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Abstract—The Competitive Influence Maximization
(CIM) problem involves entities competing to maximize
influence in online social networks (OSNs). While Deep
Reinforcement Learning (DRL) methods have shown
promise, most assume binary user opinions and overlook
behavioral factors. We introduce DRIM, a novel DRL-
based CIM framework using Subjective Logic (SL) to
incorporate user preferences and uncertainty, optimizing
seed selection to spread true information while countering
false information. DRIM’s Uncertainty-based Opinion
Model (UOM) provides a realistic representation of user
opinions. Results demonstrate that UOM maintains over
80% true influence against advanced misinformation, and
DRIM outperforms state-of-the-art methods by up to
45% in influence and 77% in speed. DRIM also excels in
limited-resource scenarios, networks with 10% invisibility,
and when users are inclined to doubt true information.

Index Terms—Competitive influence maximization, deep
reinforcement learning, uncertainty, opinion models

I. INTRODUCTION

Online Social Networks (OSNs) serve as a platform
for information sharing and opinion shaping, where com-
petitive environments arise in contexts like service se-
lection and voting. Known as the Competitive Influence
Maximization (CIM) problem, this involves entities, such
as political parties or companies, strategically selecting
seed nodes to maximize influence. Our research addresses
a scenario with two competing forces: the true party,
promoting accurate information, and the false party,
spreading misinformation that can cause reputation dam-
age, financial loss, and biased public opinion.

To counter misinformation effectively, we explore
strategies that empower the true party to limit false
content spread, enhancing the visibility of truthful infor-
mation in OSNs. While Deep Reinforcement Learning
(DRL) has shown promise in CIM for real-time strat-
egy optimization, current approaches often simplify user
opinions as static and binary, missing nuances in user
behavior and uncertainty. Our approach fills this gap by
modeling user opinion dynamics to reflect uncertainty and

conflicting decision-making, leading to a more realistic
representation of influence in OSNs.

We propose a DRL-based CIM framework, DRIM, to
optimize the spread of true information and counteract
false information by identifying influential seed users,
adapting to the dynamic and uncertain nature of user
opinions. Our key contributions are: (1) We integrate
Subjective Logic (SL) [8] into CIM to capture the uncer-
tain and evolving nature of user opinions, moving beyond
binary opinion models commonly seen in prior CIM
studies [1, 2, 5, 15], and enhancing our understanding
of opinion shifts in OSNs. (2) We develop a dual-agent
DRL model to simulate true and false information spread,
advancing strategic depth beyond current single-agent
models [5, 14, 15]. (3) We assess the Uncertainty-aware
Opinion Model (UOM) for its ability to capture early false
information dominance, which complicates correction ef-
forts, and demonstrate UOM’s effectiveness in boosting
engagement with accurate content and reducing misin-
formation spread. (4) Finally, we analyze partial network
observability impacts on CIM, especially regarding non-
binary opinions with UOM, addressing critical gaps in
understanding visibility effects on CIM outcomes.

We use the term false information rather than misin-
formation (unintentionally shared) or disinformation (in-
tentionally misleading) for clarity, as distinctions between
these terms are beyond our research scope.

II. RELATED WORK

The Influence Maximization (IM) problem [6] seeks
to maximize influence in OSNs by selecting an optimal
set of seed nodes to reach the largest number of nodes
through a specified propagation process. Kempe et al.
[11] formalized IM as a discrete stochastic optimization
problem, solidifying its theoretical basis. CIM extends IM
by involving multiple entities competing to maximize in-
fluence within a single OSN, with various methodologies
proving effective in tackling this challenge.
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A. Propagation Models

Propagation models like Independent Cascade (IC) [12]
and Linear Threshold (LT) [7] are widely used to analyze
network influence [3, 16, 17, 19]. The IC model activates
nodes to independently influence neighbors, while the
LT model activates nodes based on cumulative neighbor
influence exceeding a threshold. Although effective, both
models use static probabilities and thresholds, limiting
real-world applicability. Our study improves these models
by incorporating dynamic opinion dynamics, assessing
their robustness against false information spread.

B. DRL-based CIM

The STORM framework introduced a STrategy-
Oriented ReinforceMent-Learning-based approach, pio-
neering RL in multi-round CIM within the competitive
LT model [15] by enabling dynamic strategy selection
based on evolving opinions and competitor actions. This
was enhanced with a DRL-based CIM framework using
Deep-Q Learning (DQN) and community detection for
multi-round seed selection [5]. Subsequent work adapted
STORM’s reward and action spaces for unknown topolo-
gies by adding network exploration actions [1].

Previous work [5, 15] often assumed full network
knowledge, unrealistic in practice, and used binary, static
opinion models [1, 2]. Our approach addresses these
limitations by incorporating detailed opinion dynamics
and uncertainties in user opinions and network structure,
resulting in a more realistic CIM framework.

III. PROBLEM STATEMENT

An OSN is modeled as an unweighted, undirected
graph G = (V,E), with V as users and E as relation-
ships. There are true party (TP) and false party (FP)
aiming to maximize their influence within G. Each of
them has a central decision maker (CDM) to select seed
users S (STP or SFP ) to spread their respective infor-
mation types. At each moment, given the current users’
opinion status in OSN, DRL is employed to select action
A to pick seed nodes for maximizing influence. Each
party’s node selection process will follow the procedures
and opinion models described in Section IV. We define
each party’s influence by the number of users who believe
either true or false information. Since users’ opinions are
not binary, we will explain how to define whether a user
believes true or false information after introducing the
SL-based opinion model in Section IV-A.

IV. PROPOSED CIM FRAMEWORK

A. Subjective Logic (SL)-based Opinion Formulation

In binary logic, a user’s opinion toward something must
be either 100% believed in or not, which barely happens.
To better reflect real-world opinions, we incorporate un-
certainty to model users’ degrees of uncertainty about
beliefs. To represent opinions on true or false information,

we use SL’s binomial model to capture users’ opinions in
OSNs. An opinion ω is defined as ω = (b, d, u, a), where
belief b reflects agreement with true information, disbelief
d captures agreement with false information (or disagree-
ment with true information), and uncertainty u accounts
for a lack of sufficient evidence. Each component is a
real number within the range [0, 1], with the condition
that b+ d+ u = 1. These components are defined as:

b =
r

r + s+W
,d =

s

r + s+W
,u =

W

r + s+W
, (1)

where r and s are the numbers of evidence to support
b and d, respectively, and W refers to the number of
uncertain evidence that cannot be judged as true or false,
supporting neither b nor d.

The base rate a, a real number in [0, 1], represents the
prior belief favoring true information, with 1 − a indi-
cating disbelief (i.e., favoring false information). While
this paper focuses on two opinions, the approach can be
extended to multiple parties.

To make decisions (e.g. which product to buy), users
incorporate uncertainty into their decisions by using the
projected probability in SL, such as the projected belief
or disbelief, denoted by P (b) and P (d):

P (b) = b+ a× u, P (d) = d+ (1− a)× u, (2)

where P (b) + P (d) = 1 and a × u + (1 − a) × u =
u. Since users choose between b and d, they interpret
uncertainty based on their prior belief, a = {a, 1 − a},
where a+(1−a) = 1. To be specific, user i is considered
part of the true party (TP) if P (bi) > 0.5 and is deemed
to believe false information if P (di) > 0.5. When a user i
has P (bi) = P (di) under uniform prior belief (base rate),
the user is not counted toward TP or FP. However, such
cases are extremely rare, so the total number of users in
TP or FP is nearly equal to the total number of users in
a given network.

We consider two types of uncertainty in the user’s opin-
ion [9]: vacuity uncertainty and dissonance uncertainty.
Vacuity refers to uncertainty caused by a lack of evidence,
while dissonance indicates uncertainty due to conflicting
evidence. The vacuity uncertainty mass is measured by
u, and the dissonance uncertainty mass is defined as:

bDiss = (b+ d) · Bal(b, d), (3)

Bal(b, d) is the relative mass balance between b and d:

Bal(b, d) = 1− |b− d|
b+ d

. (4)

We incorporated uncertainty estimates, such as vacuity
and dissonance, to develop a UOM in Section IV-C.
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B. User Types

We categorize users in OSNs into three types:
• True information propagators (TIPs) are the seed nodes

chosen by true party (TP), their opinion is initialized
as ω = (b, d, u, a) = (b → 1, d → 0, u → 0, a = 1).
This opinion implies TIPs have a strong belief in true
information (b is close to 1), while they lack belief in
false information (d is close to 0).

• False information propagators (FIPs) are the seed
nodes chosen by false party (FP), their opinion is
initialized as ω = (b, d, u, a) = (b → 0, d → 1, u →
0, a = 0). This means FIPs have a strong belief in
false information (d is close to 1) while having a lack
of belief in true information (b is close to 0).

• Legitimate users in OSNs are regular users with highly
uncertain opinions, initialized as ω = (b, d, u, a) =
(b→ 0, d→ 0, u→ 1, a = 0.5).

Since TIPs and FIPs hold strong beliefs, they do not
change their opinions, while legitimate users update their
opinions by adjusting (b, d, u, a) based on Eq. (5).

C. Opinion Models

Each user i’s opinion ωi = (bi, di, ui,ai) will be
affected by their behaviors, which consists of three main
components: opinion updating, sharing, and reading.

1) Opinion Updating: When user i encounters user
j and reads user j’s information (i.e., ωj), user i will
update the opinion. We leverage the consensus operator
in SL [8] to calculate i’s new opinion. The consensus
operator determines how two users can reach an agree-
ment based on their current opinions. User i’s opinion
after interacting with user j is updated by combining
its own belief weighted by j’s uncertainty and j’s belief
weighted by its uncertainty. Similarly, i’s disbelief is up-
dated using its disbelief weighted by j’s uncertainty and
j’s disbelief weighted by its uncertainty. i’s uncertainty
after the interaction is reduced to the product of both
users’ uncertainty levels. Opinion updates occur as long
as neither party’s uncertainty reaches zero, which would
indicate complete confidence. Following this process, user
i’s updated opinion, ω′i, is given by:

ω′i = ωi ⊕ ωi⊗j = (b′i, d
′
i, u
′
i, ai) (5)

= (bi ⊕ bi⊗j , di ⊕ di⊗j , ui ⊕ ui⊗j , ai ⊕ ai⊗j),

where ωi is user i’s previous opinion, and ωi⊗j represents
j’s discounted opinion according to the degree that i
accepts j’s opinion. Here we introduce a trust filter, cji ,
to discount j’s opinion because user i accepts user j’s
opinion to the extent that i trusts j. Each component of
ωi⊗j = (bi⊗j , di⊗j , ui⊗j , ai⊗j) is estimated by:

bi⊗j = cji bj , di⊗j = cjidj , (6)

ui⊗j = 1− cji (1− uj), ai⊗j = aj .

Finally, user i’s new opinion is calculated by applying the
consensus operator to its original opinion with discounted
j’s opinion. The ωi ⊕ ωi⊗j is obtained by:

bi ⊕ bi⊗j =
bi(1− cji (1− uj)) + cji bjui

β
, (7)

di ⊕ di⊗j =
di(1− cji (1− uj)) + cjidjui

β
,

ui ⊕ ui⊗j =
ui(1− cji (1− uj))

β
,

ai ⊕ ai⊗j =
(ai − (ai + aj)ui)(1− cji (1− uj)) + ajui

β − ui(1− cji (1− uj))
,

β = 1− cji (1− ui)(1− uj) 6= 0.

For how to calculate the trust filter cji , we introduce
the uncertainty-based trust opinion model (UOM).
This model represents users who seek new information,
particularly when they lack sufficient evidence to form
a conclusion [4]. UOM employs uncertainty-based trust,
and the uncertainty trust filter cji is defined as:

cji = (1− ui)(1− uj). (8)

To ensure non-zero β (non-zero denominator) in
Eq. (7), we use the vacuity maximization technique [8]
to increase ui when a user’s uncertainty is very small
(i.e., near 0) but they still cannot decide due to high
conflicting evidence. Given two thresholds Tv and Td,
when ui < Tv (low vacuity with sufficient evidence) and
dissonance bDiss

i > Td (high uncertainty due to conflict-
ing evidence), we update user i’s opinion to a vacuity-
maximized opinion, denoted as ω̈i = (b̈i, d̈i, üi,ai), with
b̈i, d̈i, and üi calculated as:

üi = min
[P (bi)

ai
,
P (di)

1− ai

]
, (9)

b̈i = P (bi)− ai · üi, d̈i = P (di)− (1− ai) · üi,

where üi allows user i to continue to accept new infor-
mation and update its opinion. We set Tv = 0.01 and
Td = 0.6 as thresholds to effectively maximize each
party’s influence based on our experimental analysis.

2) Opinion Reading: Following [4], we define a
user’s reading probability, Pr, as the frequency they
read information from neighbors. For each user, Pr is
uniformly randomly assigned from 1 (multiple times per
day), 0.5 (daily), 0.25 (weekly/monthly), or 0.1 (rarely)
to model different reading habits.

3) Opinion Sharing: Similarily, each user shares an
opinion ω with friends based on a sharing probability
Ps. Following the distribution from [4], Ps is uniformly
randomly assigned from 1 (always/mostly), 0.5 (half the
time), 0.25 (sometimes), and 0.1 (rarely).

Since reading motivates opinion updates [10], we as-
sume users share only after reading. User i shares its
current opinion ωi, not the original ‘True’ or ‘False’
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information from the true party (TP) or false party (FP).
Only seed nodes, True and False information propagators
(TIPs and FIPs), share the original information.

D. Partially Observable Network

Following [18], we define the partially observable net-
work G′ = (V,E′) of an undirected graph G = (V,E),
where E′ ⊂ E. This means only a portion of the edges
are visible to the DRL agent when observing the state in
OSNs. E′ is randomly chosen from E.

E. DRL-based Seed Set Selection Process

We use DRL to optimize strategy selection for max-
imizing influence spread in a multi-round process. In
each round, the FP selects a seed node (turns it into an
FIP), and then the FIP starts sharing its opinion with
its neighbors and propagates further until all nodes are
reached. The TP next selects an TIP to propagate true
information. Information spreads through the network via
Breadth-First Search, with nodes deciding to update and
propagate based on their reading and sharing probability.
An episode consists of T rounds, matching the number
of seed nodes.

1) States: At each round t, the state st is defined as:

st =

{ ∑
i,j∈U

ei,j ,max
i∈U

degi

}
, (10)

where
∑

i,j∈U ei,j counts the edges among free nodes,
and maxi∈U degi gives the highest degree among them.
Free nodes are defined as {j ∈ U|uj ≥ 0.5}, meaning
user j has high uncertainty and has not aligned with
either party. Here, uj refers to the user’s ’uncertainty’
or ’vacuity’ (see Eq. (1)).

2) Actions: The action space at round t is at =
{aAF

t , aBF
t , aSGF

t , aCF
t }, focusing on user behavior and

centrality in the OSN, where the action space includes:
• Active First (AF, aAF

t ) prioritizes the most active user,
determined by the highest Pr × Ps, where Pr and Ps

represent the user’s reading and sharing probabilities.
• Blocking First (BF, aBF

t ) targets neighbors of the op-
ponent’s party with the highest free degree (connected
to free nodes. A user belongs to the TP if P (bi) > 0.5,
or the FP if P (di) > 0.5 (see Eq. (2)).

• SubGreedy First (SGF, aSGF
t ) selects the node with the

most neighbors within d-hops [5, 15]. We set d = 2 to
balance efficiency and effectiveness.

• Centrality First (CF, aCF
t ) selects the user with the

highest degree centrality.
3) Rewards: We use instant rewards to enhance learn-

ing process. At each round t, the rewards for each party
are the net change in users aligned with each party:

RTP
t = nTP

t − nTP
t−1, RFP

t = nFP
t − nFP

t−1. (11)

TABLE I: KEY PARAMETERS AND DEFAULT VALUES

Param. Meaning Def. Val.

T Number of information propagation rounds 50
Tv Vacuity threshold in UOM 0.01
Td Dissonance threshold in UOM 0.6
lra Learning rate in the actor-network 0.0003
lrc Learning rate in the critic network 0.001
Kepo The number of epochs used in one PPO

update
80

ε Clipping parameter value used in PPO 0.2
γ Discount factor in DRL’s reward function 0.95
pTP Number of true information propagation

by the true party’s seed nodes
2

pFP Number of false information propagation
by the false party’s seed nodes

1

d Value used in the Subgreedy strategy 2
a Prior belief of legitimate user 0.5

The accumulated reward over an episode is:

RTP
T =

T∑
t=1

γT−t+1RTP
t , RFP

T =

T∑
t=1

γT−t+1RFP
t ,

(12)
where γ is the discount factor.

Fig. 1 illustrates the proposed DRL-based CIM (DRIM)
framework. Given an OSN, two parties compete to gain
more users believing in their opinion. Initially, all users
are legitimate and neutral. In each round, given the current
state in OSN, FP’s central decision maker (CDM) selects
a seed node according to the action distribution output
from the policy network (i.e., criteria to maximize in-
formation influence). The selected node (FIP) propagates
opinions based on the opinion model in Section IV-C
(UOM). Then, TP’s CDM chooses an action to select
a seed node for maximizing its information influence.
Once terminated (picked up to predefined seeds or no
more seeds can be selected), TP’s influence is evaluated
by counting how many nodes believe in TP.

V. EXPERIMENT SETUP

Our DRL framework employs Proximal Policy Op-
timization (PPO) [20] for optimal seed node selection,
leveraging PPO’s efficiency in reusing data to reduce
computational complexity, critical for CIM’s long data
collection time. TP uses a trained DRL model for node
selection, while FP chooses among six strategies: DRL,
Active First (AF), Blocking First (BF), SubGreedy First
(SGF), Centrality First (CF), and Random. We train six
DRL agents for TP, each paired with one FP strategy, and
test these configurations in Section VI.

We initialize SL-based opinions for legitimate users
using the mapping rule in Eq. (1), with (r, s,W ) =
(1, 1, 101), indicating high uncertainty. TIPs start with
(r, s,W ) = (100, 1, 2), reflecting strong confidence in
true information, while FIPs are initialized at (r, s,W ) =
(1, 100, 2), showing confidence in false information.
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Fig. 1: Overview of DRIM: The center shows an SL-based competitive network with color gradients for belief
strength – lighter colors indicate higher uncertainty, white for neutral users. Blue shades represent true information
supporters (darkest as TIP), red shades indicate false information supporters (darkest as FIP). On each side, DRL-
based CDMs receive the OSN state, use a policy network to select the highest-probability action for node selection,
and update based on reward feedback.

FP and TP alternately pick 50 seeds and propagate
(FP goes first, followed by TP). This models real false
information mitigation scenarios, where true information
counters ongoing false information. TP propagates twice
after each seed selection, while FP propagates once. Since
human judgment and public awareness are crucial in
combating false information, true information is assumed
to achieve more effective propagation in OSNs. All ex-
periment results are averaged over 50 runs.

All experiments are conducted on an HPE Apollo 6500
system with AMD EPYC 7742 chips, running at a base
frequency of 2.25 GHz and a boost up to 3.4 GHz. Table I
summarizes the key design parameters, their meanings,
and default values. For all performance analyses, except
those examining varying network observability, we as-
sume perfect network observability.

Datasets: We use the Facebook social circles
dataset [13] to validate our framework. It has 4039
nodes and 88234 edges. This dataset is well-suited for
studying CIM, as it represents real users and interactions,
and models how individuals share ideas, opinions, and
information through conversations, posts, or recommen-
dations, capturing social influence dynamics. We tested on
extra datasets of various sizes and densities to verify the
generalizability of our framework, and they both showed
similar results as the Facebook network. Due to the page
limitation, we are not sharing in this paper.

Metrics: The performance of each framework is mea-
sured by the number of users aligned with the TP (see
Eq. (2)). Users with Pi(bi) > 0.5 are classified under TP,
indicating TP’s influence, denoted as nTP . Algorithmic
efficiency is evaluated by the simulation’s running time
per round in Table II.

Comparing Schemes: To demonstrate the effective-
ness of our framework, we compare its performance and

running time against existing DRL-based CIM frame-
works. Unlike [3, 5, 15, 19], our approach uses an
SL-based dynamic opinion model, allowing opinions to
evolve through interactions. For a fair comparison with
existing state-of-the-art approaches, all models operate
under the same conditions, including identical opinion
models (UOM), same seed node selection setting (FP
moves first, equal information propagation times, and
T = 50 seed nodes), and identical opinion update mech-
anisms as described in Section IV. While adapting these
schemes may affect their original performance, this stan-
dardization is essential for evaluating their performance in
the realistic scenarios addressed in our study. We evaluate
the performance of the following CIM algorithms: (1)
DRIM-A: Our proposed framework DRIM. ‘A’ refers
to the AF strategy (see Section IV-E), we append ‘-A’
in contrast to DRIM-NA. (2) DRIM-NA: Excludes the
AF strategy (No-AF) from the action space for node
selection, as we want to see the effect of AF in DRIM.
(3) STORM [15]: Originally based on binary opinions
for node occupation, we adapt it by defining free nodes
({j|uj ≥ 0.5}) as unoccupied. We also merge max-
weight and max-degree actions since our datasets are un-
weighted graphs. (4) C-STORM [5]: Enhances STORM
by introducing a preliminary community detection step
for optimal seed selection. We adapt it using our opinion
model and free nodes definition similar to STORM.

VI. NUMERICAL ANALYSIS & RESULTS

Effect of DRL-based TP’s Influence Under Various
Strategies Taken by FP: Fig. 2 compares four DRL-
based TP agents against FP across six seed selection
strategies, with the x-axis showing FP’s strategy and
the y-axis the percentage of nodes aligned with TP
(normalized). In Fig. 2(a), DRIM-A and DRIM-NA out-
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Fig. 2: TP’s influence under various CIM algorithms

perform C-STORM and STORM when FP uses DRL, AF,
SGF, or CF. When the FP uses the DRL-based strategy,
in the Facebook network, DRIM-A achieves 86.01%
TP influence, DRIM-NA 83.33%, while C-STORM and
STORM reach only 69.42% and 59.21%, showing up
to 45.26% higher influence. Lower performance against
BF and Random suggests our schemes are optimized for
proactive opponents.

We may perceive that DRIM-A and DRIM-NA per-
form “worse” when FP uses BF or Random. However,
they maintain over 80% influence, showing stable per-
formance. While C-STORM and STORM may surpass
our schemes under BF and Random, they are ineffective
for spreading false information. Moreover, DRIM-A and
DRIM-NA outperform them when FP employs strategic
methods (e.g., DRL, AF, CF, SGF), highlighting DRIM’s
effectiveness to combat false information in OSNs.

Sensitivity Analyses: In this experiment, TP and FP
both use DRL-based agents to select seed nodes, allowing
us to assess TP’s performance against “smart” opponents.

1) Effect of Varying the Number of Information
Propagations by TIPs: Fig. 3(a) explores the impact of
increasing TP’s information propagations (IPs) (from 1
to 5) while FP remains at one propagation per seed. As
expected, all schemes show greater influence with more
IPs. Notably, DRIM-A and DRIM-NA perform best with
1-2 IPs per round, effectively countering false information
with minimal resources. When IPs exceed 2, the increase
plateaus, supporting our choice of 2 as the default for
optimizing resources and maximizing influence.

2) Effect of Varying the Degree of Network Ob-
servability: As shown in Fig. 3(b), all schemes naturally
gain more influence with increased network visibility.
Notably, DRIM-A and DRIM-NA begin outperforming
once visibility reaches 85%, demonstrating their ability
to adapt to uncertain environments.

3) Effect of Varying Users’ Prior Belief: Prior belief
reflects the initial likelihood of accepting true informa-
tion. A higher prior belief increases TP’s influence, as
shown in Fig. 3(c). Notably, even with low (a < 0.5)
or neutral (a = 0.5) prior beliefs, DRIM-A and DRIM-

TABLE II: SIMULATION RUNNING TIME (IN SEC.) OF
THE CONSIDERED CIM ALGORITHMS

Algo. DRIM-A DRIM-NA C-STORM STORM
FB 5.456 5.095 10.445 23.812

NA outperform C-STORM and STORM, demonstrating
effectiveness even when initial user beliefs do not favor
true information.

In summary, DRIM-A and DRIM-NA are resource-
efficient and more effective in partially observable net-
works. They successfully combat false information by
maximizing the spread of true information, even when
users initially lean toward false information.

Running Time Analysis of CIM Algorithms: Table II
shows DRIM-A and DRIM-NA outperform C-STORM
and STORM in running time. We measure the duration
of selecting a node and completing information propa-
gation from the seed to all other nodes. These averages
were obtained from 2,500 node selection and propagation
cycles on the the dataset. DRIM is 47.8% faster than C-
STORM and 77.1% faster than STORM in the Facebook
network. Thus, our DRIM-based approach is notably
faster, especially in denser networks.

VII. CONCLUSIONS

This work introduces a deep reinforcement learning
framework enhanced with Subjective Logic to improve
competitive influence maximization (CIM) in OSNs by
accounting for uncertain opinions and user preferences.
Unlike binary-opinion CIM models, our Uncertainty-
based Opinion Model (UOM) provides a nuanced rep-
resentation of user opinions. The proposed frameworks,
DRIM-A and its variation DRIM-NA, demonstrate su-
perior efficiency and effectiveness, outperforming C-
STORM and STORM by up to 23.9% and 45.26% in
influence spread while using 47.8% and 77.1% less time.

Experimental results indicate UOM enhances true in-
formation spread, even among low-engagement users,
highlighting the importance of targeting active users.
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