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Abstract—Modern vehicles use the Controller Area Network
(CAN) bus system to manage communication between electronic
control units (ECUs). The CAN bus lacks authentication and au-
thorization mechanisms, and cryptographic protections are rarely
used. This creates vulnerabilities to attacks such as Denial of Ser-
vice, spoofing, and fuzzing, which can disrupt ECU functionality.
Injection attacks through external connections (e.g., telematic unit,
head unit, OBD-II port) can cause ECU malfunctions, leading to
abnormal vehicle behavior or catastrophic events like car crashes.
To address these issues, we propose a deep reinforcement learning
(DRL)-based intrusion response system (IRS). Upon detecting an
attack with an intrusion detection system (IDS), our IRS responds
with the optimal defense strategy, maximizing defense utility. Our
goal is to minimize the attack’s success while ensuring mission
completion within deadlines. We define an action space repre-
senting defense strategies for detected intrusions. Our extensive
experiments prove that our IRS significantly outperforms state-
of-the-art and baseline counterparts in minimizing the attack’s
success by up to 60% and maximizing the mission performance
by up to 70%. This work is the first to propose a DRL-based
IRS for managing multiple attacks in in-vehicle networks under
ML-based IDS alerts.

Index Terms—In-vehicle network, Intrusion detection system,
Intrusion response system, Deep reinforcement learning

I. INTRODUCTION

The increasing integration of electronic control units (ECUs)
in modern vehicles, managed through Controller Area Net-
work (CAN) bus systems, has significantly enhanced vehicle
functionality but has also introduced critical cybersecurity vul-
nerabilities [1]. Despite advancements in intrusion detection
systems (IDSs) for in-vehicle networks, there remains a notable
gap in the research and development of effective intrusion
response systems (IRSs). This gap leaves vehicles vulnerable
to sophisticated cyber threats, compromising safety and re-
liability. Military vehicles and unmanned systems, like their
civilian counterparts, utilize CAN buses, which are susceptible
to cyber-attacks such as Denial of Service (DoS), spoofing, and
fuzzing [2]. A deep reinforcement learning (DRL)-based IRS
offers an effective method for protecting these networks, playing
a crucial role in ensuring the success and security of military
missions in the face of cyber threats. The aim of this work is

to address this critical need by developing an IRS that leverages
deep reinforcement learning (DRL) to select the optimal defense
against detected attacks autonomously. By integrating DRL,
our system will dynamically and efficiently respond to cyber
threats, ensuring robust protection and maintaining the integrity
of vehicle operations. This innovative approach not only fills
the existing void in in-vehicle security research but also sets a
new standard for resilience against automotive cyber threats.

This work makes the following key contributions: First,
our work pioneers a DRL-based Intrusion Response System
(IRS) that effectively responds to multiple attack types using
uncertainty-aware DRL with entropy regularization [3] to en-
hance vehicle security and mitigate cyber threats. Second, we
introduce a sub-action space for the IRS, featuring discrete
defensive actions tailored to each detected intrusion type, im-
proving the efficiency of defense strategy selection. Finally,
through extensive experiments, we demonstrate the superior
efficacy of our DRL-based IRS over baseline defenses (random
or none), reducing the attack success ratio (ASR) by up to 60%
and improving the mission success ratio (MSR) by up to 70%.

II. RELATED WORK

A. Cybersecurity in In-Vehicle Networks

Han et al. [4] introduced ID-Anonymization for CAN (IA-
CAN), a novel protocol mitigating Denial-of-Service (DoS)
attacks and securing in-vehicle and external communication. Wu
et al. [5] found that the CANoe framework and Genuino UNO
boards, combined with machine learning (ML) algorithms, can
accurately detect irregular activities within in-vehicle network
systems. Kim and Shrestha [6] proposed cybersecurity layers
including network access control, real-time anomaly detection,
and encryption protocols. El-Rewini et al. [7] suggested System
of Systems (SoS) strategies using cryptographic methods and
authentication protocols to safeguard essential components.

One of the key tools for in-vehicle network cybersecurity
is an IDS. Song et al. [8] developed a lightweight IDS that
improved significantly over previous rate-based methods. Seo
et al. [9] created GIDS (GAN-based IDS) using Generative Ad-
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versarial Nets to detect both known and unknown attacks. Kang
and Kang [10] developed a deep neural network (DNN)-based
IDS enhancing detection capabilities while maintaining efficient
real-time response. Despite various cybersecurity measures for
in-vehicle networks, there is a notable lack of research on IRS.

B. Intrusion Response Systems (IRSs)

Cheng et al. [11] used a zero-sum stochastic game and a
Bayesian attack graph to simulate network intrusions, incor-
porating various levels of Theory of Mind in attacker and
defender strategies. Ullah et al. [12] designed an IRS for
targeted attacks that balance security and operational efficiency
by considering attack likelihood and functional dependencies,
thereby extending attack durations to deter threats. Nespoli
et al. [13] introduced an immune-inspired IRS employing a
Genetic Algorithm to optimize countermeasures, similar to
antibodies, to efficiently reduce security risks. DRL has been
crucial for developing model-free IRSs. Hughes et al. [14]
applied deep Q-network learning to create an automated IRS
with 21 actions, achieving impressive results with optimized
hyperparameters. Iannucci et al. [15] developed a model-free
IRS using Q-Learning and DQN, with system designs based on
node characteristics and a reward function to minimize costs and
response times. However, these IRS technologies [11–15] have
not been tailored for the cybersecurity of autonomous vehicles.

For in-vehicle network IRS, Hamad et al. [16] explored the
overall structure of IRS in in-vehicle networks, noting that their
approach did not directly activate response systems following
IDS alerts. Kwon et al. [17] designed a solution to mitigate
network intrusions in vehicles by reconfiguring the ECU and
neutralizing malicious packets. However, IRS research for in-
vehicle security is extremely rare. We address this gap by
proposing a DRL-based IRS for in-vehicle cybersecurity.

III. PROBLEM STATEMENT

We consider an in-vehicle network consisting of a CAN bus
designed to assist the ECU in communicating with the outside
world. Given a detected intrusion (i.e., a specific attack vector),
the system must respond properly to counteract the intrusion.
The attacker’s aim is to inject random or malicious messages to
disrupt the system’s mission execution, where the mission is to
reach a particular destination within a certain time constraint.
Fig. 1 describes the network model considered in this work.

The given in-vehicle network aims to maximize the effec-
tiveness of the IRS in terms of minimizing an attack success
ratio (ASR) while completing the trip within the given deadline
under adversarial attacks considered in this work (see our Attack
Model in Section IV-C). To formally put it, we aim to:

arg min
d

= 𝑑𝑐 +
∑𝑇𝑐

𝑡=0, 𝑑𝑡 ∈d AS𝑡 (𝑑𝑡 )
𝑁𝐴

, subject to 𝑇𝑐 ≤ 𝑇

where AS𝑡 (𝑑𝑡 ) refers to attack success (or failure), returning
1 or 0, respectively, when 𝑑𝑡 is a chosen defense response
at round 𝑡, 𝑇𝑐 is the time taken to complete the mission,
𝑇 is a mission deadline, 𝑑𝑐 is the defense cost, and 𝑁𝐴

is the total number of attacks performed during the period
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Fig. 1. The considered in-vehicle network.

of 𝑇𝑐. Section IV-D describes the set of defense responses. The
AS𝑡 (𝑑𝑡 ) returns 1 if an attack is successful; 0 otherwise. If
𝑇𝑐 > 𝑇 , the mission is considered failed, and we set the total
mission time, 𝑇𝑐 = 𝑇).

IV. SYSTEM MODEL

A. Network Model

We consider an in-vehicle network where the CAN proto-
col facilitates communication between ECUs and the external
environment. Each ECU manages specific car functions, such
as drive gear and Revolutions-Per-Minute (RPM) gauge. In-
vehicle networks lack robust authentication and authorization
due to their original design focus on performance, cost, and real-
time communication over security, making them vulnerable to
cyber threats like message spoofing and denial of service [18].
Resource constraints, such as limited computational power and
memory, further complicate implementing cryptographic solu-
tions [19]. Therefore, protocols like CAN have vulnerabilities
that attackers can exploit. When the IDS detects an intrusion,
the system aims to implement the most appropriate response to
counter the attacker and protect the in-vehicle network, ensuring
the vehicle can reach its destination safely and timely.

B. Node Model

This work considers the following types of nodes:
• The CAN bus network is a message-based protocol enabling

reliable, priority-driven communication among vehicle ECUs.
• ECUs are compact devices managing specific vehicle func-

tions. Our study focuses on the engine control, transmission
control, and ABS modules.

• The IDS oversees CAN messages and identifies attacks. We
utilize a machine learning-based IDS to notify the system of
the specific type of attack.

• The Telematic Unit (TU) is a communication device for two-
way data exchange between a vehicle and the external envi-
ronment via wireless modules. It enhances vehicle functions
and comfort, such as navigation, and supports safe driving.

• The Head Unit (HU) provides a unified hardware interface for
the system, including screens, buttons, and system controls for
various integrated information and entertainment functions.

2
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TABLE I
ATTACKER STRATEGIES, AND ATTACK IMPACT

AS Attack strategies Attack impact
𝐴𝑆1 Denial of Service The ABS Control ECU will be flooded with a large number of messages, leading to sudden brake or brake malfunction.
𝐴𝑆2 Spoofing Change RPM randomly or switch drive gear for a given time-step depending on which spoof message was injected (i.e.,

spoofing messages are either related to RPM or drive gear)
𝐴𝑆3 Fuzzing Successful injection of fuzzing attack will result in the stop of the given vehicle.

C. Attack Model

The attackers inject attack messages through external con-
nections such as the telematic unit, head unit, and OBD-II port.
We summarize attacker strategies and their impact in Table I.
This work considers the following attack behaviors:
• Denial of Service (DoS) (𝐴𝑆1): This attack aims to con-

sume CAN bus bandwidth by sending a massive amount
of messages, allowing an ECU node to dominate the CAN
bus resources. We model the DoS attack by injecting large
messages with the CAN ID set to 0×000 into the vehicle
networks. CAN-ID 0x000 has the highest priority on the CAN
bus, allowing it to dominate communication and block lower-
priority messages. This overloads the network, preventing the
ABS ECU from receiving timely messages and potentially
causing braking control failure.

• Spoofing (𝐴𝑆2): CAN messages are injected to control specific
functions. Spoofing messages target the engine control ECU
with RPM-related CAN IDs and the transmission control ECU
with gear-related CAN IDs. Successful spoofing can increase
or lower RPM and switch the drive gear to neutral or park.

• Fuzzing (𝐴𝑆3): This attack sends random CAN IDs and data,
which can lead to a sudden vehicle stop if critical ECUs such
as the engine, brakes, or transmission are targeted.

These attacks can disrupt the vehicle’s mission of reaching its
destination within a limited timeline by causing malfunctions
related to RPM, drive gear, and the braking system. To assess
the impact of attack severity, we use the probability 𝑃𝐴, which
models the frequency of attacks launched by an attacker.

D. Defense Model

We consider the following defense strategies to counteract
the attacks in the Attack Model (Section IV-C):
• Rate Limiting (𝐷𝑆1) limits the rate of messages transmitted or

received by ECUs to prevent damage from flooding attacks.
• Software Update (𝐷𝑆2) releases new software versions for

ECUs to patch known vulnerabilities or update software. The
TU manages external communication for updates, while the
CAN bus distributes them internally to the ECUs.

• Access Control List (ACL) (𝐷𝑆3) specifies which entities
(e.g., ECUs, sensors, devices) are granted or denied access to
network resources based on identity, role, or other attributes.

• Network Filtering (𝐷𝑆4) limits traffic from suspicious sources
by controlling access to network resources.

• Input Validation (𝐷𝑆5) implements robust input validation
and error-handling mechanisms to manage malformed or
unexpected inputs, reducing the impact of fuzzing attacks.
Defense cost is assigned as low, medium, or high based on the

presumed complexity and resource demands of each strategy.

Table II summarizes defender strategies, success conditions, and
associated implementation costs.

V. UNCERTAINTY-AWARE DRL-BASED IRS
We consider the defense strategies listed in Table III. Upon

detecting an attack, we identify a subset of effective defenses.
For efficiency, we introduce the concept of a subgame in
Game Theory [20] to narrow down the defense strategies for
each detected attack. For example, if 𝐴𝑆1 is detected, the
defender will consider 𝐷𝑆1, 𝐷𝑆3, 𝐷𝑆4, and 𝐷𝑆6 rather than
all six strategies. This approach reduces the cost of calibrating
the probability distribution for the defense strategies. 𝐴𝑆4 (no
attack) represents the full action space, enabling the system to
consider all defense options without the limitations imposed
by a detected threat. This unrestricted approach allows for
comprehensive evaluation and deployment of defense strategies.

A. Entropy Regularization
To incorporate uncertainty into DRL, we use entropy reg-

ularization [3]. This technique encourages more exploratory
policies by adding a penalty based on the entropy of the
policy distribution. Entropy measures the unpredictability of
the agent’s actions in a given state. The entropy of the action
probability distribution is calculated as:

H(𝜋𝜃 (𝑎1, 𝑎2, . . . , 𝑎𝑛 |𝑠𝑡 )) = −
𝑛∑︁
𝑖

𝜋𝜃 (𝑎𝑖 |𝑠𝑡 ) log(𝜋𝜃 (𝑎𝑖 |𝑠𝑡 )),

(1)
where 𝐻 (𝜋𝜃 (𝑎1, 𝑎2, . . . , 𝑎𝑛 |𝑠𝑡 )) is the entropy at state 𝑠𝑡 , 𝑎𝑖
represents an action, and 𝜋𝜃 (𝑎𝑖 |𝑠𝑡 ) is the probability of taking
action 𝑎𝑖 given state 𝑠𝑡 under the policy parameterized by 𝜃.
This entropy term is added to the objective function of a policy-
based DRL algorithm (e.g., PPO) with a coefficient 𝛽 to control
the regularization strength.

Without entropy regularization, a DRL agent may quickly
converge to a deterministic policy, limiting its exploration. By
encouraging a more exploratory and stochastic policy, entropy
regularization introduces uncertainty into the learning process.
This penalizes overly deterministic policies and promotes thor-
ough exploration of the state-action space.

B. DRL-based Response Selection
We formulate the proposed optimization problem for the

defender to select the best defense response, d𝑡 , maximizing its
net effectiveness using DRL. The problem is based on a Markov
Decision Process (MDP) with the following components:
• States: The set of states is defined as S =

{s1, s2, . . . , s𝑡 , . . . , s𝑇 }, where s𝑡 represents the state at
time 𝑡. At time 𝑡, s𝑡 is given by:

𝑠𝑡 = (𝐴𝑇𝑡 ), (2)

3
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TABLE II
DEFENDER STRATEGIES, CONDITIONS FOR SUCCESSFUL DEFENSE, AND DEFENSE COST

(DEFENSE COST: LOW – 1, MEDIUM –2, HIGH – 3)
DS Defense strategies Successful defense condition Defense cost
𝐷𝑆1 Rate Limiting Applied on a targeted ECU node with a success probability of 𝑃𝑟𝑙 Low
𝐷𝑆2 Software Update Applied on a targeted ECU node with success probability of 𝑃𝑠𝑢 Low
𝐷𝑆3 Access Control List 𝑃𝑎𝑐𝑙 % success probability of blacklisting the attacker node Medium
𝐷𝑆4 Network Filtering 𝑃𝑛 𝑓 % success probability of blacklisting the attacker node High
𝐷𝑆5 Input Validation Applied on a targeted ECU node with success probability of 𝑃𝑖𝑣 High
𝐷𝑆6 No Defense N/A N/A

TABLE III
CONSIDERED DEFENSE ACTION SPACE UNDER EACH INTRUSION

AS Action Space
𝐴𝑆1 𝐷𝑆1, 𝐷𝑆3 𝐷𝑆4, 𝐷𝑆6
𝐴𝑆2 𝐷𝑆3, 𝐷𝑆4, 𝐷𝑆6
𝐴𝑆3 𝐷𝑆2, 𝐷𝑆5, 𝐷𝑆6
𝐴𝑆4 𝐷𝑆1, 𝐷𝑆2, 𝐷𝑆3, 𝐷𝑆4, 𝐷𝑆5, 𝐷𝑆6

where 𝐴𝑇 𝑡 is the detected intrusion type at time 𝑡.
• Actions: The set of actions is defined as A =

{a1, . . . , a𝑡 , . . . , a𝑇 }, where a𝑡 represents the actions available
at time 𝑡. At time 𝑡, a𝑡 is:

a𝑡 = (d∗
𝑡 ), (3)

where d∗
𝑡 is the best defense response to counteract the attack

and minimize ASR.
• Rewards: The reward function at time step 𝑡, denoted as

R(s𝑡 , a𝑡 , s𝑡+1), for an action taken is calculated with two
key objectives in mind: (1) to maximize the reduction in
the ASR between two consecutive time points, 𝑡 and 𝑡 + 1,
which assesses the effectiveness of the selected defense action
against an attack; and (2) to maximize defense efficiency by
minimizing the cost associated with the defense action. The
formulation of the reward at time 𝑡 is:

R(s𝑡 , a𝑡 , s𝑡+1) (4)

= 𝛼 ×
(

𝑖=𝑡∑︁
𝑖=0, 𝑑𝑖∈d

AS𝑖 (𝑑𝑖) −
𝑖=𝑡+1∑︁

𝑖=0, 𝑑𝑖∈d
AS𝑖 (𝑑𝑖)

)
︸                                            ︷︷                                            ︸

difference in the number of successful attacks between two consecutive states

+𝛽 × 1
1 + 𝑑𝑡𝑐︸ ︷︷ ︸

defense efficiency

. (5)

The first term related to attack success (AS) is negative when
the number of successful attacks increases from 𝑡 to 𝑡 + 1,
and zero otherwise. The second term, associated with defense
costs, decreases as defense costs rise and increases when they
fall. We employ weights, 𝛼 and 𝛽, to balance these objectives
and prevent one from overshadowing the other with 𝛼+𝛽 = 1.
Here AS𝑖 (𝑑𝑖) returns 1 when a launched attack is successful
at time 𝑖 when a defense action 𝑑𝑖 is taken at time 𝑖.

• Transition Probabilities: The transition probability
𝑇 (s𝑡 , a𝑡 , s𝑡+1) represents the likelihood of moving from
state s𝑡 to state s𝑡+1 via action a𝑡 .

• Reward Accumulation: The accumulated reward is given by:

G(𝑡) =
𝑇𝑐∑︁
𝑘=0

𝛾𝑘𝑅(𝑡 + 𝑘), (6)

where 𝛾 is the discount factor in the range [0, 1], with lower
values favoring immediate rewards.

The policy function, 𝜋 : 𝑠 → 𝑎, maps states to a probability
distribution of actions. Given an MDP episode of length 𝑇𝑐,
the sequence of states, actions, and rewards forms the policy’s
trajectory. The goal of RL is to identify the optimal policy that
maximizes the expected reward.

VI. EXPERIMENTAL SETUP

Datasets. We use open-source car-hacking datasets [21],
which include DoS attacks, fuzzy attacks, drive gear spoofing,
and RPM gauge spoofing. These datasets were created by
logging CAN traffic from a real vehicle via the OBD-II port
during message injection attacks. We use these datasets to train
our IDS to detect intrusion types.

ML-based IDS Setup. We use an existing ML classifier to
build predictive models for IDS implementation. Using open-
source car-hacking datasets [21], we develop a Random Forest-
based IDS with nearly 97% accuracy.

Metrics. Our experiments use the following metrics:

• Attack Success Ratio (ASR) measures the ratio of successful
attacks to the total number of attacks launched.

• Attack Success Impact (ASI) measures the change in throt-
tle, brake, and gear value due to successful attacks.

• Mission Success Ratio (MSR) refers to the ratio of successful
missions to the total number of missions attempted.

• Defense Cost (DC) indicates the total defense cost incurred
during mission execution.

• Route Completion (RC) refers to the percentage of the route
distance completed by the vehicle.

• Infraction Score (IS) sums all infractions as a geometric
series, with each rule violation or unsafe behavior contributing
less to the total score.

• Driving Score (DS) is the product of route completion and
the infraction penalty.

Comparing schemes. To select a defense strategy, we use
the following algorithms for extensive experimental validation:

• Proximal Policy Optimization (PPO) [22] is an RL algo-
rithm that enhances training stability and reliability by using
a clipped objective function to prevent large policy updates,
ensuring controlled and effective learning.

• Deep Q Learning (DQN) [23] utilizes neural networks
parameterized by 𝜃 to represent the action-value function,
assuming the agent observing the environment fully.

4
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• Sub-action-based PPO (S-PPO) uses PPO with a sub-action
space, where a subset of the full action space is employed
based on the detected attack type.

• Sub-action-based DQN (S-DQN) applies DQN with a sub-
action space upon detecting an attack.

• Random is a method that selects a defense strategy at random
from all available strategies.

• No Defense is a baseline approach with no defense strategy
to counter the detected attacks.

Table V summarizes the design parameters and their meanings.

VII. NUMERICAL RESULTS & ANALYSES

Analysis of Security and Mission Performance: Fig. 2
shows experimental results on how attack severity (𝑃𝐴) affects
key metrics: attack success ratio (ASR), mission success ratio
(MSR), defense cost (DC), and attack success impact (ASI).
Fig. 2(a) demonstrates that S-PPO and S-DQN consistently
outperform PPO and DQN, maintaining stable ASR despite
𝑃𝐴 variations, due to the DRL agent’s dynamic learning and
strategy adjustment. In Fig. 2(b), S-PPO and S-DQN use a
sub-action space to effectively enhance defense actions, unlike
the full action space, which limits efficient exploration and
leads to poorer defense decisions. Fig. 2(c) shows optimal
defense resource allocation by the agent, resulting in stable DC.
Fig. 2(d) confirms that sub-action schemes consistently surpass
conventional methods.

Analysis of Performance of Autonomous Vehicle: Fig. 3
explores the impact of varying attack severities (𝑃𝐴, probability
of launching an attack) on different schemes in terms of route
completion (RC), Infraction Score (IS), and driving score
(DS). As observed in Fig. 3(a), the strategies S-PPO and
S-DQN demonstrate superior performance in route completion
(RC) compared to PPO and DQN. This advantage is attributed
to the reduced complexity of the action space, which enables
our proposed DRL-based schemes to more effectively complete
mission routes than other baseline approaches.

Further analyses in Figs. 3(b) and 3(c) reveal that S-PPO
and S-DQN also excel in reducing the Infraction Score (IS)
and enhancing the driving score (DS), outperforming PPO and
DQN. The performance of these models is followed sequentially
by Random, and No Defense, showcasing the effectiveness
of the sophisticated control strategies employed by S-PPO and
S-DQN in maintaining safe and efficient driving behaviors under
varying attack conditions.

Empirical Training Time Analysis: Table IV demonstrates
that using a sub-action space significantly reduces training
time compared to a full action space for both PPO and DQN
algorithms. The sub-action space enhances efficiency and speeds
up convergence by reducing computational complexity, thus
providing timely results. We observe that DQN requires more
training time than PPO. This extended duration is attributed to
DQN’s use of a large replay buffer, increasing the time spent
sampling and utilizing experiences for training. While the larger
buffer improves learning stability, it slows training. The analysis
was performed on a system with a 1.4 GHz Quad-Core Intel

TABLE IV
TRAINING TIME IN SECONDS

DRL-based IRS
Schemes

Training time in
seconds

PPO 1197
S-PPO 778
DQN 23172
S-DQN 22624

TABLE V
DESIGN PARAMETERS, THEIR MEANING, AND DEFAULT VALUES

Par. Meaning Value
𝛼, 𝛽 Weight for reward function 0.67/0.33
𝛾 Discount rate 0.9
𝑁 PPO/DQN network Size 256

𝑙actor Learning rate for actor-network 0.00005
𝑙critic Learning rate for critic network 0.0005
𝑙 DQN Learning rate 0.0001
𝜖 Exploration rate 1.0

𝜖min Minimum exploration rate 0.1
𝜖decay Epsilon decay 0.9

Core i5 CPU, 8 GB of RAM, and an Intel Iris Plus Graphics
GPU with 1536 MB of memory.

VIII. CONCLUSION & FUTURE WORK

Modern vehicles use the CAN bus system for communication
between ECUs, but it lacks security features, making it vulner-
able to attacks like DoS, spoofing, and fuzzing. These attacks
can disrupt ECU functionality, leading to serious issues such as
vehicle malfunctions or crashes. In-vehicle networks typically
lack authentication and authorization, as they were originally
designed with the assumption that all devices were trustworthy,
prioritizing functionality and efficiency over security.

To address these vulnerabilities, we proposed a DRL-based
IRS that responds optimally to detected attacks, minimizing
the attack’s success and ensuring mission completion within
deadlines. The proposed DRL-based approaches outperform
baseline methods, reducing the ASR by up to 60%, improv-
ing MSR by up to 70%, and optimizing other security and
performance metrics of the autonomous vehicle. Leveraging a
sub-action space-based design introduced efficiency for tailored
defense strategies. Additionally, employing uncertainty-aware
DRL with entropy regularization has improved solution quality
by fostering greater diversity in solutions.

Future Work. We plan to conduct the following future
work: (1) Consider fault-tolerant networks with less effective
IDS. (2) Incorporate human input to develop human-in-the-
loop reinforcement learning. (3) Develop bundle-based defense
strategies to handle multiple simultaneous attacks.
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