
resource-constrained environments, using real-world data
from Virginia Tech’s smart farm.

Experimental Validation of susFL: Our results demon-
strate susFL’s enhanced performance, achieving a 10%
decrease in energy use, 15% boost in social welfare, 34%
higher MTBF, and slightly improved prediction accuracy
in the global model.

3)

4)

II. BACKGROUND & RELATED WORK
A. Federated Learning

FL emerges as a cutting-edge machine learning (ML)
paradigm that facilitates collaborative model training across
multiple data providers, aiming to construct a high-quality,
centralized model without compromising data privacy [14]. As
illustrated in Fig. 1, the FL framework encompasses a central
server hosting the global model and numerous client devices,
each maintaining a local model. Within this ecosystem, we
consider N distinct data providers, denoted as {C1,...,Cn},
each possessing a unique dataset { D1, ..., Dy }. The training
of an ML model Mrrp under the FL protocol involves the
collective effort of all participating data providers. Here, each
provider C; exclusively accesses its dataset D; to contribute
to the global learning process [15].

B. FL-based Smart Farms

Idoje et al. [1] leveraged FL for smart agriculture, focusing
on crop classification and time series forecasting, respectively,
with [13] exploring its use in agricultural risk management
and milk quality prediction. They emphasized FL’s benefits
but lacked real-world data evaluation and relied on federated
averaging. Friha et al. [11] introduced an FL-based intrusion
detection system that enhances data privacy in agricultural IoT
systems with multiple datasets. Praharaj et al. [12] proposed a
hierarchical federated transfer learning framework for cyber-
security in smart farming without experimental validation.
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Unlike the above works [1, 11-13], our work pioneers
an FL-based system for monitoring animal health in smart
farming, a novel application in the sector. It shifts focus
from conventional energy-efficient FL. methods to robust,
secure services suited for solar sensor-equipped farms, filling
a significant gap in the current literature.

C. FL-based Monitoring Systems

Sun et al. [16] utilized FL frameworks to enhance IoT
security monitoring, with the former identifying anomalies
and the latter adapting models within LANs, though both
lacked comprehensive performance metrics. Wu et al. [8]
introduced FedHome, an FL-based health monitoring system
using a generative convolutional autoencoder to optimize com-
munication. Khoa et al. [17] developed an autoencoder model
to personalize FL applications efficiently. Elayan et al. [6]
proposed a deep FL framework specifically for IoT healthcare,
focusing on accuracy and privacy across three operational
phases. Fan et al. [9] extended FL application to the Internet of
Medical Things with the FLDIoMT architecture, incorporating
data reputation to enhance global model updates and address
security concerns.

The above studies [6, 8, 9, 16, 17] leveraged FL to sig-
nificantly enhance monitoring system security and efficiency.
However, achieving comprehensive security and privacy in FL
deployments remains significantly less explored particularly in
smart farm settings.

III. PROBLEM STATEMENT

We employ FL to accurately predict animal disease risks
while prolonging system longevity. We conceptualize this
system as a hierarchical FL structure, as depicted in Fig. 2.
This structure features a global model hosted on a cloud server,
with local models operating on LoRa gateways (termed as
edge devices) and Raspberry Pis mounted on animals (i.e.,
clients). In this work, models on gateways are designated as
edge models, and those on clients as local models, with the
central server running the global model.

Our work focuses on the edge level, where gateways execute
global models and clients manage local models. Each gateway
communicates with a specific set of sensor clients within its
communication range. Clients update their models and decide
whether to transmit their model updates to the gateway based
on their estimated utility. We detailed how to estimate a client’s
utility in Section V-B. Further, Section IV-A described our
network model, depicted in Fig. 2.

Each gateway in our system seeks to enhance the perfor-
mance of its edge model by aggregating learning parameters
from local models of a carefully chosen set of clients. This se-
lection process prioritizes security, energy efficiency, and fair-
ness. Conversely, clients strive to conserve energy to prolong
their operational lifespan while supplying essential updates to
improve the edge model’s effectiveness. The proposed susFL
aims to achieve the following objectives:

maximize ACC(M(s")), subject to EC(s*) <e. (1)
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In our system, M (s*) denotes the edge model trained using a
selected set of sensor nodes s* for the FL aggregation process.
s* will be selected by our proposed client selection mechanism
in Section V. The ACC(M (s*)) measures the prediction accu-
racy of M (s*), and £C(s*) quantifies the energy consumption
of these selected sensor nodes. Both accuracy ACC(M) and
the target accuracy threshold ¢ are normalized within the
range [0, 1]. Our objective is to maximize ACC (M (s*)) while
ensuring that £C(s*) does not exceed ¢. This approach under-
lines our commitment to developing a sustainable smart farm
through hierarchical FL, i.e., susFL. One significant concern
with such an FL framework is the high energy consumption of
Raspberry Pi devices when training local models. Therefore,
an energy-adaptive susFL is proposed to maintain sufficient
energy levels of solar-powered clients while achieving high
system performance.

The proposed susFL incorporates a mechanism design-
based client selection for FL aggregation to withstand cyber
and adversarial attacks in Section IV-C. We will elaborate on
the system’s design and components to attain its sustainability
in Section V.

IV. SYSTEM MODEL
A. Network Model

Our smart farm system employs a network model that
integrates solar-powered sensors, wearable Raspberry Pis (R-
Pis), Long-Range (LoRa) gateways, and a cloud server, as
illustrated in Fig. 2. Each animal, such as a cow, is fitted
with solar sensors on their ears to monitor body conditions,
with the data transmitted to nearby R-Pis. A selected group
of animals equipped with R-Pis act as computational clients,
processing their data and that from others to train local
models constituting step 1. LoRa gateways, equipped with
edge servers, receive these local updates, refine the edge
model, and forward the refined model parameters to the cloud
server, which then updates the global model in steps 2 and 3.
Our approach, susFL, focuses on optimizing these processes,
particularly for energy-limited devices (i.e., clients). In step 4,
the cloud server dispatches the latest model parameters back
to the gateways, distributing them to the clients within range
in step 5. This configuration capitalizes on LoRa technology
to boost IoT connectivity, minimizing costs while extending
the range. A deep learning (DL) model, deployed across local
servers on client devices, edge servers, and the central server,
is designed to assess the risk of mastitis in animals. It outputs
a binary classification: O indicates a healthy cow, while 1
signifies a cow diagnosed with mastitis.

B. Node Model

In this network, sensors periodically transmit data to nearby
clients, enabling the training of local models with freshly
sensed data. Given these sensors are solar-powered, their en-
ergy levels naturally fluctuate due to various environmental in-
fluences, including the animals’ locations, weather conditions,
and seasonal variations in sunlight exposure. Additionally,
designing FL systems faces significant challenges, such as
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Fig. 2. Hierarchical FL-based network architecture designed for a wireless
solar sensor-based smart farm.

high communication and computational costs, along with the
need to ensure data privacy. Consequently, the system needs
to be resilient, adapting to the dynamic and energy-variable
environment of the smart farm, and fortified against potential
adversarial attacks.

The sensors use Bluetooth Low Energy (BLE) to send data
to proximal clients, and these clients, in turn, forward their
local updates to LoRa gateways. This setup employs the LoRa
protocol for long-range communications, effectively covering
distances between 5 to 15 km with a data transfer speed of
27 kbps. For shorter distances, up to 100 meters, the BLE
protocol is used, for a faster transfer speed of 2 Mbps.

For energy consumption, the LoRa radio of SAM R34/35
expends about 170 mW during data transmission, while the
BLE radio has a lower consumption rate of approximately
11 mW [18]. A Raspberry Pi’s power usage is 0.117 W
per second when idle, increasing to 0.172 W per second
under load [19]. Sensor nodes, once fully charged, hold an
initial energy reserve of 5 kW. The charging efficiency for
solar-powered sensors varies with light exposure—about 10
mW /em? in outdoor settings and 0.1 mW/em? indoors.

The two sensor node types are as follows:

o Normal sensor node [18]: This node lacks the computational
resources for local model training, instead periodically send-
ing its data to a Raspberry Pi (R-pi)-based node via BLE.

o R-pi-based sensor node [2, 18, 19]: This node gathers data
from normal nodes within its range and trains local models.
It decides on its participation in the FL aggregation by
sending its local model parameters to the edge model, acting
as a client within the FL framework.

This model demonstrates our key motivation for developing
susFL that trains DL models on solar-powered sensors in-
stead of on each gateway. Training on each gateway requires
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frequent raw data transmission from sensor nodes, increasing
data exposure risk and energy consumption. As described
above, normal sensor nodes transmit data to nearby clients
(i.e. R-pi-based sensor nodes) via BLE protocol, consuming
15 times less energy than direct LoRa communication. Thus,
sensor nodes only send local model parameters to LoRa
gateways, reducing data volume and transmission frequency.

C. Threat Model

To understand the vulnerabilities within FL systems, we ex-
amine the following types of adversarial attacks: (1) Byzantine
attacks disrupt the FL training process by injecting arbitrary
metrics via Stochastic Gradient Descent (SGD) updates [20].
These attacks primarily target local devices or clients, prolong-
ing their learning duration or leading to model divergence.
(2) Backdoor attacks compromise the integrity of edge and
global models through malicious clients that submit altered
local model updates [21]. The objective of backdoor attackers
is to preserve high prediction accuracy during testing to evade
detection while causing the model to incorrectly classify a
specific target class. (3) Collaborative attacks involve multiple
compromised clients working together to degrade the global
model’s accuracy [22]. This type of attack affects both the
global model on the central server and the edge models
on gateways. Attackers may adjust training hyperparameters
or alter model weights before these are sent to the edge
model. The success rate of backdoor attacks increases with
the proportion of attacker-controlled clients, surpassing the
effectiveness of conventional data poisoning strategies.

To assess the impact of these attacks, we analyze the attack
success probability, denoted as P4, representing the likelihood
of an attacker successfully executing an attack at any given
time ¢. Our primary aim is to create a sustainable FL-based
monitoring system ensuring its resilience and reliability of
functioning effectively under Byzantine, backdoor, and col-
laborative attacks. To be clear, our work does not develop
specific defenses against these attacks. Instead, we emphasize
the selection of trustworthy clients and the secure aggregation
of local model parameters to ensure the system’s tolerance
under threats and robustness against such cyber and adversarial
threats. We investigate the system’s resilience under such
attacks, showing the impact of different attack frequencies on
prediction accuracy, as other existing approaches [22-24] have
shown in the literature.

V. PROPOSED APPROACH: susFL
A. Key Processes of the FL Model Aggregation

In the given network, we consider a group of n clients,
denoted by N = {1,...,n}, each possessing a local model
eligible for selection. The cost of including client ¢’s local
model in the aggregation process is represented by c¢;, a known
value publicly. With a total budget constraint of B, we ensure
that the selected clients maintain adequate energy reserves
after completing a given FL task. To this end, we propose
to develop a client selection mechanism, M, to identify an
optimal subset of clients. We adopted the game theory called
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mechanism design to employ a centralized entity aiming to
optimize multiple objectives in the proposed smart farm sys-
tem. While centralized systems often suffer from scalability,
data security, and resilience, we leverage FL to combine
centralized optimization benefits with FL’s robust, scalable,
secure, and privacy-preserving distributed intelligence. This
approach contributes to the FL. model aggregation, effectively
balancing between achieving the desired accuracy of the edge
model and minimizing energy consumption.

Fig. 3 describes the FLL. model aggregation process in four
key steps in our proposed susFL system: o Requesting
local model updates: Each gateway’s server requests local
updates from clients within its operational area. 9 Utility
estimation and response: Clients calculate their utility based
on the anticipated energy expenditure for participating in
the FL process, as defined in Eq. (2). Clients with utilities
equal to or larger than a predefined threshold # communicate
their values, as in Eq. (4), back to the gateway. 9 Client
selection and notification: The mechanism designer, operating
at the gateway, selects clients for the FL process based on
their values and notifies the chosen clients. 9 Local update
transmission and model aggregation: Selected clients transmit
their local updates to the gateway’s edge server, where they
are aggregated into an enhanced edge model focused on high-
quality data (Section V-D). This model is then used to assess
the health conditions of cows on the susFL-based smart farm.

After completing each FL cycle, the gateways upload their
updated models to the central server, consolidating them into a
new global model. This updated global model is then dissemi-
nated back to the gateways, ensuring continuous improvement
and accuracy of the system’s predictive capabilities.
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B. Clients’ Utility Estimation

Upon receiving a local model update request from its
gateway, a client assesses the task’s utility to decide on its
participation in the aggregation process. The utility for client
1 upon receiving this request from gateway j at time step {,
ut(i, ), is calculated by:

2

The e4(i) refers to the current energy level of client i, and
ecy(i, j) is the expected energy consumption of client ¢ when
participating in the FL aggregation process with gateway j,
where both are normalized to the range [0, 1] as real numbers.
The expected energy consumption, ec;(, j), is determined by:

3)

we(i,5) = er(i) — ece(i, J).

ecy(i,j) = |D| x 7 X Er_pis + Dis(p}, p§) x Er.

for training for transmission

The expected energy consumption, eci(i,j), is calculated
based on |D!|, the volume of data client i uses for local
training at time step ¢, and r, the rate at which training
time extends per additional data sample. It also considers
ER _pis» the energy required to process the specified workload
per second. The energy model for training the models is
measured by the energy consumed by raspberry-pi to train
the model in the training time estimated by the amount of
data sample because the volume of data is the main factor
influencing the computational cost of model training [25]. The
distance between client ¢ and gateway j during the FL process
at time step ¢, denoted as Dis(pf,pé), and Er, the energy
for transmitting local updates via LoRa, are also factored
into the calculation. Our energy model for transmission, as
defined in Eq. (3) above, aligns with the standard energy
consumption metrics for sensor nodes widely referenced in
existing literature and hardware manual [18, 26].

The utility function enables client ¢ to evaluate the benefit
of participating in the aggregation process at time step t. If
participating would result in the client’s energy being entirely
depleted from transmitting data to the edge model, leading to a
utility of u; (i, j) < 0, the client will opt out of the aggregation.
This decision adheres to the individual rationality property
within mechanism M, ensuring clients participate only when
the utility is positive, thus preserving their normal operation
until a more opportune moment arises. If the client’s utility
is overestimated, causing its energy to be fully depleted, the
client will be excluded from the selection process until its
utility becomes positive again through solar recharging. Upon
opting to contribute, client ¢ communicates its value v; to the
edge server, which then assesses client selection. The value v;
reflects the data quality of client ¢’s model update [27] and is

formulated by: v

log(2)’
The W is a pre-defined parameter as a coefficient related
to the number of local model iterations impacted by local
data accuracy. The 1og(%) denotes the iteration count for a
local model update to maintain a constant global accuracy.

“4)
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This assessment is supported by theoretical guarantees based
on empirical evaluations rather than hypothetical expecta-
tions [27, 28]. Importantly, v; assumes a negative value if
U > 0 and ¢; > 1, indicating that the closer v; is to zero,
the higher its perceived value.

To address the challenges of attaining multiple objectives
and reducing the solution search space, gateways initially
identify clients whose participation in the selection process
could ensure a minimum accuracy of ¢. Consequently, only
clients with a value of v; > 6 qualify as candidates for
aggregation. Here, 6 represents the threshold to determine the
subset of clients eligible for further consideration in the client
selection phase.

C. Client Selection Mechanism

Mechanism M is designed to fulfill specific properties,
simplifying our discussion by excluding the notation j. This
approach generalizes the utility of client ¢ across any scenario
where it receives a request for a local model update to
participate in the FL aggregation of gateway j, as depicted in
Fig. 3. The mechanism designer (MD) enforces the following
properties to achieve desirable outcomes in this strategic
setting. For clarity, the client’s utility, u (4, j), from Eq. (2) is
simplified to u() in the explanations below.

o Truthfulness [29]: M is truthful if each client 7’s dominant
strategy is to report true information when

(@) > u(i), (5)

where i is any client’s information that i’ # i. Since the
utility function is independent of the information disclosed
to the gateway (e.g., data quality), clients have no incentive
to misreport their values, leading to truthful reporting.

o (Weak) Budget balance [30]: M is budget-balanced when

N
> COMge(i) < B, (6)

where COM¢g (i) represents the communication cost to
integrate client ¢ into the aggregation. LoRa gateways, not
limited by energy constraints for model training, could theo-
retically accept clients’ local updates immediately. However,
to minimize energy consumption on the client side and
preserve the operational longevity of sensor nodes, the
number of communication rounds should be limited by the
global model’s perspective while the clients should ensure
energy efficiency.
o Individual rationality [31]: M is individual rational if
Vi

u(i) > 0. )

The utility function, u(%), is designed to assess the variance
between a client’s present energy status and the energy
expenditure contributing to aggregation j. Thus, clients will
partake in aggregation j only if they can sustain their energy
levels post-participation and not deplete their energy by
engaging in the FL process with gateway j.
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The mechanism designer (MD: LoRa gateway) aims to maxi-
mize social welfare by selecting an optimal set of clients via

mechanism M, as
n
max E u(i),
i

while meeting Eqgs. (5§) — (7) to ensure that clients can
participate without depleting their energy reserves.

The MD’s objective to maximize the system’s social wel-
fare is challenging due to the nature of optimizing multiple
objectives. This challenge can be modeled as a 0/1 knapsack
problem, using a dynamic programming technique [32], guar-
anteeing an optimal solution. The time complexity for the
dynamic programming solution is O(N x W), where N is
the number of clients and W represents the gateway’s budget
constraints. Dynamic programming resolves complex prob-
lems by dividing them into smaller, overlapping subproblems,
addressing each once. For each of the W possible budgets,
we determine the optimal value for every client, resulting in
N x W subproblems. Each subproblem is solvable in constant
time, or O(1).

(®)

D. Quality-Aware Parameter Aggregation

Upon receiving local updates from the chosen clients, the
gateways proceed to aggregate these updates to train new edge
models. To achieve high model accuracy, the strategy employs
FedAvg [33], focusing on utilizing high-quality data. This
approach involves a weighted parameter aggregation, where
the weighting is determined by the reported data quality of
each client. The process is formulated by:

D e
Wnew = . ; €))
where the weighting of each local parameter, w;, is determined
by —*——, whose range is given within a [0,1] in the
overall distribution, with k representing the total number of
participating clients. Aggregation occurs both at the edge
server level, involving gateway and client updates, and at the
cloud server level, with updates from the edge. This process
ensures the data quality values reported by clients to improve
the process. Following aggregation, the gateways forward the
updated edge model parameters to the central server, where
edge updates are aggregated to construct the global model.
During training, local devices employ a loss function to assess
model performance on their datasets, with gradients informing
local updates. We evaluate the effectiveness of our susFL
system by the global model’s performance in Section VII.

v .
K2

VI. EXPERIMENTAL SETUP
A. Parameterization

This work leverages clinical mastitis data in cows, captured
via IoT sensors on the udder, to detect the disease [10]. The
dataset consists of 6,600 entries, with three records per cow,
featuring 15 attributes monitored by flex and temperature wire-
less sensors connected to Raspberry Pis and digital-to-analog
converters. This dataset is collected using the Internet of
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TABLE I
DATASET DESCRIPTION
Metric Description
Serial A unique animal identifier
Size-udder Size of an udder (udder front left, front

right, rear left, and rear right) for inhale
and exhale limit
Average body temperature in Celsius
Hardness of an udder
Pain due to swelling of an udder
Average activity recorded by the number
of steps taken
Residual battery life
Date and time of transmission

Average temperature
Hardness
Pain-level
Average-activity

Battery-level
Timestamp

Things (IoT), thus ideally suitable for evaluating the proposed
IoT-based smart farm system. Our simulation utilizes semi-
synthetic data from Virginia Tech’s SmartFarm Innovation
Network™ (College of Agriculture and Life Sciences), incor-
porating the effects of adversarial attacks (Section IV-C ) and
the diseases detailed in [10]. The data contains the records of
cow movement activities, and adversarial attacks are injected
into the data for our attack resilience analysis. Although the
experiments are not performed physically on the farm due to
hardware constraints, all data is collected and transmitted by
solar-powered sensors deployed in their smart farm network to
simulate animal behaviors. This network serves as a hub for
collecting and analyzing data across Virginia farms, indicating
cows typically move at speeds within the range of [1, 2] meters
per second. Movement probability for cow i, denoted as P¢
is modeled by a normal distribution with an average speed of
1.5 m/s and a standard deviation of 0.1 m/s. Our system,
detailed in Table I, uses FL to diagnose animal diseases with
sensor data. Serial numbers are omitted from the training
datasets to avoid spurious correlations, ensuring that irrelevant
data do not affect predictions.

This work encompasses a farm spanning 40 acres, approxi-
mately 160,000 square meters, with each side measuring 400
meters. It focuses on monitoring 30 cows using three gateways
to ensure efficient surveillance over the 48-hour simulation
period. Each gateway implements an edge model, leveraging
our susFL mechanism to predict animal diseases, to optimize
system performance given the current conditions. We classify
60% of the cows as clients equipped with Raspberry Pi (R-
pi)-based sensor nodes, with the remaining serving as standard
sensor nodes, as in Section IV-B. Gateways solicit updates
from these client nodes at 60-minute intervals, designated as
T, . All sensor nodes start with a random initial energy level,
Einit, within the range of [0.3,0.8). Table I summarizes the
key design parameters, their meanings, and default values.
Initially, we posit that 30% of the sensors, denoted as Pc,
are compromised at the system’s onset. The model assumes
full trust in both gateways and the cloud server, with attackers
solely targeting sensor nodes.

B. Metrics

o Prediction accuracy measures how accurately the global
model predicts animal diseases compared to actual out-
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TABLE II
KEY DESIGN PARAMETERS, MEANINGS, & DEFAULT VALUES
Notation Meaning Value
n Total number of sensors(cows) 30
N Total number of clients 20
Pl Probability of cow ¢ to move [0.3,0.7]
Py Probability for an attacker or a 0.1
compromised node to perform a certain
attack (e.g., )
Pc Percentage of compromised clients in 0.3
sensor network
Ts Time interval for a sensor to send sensed 30 s
data
T Time interval for a gateway to request 1 hr
local updates
Ty Time interval for a gateway to report edge 1 hr
models to central server
Einit Initial energy level of sensors [0.3,0.8)
5 Threshold for minimum energy level 0.15
B Number of communication rounds budget 5
for each gateway

comes. Specifically, it evaluates the system’s ability to cor-
rectly identify mastitis in cows, calculated as the proportion
of correct predictions out of the total predictions made
during the simulation.

o Energy consumption (£C) quantifies the overall energy
usage by the system for communications and computa-
tions within the FL framework. The £C is formulated by
EC = COMg + COMPgs, where EC, the total energy
consumption, comprises two main components: COMeg,
the energy used for communications between clients and
gateways, and COMPg, the cumulative energy expended by
sensor nodes for system operations, including model training
and energy depletion over time. The COM¢ is calculated
by: COMp = Y\ &Ly, where L represents the
energy consumed in a single communication round between
a client and a gateway, and [ signifies the total number
of communication rounds throughout the simulation. The
COMP¢ accounts for the energy utilized in model training
and the natural energy drain experienced during the system’s
operational period. The COMP¢ is given by:

COMPS = gTC + gactive + gsleep (10)
_ Serc | Tu
- ES ES (dactlve + dsleep)7

where COMPg accounts for the energy dynamics of the
participating client set |S*|, including erc, the energy a
client consumes to join the aggregation process, and Eg,
the full charge energy level of a sensor. It further considers
dactive and dgieep, the energy depletion rates per second in
active and sleep modes, respectively. T}, refers to the interval
at which local updates are requested by the edge server. This
model focuses solely on the energy consumption of sensor
nodes, excluding the energy transactions between gateways
and the central server, as they do not face energy limitations.
o« Mean Time Between Failures (MTBF) [34, 35] quantifies
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the average duration of system reliability, calculated as:

> er(ts s —dsy)
|F| ’

where d; ; marks the commencement of downtime, u, s the
onset of uptime, and F’ the collection of failure instances. A
system is considered to have failed when the average energy
level across all nodes falls below .

o Social Welfare encapsulates the collective utility of all
sensor clients, as described in Eq. (8).

MTBF = (11)

C. Comparing Schemes

We compare the proposed susFL against the following
state-of-the-art (SOTA) FL schemes to evaluate its effective-
ness: (1) FedAvg [36] employs a variant of Stochastic Gradient
Descent (SGD) where clients independently execute SGD
and the server averages these models to avoid aggregating
the entire dataset. (2) FedProx [37] modifies FedAvg to
accommodate client heterogeneity by incorporating a proximal
term into the local optimization problems, allowing vari-
able local updates and managing statistical heterogeneity. (3)
FLTrust [38] enhances robustness against data poisoning and
backdoor attacks by utilizing trusted execution environments
to periodically verify client integrity. (4) DivFL [4] improves
communication efficiency with a diverse, greedy client se-
lection mechanism for each aggregation round to diversify
the gradient space and expedite training. (5) GreenFL [5]
introduces a green-quantized FL approach that uses stochastic
quantization in both local training and data transmission, opti-
mizing energy use and accuracy through precision adjustments
in Quantized Neural Networks (QNN).

The source code for the implemented susFL will be
released upon the paper’s acceptance.

VII. RESULTS AND ANALYSES

To assess the effectiveness of the proposed susFL scheme
alongside the five existing FL schemes, we conducted 50
simulation runs using the parameter configurations in Sec-
tion VI. The results presented for each scheme are the average
outcomes derived from these 50 simulations, ensuring valid
evaluation and comparison.

A. Comparative Performance Analyses

Fig. 4 showcases the FL training progress across six
schemes, as detailed in Section VI-C, including our proposed
susFL plus the five SOTA schemes. Our susFL surpasses
the five other schemes in prediction accuracy (Fig. 4(a)),
energy consumption (Fig. 4(b)), social welfare (Fig. 4(c)), and
MTBF (Fig. 4(d)). This superior performance underscores the
efficiency of susFL’s quality-aware client selection strategy,
which excludes clients with poor-quality data, thereby enhanc-
ing prediction accuracy. By allowing clients to assess their
utility for participation, susFL achieves minimal energy usage
throughout the simulation, leading to the highest social welfare
and MTBF. susFL’s energy consumption is particularly low
at the simulation’s start, attributed to the initial absence of
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Fig. 4. Comparative performance analysis during training time

sunlight for charging sensors, demonstrating a strategic energy
conservation for FL operations. The fluctuation in social
welfare (Fig. 4(c)) mirrors the solar pattern, highlighting the
dynamic nature of the smart farm environment. Among the
SOTA schemes, DivFL demonstrates the lowest energy usage
due to its efficient client selection method that bolsters learning
effectiveness. Conversely, GreenFL exhibits the highest en-
ergy demand, attributed to the added computational load from
managing a QNN. These findings emphasize the importance of
minimizing computational demands on energy-limited devices
in resource-constrained FL systems for smart environments.

B. Sensitivity Analyses

1) Effect of Varying Attack Severity (P4): Fig. 5 il-
lustrates the impact of different levels of attack frequency
(Pa), where higher P, triggers an attack more often, rep-
resenting higher attack severity, on the performance metrics
of FL schemes. An increase in P4 results in lower prediction
accuracy due to the inclusion of more compromised sensors,
undermining the model’s performance. However, attack sever-
ity does not introduce a significant impact on energy con-
sumption and MTBF, showing the system’s robustness under
attacks, because susFL considers energy-adaptive operations
to tolerate energy drainage.

For susFL, increased attack severity leads to a decline
in social welfare and MTBF as illustrated in Fig. 5(c) and
(d). This decline necessitates greater client involvement in FLL
tasks to uphold prediction accuracy. Although this situation
slightly raises energy consumption (Fig. 5(b)), the increase is
marginal when compared to the gap between susFL and other
SOTA schemes, rendering the consumption curve nearly flat.
Overall, susFL remains superior to its peers, such as DivFL
and FedProx, in handling varying P4, showcasing robust
performance across metrics.

2) Effect of Node Density: Fig. 6 examines how perfor-
mance metrics respond to varying numbers of client sensor
nodes in the network. We observe that susFL effectively
manages FL operations in large sensor networks. The broader
distribution of clients improves prediction accuracy by in-
creasing the likelihood of high-quality data, giving gateways
better selection options. This strategic selection reduces aver-
age energy consumption (Fig. 6(b)), enhances social welfare
(Fig. 6(c)), and improves MTBF (Fig. 6(d)).
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In contrast, the other schemes’ performance appears rela-
tively unaffected under varying node density across all met-
rics, except GreenFL’s prediction accuracy. As the system
has more clients, GreenFL’s prediction accuracy diminishes,
implying a potential shortfall with suboptimal local models.
This highlights susFL’s superiority in prediction accuracy
and energy efficiency in large-scale WSNs.

3) Effect of Initial Energy Levels (F;,;;) on clients:
Fig. 6 demonstrates that increasing initial energy levels in
client sensor nodes positively affects performance metrics,
with susFL outperforming the considered SOTA models in
prediction accuracy. This benefit is due to susFL’s strategy
of selecting clients based on available energy, allowing more
clients to participate in FL as initial energy increases, resulting
in enhancing accuracy. In contrast, other schemes do not vary
the number of participating clients with energy levels, so their
prediction accuracy remains unchanged.

Higher energy in the sensors slightly increases energy con-
sumption for the FL process as shown in Fig. 7(b). However,
this improves social welfare and MTBE, as in Figs. 7(c) and
(d). Unlike other models where client participation is fixed,
susFL adapts to energy availability, showing its effectiveness
in using energy resources for optimal FL operations.

VIII. CONCLUSION & FUTURE WORK

From our research, we found the following. First, we ob-
served that susFL demonstrates superior efficiency in global
model training within FL operations, utilizing the least energy
to attain the highest prediction accuracy compared to bench-
mark schemes. This efficiency is attributed to an energy-aware
client selection mechanism, adeptly choosing an optimal set of
clients to balance high accuracy with energy conservation in
the sensor network. Second, we found that susFL excels in
MTBF, enhancing system reliability amid energy variability
and environmental dynamics in smart farming. This finding
emphasizes the scheme’s robustness and the necessity to
minimize computational demands on sensor nodes, a lesson
underscored by GreenFL’s relative underperformance. Lastly,
In scenarios involving cyber and adversarial attacks, susFL
significantly maintains high prediction accuracy with minimal
energy use, ensuring ongoing system availability and sustain-
ability. This resilience highlights susFL’s effectiveness in
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