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Abstract—We propose a sustainable federated learning (FL)-
based monitoring system, namely susFL, for smart animal farms
to address the challenge of inconsistent health monitoring due
to fluctuating energy levels of solar sensors. This system equips
animals, such as cattle, with solar sensors with computational
capabilities, including Raspberry Pis, to train a local deep-
learning model on health data. These sensors periodically update
Long Range (LoRa) gateways, forming a wireless sensor network
(WSN) to detect diseases like mastitis. Our proposed susFL sys-
tem incorporates a game-theoretic approach, called mechanism
design, to select intelligent clients to optimize monitoring quality
while minimizing energy use. This strategy ensures the system’s
sustainability and resilience against various adversarial attacks,
including data poisoning and privacy threats, that could disrupt
FL operations. Our work in smart farm technologies sets a new
standard by developing an animal monitoring system that is
both energy-adaptive and resistant to attacks. Through extensive
experiments, we demonstrate that our FL-based monitoring
system significantly outperforms existing methods in prediction
accuracy, operational efficiency, system reliability (i.e., mean time
between failures or MTBF), and social welfare maximization by
the mechanism designer. Our experimental results show that
susFL significantly outperforms the state-of-the-art counter-
parts, including a 10% reduction in energy consumption, a 15%
increase in social welfare, and a 34% rise in Mean Time Between
Failures (MTBF) while maintaining the global model’s prediction
accuracy.

Index Terms—Smart farm, energy-aware, federated learning,
deep learning, solar sensors, sustainability.

I. INTRODUCTION

In modern agriculture, solar sensor-based smart farm tech-

nologies have revolutionized how farm production is moni-

tored and managed. By harnessing the power of these tech-

nologies, farms can achieve higher productivity and effi-

ciency [1]. Integrating solar energy with sensor technology

supports sustainable agricultural practices. In addition, it en-

sures continuous collection of a large volume of data and

real-time monitoring, enhancing operational effectiveness and

efficiency [2]. Despite such advantages, deploying solar sen-

sors in smart farming raises significant challenges, particularly

regarding energy consumption. Energy efficiency becomes

paramount as these sensors must operate autonomously over

extended periods. Therefore, developing energy-efficient ap-

proaches while maintaining continuous monitoring capabilities

is essential for the sustainability of smart farming solutions.

Moreover, as the scale and sophistication of smart farming

systems increase, the concerns surrounding the large volume

of data, and their security and privacy (e.g., farm operations,

employee information, and financial data) have been raised.

The consequences of failing to protect this data adequately

are profound, ranging from economic losses due to opera-

tional disruptions to severe breaches of privacy in smart farm

systems [3]. However, implementing robust security measures

often comes at a high cost, presenting a substantial challenge

for sustainable smart farming operations.
In response to these challenges, our work develops a

monitoring system resistant to cyber and adversarial attacks

as well as energy-efficient. The aim of this work is to

provide a reliable framework that upholds both the operational

integrity and the privacy of the data to build an attack-resistant,

sustainable monitoring system for smart farm environments.
Federated learning (FL) is a suitable approach to address

these multifaceted challenges. Unlike traditional centralized

learning models, FL enables data to be processed locally at

the sensor level, drastically reducing the amount of data that

needs to be transmitted and thereby conserving energy. Addi-

tionally, by decentralizing the data processing, FL inherently

enhances data security and privacy, as sensitive information is

not required to be sent over the network. This methodology

not only aligns with the energy efficiency goals but also

fortifies the system against potential data breaches and cyber-

attacks, making it an ideal choice for our sustainable and

attack-resistant smart farm monitoring system. Our proposed

approach is named susFL, representing a sustainable FL

system in the presence of cyber and adversarial threats.
Our work made the following key contributions:

1) Sustainable FL with energy-efficient client selection
via mechanism design: We utilize a game-theory-based

mechanism design strategy to enhance the sustainability

of smart farming systems by energy-adaptively selecting

clients (i.e., sensor-equipped animals). This method’s ef-

fectiveness is quantitatively assessed using the reliabil-

ity metric, called Mean-Time-Between-Failures (MTBF)
representing the sum of a system’s uptime, to build a

smart farm that conserves energy while maintaining high

operational reliability, addressing gaps in existing energy-

efficient solutions [4, 5].

2) Pioneering FL for disease detection in smart farm ani-
mals: Our work is the first to explore FL-based monitoring

systems for smart farms by identifying livestock illnesses.

Unlike previous studies [6–9], which did not apply FL

for animal disease detection, we leverage comprehensive

experiments with data from the Internet of Animal Health
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Fig. 1. Key steps in FL training process

Things (IoAHT) [10], focusing on clinical mastitis in cows,

providing a solid foundation for validating FL in real-world

agricultural settings.

3) Robust hierarchical FL under adversarial attacks: We

address adversarial attacks in smart farm systems using a

hierarchical FL framework to maintain high global pre-

diction accuracy through data quality-aware aggregation.

Unlike [11–13], we evaluate the effect of attacks on

prediction accuracy and sensor node energy efficiency in

resource-constrained environments, using real-world data

from Virginia Tech’s smart farm.

4) Experimental Validation of susFL: Our results demon-

strate susFL’s enhanced performance, achieving a 10%

decrease in energy use, 15% boost in social welfare, 34%

higher MTBF, and slightly improved prediction accuracy

in the global model.

II. BACKGROUND & RELATED WORK

A. Federated Learning

FL emerges as a cutting-edge machine learning (ML)

paradigm that facilitates collaborative model training across

multiple data providers, aiming to construct a high-quality,

centralized model without compromising data privacy [14]. As

illustrated in Fig. 1, the FL framework encompasses a central

server hosting the global model and numerous client devices,

each maintaining a local model. Within this ecosystem, we

consider N distinct data providers, denoted as {C1, . . . , CN},

each possessing a unique dataset {D1, . . . , DN}. The training

of an ML model MFED under the FL protocol involves the

collective effort of all participating data providers. Here, each

provider Ci exclusively accesses its dataset Di to contribute

to the global learning process [15].

B. FL-based Smart Farms

Idoje et al. [1] leveraged FL for smart agriculture, focusing

on crop classification and time series forecasting, respectively,

with [13] exploring its use in agricultural risk management

and milk quality prediction. They emphasized FL’s benefits

but lacked real-world data evaluation and relied on federated

averaging. Friha et al. [11] introduced an FL-based intrusion

detection system that enhances data privacy in agricultural IoT

systems with multiple datasets. Praharaj et al. [12] proposed a

hierarchical federated transfer learning framework for cyber-

security in smart farming without experimental validation.

Unlike the above works [1, 11–13], our work pioneers

an FL-based system for monitoring animal health in smart

farming, a novel application in the sector. It shifts focus

from conventional energy-efficient FL methods to robust,

secure services suited for solar sensor-equipped farms, filling

a significant gap in the current literature.

C. FL-based Monitoring Systems

Sun et al. [16] utilized FL frameworks to enhance IoT

security monitoring, with the former identifying anomalies

and the latter adapting models within LANs, though both

lacked comprehensive performance metrics. Wu et al. [8]

introduced FedHome, an FL-based health monitoring system

using a generative convolutional autoencoder to optimize com-

munication. Khoa et al. [17] developed an autoencoder model

to personalize FL applications efficiently. Elayan et al. [6]

proposed a deep FL framework specifically for IoT healthcare,

focusing on accuracy and privacy across three operational

phases. Fan et al. [9] extended FL application to the Internet of

Medical Things with the FLDIoMT architecture, incorporating

data reputation to enhance global model updates and address

security concerns.

The above studies [6, 8, 9, 16, 17] leveraged FL to sig-

nificantly enhance monitoring system security and efficiency.

However, achieving comprehensive security and privacy in FL

deployments remains significantly less explored particularly in

smart farm settings.

III. PROBLEM STATEMENT

We employ FL to accurately predict animal disease risks

while prolonging system longevity. We conceptualize this

system as a hierarchical FL structure, as depicted in Fig. 2.

This structure features a global model hosted on a cloud server,

with local models operating on LoRa gateways (termed as

edge devices) and Raspberry Pis mounted on animals (i.e.,

clients). In this work, models on gateways are designated as

edge models, and those on clients as local models, with the

central server running the global model.
Our work focuses on the edge level, where gateways execute

global models and clients manage local models. Each gateway

communicates with a specific set of sensor clients within its

communication range. Clients update their models and decide

whether to transmit their model updates to the gateway based

on their estimated utility. We detailed how to estimate a client’s

utility in Section V-B. Further, Section IV-A described our

network model, depicted in Fig. 2.

Each gateway in our system seeks to enhance the perfor-

mance of its edge model by aggregating learning parameters

from local models of a carefully chosen set of clients. This se-

lection process prioritizes security, energy efficiency, and fair-

ness. Conversely, clients strive to conserve energy to prolong

their operational lifespan while supplying essential updates to

improve the edge model’s effectiveness. The proposed susFL
aims to achieve the following objectives:

maximize ACC(M(s∗)), subject to EC(s∗) ≤ ε. (1)
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In our system, M(s∗) denotes the edge model trained using a

selected set of sensor nodes s∗ for the FL aggregation process.

s∗ will be selected by our proposed client selection mechanism

in Section V. The ACC(M(s∗)) measures the prediction accu-

racy of M(s∗), and EC(s∗) quantifies the energy consumption

of these selected sensor nodes. Both accuracy ACC(M) and

the target accuracy threshold ε are normalized within the

range [0, 1]. Our objective is to maximize ACC(M(s∗)) while

ensuring that EC(s∗) does not exceed ε. This approach under-

lines our commitment to developing a sustainable smart farm

through hierarchical FL, i.e., susFL. One significant concern

with such an FL framework is the high energy consumption of

Raspberry Pi devices when training local models. Therefore,

an energy-adaptive susFL is proposed to maintain sufficient

energy levels of solar-powered clients while achieving high

system performance.

The proposed susFL incorporates a mechanism design-

based client selection for FL aggregation to withstand cyber

and adversarial attacks in Section IV-C. We will elaborate on

the system’s design and components to attain its sustainability

in Section V.

IV. SYSTEM MODEL

A. Network Model

Our smart farm system employs a network model that

integrates solar-powered sensors, wearable Raspberry Pis (R-

Pis), Long-Range (LoRa) gateways, and a cloud server, as

illustrated in Fig. 2. Each animal, such as a cow, is fitted

with solar sensors on their ears to monitor body conditions,

with the data transmitted to nearby R-Pis. A selected group

of animals equipped with R-Pis act as computational clients,

processing their data and that from others to train local

models constituting step 1. LoRa gateways, equipped with

edge servers, receive these local updates, refine the edge

model, and forward the refined model parameters to the cloud

server, which then updates the global model in steps 2 and 3.

Our approach, susFL, focuses on optimizing these processes,

particularly for energy-limited devices (i.e., clients). In step 4,

the cloud server dispatches the latest model parameters back

to the gateways, distributing them to the clients within range

in step 5. This configuration capitalizes on LoRa technology

to boost IoT connectivity, minimizing costs while extending

the range. A deep learning (DL) model, deployed across local

servers on client devices, edge servers, and the central server,

is designed to assess the risk of mastitis in animals. It outputs

a binary classification: 0 indicates a healthy cow, while 1

signifies a cow diagnosed with mastitis.

B. Node Model

In this network, sensors periodically transmit data to nearby

clients, enabling the training of local models with freshly

sensed data. Given these sensors are solar-powered, their en-

ergy levels naturally fluctuate due to various environmental in-

fluences, including the animals’ locations, weather conditions,

and seasonal variations in sunlight exposure. Additionally,

designing FL systems faces significant challenges, such as
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Fig. 2. Hierarchical FL-based network architecture designed for a wireless
solar sensor-based smart farm.

high communication and computational costs, along with the

need to ensure data privacy. Consequently, the system needs

to be resilient, adapting to the dynamic and energy-variable

environment of the smart farm, and fortified against potential

adversarial attacks.

The sensors use Bluetooth Low Energy (BLE) to send data

to proximal clients, and these clients, in turn, forward their

local updates to LoRa gateways. This setup employs the LoRa

protocol for long-range communications, effectively covering

distances between 5 to 15 km with a data transfer speed of

27 kbps. For shorter distances, up to 100 meters, the BLE

protocol is used, for a faster transfer speed of 2 Mbps.

For energy consumption, the LoRa radio of SAM R34/35

expends about 170 mW during data transmission, while the

BLE radio has a lower consumption rate of approximately

11 mW [18]. A Raspberry Pi’s power usage is 0.117 W
per second when idle, increasing to 0.172 W per second

under load [19]. Sensor nodes, once fully charged, hold an

initial energy reserve of 5 kW . The charging efficiency for

solar-powered sensors varies with light exposure—about 10

mW/cm2 in outdoor settings and 0.1 mW/cm2 indoors.

The two sensor node types are as follows:

• Normal sensor node [18]: This node lacks the computational

resources for local model training, instead periodically send-

ing its data to a Raspberry Pi (R-pi)-based node via BLE.

• R-pi-based sensor node [2, 18, 19]: This node gathers data

from normal nodes within its range and trains local models.

It decides on its participation in the FL aggregation by

sending its local model parameters to the edge model, acting

as a client within the FL framework.

This model demonstrates our key motivation for developing

susFL that trains DL models on solar-powered sensors in-

stead of on each gateway. Training on each gateway requires
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frequent raw data transmission from sensor nodes, increasing

data exposure risk and energy consumption. As described

above, normal sensor nodes transmit data to nearby clients

(i.e. R-pi-based sensor nodes) via BLE protocol, consuming

15 times less energy than direct LoRa communication. Thus,

sensor nodes only send local model parameters to LoRa

gateways, reducing data volume and transmission frequency.

C. Threat Model

To understand the vulnerabilities within FL systems, we ex-

amine the following types of adversarial attacks: (1) Byzantine
attacks disrupt the FL training process by injecting arbitrary

metrics via Stochastic Gradient Descent (SGD) updates [20].

These attacks primarily target local devices or clients, prolong-

ing their learning duration or leading to model divergence.

(2) Backdoor attacks compromise the integrity of edge and

global models through malicious clients that submit altered

local model updates [21]. The objective of backdoor attackers

is to preserve high prediction accuracy during testing to evade

detection while causing the model to incorrectly classify a

specific target class. (3) Collaborative attacks involve multiple

compromised clients working together to degrade the global

model’s accuracy [22]. This type of attack affects both the

global model on the central server and the edge models

on gateways. Attackers may adjust training hyperparameters

or alter model weights before these are sent to the edge

model. The success rate of backdoor attacks increases with

the proportion of attacker-controlled clients, surpassing the

effectiveness of conventional data poisoning strategies.

To assess the impact of these attacks, we analyze the attack

success probability, denoted as PA, representing the likelihood

of an attacker successfully executing an attack at any given

time t. Our primary aim is to create a sustainable FL-based

monitoring system ensuring its resilience and reliability of

functioning effectively under Byzantine, backdoor, and col-

laborative attacks. To be clear, our work does not develop

specific defenses against these attacks. Instead, we emphasize

the selection of trustworthy clients and the secure aggregation

of local model parameters to ensure the system’s tolerance

under threats and robustness against such cyber and adversarial

threats. We investigate the system’s resilience under such

attacks, showing the impact of different attack frequencies on

prediction accuracy, as other existing approaches [22–24] have

shown in the literature.

V. PROPOSED APPROACH: susFL

A. Key Processes of the FL Model Aggregation

In the given network, we consider a group of n clients,

denoted by N = {1, . . . , n}, each possessing a local model

eligible for selection. The cost of including client i’s local

model in the aggregation process is represented by ci, a known

value publicly. With a total budget constraint of B, we ensure

that the selected clients maintain adequate energy reserves

after completing a given FL task. To this end, we propose

to develop a client selection mechanism, M, to identify an

optimal subset of clients. We adopted the game theory called

Fig. 3. Key steps for an edge server (i.e., mechanism designer) to aggregate
local model updates from selected clients.

mechanism design to employ a centralized entity aiming to

optimize multiple objectives in the proposed smart farm sys-

tem. While centralized systems often suffer from scalability,

data security, and resilience, we leverage FL to combine

centralized optimization benefits with FL’s robust, scalable,

secure, and privacy-preserving distributed intelligence. This

approach contributes to the FL model aggregation, effectively

balancing between achieving the desired accuracy of the edge

model and minimizing energy consumption.

Fig. 3 describes the FL model aggregation process in four

key steps in our proposed susFL system: 1 Requesting
local model updates: Each gateway’s server requests local

updates from clients within its operational area. 2 Utility
estimation and response: Clients calculate their utility based

on the anticipated energy expenditure for participating in

the FL process, as defined in Eq. (2). Clients with utilities

equal to or larger than a predefined threshold θ communicate

their values, as in Eq. (4), back to the gateway. 3 Client
selection and notification: The mechanism designer, operating

at the gateway, selects clients for the FL process based on

their values and notifies the chosen clients. 4 Local update
transmission and model aggregation: Selected clients transmit

their local updates to the gateway’s edge server, where they

are aggregated into an enhanced edge model focused on high-

quality data (Section V-D). This model is then used to assess

the health conditions of cows on the susFL-based smart farm.

After completing each FL cycle, the gateways upload their

updated models to the central server, consolidating them into a

new global model. This updated global model is then dissemi-

nated back to the gateways, ensuring continuous improvement

and accuracy of the system’s predictive capabilities.
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B. Clients’ Utility Estimation

Upon receiving a local model update request from its

gateway, a client assesses the task’s utility to decide on its

participation in the aggregation process. The utility for client

i upon receiving this request from gateway j at time step t,
ut(i, j), is calculated by:

ut(i, j) = et(i)− ect(i, j). (2)

The et(i) refers to the current energy level of client i, and

ect(i, j) is the expected energy consumption of client i when

participating in the FL aggregation process with gateway j,

where both are normalized to the range [0, 1] as real numbers.

The expected energy consumption, ect(i, j), is determined by:

ect(i, j) = |Dt
i | × r × ER−pis︸ ︷︷ ︸

for training

+Dis(pti, p
t
j)× ET︸ ︷︷ ︸

for transmission

. (3)

The expected energy consumption, ect(i, j), is calculated

based on |Dt
i |, the volume of data client i uses for local

training at time step t, and r, the rate at which training

time extends per additional data sample. It also considers

ER−pis, the energy required to process the specified workload

per second. The energy model for training the models is

measured by the energy consumed by raspberry-pi to train

the model in the training time estimated by the amount of

data sample because the volume of data is the main factor

influencing the computational cost of model training [25]. The

distance between client i and gateway j during the FL process

at time step t, denoted as Dis(pti, p
t
j), and ET , the energy

for transmitting local updates via LoRa, are also factored

into the calculation. Our energy model for transmission, as

defined in Eq. (3) above, aligns with the standard energy

consumption metrics for sensor nodes widely referenced in

existing literature and hardware manual [18, 26].

The utility function enables client i to evaluate the benefit

of participating in the aggregation process at time step t. If

participating would result in the client’s energy being entirely

depleted from transmitting data to the edge model, leading to a

utility of ut(i, j) ≤ 0, the client will opt out of the aggregation.

This decision adheres to the individual rationality property

within mechanism M, ensuring clients participate only when

the utility is positive, thus preserving their normal operation

until a more opportune moment arises. If the client’s utility

is overestimated, causing its energy to be fully depleted, the

client will be excluded from the selection process until its

utility becomes positive again through solar recharging. Upon

opting to contribute, client i communicates its value vi to the

edge server, which then assesses client selection. The value vi
reflects the data quality of client i’s model update [27] and is

formulated by:

vi =
Ψ

log( 1
εi
)
. (4)

The Ψ is a pre-defined parameter as a coefficient related

to the number of local model iterations impacted by local

data accuracy. The log( 1
εi
) denotes the iteration count for a

local model update to maintain a constant global accuracy.

This assessment is supported by theoretical guarantees based

on empirical evaluations rather than hypothetical expecta-

tions [27, 28]. Importantly, vi assumes a negative value if

Ψ > 0 and εi > 1, indicating that the closer vi is to zero,

the higher its perceived value.

To address the challenges of attaining multiple objectives

and reducing the solution search space, gateways initially

identify clients whose participation in the selection process

could ensure a minimum accuracy of ε. Consequently, only

clients with a value of vi ≥ θ qualify as candidates for

aggregation. Here, θ represents the threshold to determine the

subset of clients eligible for further consideration in the client

selection phase.

C. Client Selection Mechanism

Mechanism M is designed to fulfill specific properties,

simplifying our discussion by excluding the notation j. This

approach generalizes the utility of client i across any scenario

where it receives a request for a local model update to

participate in the FL aggregation of gateway j, as depicted in

Fig. 3. The mechanism designer (MD) enforces the following

properties to achieve desirable outcomes in this strategic

setting. For clarity, the client’s utility, ut(i, j), from Eq. (2) is

simplified to u(i) in the explanations below.

• Truthfulness [29]: M is truthful if each client i’s dominant

strategy is to report true information when

u(i) ≥ u(i
′
), (5)

where i
′

is any client’s information that i
′ �= i. Since the

utility function is independent of the information disclosed

to the gateway (e.g., data quality), clients have no incentive

to misreport their values, leading to truthful reporting.

• (Weak) Budget balance [30]: M is budget-balanced when

N∑
i

COME(i) ≤ B, (6)

where COME(i) represents the communication cost to

integrate client i into the aggregation. LoRa gateways, not

limited by energy constraints for model training, could theo-

retically accept clients’ local updates immediately. However,

to minimize energy consumption on the client side and

preserve the operational longevity of sensor nodes, the

number of communication rounds should be limited by the

global model’s perspective while the clients should ensure

energy efficiency.

• Individual rationality [31]: M is individual rational if

∀i u(i) ≥ 0. (7)

The utility function, u(i), is designed to assess the variance

between a client’s present energy status and the energy

expenditure contributing to aggregation j. Thus, clients will

partake in aggregation j only if they can sustain their energy

levels post-participation and not deplete their energy by

engaging in the FL process with gateway j.
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The mechanism designer (MD: LoRa gateway) aims to maxi-

mize social welfare by selecting an optimal set of clients via

mechanism M, as

max
n∑
i

u(i), (8)

while meeting Eqs. (5) – (7) to ensure that clients can

participate without depleting their energy reserves.

The MD’s objective to maximize the system’s social wel-

fare is challenging due to the nature of optimizing multiple

objectives. This challenge can be modeled as a 0/1 knapsack

problem, using a dynamic programming technique [32], guar-

anteeing an optimal solution. The time complexity for the

dynamic programming solution is O(N × W ), where N is

the number of clients and W represents the gateway’s budget

constraints. Dynamic programming resolves complex prob-

lems by dividing them into smaller, overlapping subproblems,

addressing each once. For each of the W possible budgets,

we determine the optimal value for every client, resulting in

N×W subproblems. Each subproblem is solvable in constant

time, or O(1).

D. Quality-Aware Parameter Aggregation

Upon receiving local updates from the chosen clients, the

gateways proceed to aggregate these updates to train new edge

models. To achieve high model accuracy, the strategy employs

FedAvg [33], focusing on utilizing high-quality data. This

approach involves a weighted parameter aggregation, where

the weighting is determined by the reported data quality of

each client. The process is formulated by:

wnew =

∑k
i

vi
vmax−vmin

wi

k
, (9)

where the weighting of each local parameter, wi, is determined

by vi
vmax−vmin

, whose range is given within a [0, 1] in the

overall distribution, with k representing the total number of

participating clients. Aggregation occurs both at the edge

server level, involving gateway and client updates, and at the

cloud server level, with updates from the edge. This process

ensures the data quality values reported by clients to improve

the process. Following aggregation, the gateways forward the

updated edge model parameters to the central server, where

edge updates are aggregated to construct the global model.

During training, local devices employ a loss function to assess

model performance on their datasets, with gradients informing

local updates. We evaluate the effectiveness of our susFL
system by the global model’s performance in Section VII.

VI. EXPERIMENTAL SETUP

A. Parameterization

This work leverages clinical mastitis data in cows, captured

via IoT sensors on the udder, to detect the disease [10]. The

dataset consists of 6,600 entries, with three records per cow,

featuring 15 attributes monitored by flex and temperature wire-

less sensors connected to Raspberry Pis and digital-to-analog

converters. This dataset is collected using the Internet of

TABLE I
DATASET DESCRIPTION

Metric Description
Serial A unique animal identifier

Size-udder Size of an udder (udder front left, front
right, rear left, and rear right) for inhale

and exhale limit
Average temperature Average body temperature in Celsius

Hardness Hardness of an udder
Pain-level Pain due to swelling of an udder

Average-activity Average activity recorded by the number
of steps taken

Battery-level Residual battery life
Timestamp Date and time of transmission

Things (IoT), thus ideally suitable for evaluating the proposed

IoT-based smart farm system. Our simulation utilizes semi-

synthetic data from Virginia Tech’s SmartFarm Innovation

NetworkTM (College of Agriculture and Life Sciences), incor-

porating the effects of adversarial attacks (Section IV-C ) and

the diseases detailed in [10]. The data contains the records of

cow movement activities, and adversarial attacks are injected

into the data for our attack resilience analysis. Although the

experiments are not performed physically on the farm due to

hardware constraints, all data is collected and transmitted by

solar-powered sensors deployed in their smart farm network to

simulate animal behaviors. This network serves as a hub for

collecting and analyzing data across Virginia farms, indicating

cows typically move at speeds within the range of [1, 2] meters

per second. Movement probability for cow i, denoted as P i
mv ,

is modeled by a normal distribution with an average speed of

1.5 m/s and a standard deviation of 0.1 m/s. Our system,

detailed in Table I, uses FL to diagnose animal diseases with

sensor data. Serial numbers are omitted from the training

datasets to avoid spurious correlations, ensuring that irrelevant

data do not affect predictions.

This work encompasses a farm spanning 40 acres, approxi-

mately 160,000 square meters, with each side measuring 400

meters. It focuses on monitoring 30 cows using three gateways

to ensure efficient surveillance over the 48-hour simulation

period. Each gateway implements an edge model, leveraging

our susFL mechanism to predict animal diseases, to optimize

system performance given the current conditions. We classify

60% of the cows as clients equipped with Raspberry Pi (R-

pi)-based sensor nodes, with the remaining serving as standard

sensor nodes, as in Section IV-B. Gateways solicit updates

from these client nodes at 60-minute intervals, designated as

Tu. All sensor nodes start with a random initial energy level,

Einit, within the range of [0.3, 0.8). Table II summarizes the

key design parameters, their meanings, and default values.

Initially, we posit that 30% of the sensors, denoted as PC ,

are compromised at the system’s onset. The model assumes

full trust in both gateways and the cloud server, with attackers

solely targeting sensor nodes.

B. Metrics

• Prediction accuracy measures how accurately the global

model predicts animal diseases compared to actual out-
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TABLE II
KEY DESIGN PARAMETERS, MEANINGS, & DEFAULT VALUES

Notation Meaning Value
n Total number of sensors(cows) 30
N Total number of clients 20

P 1
mv Probability of cow i to move [0.3,0.7]
PA Probability for an attacker or a

compromised node to perform a certain
attack (e.g., )

0.1

PC Percentage of compromised clients in
sensor network

0.3

Ts Time interval for a sensor to send sensed
data

30 s

Tu Time interval for a gateway to request
local updates

1 hr

Tg Time interval for a gateway to report edge
models to central server

1 hr

Einit Initial energy level of sensors [0.3, 0.8)
ε Threshold for minimum energy level 0.15
B Number of communication rounds budget

for each gateway
5

comes. Specifically, it evaluates the system’s ability to cor-

rectly identify mastitis in cows, calculated as the proportion

of correct predictions out of the total predictions made

during the simulation.

• Energy consumption (EC) quantifies the overall energy

usage by the system for communications and computa-

tions within the FL framework. The EC is formulated by

EC = COME + COMPE , where EC, the total energy

consumption, comprises two main components: COME ,

the energy used for communications between clients and

gateways, and COMPE , the cumulative energy expended by

sensor nodes for system operations, including model training

and energy depletion over time. The COME is calculated

by: COME =
∑l

i=0 E i
CR, where E i

CR represents the

energy consumed in a single communication round between

a client and a gateway, and l signifies the total number

of communication rounds throughout the simulation. The

COMPE accounts for the energy utilized in model training

and the natural energy drain experienced during the system’s

operational period. The COMPE is given by:

COMPE = ETC + Eactive + Esleep (10)

=
|S∗|eTC

ES
+

Tu

ES
(dactive + dsleep),

where COMPE accounts for the energy dynamics of the

participating client set |S∗|, including eTC , the energy a

client consumes to join the aggregation process, and ES ,

the full charge energy level of a sensor. It further considers

dactive and dsleep, the energy depletion rates per second in

active and sleep modes, respectively. Tu refers to the interval

at which local updates are requested by the edge server. This

model focuses solely on the energy consumption of sensor

nodes, excluding the energy transactions between gateways

and the central server, as they do not face energy limitations.

• Mean Time Between Failures (MTBF) [34, 35] quantifies

the average duration of system reliability, calculated as:

MTBF =

∑
f∈F (us,f − ds,f )

|F | , (11)

where ds,f marks the commencement of downtime, us,f the

onset of uptime, and F the collection of failure instances. A

system is considered to have failed when the average energy

level across all nodes falls below ε.

• Social Welfare encapsulates the collective utility of all

sensor clients, as described in Eq. (8).

C. Comparing Schemes

We compare the proposed susFL against the following

state-of-the-art (SOTA) FL schemes to evaluate its effective-

ness: (1) FedAvg [36] employs a variant of Stochastic Gradient

Descent (SGD) where clients independently execute SGD

and the server averages these models to avoid aggregating

the entire dataset. (2) FedProx [37] modifies FedAvg to

accommodate client heterogeneity by incorporating a proximal

term into the local optimization problems, allowing vari-

able local updates and managing statistical heterogeneity. (3)

FLTrust [38] enhances robustness against data poisoning and

backdoor attacks by utilizing trusted execution environments

to periodically verify client integrity. (4) DivFL [4] improves

communication efficiency with a diverse, greedy client se-

lection mechanism for each aggregation round to diversify

the gradient space and expedite training. (5) GreenFL [5]

introduces a green-quantized FL approach that uses stochastic

quantization in both local training and data transmission, opti-

mizing energy use and accuracy through precision adjustments

in Quantized Neural Networks (QNN).

The source code for the implemented susFL will be

released upon the paper’s acceptance.

VII. RESULTS AND ANALYSES

To assess the effectiveness of the proposed susFL scheme

alongside the five existing FL schemes, we conducted 50

simulation runs using the parameter configurations in Sec-

tion VI. The results presented for each scheme are the average

outcomes derived from these 50 simulations, ensuring valid

evaluation and comparison.

A. Comparative Performance Analyses

Fig. 4 showcases the FL training progress across six

schemes, as detailed in Section VI-C, including our proposed

susFL plus the five SOTA schemes. Our susFL surpasses

the five other schemes in prediction accuracy (Fig. 4(a)),

energy consumption (Fig. 4(b)), social welfare (Fig. 4(c)), and

MTBF (Fig. 4(d)). This superior performance underscores the

efficiency of susFL’s quality-aware client selection strategy,

which excludes clients with poor-quality data, thereby enhanc-

ing prediction accuracy. By allowing clients to assess their

utility for participation, susFL achieves minimal energy usage

throughout the simulation, leading to the highest social welfare

and MTBF. susFL’s energy consumption is particularly low

at the simulation’s start, attributed to the initial absence of
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(a) Prediction Accuracy (b) Energy Consumption (c) Social Welfare (d) MTBF

Fig. 4. Comparative performance analysis during training time

sunlight for charging sensors, demonstrating a strategic energy

conservation for FL operations. The fluctuation in social

welfare (Fig. 4(c)) mirrors the solar pattern, highlighting the

dynamic nature of the smart farm environment. Among the

SOTA schemes, DivFL demonstrates the lowest energy usage

due to its efficient client selection method that bolsters learning

effectiveness. Conversely, GreenFL exhibits the highest en-

ergy demand, attributed to the added computational load from

managing a QNN. These findings emphasize the importance of

minimizing computational demands on energy-limited devices

in resource-constrained FL systems for smart environments.

B. Sensitivity Analyses
1) Effect of Varying Attack Severity (PA): Fig. 5 il-

lustrates the impact of different levels of attack frequency

(PA), where higher PA triggers an attack more often, rep-

resenting higher attack severity, on the performance metrics

of FL schemes. An increase in PA results in lower prediction

accuracy due to the inclusion of more compromised sensors,

undermining the model’s performance. However, attack sever-

ity does not introduce a significant impact on energy con-

sumption and MTBF, showing the system’s robustness under

attacks, because susFL considers energy-adaptive operations

to tolerate energy drainage.
For susFL, increased attack severity leads to a decline

in social welfare and MTBF as illustrated in Fig. 5(c) and

(d). This decline necessitates greater client involvement in FL

tasks to uphold prediction accuracy. Although this situation

slightly raises energy consumption (Fig. 5(b)), the increase is

marginal when compared to the gap between susFL and other

SOTA schemes, rendering the consumption curve nearly flat.

Overall, susFL remains superior to its peers, such as DivFL
and FedProx, in handling varying PA, showcasing robust

performance across metrics.
2) Effect of Node Density: Fig. 6 examines how perfor-

mance metrics respond to varying numbers of client sensor

nodes in the network. We observe that susFL effectively

manages FL operations in large sensor networks. The broader

distribution of clients improves prediction accuracy by in-

creasing the likelihood of high-quality data, giving gateways

better selection options. This strategic selection reduces aver-

age energy consumption (Fig. 6(b)), enhances social welfare

(Fig. 6(c)), and improves MTBF (Fig. 6(d)).

In contrast, the other schemes’ performance appears rela-

tively unaffected under varying node density across all met-

rics, except GreenFL’s prediction accuracy. As the system

has more clients, GreenFL’s prediction accuracy diminishes,

implying a potential shortfall with suboptimal local models.

This highlights susFL’s superiority in prediction accuracy

and energy efficiency in large-scale WSNs.

3) Effect of Initial Energy Levels (Einit) on clients:
Fig. 6 demonstrates that increasing initial energy levels in

client sensor nodes positively affects performance metrics,

with susFL outperforming the considered SOTA models in

prediction accuracy. This benefit is due to susFL’s strategy

of selecting clients based on available energy, allowing more

clients to participate in FL as initial energy increases, resulting

in enhancing accuracy. In contrast, other schemes do not vary

the number of participating clients with energy levels, so their

prediction accuracy remains unchanged.

Higher energy in the sensors slightly increases energy con-

sumption for the FL process as shown in Fig. 7(b). However,

this improves social welfare and MTBF, as in Figs. 7(c) and

(d). Unlike other models where client participation is fixed,

susFL adapts to energy availability, showing its effectiveness

in using energy resources for optimal FL operations.

VIII. CONCLUSION & FUTURE WORK

From our research, we found the following. First, we ob-

served that susFL demonstrates superior efficiency in global

model training within FL operations, utilizing the least energy

to attain the highest prediction accuracy compared to bench-

mark schemes. This efficiency is attributed to an energy-aware

client selection mechanism, adeptly choosing an optimal set of

clients to balance high accuracy with energy conservation in

the sensor network. Second, we found that susFL excels in

MTBF, enhancing system reliability amid energy variability

and environmental dynamics in smart farming. This finding

emphasizes the scheme’s robustness and the necessity to

minimize computational demands on sensor nodes, a lesson

underscored by GreenFL’s relative underperformance. Lastly,

In scenarios involving cyber and adversarial attacks, susFL
significantly maintains high prediction accuracy with minimal

energy use, ensuring ongoing system availability and sustain-

ability. This resilience highlights susFL’s effectiveness in
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(a) Prediction Accuracy (b) Energy Consumption (c) Social Welfare (d) MTBF

Fig. 5. Effect of Varying Attack Frequency (PA)

(a) Prediction Accuracy (b) Energy Consumption (c) Social Welfare (d) MTBF

Fig. 6. Effect of Varying Node Density

(a) Prediction Accuracy (b) Energy Consumption (c) Social Welfare (d) MTBF

Fig. 7. Effect of Varying Initial Energy Levels (Einit)

safeguarding FL operations against potential security threats.

These insights emphasize susFL’s comprehensive approach

to optimizing FL for energy-constrained environments, of-

fering a scalable, secure, and efficient solution for smart

agricultural practices.

For future work, we will take the following research

directions. First, we will incorporate fairness and privacy

preservation into client selection to ensure secure and equitable

participation in the FL process. Second, we will enhance

scalability by increasing the number of clients in the FL

operations and expanding the system’s capacity for larger

and more diverse datasets. Lastly, we will further optimize

performance by refining the client selection mechanism to

improve prediction accuracy and energy efficiency, especially

for large-scale operations.
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