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Abstract—Traditional compressed sensing (CS) based beam
alignment techniques enable swift mm-wave connectivity with
a limited number of measurements. These techniques, however,
rely on prior knowledge of the communication channel model
and the user’s array manifold to design the sensing matrix and
minimize angle quantization errors. This limits their effectiveness
in dynamic environments. Unlike prior work that rely on
knowledge of the user’s antenna architecture, beamforming
codebook, and channel, this paper introduces a CS-based beam
alignment technique that is agnostic to these factors. The
proposed formulation eliminates angle quantization errors by
mapping the recovered angular directions directly onto the
user’s specific beamforming codebook. Experimental results at
60 GHz demonstrate successful recovery of the mm-wave power
distribution in the angular domain. This facilitates accurate
beam alignment with limited measurements when compared to
exhaustive search solutions.

Index Terms—Millimeter-wave communications, indoor beam
alignment, discrete cosine transform, compressed sensing.

I. INTRODUCTION

The demand for low latency and high-speed
communications to support next generation technology
and applications is on the rise [1]. The abundance of
bandwidth in the millimeter-wave (mm-wave) band enables
service providers to meet those demands [2]. However
promising, the deployment of mm-wave communication
systems is challenged by the sensitivity to line-of-sight
(LoS) link blockages and requires precise alignment of the
communication beams. While existing techniques such as
codebook-based hierarchical beam training and compressed
channel estimation have been proposed to address these
challenges [3]–[6], they exhibit limitations in dense indoor
environments where intermittent blockages are imminent.
Furthermore, these techniques require knowledge of the
complete array response of all receivers, do not account
for potential distortions introduced by the antenna front-end
hardware, and often rely on a pre-defined channel model,
which might not accurately reflect real-world conditions. To
address these limitations, novel methods that ensure robust
performance in dynamic indoor environments, regardless of
the transceiver’s antenna configuration, are required.

Compressed sensing (CS) has emerged as a promising signal
processing technique for swift mm-wave channel estimation
due to its ability to exploit channel sparsity. Nonetheless,
existing CS-based mm-wave beam alignment techniques

Fig. 1. RSS measurements versus beam orientation for a 16-element phased
antenna array operating at 60 GHz in a 582 m indoor lab environment.

primarily focus on outdoor environments [6], [7]. Outdoor
environments are generally static, and mm-wave propagation
channels exhibit spatial sparsity [7]. This sparsity aligns well
with the assumptions of compressed sensing. Conversely,
indoor environments present a unique challenge due to the
presence of numerous objects that significantly affect signal
propagation, resulting in increased scattering and potentially
less sparse channels. Fig. 1 illustrates this by plotting the
received signal strength (RSS) measurements obtained at a
line-of-sight (LoS) receiver within an indoor lab environment.
The figure shows that the strongest signal is received directly
between the transmitter and receiver (LoS). However, there are
also significant signal reflections and scattering from objects
in the environment, leading to additional signal peaks at non-
LoS (NLoS) angles. This scattering profile underscores the key
difference between indoor and outdoor mm-wave channels.

This paper presents a novel CS approach for beam
alignment in indoor mm-wave environments. We depart from
prior CS-based methods which rely on prior knowledge of the
communication channel model and array manifold. Instead,
we introduce a framework that leverages the discrete cosine
transform (DCT) to achieve sparsity and approximate the
directions of the strongest channel clusters (power) in the
transform domain. This framework offers two key advantages:
(i) model-agnostic operation as it eliminates the need for
prior knowledge of the channel model, and ii) device-specific
operation by directly mapping angles-of-arrival (AoA) and/or
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angles-of-departure (AoD) to the user’s quantized codebook.
This is achieved by sampling power measurements at random
directions and exploiting the energy compaction property of
the DCT to recover a compressed representation that closely
approximates the original spatial domain power distribution.
This behavior is analogous to a low-pass filter in image
processing, which blurs the image but can reconstruct missing
information to some extent. To the best knowledge of the
authors, this work represents the first implementation of CS-
based beam alignment in a realistic indoor dense environment.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a system where a stationary mm-wave access
point (AP) with t antennas communicates with a stationary
single receiver equipped with r antennas. The access point
uses one of p beamforming vectors present in its codebook
F = {f1, f2, ..., fp}, and similarly, the receiver uses one of its
q combining vectors in its codebook W = {w1,w2, ...,wq}
for communication. The beamforming vector fi ∈ Ct×1 steers
the transmit beam towards the angle θi, and similarly, the
combining vector wj ∈ Cr×1 at the receiver steers the
receiver’s beam towards the angle θj . Let s, E[|s|2] = 1, be
the complex symbol transmitted by the AP to the receiver
using the beamformer fj , the received signal at the receiver
using the combing vector wi is given by y = w∗

iHfjs + e,
where i = 1, 2, .., q, j = 1, 2, ..., p, and e ∼ CN (0, σ2

e)
represents the additive white Gaussian noise with a complex
normal distribution. The matrix H of size r× t represents the
unknown mm-wave channel between the AP and the receiver.

B. Problem Formulation

In this paper, the received power at the receiver is adopted
as the performance metric. Therefore, optimal transmit and
receive beam selection occurs when the AP and the receiver
pick the beamforming and combining vectors that maximizes
the received power at the receiver, i.e. E[|y|2]. This is achieved
by selecting the ideal transmit beamforming vector f⋆ and
receive combining vector w⋆ as follows

< f⋆,w⋆ >= arg max
w∈W,f∈F

|w∗Hf |2. (1)

Without explicit knowledge of the channel H, the optimal
transmit and receive vectors can be obtained via an exhaustive
search encompassing all codebook entries. However, this
approach suffers from high computational complexity, making
it impractical for real-world scenarios. In the next section, we
propose a method that identifies the angular distribution of the
strongest channel clusters without the need for an exhaustive
search process.

III. PROPOSED MM-WAVE BEAM ALIGNMENT SOLUTION

A. Initial Beam Measurements

To initiate sensing, the transmitter transmits m1 beams using
randomly selected m1 beamforming vectors from its codebook
F . Similarly, the receiver uses randomly selects m2 combining

Fig. 2. View of the mm-wave propagation environment. The transmit and
receive antennas were situated 4.3 meters (Location A) and 4.5 meters
(Location B) apart. Antennas heights are set to 1.6 meters.

vectors from its codebook W for each transmit beam to
capture projections of the spatial distribution of the signal
strength as follows

Y = |W∗
m2

HFm1 +E|2. (2)

The matrix Y ∈ Cm2×m1 contains the sampled signal
strength measurements using m = m1m2 transmit and receive
beams, the combing matrix Wm2

∈ Cr×m2 consists of
m2 combining vectors randomly selected from the codebook
W , the beamforming matrix Fm1

∈ Ct×m1 consists of m1

beamforming vectors randomly selected from the codebook
F , and E ∈ Cm2×m1 is the complex additive noise matrix.

B. Sparse formulation for recovering missing measurements

For ease of exposition, we omit the effect of noise and
rewrite (2) as

Ỹ = |W∗
m2

HFm1 |2 = |S2W
∗
qHFpS1|2 (3)

= S2|W∗
pHFq|2S1 = S2ΦS1. (4)

In (3), we expressed W∗
m2

as S2W
∗
q and Fm1

as FpS1.
The combining matrix Wq consists of of all the combining
vectors in W , and the beamforming matrix Fp consists
of all the vectors in F . The random selection matrices
S1 ∈ Rp×m1 and S2 ∈ Rm2×q are binary matrices where
each row has a cardinality (number of “1”s) of 1, and
each column has a cardinality of at most 1. The unknown
matrix Φ = |W∗

pHFq|2 is of size p × q and carries the
projections of mm-wave signal strength across all transmit and
receive codebooks entries. This matrix is unknown and can be
estimated via exhaustive search over all transmit and receive
beams. This brute force approach necessitates a total of n = pq
measurements, where p and q represent the dimensions of the
transmit and receive codebooks, respectively.

Vectorizing the matrix Ỹ in (4) yields

ỹ = ST
2 ⊗ S1︸ ︷︷ ︸

A

Vec(Φ)︸ ︷︷ ︸
x

, (5)

where ỹ = Vec(Ỹ) and ⊗ is the Kronecker product operator.
While the matrix Φ might not be inherently sparse in the
spatial domain, we exploit the energy compaction property of
the DCT to enforce Φ be sparse in the DCT domain. The
DCT has the property of concentrating the signal’s energy
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Fig. 3. RSS versus the TX/RX beam orientation at location A when using
(i) exhaustive search over all TX/RX angles (top left figure), (ii) CS recovery
with (m/n = 0.25), (iii) CS recovery with (m/n = 0.37), and (iv) CS
recovery with (m/n = 0.47).

into a few coefficients, particularly the low-frequency ones.
By neglecting the higher-frequency DCT coefficients of Φ, we
enforce sparsity in the transformed domain. Using compressed
sensing, an approximation to the DCT of Φ is obtained and
used to compute an approximation of Φ in the spatial domain.

C. Compressed sensing recovery

To recover x in the transform domain rewrite (5) as follows

ỹ = Ax = AΨ−1x̂. (6)

In (6), Ψ−1 represent the inverse DCT matrix, and x̂ carries
the DCT coefficients of the power measurement vector x =
Vec(Φ). The vector x̂, can be recovered by solving the
following ℓ0-minimization problem

min ∥x̂∥0 s.t. ỹ= AΨ−1x̂. (7)

To leverage the scattering conditions of the environment,
where higher scattering corresponds to more higher frequency
coefficients, we adopt the weighted LASSO to recover x̂.
The weighted LASSO estimate of (7) is given by [8] as
argminx̂∈Rn×1 ∥y −AΨ−1x̂∥22 + τ∥x̂∥ω,1, where ∥x̂∥ω,1 =∑n

i=1 ωi|x̂i|, the weights ωi = − log pi, pi being the
probability the i−th entry of x̂ is non-zero and can be adjusted
based on the scattering environment, and τ is a regularization
parameter. The recovered vector x̂ is rearranged to obtain Φ̂.

D. Optimal beam selection

The indices of optimal beamforming/combining vector
pair (i⋆, j⋆) that correspond to the maximum estimated
received signal strength is selected as follows < i⋆, j⋆ >=
argmaxi,j Φ̂i,j , where i = 1, ..., p, and j = 1, ..., q. The
selected transmit beamforming vector is f⋆ = F :,i⋆ and the
selected receive combining vector is w⋆ = W :,j⋆

IV. MEASUREMENT SETUP AND METHODOLOGY

Indoor measurements were conducted in a lab environment
with surfaces of varying materials including wood panel,

Fig. 4. RSS versus the TX/RX beam orientation at location B when using
(i) exhaustive search over all TX/RX angles (top left figure), (ii) CS recovery
with (m/n = 0.25), (iii) CS recovery with (m/n = 0.37), and (iv) CS
recovery with (m/n = 0.47).

glossy white-board, metal cabinets, and other environmental
clutter as shown in Fig. 2. The transmitter (TX) was positioned
at a fixed location, while the receiver (RX) was positioned at
two locations, namely location A and B. At Location A, the
receiver is aligned with the transmitter to create a LoS link.
At Location B, the receiver is situated adjacent to a metallic
equipment rack thereby resulting in an additional anticipated
cluster as shown in Fig. 4.

A. Phased antenna array setup

Two 60 GHz mm-wave phased antenna array transceiver
kits (Sivers EVK02001) [9] were used for measurements as
depicted in Fig. 2. The beam direction can be electronically
steered from +45 to -45 degrees in the azimuth plane. Each
antenna kit includes a 16 element antenna patch antenna
module that is steered using codebooks F ,W . The transmit
and receive codebooks can be found in [10].

B. Measurement procedure

A universal software radio peripheral (USRP) is used to
generate a sinusoidal signal with a sampling rate of 1 MHz.
The phased antenna array kit up converts this signal to 60 GHz
before transmission to the receiver. The receiver kit and USRP
downconvert the received signal back to baseband. The power
spectrum of the down converted signal is computed using a
flattop window filter. To capture signal strength measurements
across various angles, the receiver is steered in the azimuth
plane in the range −180o, to 180o in increments of 10o.
Similarly, the transmit angles are electronically steered from
+45 to -45 degrees in increments of 5 degrees in the azimuth
plan. The received signal strength is extracted from the FFT
power spectrum for each receive angle.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we use real-world data to test the
performance of the proposed compressed beam alignment
technique outlined in Sec. III using the measurement setup
outlined in Sec. IV. We analyze the efficacy of the proposed
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Fig. 5. NMSE of the recovered RSS versus the fraction of CS measurements
at location A. To prioritize the lower frequency components, the first 75%
of x̂, are assigned a weight of 1, while the remaining 25% are assigned a
weight w = − log p.

beam alignment technique based on measured RSS. The
transmit codebook F consists of 19 beam steering vectors,
while the receive codebook W consists of 36 entries.

In Fig. 3 random samples were taken at Location A and
the proposed CS technique is applied to recover the power
distribution across the complete angular domain. When the
number of measurements/samples are 171, corresponding to
a ratio of m/n = 171

684 = 0.25, the proposed technique was
able to identify the location of the strong cluster, however, we
see also observe some false positives, i.e. power at random
angles, when compared to the exhaustive search method. We
also observe that these false positives diminish with higher
number of measurements. This trend is observed at Location
B as shown in Fig. 4.

Fig. 5 and Fig. 6 illustrate the normalized mean square
error (NMSE) at Locations A and B calculated as ∥Φ−Φ̂∥2

2

∥Φ∥2
2

, to
calculate the average RSS reconstruction error. Both figures
show a decrease in NMSE as the number of measurements
increases when no weights are applied. By applying weights
to the last 25% of the vector x̂, we observe an improvement in
NMSE with lower probability, p, in both figures. This suggests
that exploiting the sparsity pattern in x̂ can enhance detection
performance. The improvement gap for Location B (with and
without weights), however, is smaller than that of Location A
due to higher scattering at Location B which leads to a less
sparse representation. To further optimize performance, future
work will focus on adaptive weight selection strategies that can
make use of prior environment information and adjust to the
scattering characteristics of the communication environment.

VI. CONCLUSIONS

In this paper, we proposed and experimentally evaluated
a novel mm-wave beam alignment technique specifically
suited for dense indoor environments. Experimental results
demonstrate that the proposed technique significantly reduces
the beam alignment overhead compared to exhaustive search

Fig. 6. NMSE of the recovered RSS versus the fraction of CS measurements
at location B. The first 75% of x̂, are assigned a weight of 1, while the
remaining 25% are assigned a weight w = − log p.

methods, thus making it highly attractive for practical mm-
wave deployments in dense indoor environments. Future
work will focus on beam alignment for multi-user scenarios
and leveraging environment scattering information to further
reduce the fraction of samples required for beam alignment
by optimizing the weight selection strategy.
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