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Abstract—The Competitive Influence Maximization (CIM) problem involves multiple entities competing for influence in online social
networks (OSNs). While Deep Reinforcement Learning (DRL) has shown promise, existing methods often assume users’ opinions are
binary and ignore their behavior and prior knowledge. We propose DRIM, a multi-dimensional uncertainty-aware DRL-based CIM
framework that leverages Subjective Logic (SL) to model uncertainty in user opinions, preferences, and DRL decision-making. DRIM
introduces an Uncertainty-based Opinion Model (UOM) for a more realistic representation of user uncertainty and optimizes seed
selection for propagating true information while countering false information. In addition, it quantifies uncertainty in balancing
exploration and exploitation. Results show that UOM significantly enhances true information spread and maintains influence against
advanced false information strategies. DRIM-based CIM schemes outperform state-of-the-art methods by up to 57% and 88% in
influence while being up to 48% and 77% faster. Sensitivity analysis indicates that higher network observability and greater information
propagation boost performance, while high network activity mitigates the effect of users’ initial biases.

Index Terms—Competitive influence maximization, deep reinforcement learning, uncertainty, opinion models, influence propagation

1 INTRODUCTION

Online Social Networks (OSNs) have become dominant
platforms for information exchange and opinion formation.
However, they also facilitate the rapid spread of false in-
formation, leading to reputational harm, financial loss, and
manipulated public opinion [1]. The Competitive Influence
Maximization (CIM) problem arises in environments where
competing entities, such as political parties or corporations,
strategically select seed nodes to maximize their influence
in OSNs. This study focuses on two competing parties:
The true party (TP), disseminating true information, and the
false party (FP), spreading false information. To mitigate the
impact of false information, it is crucial to develop strategies
that empower the TP to counteract the FP effectively and
enhance the reach of true information in OSNs.

Traditional CIM approaches typically model user opin-
ions as binary (i.e., supporting either the TP or the FP),
overlooking the complexity and uncertainty of real-world
opinion dynamics. In reality, OSN users often encounter
ambiguous, evolving, and multi-dimensional information
that shapes their decisions. A binary assumption over-
simplifies influence propagation, neglecting belief strength,
uncertainty, and adaptability. This limitation highlights the
need for an advanced CIM framework that incorporates
opinion uncertainty and dynamic belief updates.
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Deep Reinforcement Learning (DRL) [2] has emerged as
a powerful tool for real-time decision-making and strategy
optimization in CIM tasks. By learning policies from inter-
actions, DRL enables adaptive decision-making that evolves
with the changing OSN landscape. A key challenge in DRL-
based CIM is balancing exploration and exploitation. The
agent must discover new influential nodes (exploration)
while leveraging known high-impact nodes (exploitation)
to maximize long-term influence. Conventional methods
such as Epsilon-greedy [2] and Upper Confidence Bound
(UCB) [3] either fail to adapt the exploration rate dynami-
cally or rely solely on reward or state values, ignoring the
DRL model’s intrinsic uncertainty.

To address these challenges, we propose an uncertainty-
aware DRL framework for CIM that integrates Subjec-
tive Logic (SL) [4], a belief model that explicitly quan-
tifies multiple types of uncertainty, to represent opinion
uncertainty. By incorporating uncertainty estimates into
the exploration-exploitation trade-off, our approach enables
adaptive decision-making that considers belief strength and
confidence levels in user opinions. This allows the DRL
agent to make more informed decisions under uncertainty,
enhancing its ability to counteract false information while
maximizing the spread of true information in OSNss.

Our work has made the following key contributions:

Beyond Binary Opinion Models: We advance CIM re-
search by moving beyond traditional binary opinion
models, which dominate existing studies [5-8]. Instead,
we formulate opinion dynamics using Subjective Logic
(SL) [4], a belief model that explicitly allows estimat-
ing uncertainty and dynamically updating user opinions
based on real-world interactions. Unlike static binary
models, our approach reflects the evolving nature of user
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beliefs in OSNs. Furthermore, we introduce and compare

three different opinion models to evaluate how user atti-

tudes toward opinion updates influence the effectiveness
of false information mitigation.

2) Dual-Agent DRL for CIM: We adopt a dual-agent DRL
framework, where both the TP and the FP engage in a
CIM process. While DRL has been previously applied
to CIM [7-9], prior works have only considered DRL
to model a single agent’s decision-making. By explicitly
modeling the interaction between two competing parties,
our framework captures the adversarial nature of influ-
ence propagation in OSNs, enabling a more realistic and
strategic seed selection process.

3) Uncertainty-Aware Decision-Making: We introduce
uncertainty-aware decision-making at three critical lev-
els: user opinion modeling, balance between explo-
ration and exploitation in DRL, and network environ-
ment simulation. Our framework integrates SL-based
opinion modeling with uncertainty estimation to bet-
ter capture the uncertainties in user beliefs. Moreover,
we develop multiple uncertainty-aware exploration-
exploitation strategies using Evidential Neural Networks
(ENNs) [10, 11], bridging SL with Deep Neural Networks
(DNNs) for more informed decision-making. Further-
more, we consider partially observable networks, where
network edges are only partially visible, reflecting real-
world constraints. To the best of our knowledge, no
prior CIM work has incorporated such a multi-faceted
uncertainty-aware approach across opinions, decision-
making, and environmental modeling.

4) Extensive Empirical Validation: We conduct extensive
simulation experiments on three real-world social net-
work datasets to rigorously evaluate our proposed
uncertainty-aware DRL-based CIM framework. Our ex-
periments assess the impact of different opinion models,
uncertainty-aware DRL strategies, and sensitivity analy-
ses across various settings, ensuring the robustness and
applicability of our findings.

While preliminary results of this research were pre-
sented in [12], this work significantly extends [12] by (1)
introducing uncertainty-aware DRL with novel exploration-
exploitation strategies, (2) leveraging ENNs to estimate
multiple uncertainty types for seed node selection, and (3)
validating the proposed framework across three real-world
datasets with extensive sensitivity analyses to ensure higher
applicability and robustness.

We specifically use the term false information instead of
misinformation or disinformation to maintain clarity. Misinfor-
mation refers to mistakenly shared information without in-
tent to deceive, while disinformation is deliberately spread
to mislead others, characterized by malicious purpose. The
nuanced differences between misinformation and disinfor-
mation and their separate impacts fall outside the purview
of our research focus.

This work focuses on the CIM setting, where two com-
peting parties aim to optimize their seed selection strategies.
We defer detailed analysis of how user priors and behavioral
parameters affect propagation dynamics to future work,
with discussion on the potential impacts of user heterogene-
ity provided in Appendix E.2. Additionally, since our focus
is on information propagation and opinion updating, we
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follow the decision-making framework of SL. When users
accumulate sufficient evidence, it contributes to belief mass,
which becomes the primary driver of their final decision. In
such cases, the influence of the base rate becomes negligible.

2 RELATED WORK

This section presents an overview of related work in com-
petitive information maximization, opinion and informa-
tion propagation models, exploitation-exploration balance
in DRL, and evidential deep learning. Additionally, we
highlight the distinctions of our proposed approach from
these works and summarize them in Table 1 and Appendix
C (Tables S-4-5-6) in the supplement for easy reference.

2.1 Competitive Information Maximization

Domingos and Richardson [13] introduced Influence Max-
imization (IM), focusing on selecting optimal seed nodes
to maximize influence in Online Social Networks (OSNs).
Kempe et al. [14] formalized IM as a discrete stochastic
optimization problem, laying its theoretical foundation.

IM extends to Competitive IM (CIM) by introducing
multiple competing entities. Early works applied game the-
ory, such as [15] finding Nash Equilibrium in competitive
networks. More recent methods include [16] with Sandwich
Approximation, eliminating Monte Carlo simulations [17],
and developing Competitive Reverse Influence Estimation
(CRIE) [18]. Tsaras et al. [19] proposed Awareness-to-
Influence model collective IM, Galante et al. [20] leveraged
game theory for influencer competition. Community struc-
ture has been explored for CIM [21, 24]. Xie et al. [22], Liu
et al. [23] improved influence estimation using community
borders and user preferences. These methods assume well-
defined community structures, which may not always exist.

Reinforcement Learning (RL) has also been applied. Lin
et al. [8] introduced STORM, a RL framework for multi-
round CIM. Chung [7] extended this with spectral com-
munity detection. Ali et al. [5, 6] refined DRL-based CIM
by incorporating network exploration and dynamic graph
embeddings, and further integrated Transfer Learning (TL)
to reduce training time [34]. He et al. [25] incorporated
Nash Equilibrium with Q-learning for strategic robustness.
On the other hand, other works address specific constraints
in terms of time [26], user behaviors [27, 29], and specific
group [28]. Uncertainty [30, 31] and fairness in CIM problem
[32, 33] also have been explored.

Despite advancements, CIM research faces key limita-
tions. Many rely on greedy algorithms [18, 21, 22, 28, 30, 32],
lacking global optimality. Others assume full knowledge on
network and competitor [7, 8, 16, 17], or oversimplify user’s
and competitor’s behavior[5, 6, 19, 20, 25, 27]. Fairness-
aware methods use simplistic metrics [32, 33]. Our work
improves CIM realism by modeling opinion dynamics and
incorporating uncertainty in user beliefs and network struc-
ture. Table 1 highlights our contributions by summarizing
key differences between our work and existing approaches.

2.2 Opinion Models
The Voter [35], DeGroot [36], and Friedkin-Johnsen (F]) [37]

models focus on opinion dynamics but lack a competitive
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TABLE 1
COMPARISON OF RELATED WORKS IN CIM RESEARCH AND OUR PROPOSED APPROACH

Work Contribution Difference from Our Work

[13, 14] Introduced and formalized the IM problem. Focuses on traditional IM, not competitive settings.

[15] Applied game theory and Nash Equilibrium to CIM. Assumes rational competitors and static strategies.

[16-18] Developed heuristics like SPBA and CRIE for seed selection. Lacks opinion modeling and uncertainty-awareness.

[19, 20] Used game theory and probabilistic influence propagation. Does not incorporate uncertainty-aware opinion evolution.
[21-24] Proposed community structure-based CIM. Relies on predefined communities, limiting adaptability.

[5-8] Applied reinforcement learning (RL) for multi-round CIM. Models only a single agent, lacks adversarial interaction.

[25] Integrated budget constraints and multi-stage CIM. Assumes full network knowledge and static competitors.
[26-29] Considered user constraints such as time delays and interests. Does not model uncertainty-aware opinion updates.

[30, 31] Addressed CIM uncertainty via probabilistic modeling. Lacks belief-based opinion dynamics and uncertainty modeling.
[32, 33] Explored fairness-aware seed selection strategies. Uses simplistic fairness metrics, lacking opinion evolution.

Our Proposes a dual-agent DRL CIM framework with SL for opinion | Moves beyond binary opinion models, integrates adversarial RL
Work dynamics and DRL-based uncertainty-aware decision-making. for CIM, and applies multi-faceted uncertainty modeling.

nature. They adopted a random neighbor’s opinion, the De-
Groot model averages neighbors’ opinions, and FJ extends
it by introducing stubborn users. The Deffuant-Weisbuch
(DW) [38] and Hegselmann-Krause (HK) [39] models use
bounded confidence, emphasizing pairwise interactions and
clustering, being less suitable for competitive scenarios.

The Galam model [40] focuses on binary opinions and
employs majority rule, oversimplifying CIM. The Sznajd
model [41] relies on local interactions, making it unsuit-
able for global influence spread. Noisy models [42, 43]
add randomness to existing models to simulate real-world
phenomena, but randomness complicates CIM modeling.

Wildly used CIM propagation models include Indepen-
dent Cascade (IC) and Linear Threshold (LT) [14, 15, 24,
27, 28], with many variants [5, 6, 16-19, 23, 26, 29-34]. IC
assumes independent neighbor influence, while LT activates
nodes based on cumulative influence thresholds. Despite
their effectiveness, their assumption cannot fully reflect the
realistic CIM process. Qur work enhances these models by
incorporating dynamic opinion dynamics and evaluating
their resilience to misinformation.

2.3 Exploitation-Exploration Balance in DRL

A key challenge in reinforcement learning is balancing ex-
ploration and exploitation (EE) [2]. One simple method is
Epsilon-greedy [2], where the agent explores randomly with
probability € and otherwise exploits the best-known action.
€ decays over time to shift towards exploitation.

Reward shaping [44] introduces additional rewards to
guide agents to learn, especially in sparse reward environ-
ments. Other methods encourage agents to visit new states
or choose diverse actions, such as Entropy Regularization
(ER) [45], which tries to maximize policy entropy. Random
Network Distillation (RND) [46] uses prediction errors from
another network as intrinsic rewards. Pseudo-counts [47] and
Never Give Up (NGU) [48] reward visiting less frequent
or novel states. Goal-based methods focus exploration on
unknown areas. Go-Explore [49] memorizes visited states
and selects goals probabilistically for further exploration.
Reverse Curriculum Generation [50] starts from goal states and
works backward to explore the environment.

Uncertainty-based methods balance EE using confidence
measures. Upper Confidence Bound (UCB) [3] selects actions
based on reward estimates plus a confidence term, widely
used in multi-armed bandits and RL. Bootstrapped DQN
[51, 52] uses multiple Q-networks to estimate uncertainty

and guide exploration, effective in continuous control but
computationally expensive. Variational Information Maximiz-
ing Exploration (VIME) [53] uses Bayesian neural networks
for information gain by reducing uncertainty. However,
existing EE strategies have yet to fully explore the role of
different uncertainty types in decision-making.

2.4 Evidential Deep Learning

Evidential Deep Learning (EDL), leveraging Demp-
ster-Shafer Theory (DST) for uncertainty estimation, was
refined by [10] to enhance confidence measures via a spe-
cialized loss function. This improves performance in noisy
environments and out-of-distribution (OOD) detection. Fur-
ther advancements integrated Wasserstein GANs (WGANSs)
and Normal Inverse Gamma (NIG) distributions for better
OOD detection and stereo matching uncertainty [54, 55].

Deng et al. [56] introduced Fisher Information-based
EDL (IEDL), dynamically reweighting loss via the Fisher
Information Matrix (FIM) for improved high-uncertainty
estimation. Shao et al. [57] proposed Dual-level Deep Evi-
dential Fusion (DDEF), enhancing multimodal learning by
linking neural outputs with Dirichlet parameters and fusing
evidence across modalities. Ancha et al. [58] developed a
Dirichlet-based framework for pixel-wise uncertainty esti-
mation in semantic segmentation, aiding robotic navigation.
Duan et al. [59] extended classification uncertainty quantifi-
cation using total covariance, offering richer insights beyond
entropy-based approaches.

EDL has diverse applications. Li et al. [60] adapted it for
brain tumor segmentation, generating reliable uncertainty
maps for clinical use. Schreck et al. [61] showed EDL quan-
tifies uncertainty effectively in Earth system science, aiding
weather and climate modeling. However, careful tuning
of its loss function is required to balance accuracy and
uncertainty, posing challenges in parameter optimization.

3 BACKGROUND: SUBJECTIVE LoGIC (SL)

We employ Subjective Logic (SL) to model user uncertainty
in Section 4 and develop an uncertainty-aware DRL-based
CIM framework in Section 5. The reason SL was chosen
over Bayesian Networks and Fuzzy Logic is because it
explicitly models opinion uncertainty using belief, disbelief,
and uncertainty mass. Additionally, SL. incorporates trust
propagation and dynamic opinion updates, making it well-
suited for capturing evolving user beliefs in competitive
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influence maximization. This section provides the necessary
background on SL to facilitate understanding of our pro-
posed opinion model and CIM framework.

3.1 Binomial Opinion in SL

In binary logic, a user’s opinion toward something is either
100% believed in or not, which barely happens. To better
capture real-world opinion dynamics, we model user beliefs
using Subjective Logic (SL) [4], which quantifies degrees of
uncertainty in beliefs. For propositions classified as true or
false, we use SL's binomial opinion model to represent user
opinions in OSNs, defined as:

W= (b) d? u) a)'l (1)

where belief b represents agreement with true information,
disbelief d denotes agreement with false information (or
disagreement with true information), and uncertainty u
accounts for insufficient evidence. For simplicity, we omit
the user ID (e.g., 2) in this opinion representation. These
components lie within the range [0, 1] and satisfy the addi-
tivity constraint b + d 4+ u = 1. These components are:

T s w

e rrerw T T w T rsewe @

where 7 and s are the numbers of evidence to support b and
d, respectively, and W refers to the number of uncertain
evidence that cannot be judged as true or false, supporting
neither b nor d. The base rate a represents the prior belief
favoring true information, with 1 — a corresponding to false
information. It is a real number within the range [0, 1]. While
this paper focuses on two opinions using SL's binomial
opinion model, the approach can be readily extended to
multiple opinions involving additional parties.

When making opinion-based decisions (e.g., selecting a
product), users account for uncertainty by leveraging the
projected probability in SL, represented by the projected belief
(P(b)) and projected disbelief (P(d)).They are defined as:

Pb)=b+a-u, Pd)=d+(1—a)-u, (3)

where P(b) + P(d) = 1. Since users choose between b and
d, they interpret uncertainty based on their prior belief, a =
{a,1 — a}. Specifically, user i is considered part of TP if
P(b;) > 0.5 and is deemed to believe false information if
P(d;) > 0.5. When a user i has P(b;) = P(d;) under a
uniform prior belief (i.e., base rate a), they are not counted
toward TP or FP. However, such cases are extremely rare, so
the sum of users in TP and FP is nearly equal to the total
number of users in a given network.

3.2 Dissonance in SL

We consider two types of uncertainty in the user’s opinion
formulated by SL [62]: vacuity and dissonance. Vacuity refers
to uncertainty caused by a lack of evidence, while dissonance
indicates uncertainty due to conflicting evidence.

For a multinomial opinion in SL, the dissonance in the
opinion is calculated as [62]:

Z JSE' ZjEKﬁ PBJBal(JSj)JSE)
i€K Ejeffﬁ Bi

diss __

(4)

where

gy 1Bi=B)l
Bal(B;, 8;) = 1 Bia

Here, Bal(3;, ;) measures the degree to which belief masses
are evenly distributed, indicating uniformity among them.
A higher balance level suggests greater inconclusiveness in
the opinion, making decision-making more challenging.

A binomial opinion is a special case of a multinomial
opinion, relying on the Beta distribution [4]. For clarity, the
dissonance of a binomial opinion is computed as follows:

= (b+d) - Bal(b, d), (5)

where Bal(b, d) represents the relative balance between be-
lief masses b and d and is defined as:

b—d
|b+d|' ©

We incorporate vacuity (ie., u in an opinion) and disso-
nance uncertainty measures in developing an uncertainty-
aware opinion model (UOM) in Section 4 and in de-
signing uncertainty-aware exploration-exploitation strate-
gies for DRL, as described in Section 5.

di
w 158

Bal(b,d) = 1 —

3.3 Uncertainty Maximization

Uncertainty maximization (UM) in SL [4] is computed by
adjusting the uncertainty mass (ii;) to its highest possible
value while preserving the projected probabilities. To for-
mally put, i; is estimated by:

i; = min [Pil:i) s fgdi]:

ggzp(bg)—ag'ﬂh li‘i:P(dj)_

The UM ii; is determined as the minimum of the scaled
projected belief and disbelief, ensuring consistency with the
prior base rate (a;). The belief (b;) and disbelief (d;) are then
recalibrated by subtracting their respective contributions to
uncertainty, maintaining the overall probability distribution.
We incorporate this UM in designing uncertainty-aware
exploration-exploitation strategies in Section 5.3.

@)
(1 — G.;j) - ’ij!.;j.,

3.4 Discounting Operator in SL
In SL, a trust filter, c! i is used to discount j’s opinion because
user 7 accepts user j’s opinion to the extent that user 2 trusts
user j. Each component of wig; = (bigj, digj, tigj, tig;) is
estimated by:

1®3 C?b:n d%@}

uigy =1—c(1

cld;, 8)

—uj), aigj = a;.

3.5 Consensus Operator in SL

The consensus operator @ updates user i’s opinion by com-
bining its belief weighted by j’s uncertainty and vice versa.
Disbelief is updated using the same weighting mechanism.
User #'s uncertainty decreases as the product of both users’
uncertainty levels, and opinion updates continue unless
either user’s uncertainty reaches zero, indicating complete
confidence. User 7's updated opinion, incorporating trust in
user j, is obtained by applying the consensus operator &
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to its original opinion and the discounted opinion of j. The
result is given by w; ® wig;:

bi(1 — c](1 — uy)) + e bjus

bi ® big; = 3 ) 9)
PR TCEY: (CET) B 0
p
g, — 1= =)
'B .
2 angy — (08 (- a)u) (1 =1 = y)) + oy
B—ui(l—ci(l—uy))
B=1—c)(1—u)(l—uy)#0.
Therefore, user i’s updated opinion, wj, is given by:
w; =w; @ Wigj = (b;': d;:“;: a‘i) (10)

= (bi ® bigj, di ® digj, ui ® wigj, ai B aig;),

where w; is user #’s prior opinion, and w;g; is j's discounted
opinion based on #’s acceptance level. Using SL's discount-
ing and consensus operators, we propose uncertainty-aware
opinion models in Section 4.

4 UNCERTAIN OPINION MODELS

This section outlines the user types and uncertainty-aware
opinion models, detailing how uncertain opinions are up-
dated, shared, and interpreted in this work.

4.1

We categorize users in OSNs into three types:

e True information propagators (TIPs) are seed nodes se-
lected by the true party (TP) with an initial opinion
w = (b,d,u,a) = (b = 1,d = 0,u — 0,a = 1). This
reflects a strong belief in true information (b = 1) and no
belief in false information (d = 0).

e False information propagators (FIPs) are seed nodes se-
lected by the false party (FP), with an initial opinion of
w = (b,d,u,a) = (b = 0,d = 1,u — 0,a = 0). This
indicates FIPs strongly believe in false information (d = 1)
while lacking belief in true information (b = 0).

e Legitimate users in OSNs are regular users with highly
uncertain opinions, initialized as w = (b,d,u,a) = (b —
0,d = 0,u — 1,a =0.5).

In this work, we adopt a uniform base rate for all le-
gitimate users as a practical modeling assumption. This
choice reflects a neutral starting point, allowing the model
to update beliefs based solely on the evidence accumulated
through network interactions. While individual users may
have diverse initial beliefs, this variability often diminishes
over time as repeated interactions and social dynamics
drive convergence toward shared perspectives, particularly
within topic-focused communities [63]. Thus, a uniform
base rate provides a reasonable approximation for capturing
the broader trends in social information propagation.

Since TIPs and FIPs hold strong beliefs, they do not
change their opinions, while legitimate users update their
opinions by adjusting (b, d, u,a) based on Eq. (10) and the
consensus operation in Eq. (9), describing how opinions
shift by supporting evidence during interactions.

User Types

i Legitimate Users (LU)
True Information
Propagator (TIP)

SEr 15 OPINIoN t; = { b, dy, w; } where by is belief, d; is disbefief, and u;
the perceived uncertainty.

]
(0.2,05,0.3)

L
(0,0,1)

Lu

(0.4,03,03) (0.3,04,03)

Lu

(0.5,0.2,0.3) (0.1,0.7,0.2)

Fig. 1. Overview of the CIM problem with Subjective Logic. An SL-based
competitive network visualizes belief strength via a color gradient where
lighter shades indicate higher uncertainty, with white for neutrals. Blue
represents true information supporters (darkest: TIP), and red denotes
false information supporters (darkest: FIP). Each user i's opinion is
represented by w; = {b;,d;,u:}, we ignore prior belief a; because it
is predefined as a constant for all users.

To illustrate SL-based opinion propagation in a compet-
itive OSN with FP and TP, Fig. 1 presents an overview of
the CIM problem with Subjective Logic. The color gradient
represents the level of belief, where lighter shades indicate
lower certainty, and white denotes neutral users who are
totally uncertain. Blue signifies belief in true information,
with the darkest blue representing the TIP chosen by the
True party (TP). Red represents belief in false information,
with the darkest red indicating the FIP selected by the False

party (FP).

4.2 Updating, Sharing, and Reading Opinions

User i’s opinion is represented by w; = (b;,d;,u;,a;).
The user’'s  behavior, uc;, comprises  opinion
updating, sharing, and reading, expressed as
ue; = {updating,, reading;, sharing;}, as detailed below.

4.2.1 Opinion Updating

Recall that SL is chosen for its capability to formulate
subjective opinions while handling multiple types of un-
certainty causes, namely vacuity and dissonance. When user ¢
encounters user j and reads their information (i.e., w;), user
i updates their opinion accordingly. The consensus operator
in SL [4] is utilized to compute user 7's updated opinion, as
detailed in Section 3.5.

This study presents three opinion models (OMs):
uncertainty-based trust (UOM), homophily-based trust
(HOM), and no-trust (NOM), each with a distinct trust filter
definition (see Section 3.4):

uc!, if UOM
¢l =4 hdl, if HOM (11)
nc, if NOM

where r:%T refers to the trust filter used in Eq. (8).

¢ Uncertainty-based OM (UOM): This model represents
users who seek new information when lacking sufficient
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evidence to decide [64-66]. UOM applies uncertainty-
based trust, where the trust filter ucz is defined as:

ue] = (1 —uq)(1 —ug),

where u; # 1 and u; # 1, as the initial uncertainty of a le-
gitimate user is close to 1 but not exactly 1 (see Sections 4.1
and 6.2). To prevent zero 3 in Eq. (9), we apply uncertainty
maximization (UM)(Section 3.3) when a user’s uncer-
tainty is low, but conflicting evidence prevents a decision.
Given thresholds TUM,, and TUMy, if u; < TUM,, (low
vacuity) and wdiss > TUM, (high dissonance), user i's
opinion is updated as &; = (b;,d;, ii;, a;), where b;, d;,
and ii; follow Eq. (7). The updated uncertainty ii; enables
user % to accept new information and refine its opinion.

« Homophily-based OM (HOM): Homophily, the tendency
of like-minded individuals to associate, influences opin-
ion updates [67]. The homophily trust filter hc] is com-
puted using cosine similarity, measuring alignment be-
tween users’ beliefs and disbeliefs:

1 N

This captures opinion similarity through belief (b;,b;)
and disbelief (d;, d;), indirectly incorporating uncertainty
sinceb+d+u=1.

e No-Trust-based OM (NOM): Without a trust filter, the
No-Trust-based OM sets nr:g = 1, allowing user 7 to
fully accept user j’s information without any discount in
opinion updates.

(12)

(13)

4.2.2 Reading & Sharing Opinions

We model a user’s reading and sharing behavior following
[66], which derived these behaviors from a survey on social
media usage patterns. A user’s reading probability, Py, indi-
cates how frequently they read information from neighbors,
with values randomly assigned as 1 (multiple times per
day), 0.5 (daily), 0.25 (weekly/monthly), or 0.1 (rarely) to
reflect diverse reading habits. Similarly, a user’s sharing
probability, P;, determines how often they share opinions w,
with P, randomly assigned as 1 (always/mostly), 0.5 (half
the time), 0.25 (sometimes), or 0.1 (rarely).

Since reading encourages opinion sharing [68], users
share only after reading. When user i shares, it transmits
its updated opinion w;, not the original ‘True’ or ‘False’
information. Only seed nodes, True and False information
propagators (TIPs and FIPs), share the original information.

5 UNCERTAINTY-AWARE DRL-BASED CIM
5.1 Seed Set Selection Process

We use DRL to optimize strategy selection for maximizing
influence spread in a multi-round process. In each round,
the FP selects a seed node (turns it into an FIP), and then
the FIP starts sharing its opinion with its neighbors and
propagates further until all nodes are reached. The TP next
selects a TIP to propagate true information. Information
spreads through the network via Breadth-First Search, with
nodes deciding to update and propagate based on their
reading and sharing frequency. An episode consists of T'
rounds, matching the number of seed nodes.

5.2 Formulation of DRL-based Best Seed Selection

In this section, we describe the formulation of a DRL agent’s
states, actions, and rewards in this work.
States. At each round ¢, the state s; is defined as:

St = { Z eg,j,maﬁcdegs}. (14)
i,jeU e

Here, free nodes, defined as {j € U|u; > 0.5}, represent

users with high uncertainty who have not aligned with

either party, where u; denotes j’s uncertainty (ie., vacuity).

The term Zs, jeu €i,j counts edges among free nodes, while

max;cy deg; gives the highest degree among them.

Actions. The action space at round ¢ is a, =

{aF, aBF aSCF ST}, focusing on user behavior and cen-

trality in the OSN, and each action means as follows:

e Active First (AE, af‘F ) prioritizes the most active user,
determined by the highest P, x P,, where P, and P,
represent the user’s reading and sharing probabilities.

« Blocking First (BE, aPF) targets neighbors of the oppo-
nent’s party with the highest free degree (connected to free
nodes. A user belongs to the TP if P(b;) > 0.5, or the FP if
P(d;) > 0.5 where P(b) refers to an expected probability
for a given belief b, as discussed in Eq. (3).

« SubGreedy First (SGE, a7 ©F ) selects the node with the most
neighbors within k-hops [7, 8] (e.g., k = 2 to balance
efficiency and effectiveness).

« Centrality First (CF, af'F) selects the user with the highest
degree centrality. We use degree as a centrality metric,
considering its efficiency. Investigating the performance
of using a different centrality metric is beyond the scope
of our work.

Rewards. We use immediate rewards to enhance the
learning process. At each round t, the rewards for each
party, TP or FP, are the sum of users’ beliefs aligned with

each party by:
BT Y u REPS Y 4

ieTP icFP

(15)

where b! and d! refer to user i’s belief mass at round t.
The respective accumulated rewards over an episode
fromt=0tot =T are:

T T
RIP = Z,}(T—(t—I)RtTP1 REP = Z,YT—(t—l}Rf‘P,
t=1

t=1 (16)
where v € [0, 1] is the discount factor. We integrate model
prediction uncertainty to enhance decision-making in the EE
trade-off. After obtaining the action distribution from the
policy network’s final layer, we interpret it as belief mass
Bi for each action, ensuring ) °. ,- 8; = 1 with initial uncer-
tainty mass v = 0. To introduce positive uncertainty mass i’,
we apply the uncertainty maximization (UM) technique [4],
detailed in Section 3.3. We assume no prior knowledge for
belief propositions, assigning an equal base rate probability.

In addition to vacuity (uncertainty mass ) for assess-
ing evidence sufficiency, we compute dissonance to detect
conflicting decisions, where a flatter action distribution in-
dicates lower confidence. For example, with belief masses
0.24,0.25,0.24,0.27, the system’s highest probability (0.27)
does not imply confidence in selecting the optimal action
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due to the distribution’s uniformity. Dissonance (see Eq. (4))
quantifies this distinction, implying that the flatter the
distribution, the lower the dissonance. These uncertainty
estimates guide EE decisions, as discussed below. Fig. 2 il-
lustrates the proposed Uncertainty-Aware DRL-based node
selection process, where each party’s DRL agent processes
OSN states through a policy network to determine action
distributions.

5.3 Exploration-Exploitation (EE) Strategies

A DRL agent looks for the best action by randomly choosing
an action called exploration and relying on their experiences,
called exploitation. In this work, we evaluate the following
EE strategies: the first three are our proposed uncertainty-
aware approaches, and the rest are state-of-the-art meth-
ods. Their performance will be compared to highlight the
strengths of each strategy. The considered EE strategies are:

e EE Using Vacuity (VAC-EE): This strategy balances EE
based on vacuity (), which quantifies uncertainty from
insufficient evidence. If vacuity exceeds a threshold (T7),
the agent explores due to limited knowledge. Otherwise,
it exploits by selecting the best-known action. This ap-
proach explores under high uncertainty from a lack of
information and exploits otherwise.

« EE Using Dissonance (DIS-EE): This strategy balances EE
based on dissonance (w®i®%), which quantifies conflicting
evidence in decision-making. If dissonance exceeds a
threshold (T), the agent explores to resolve inconsisten-
cies. Otherwise, it exploits the best-known action. This
approach adapts decisions by exploring under conflict
and exploiting otherwise.

« EE Using Vacuity and Dissonance (VD-EE): This strategy
dynamically balances exploration and exploitation using
vacuity () and dissonance (wdiss), If vacuity exceeds
a threshold (1), the agent explores due to insufficient
knowledge. Otherwise, it evaluates dissonance; if above
(T4), exploration occurs to address conflicting informa-
tion. When both measures are low, the agent exploits
the best-known action. This adaptive approach optimizes
decision-making by exploring under high uncertainty and
exploiting when confidence is sufficient.

« EE Using Entropy (ENT-EE): This strategy measures the
randomness in the agent’s action selection using the
entropy of the action probability distribution [69]. High
entropy indicates greater exploration, while low entropy
reflects a more deterministic policy, favoring exploitation.

e EE Using Epsilon Greedy (EPS-EE) [2]: A widely used
exploration strategy in reinforcement learning, epsilon-
greedy balances exploration and exploitation through
random action selection. With probability €, the agent
explores by selecting a random action, while with prob-
ability 1 — ¢, it exploits by choosing the action it currently
estimates to be the best based on gathered information.

« EE Using Entropy Regulation (ER-EE) [45]: This strategy
incorporates entropy into the reward function by adding
an entropy term scaled by a coefficient (which determines
the importance of entropy or exploration), the modified
objective encourages the agent not only to maximize the
expected reward but also to maintain a level of random-
ness in its action selection.

7

« Upper Confidence Bound (UCB-EE) [3]: UCB balances ex-
ploration and exploitation by adjusting exploration based
on action uncertainty. The agent estimates expected re-
wards from past observations and computes an uncer-
tainty measure, which decreases as more data is gathered.
Less-explored actions are prioritized for exploration, in-
creasing the likelihood of discovering optimal choices.

Algorithm 1 details the first three proposed uncertainty-
aware EE strategies.

Algorithm 1 Uncertainty-Aware Exploration-Exploitation
Strategies (VAC-EE, DIS-EE, and VD-EE)

1: Given an opinion formulated based on the actions taken by a DRL
agent for seed node selection,

2 U + vacuity, wdiss « dissonance

3: Ty + vacuity threshold, Ty +— dissonance threshold

4: procedure VACUITY-BASED EE (VAC-EE)

5 if i > Ty then

6: explore

7:

8

9

else
exploit
end if
10: end procedure

11: procedure DISSONANCE-BASED EE (DIS-EE)
12: if wdiss > T} then

13: explore
14: else

15: exploit
16: end if

17: end procedure

18: prOCEdl.ltE VACUITY AND DISSONANCE-BASED EE (VD—EE)
19: if # > T}, then

20: explore

21: else

22: if wdiss > T, then
23: explore

24: else

25: exploit

26: end if

27 end if

28: end procedure

5.4 Partially Observable Network

Following [70], a partially observable network is defined as
an undirected graph G = (V, E') with an observable subset
G' = (V,E'), where E' C E. Only a subset of edges is
visible to the DRL agent when observing the state in OSNs.

In an OSN, two parties compete to maximize user belief
in their opinion, starting with all users neutral. In each
round, FP selects a seed node based on the policy network’s
action distribution to maximize influence. The chosen node
(FIP) propagates opinions as per Section 4.2. TP then selects
a seed node to counter FP’s influence. This process repeats
until the predefined seed limit is reached or no further
selections are possible. TP’s influence is evaluated by the
number of nodes adopting its opinion.

6 EXPERIMENT SETUP

6.1 Algorithm Settings

We employ Proximal Policy Optimization (PPO) [71] in our
DRL framework for optimal seed node selection, as PPO en-
ables multiple updates with the same data batch, reducing

computational complexity given CIM’s long data collection
time. TP utilizes a trained DRL model for node selection,
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Fig. 2. Overview of the Proposed Uncertainty-Aware DRL-based Node Selection: Each agent (i.e., DRL agents for TP and FP, respectively)
processes OSN states through a policy network to determine the action distribution. Vacuity and/or dissonance guide the exploration-exploitation
decision-making: low uncertainty favors exploitation (selecting the highest-probability action for maximum influence), while high uncertainty

promotes exploration (random action selection). The policy network is iteratively updated based on rewards.

while FP can choose from six strategies, such as DRL, Active
First (AF), Blocking First (BF), SubGreedy First (SGF), and
Centrality First (CF), as described in Section 5.2. We train
TP’s DRL agent against each FP strategy and evaluate their
performance in Section 7.

The opinion propagation and update processes in Sec-
tion 4 were implemented using custom Python scripts de-
veloped for this study. The code, written in Python 3.9,
leverages standard scientific libraries including NumPy,
SciPy, and NetworkX for efficient graph handling and ma-
trix operations. The source code is available at our GitHub
repository here.

6.2 Parameterization

We initialize SL-based opinions for legitimate users using
Eq. (2) with (r,s, W) = (1,1, 101), indicating high uncer-
tainty. TIPs start with (100, 1,2), reflecting strong confi-
dence in true information, while FIPs begin with (1, 100, 2),
showing confidence in false information. In UOM, when
conducting Uncertainty Maximization toward individual
user’s opinion, we set vacuity and dissonance thresholds at
TUM, = 0.01 and TUMg4 = 0.6 to optimize influence and
maintain effectiveness. The effect of varying these thresh-
olds is discussed in Appendix A.1. In SubGreedy First, k = 2
balances efficiency and effectiveness, while DRL employs a
discount factor y = 0.99 for long-term influence.

For uncertainty-aware EE strategies, we set vacuity and
dissonance thresholds via sensitivity analysis to optimize in-
fluence. Table 2 summarizes the selected thresholds. Vacuity
(I'y) captures overall uncertainty in the action distribution,
while dissonance (T5) reflects conflicting preferences among
top actions. We present an example of how to select thresh-
olds as well as sensitivity analysis on these thresholds in the
supplement document at Appendix A.2,

For FP strategies like AF, BE CE, and DRL, the TP’s DRL
agent performs best with a low vacuity threshold (T3, = 0.3),
enabling confident, decisive actions. Further lowering T}, is
counterproductive, as it risks missing high-reward nodes.
For SGEF, a higher T, is preferred to respond early to FP’s

rapid influence over dense local clusters.

TABLE 2
THRESHOLDS SUMMARIZATION

FP strategy | Ty Ty
AF 0.3 ] 09

BF 03] 05
SGF 09 [ 0.7

CF 03] 07
DRL 0.3 ] 09

Dissonance thresholds are typically moderate to high.
High T}; values suit fast-changing scenarios (e.g., DRL, AF),
tolerating internal conflict to enable timely actions. For
BE, CF, and SGE moderate T; balances decisiveness and
caution. Very low Ty makes the agent overly conservative,
risking failure to capture critical or contested nodes.

FP and TP alternately select 50 seeds for propagation,
with FP initiating the process, followed by TP. This models
real-world false information mitigation, where true infor-
mation counters ongoing false information. TP propagates
twice after each seed selection, while FP propagates once.
Given the critical role of human judgment and public
awareness, true information is assumed to propagate more
effectively in OSNs. All results are averaged over 50 runs.

Experiments ran on an HPE Apollo 6500 with AMD
EPYC 7742 processors (2.25 GHz base, 3.4 GHz boost). Key
design parameters, definitions, and defaults are in Table S-1,
Appendix A of the supplementary document. Unless stated
otherwise, performance evaluations assume perfect network
observability, except when analyzing its variations.

6.3 Network Datasets

We validate our framework using three datasets: the URV
Email Network [72], an undirected graph of email commu-
nications at Universitat Rovira i Virgili, Spain, a Facebook
social circles dataset [73] (FBN, Facebook network); and
a Facebook page network (FBPN) [74]. These networks
effectively model CIM, capturing real user interactions. The
URV Email and Facebook datasets reflect how individuals
share ideas, opinions, and information, while the Facebook
page-page network represents content spnead by entities
like brands or political campaigns via influential hubs. The
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TABLE 3
CHARACTERISTICS OF NETWORK DATASETS
Dataset Nodes | Edges | Degree | Betweenness
URV Email [72] 1133 5452 7 703.94
Facebook [73] 4039 | 88234 25 47.57
FB Page [74] 22470 | 171002 7 5496.91

datasets’ diverse structures and sizes enable a comprehen-
sive evaluation of our framework’s generalizability on com-
plex OSNs. Table 3 provides detailed statistics. For central-
ity measures, we report unnormalized medians instead of
means, as social networks are scale-free, where most nodes
have low degrees and a few have very high degrees, making
the median more representative.

Due to the lack of datasets that jointly provide network
structure, user communication behaviors, and message-
level content, we use real network topologies and synthet-
ically parameterize key behavioral variables to assess their
impact on information propagation, as in Section 4.2.

6.4 Metrics

We evaluate the proposed approaches using the following
metrics: (1) Percentage (%) of nodes in TP, measured by
the number of users aligned with TP (Eq. (3)). Users with
P;(b;) > 0.5 are classified under TP, indicating its influence,
denoted as nTF; (2) Algorithmic efficiency, assessed by the
simulation’s runtime per round (Section 7.5, Table 5); (3)
Uncertainty estimates, evaluated by the measures of vacuity,
dissonance, and entropy.

6.5 Comparing Schemes

To evaluate our framework, we compare its performance
and runtime against existing DRL-based CIM frameworks.
Unlike [5-8], our approach employs an SL-based dynamic
opinion model, enabling opinion evolution through interac-
tions. For a fair comparison, all models operate under iden-
tical conditions, including the same opinion models (HOM,
UOM, or NOM), seed selection settings (FP moves first,
equal propagation times, T = 50 seed nodes), and opinion
update mechanisms (Section 5). We use ER-EE as the general
EE trade-off strategy across all schemes. While adapting
these frameworks may affect their original performance, this
standardization ensures a realistic evaluation.

We evaluate the following CIM algorithms: (1) DRIM-
A: Our proposed framework DRIM, where ‘A’ denotes the
AF strategy (Section 5.1), distinguishing it from DRIM-NA.
(2) DRIM-NA: A variant excluding the AF strategy (No-
AF) from the action space to assess AF's impact in DRIM.
(3) STORM [8]: Originally designed with binary opinions
for node occupation, we adapt it by defining free nodes
({jlu; > 0.5}) as unoccupied and merging max-weight
and max-degree actions, as our datasets are unweighted.
(4) C-STORM [7]: An extension of STORM incorporating a
preliminary community detection step for seed selection. We
adapt it using our opinion model and the same definition of
a free node as used in STORM.

7 EXPERIMENTAL RESULTS & ANALYSES
7.1 Performance Analyses of Opinion Models

We first analyze the effect of opinion models by compar-
ing performance across three models using four entropy

9
TABLE 4
TRUE PARTY (TP)’S INFLUENCE IN nTF UNDER VARIOUS CIM
ALGORITHMS WITH DIFFERENT OMS

Scheme / OM AF BF SGF CF DRL
DRIM-A/UOM 1077.74 | 463.79 827.05 3741 691.37
DRIM-A/HOM 157 263.38 418 4.39 15.74
DRIM-A/NOM 27.59 354.64 5.85 4.86 17.56
DRIM-NA /UOM 1078.26 529.52 959.63 525.7 576.47

DRIM-NA/HOM 38.24 27432 5.18 4.58 415

DRIM-NA/NOM 60.64 331.34 6.26 478 6.51
C-STORM/UOM 1070.75 | 108253 | 52439 | 229.15 | 551.44
C-5TORM/HOM 26.88 475.27 4.57 455 533.17
C-5TORM/NOM 15.47 509.03 6.38 4.82 44293
STORM/UOM 1072.45 | 1058.80 | 46119 63.61 424,09
STORM/HOM 60.61 477.76 4.96 492 375.17
STORM/NOM 60.58 487.43 6.42 4.69 377.3
DRIM-A-VDEE/UOM | 1077.64 646.94 960.66 5819 | 794.33

DRIM-A-VDEE/HOM 38.23 195.8 5.05 447 468

DRIM-A-VDEE/NOM 38.06 241.91 6.23 4.82 6.91

regulation schemes and our uncertainty-aware approaches,
with TP facing various FP strategies. Table 4 presents results
on the URV Email Network, where TP’s influence (nTF) is
measured across five FP node selection strategies.

As shown in Table 4, UOM consistently achieves the
highest impact for true information, as users with high
uncertainty (u) are more receptive to new evidence, enabling
continuous updates and broader true information spread.
This aligns with human intuition — when uncertain, people
seek more information before forming conclusions. Thus,
even with FP’s first-mover advantage, true information can
still propagate effectively in the OSN. In contrast, HOM
and NOM yield poor TP performance, as users exposed
to false information first tend to form rigid beliefs that
true information struggles to correct. This underscores the
importance of early intervention and swift responses to
counteract misinformation. Under HOM and NOM, STORM
and C-STORM outperform DRIM-A-based schemes against
BF and DRL strategies. BF is not a primary concern in false
information mitigation, as false parties rarely use it due to
their first-mover advantage. DRL dominance occurs when
both parties employ identical DRL designs, favoring FP as
the initial actor. However, against other strategies, DRIM-
A performs comparably to STORM and C-STORM under
HOM and NOM, demonstrating competitive efficacy.

For all subsequent experiments, we adopt UOM as the
opinion model, as it facilitates true information spread
despite FP’s first-mover advantage. In contrast, HOM and
NOM inherently block true information, leaving minimal
room for improvement.

7.2 Performance Analyses of CIM Schemes

Comparative Analysis under Three Datasets: This sec-
tion evaluates the performance of existing CIM algorithms
and uncertainty-aware exploration-exploitation schemes.
All non-uncertainty-aware schemes use entropy regulation
to balance exploration and exploitation. Fig. 3 compares the
performance of four ER-DRL-based TP agents under five FP
seed selection strategies. The z-axis denotes FP’s strategy,
while the y-axis shows the percentage of nodes aligned with
TP, normalized across varying network sizes.

Fig. 3 shows that across all three datasets, our DRIM-
based schemes outperform under SGE, CF, and DRL strate-
gies, remain competitive against AF, and underperform
against BE When FP uses SGF or CF, DRIM-based TPs
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achieve greater influence than STORM and C-STORM, in-
dicating that DRIM-based approaches can surpass state-of-
the-art algorithms when FP selects nodes via traditional
centrality measures maximizing local reach.

In the dual DRL agent case, the four DRIM-based
schemes (ie., DRIM-A-ER, DRIM-A-VDEE, DRIM-NA-ER,
and DRIM-NA-VDEE) consistently outperform STORM and
C-STORM. Among them, DRIM-A-VDEE is the most ef-
fective, achieving a peak influence of 70.11% in the Email
dataset, while DRIM-NA-ER, though the least effective,
still reaches 50.88%. In comparison, C-STORM and STORM
achieve 48.67% and 37.43%, respectively. DRIM-A-VDEE
surpasses them by 44.05% and 87.31%. Similar trends hold
for the Facebook and Facebook Page networks, where
DRIM-A-VDEE achieves 70.31% and 74.75% influence, com-
pared to 44.82% and 28.23% for C-STORM and STORM on
Facebook, and 46.26% and 40.12% on Facebook Page. DRIM-
A-VDEE thus outperforms these schemes by at least 56.87%
and 61.59% across datasets.

When FP employs AF, all schemes achieve nearly 100%
influence. Since AF does not prioritize nodes effectively,
it behaves similarly to random selection, allowing all ap-
proaches to gain high influence. When FP uses BE, DRIM-
based schemes perform worse due to BF’'s defensive na-
ture, which prioritizes blocking over proactive influence.
This suggests that DRIM-based approaches are better suited
against aggressive strategies rather than defensive ones.

Across datasets, performance variations reveal differ-
ences in adaptability. The gap between STORM and C-
STORM is notably larger in the Facebook dataset than in
the Email and Facebook Page datasets. When FP employs
BF or DRL, C-STORM significantly outperforms STORM on
Facebook but only slightly on the other two datasets. This
is due to C-STORM's community-based approach, which
aligns well with Facebook’s social structure, while the other
two datasets exhibit more uniform connectivity. In contrast,
DRIM-based schemes maintain stable performance across
all datasets, demonstrating their robustness and adaptabil-
it'y to diverse network structures.

Sensitivity Analyses Under CIM Schemes: This section
examines how the number of true information propagations,
network observability, and users’ prior beliefs impact CIM
algorithm performance. Both TP and FP use identical DRL-
based agents for seed selection, enabling an assessment of
TP’s effectiveness against “smart” opponents. Due to space
constraints, Fig. 4 presents results from the URV Email
dataset, while similar findings for the other two datasets
are provided in Appendix B.2 of the supplement.

Fig. 4(a) examines the impact of increasing TP’s infor-
mation propagations (IPs) from 1 to 3 while FP remains
at a single propagation per seed. As expected, all schemes
improve with more IPs, demonstrating that additional prop-
agation enhances influence spread. Notably, the four DRIM-
based schemes perform best with a single propagation per
round, aligning with Fig. 3(a), effectively countering false
information with minimal resources. However, beyond two
IPs, influence gains plateau as TP nears its maximum reach.

In Fig. 4(b), a clear trend shows improved performance
across all schemes as network observability increases from
0.7 to 1. This indicates that greater visibility of the net-
work structure significantly enhances performance. Under
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limited observability, all schemes exhibit reduced influence,
highlighting the DRL agent’s dependence on network state
knowledge. The sharp performance increase between 0.9
and 1 suggests a high sensitivity to network observability.

Fig. 4(c) examines the impact of varying prior beliefs
across different schemes. Ideally, as prior belief in TP
rises (from 0.3 to 0.8), influence maximization performance
should improve, as users are more inclined to accept infor-
mation from TP. However, this trend is not always evident.
According to Eq. (3), prior belief primarily influences out-
comes when users have nonzero vacuity u, allowing initial
biases to shape their acceptance of information. In high-
activity settings, frequent information exchange leads to
greater certainty over time, reducing u and diminishing the
effect of initial beliefs. Thus, despite varying prior beliefs,
differences in influence maximization remain subtle. Never-
theless, DRIM-based schemes, particularly DRIM-A-VDEE,
consistently achieve the highest influence, even when initial
user beliefs do not favor true information.

These results suggest that DRIM-based schemes exhibit
robust and stable performance across varying network con-
ditions, showing particular effectiveness in scenarios with
limited information propagation and diverse prior beliefs.

7.3 Performance Analyses of EE Strategies

Comparative Analysis of EE Strategies Across Three
Datasets: Fig. 5 compares the performance of various
EE strategies within the DRIM-A framework across three
datasets. In Fig. 5, we observe that TP dominates when
FP employs AE SGF, or DRL strategies while maintaining
strong performance against BF and CE This underscores
the impact of FP’s strategic choices on DRIM-A’s influ-
ence. VD-EE consistently performs well across datasets and
FP strategies. Unlike ER-EE, it benefits from incorporating
uncertainty by considering both vacuity and dissonance.
By accounting for missing (vacuity) and conflicting (disso-
nance) information, VD-EE optimizes exploitation timing.
In contrast, traditional uncertainty-based strategies such as
EPS-EE, UCB-EE, and ENT-EE show inconsistent results due
to limited uncertainty modeling.

VAC-EE, relying solely on vacuity, excels under DRL-
based node selection, even surpassing VD-EE despite lack-
ing dissonance modeling. Since vacuity directly signals
information gaps, it enables more targeted exploration in
networks with uneven information distribution. Conversely,
VD-EE’s dual consideration of vacuity and dissonance of-
fers deeper insights but increases decision complexity. In
rapidly changing environments requiring quick adaptation,
this complexity may reduce its effectiveness in balancing
exploration and exploitation.

Sensitivity Analyses Under Various EE Strategies:
Fig. 6 examines the effects of true information propagation,
network observability, and users’ prior beliefs on EE strate-
gies. Both TP and FP employ DRL-based agents for seed
selection, allowing evaluation against “smart” opponents.
Due to space constraints, results for the URV Email dataset
are shown, while analyses for FB networks appear in Ap-
pendix B.3 of the supplement.

Fig. 6(a) shows that all EE strategies gain influence as
information propagations (IP) increase from 1 to 3, con-
firming that additional propagation enhances effectiveness.
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Fig. 6(b) reveals a significant boost for all strategies as
network observability rises from 0.7 to 1, underscoring their
reliance on visibility. VAC-EE and VD-EE improve steeply,
excelling in well-observed networks. Fig. 6(c) explores users’
prior beliefs. As noted in Section 7.2, high user activity miti-
gates belief influence. Still, VAC-EE and VD-EE outperform
others, benefiting from true information acceptance and low
uncertainty. DIS-EE and ENT-EE remain stable, suggesting
greater dependence on network structure than user biases.

7.4 Uncertainty Analyses of DRL-based Seed Node Se-
lection Decision-Making

This section evaluates agent performance by analyzing
vacuity, dissonance, and entropy estimates at each decision
point. For brevity, we present average values across all steps
using the URV Email dataset, with analyses of the Facebook

and Facebook Page Network datasets in Appendices B.4 and
B.5 of the supplement.

Uncertainty Analyses of DRL-based Seed Node Selec-
tion Decision-Making Under Various CIM Schemes: First,
we analyze vacuity, dissonance, and entropy across CIM
schemes, with results in Fig. 7. When FP employs AF or BE,
no significant correlation emerges between CIM scheme per-
formance and uncertainty measures. Under AF, all schemes
reach nearly 100% influence regardless of uncertainty. With
BE, despite higher vacuity, dissonance, and entropy, STORM
and C-STORM outperform others, indicating that confi-
dence in decisions does not guarantee better performance.
Effectiveness depends on the opponent’s strategy. AF is in-
effective in highly active OSNs, while DRIM-based schemes
struggle against BF, unlike STORM and C-STORM. How-
ever, under SGE, CF, or DRL, a clear relationship appears:
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lower performance corresponds to higher vacuity. For SGF
and CF, STORM and C-STORM exhibit higher vacuity and
lower performance, indicating uncertainty in node selection,
which hinders effectiveness.

Comparing DRIM-A-ER and DRIM-A-VDEE under
DRL, the higher-performing scheme consistently shows
lower vacuity and dissonance. A similar trend holds be-
tween DRIM-NA-ER and DRIM-NA-VDEE, as well as
STORM and C-STORM. Within the same framework, per-
formance improves with greater decision confidence, re-
inforcing the impact of uncertainty-aware EE algorithms.
DRIM-A-VDEE maintains the lowest vacuity, dissonance,
and entropy across all FP strategies while achieving supe-
rior performance, indicating an optimized balance between
exploration and exploitation.

Uncertainty Analyses of DRL-Based Seed Node Se-
lection Under Various EE Strategies: Fig. 8 evaluates un-
certainty estimates in DRIL-based seed selection across EE
strategies. Strategies with lower vacuity generally perform
better, as more information enables wiser node selection.
For instance, ER-EE exhibits high vacuity and lower influ-
ence when FP employs SGF or CE. However, since all EE
strategies already maintain low vacuity, a moderate level
is not necessarily detrimental. VAC-EE, despite having the
highest vacuity, achieves the best performance when FP uses
DRL, suggesting that beyond a certain confidence threshold,
reducing uncertainty alone does not guarantee better per-
formance. Higher dissonance and entropy often correlate
with varied performance. Strategies with high dissonance,
such as ER-EE and DIS-EE, face conflicting information,
complicating decision-making and influence spread, leading
to fluctuating performance.

7.5 Running Time Analyses of CIM Algorithms

Table 5 demonstrates that DRIM-based schemes outper-
form C-STORM and STORM in terms of running time.
We measured the time required to select a node and
complete one round of information propagation, averaging
these times over 5,000 cycles of node selection and prop-
agation. While larger datasets naturally take longer, the
trend within the same dataset remains clear. Specifically, in
the URV Email network, DRIM-based strategy, especially
DRIM-A-VDEE operates 6.8% faster than C-STORM and
44.5% faster than STORM. This gap widens to 47.8% and
77.1% respectively in the denser Facebook network (FBN),
and 15.1% and 61.6% in the larger Facebook Page network

TABLE 5
SIMULATION RUNNING TIME (IN SEC.) OF THE CIM ALGORITHMS
Dataset DRIM-A- DRIM- | DRIM- C-5TOKM STORM
VDEE A-ER NA-ER
URVT72Z] 0.352 0.354 0.308 0.380 0.638
FBN [73] 11.248 10.912 10.19 20.890 47 .624
FBPN [74] 28.400 24.612 19.546 29.006 64.092

(FBPN). Consequently, our DRIM-based approach proves
to be significantly quicker, particularly in denser networks.
Moreover, when comparing DRIM-A-VDEE with DRIM-A-
ER, the incorporation of an uncertainty-based exploration-
exploitation trade-off slightly increases running times, in-
dicating that the efficiency impact of incorporating uncer-
tainty measurement is acceptable.

7.6 Node Selection Analyses of DRL Agent

The DRL agent selects seed nodes based on a policy dis-
tribution that evolves during an episode as propagation
progresses. We present the Email Network results in the
main paper; results for the other two networks are in the
supplement document.

Fig. 9 shows the Email Network action distribution.
In Fig. 9(a), when FP selects highly active users (AF), TP
initially prefers CF to gain broad structural control. Around
step 30, TP shifts to AFE, likely because high-degree nodes
have been selected, prompting TP to disrupt FP’s active
users. In Fig. 9(b), where EP blocks TP’s influence (BF), TP
initially mirrors BF to cut off potential FP pathways. As FP’s
blocking intensifies, TP transitions to CF to regain reach via
remaining high-degree nodes, then back to BF to isolate FP
clusters. AF and SGF remain rarely selected, as BF better
disrupts FP’s influence in these scenarios.

In Fig. 9(c), facing FP’s SGF strategy, TP starts with CF
to secure central nodes, then shifts to BF around step 20 to
block clustered influence. The agent alternates between CF
and BE balancing structural control with local blocking. A
brief AF spike around step 30 suggests targeted disruption
of active nodes. In Fig. 9(d), when FP uses CE, TP quickly
adopts BF to block central nodes. A minor AF spike between
steps 30-40 indicates brief exploration of active users. CF
and SGF are largely absent, reflecting the FP’s strong central
advantage. Figs. 9(e) and 9(f) show both TP and FP using
DRL. TP favors CF throughout, focusing on long-term struc-
tural control, with AF gaining prominence after step 15 for
strategic disruption or reinforcement. SGF and BF are rarely
used, suggesting a proactive strategy.
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The FP agent initially prefers SGF to exploit dense clus-
ters, then oscillates between SGF and BF after step 25, likely
reacting to TP’s structural dominance by isolating central
regions. AF and CF are rarely used, indicating a shift toward
localized tactics.

8 CONCLUSIONS & FUTURE WORK

We highlight the key contributions of our approach as
follows. This paper comprehensively analyzes opinion mod-
els, CIM schemes, and uncertainty-aware EE strategies for
combating misinformation. We introduce DRIM-based CIM
schemes that integrate uncertainty-aware decision-making
to enhance influence maximization. A comparative evalua-
tion against state-of-the-art methods demonstrates the su-
periority of DRIM-based schemes in adaptability, efficiency,
and robustness across various network conditions.

Our study reveals the following key findings: First,
our study highlights the effectiveness of opinion models,
with UOM achieving the highest influence, emphasizing
the importance of timely and accurate information. High
vacuity (u values) increased receptiveness, while HOM and
NOM underscored the challenge of countering early false in-
formation exposure. Second, DRIM-based schemes demon-
strated superiority, consistently outperforming STORM and
C-STORM, particularly against SGE, CF, and DRL strategies,
showcasing their adaptability and efficiency. Third, we ob-
served the impact of key parameters, where increased prop-
agations improved influence spread, though DRIM-based
schemes remained effective even with fewer propagations.
Higher network observability significantly boosted perfor-
mance, while prior beliefs had minimal impact due to fre-

quent information exchanges. Fourth, uncertainty measures
correlated with performance, as lower uncertainty consis-
tently led to better outcomes. DRIM-A-VDEE exhibited the
lowest uncertainty and highest influence, proving its ro-
bustness. Finally, regarding computational efficiency, DRIM-
based schemes ran significantly faster than STORM and C-
STORM, particularly in dense networks. The exploration-
exploitation trade-off in DRIM-A-VDEE had a negligible
impact on runtime, ensuring efficiency.

Our current implementation presents a binomial opinion
model; this binary assumption provides a practical and com-
putationally feasible approach for our initial model. How-
ever, the underlying framework is designed to be extensi-
ble. It can be expanded to support multinomial opinions,
allowing for a more granular information classification and
adapting to more complex classification schemes [75, 76]
as needed. We propose the possible extension design in
Appendix E.1 for researchers interested in modeling multi-
party CIM using SL.

Our future research will address current limitations and
extend the DRIM framework in several directions: (1) De-
velop counter-blocking or defensive strategies to improve
performance when FP blocks TP’s influence. (2) Incor-
porate techniques to infer or approximate user behavior
and improve resilience under limited network observability
(Fig. 6(b)). (3) Design lightweight uncertainty-aware strate-
gies to reduce computational overhead in dynamic environ-
ments, addressing VD-EE latency (Fig. 6(c)). (4) Integrate
graded truth scales, credibility scores, and other nuanced
opinion models to capture real-world belief complexity,
and analyze the sensitivity of influence outcomes to users’
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selection.

prior beliefs and sharing/reading behaviors, building on
insights from prior SL-based models [65, 66]. (5) Scale
DRIM to larger, real-world networks to validate effective-
ness. (6) Model heterogeneous factors such as dynamic
trust, temporal behaviors, and evolving user interactions.
(7) Explore multi-agent reinforcement learning to support
strategic adaptability in multi-party influence settings. (8)
Extend the framework to support real-time deployment by
adding a module that periodically updates the network
topology to reflect user churn (e.g., account creation or
deletion) in dynamic OSNs. (9) Scale the framework to
larger and more complex environments by incorporating
advanced graph techniques such as graph sampling, hier-
archical modeling, and distributed DRL training for effi-
cient influence computation in high-volume networks. (10)
Integrate anomaly detection to pre-filter adversarial users
and ensure DRL agents operate on trustworthy behavior
signals. (11) Extend the framework to support coordinated
or multi-agent adversarial behavior by simulating multiple
FPs acting in concert. Although our current experiments
involve a single FP modeled as a DRL agent, the architec-
ture supports expansion to model coordinated attacks and
adaptive adversaries.
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