
Constructing multiple, independent analyses in the 
regression discontinuity design with multiple cutoffs 

Youjin Lee, Chichun Tan, Bikram Karmakar

Observational Studies, Volume 10, Issue 2, 2024, pp. 63-91 (Article)

Published by University of Pennsylvania Press
DOI:

For additional information about this article

https://doi.org/10.1353/obs.2024.a946585

https://muse.jhu.edu/article/946585

[131.93.204.157]   Project MUSE (2025-10-05 03:08 GMT)



Observational Studies 10.2 (2024): 63-92 Submitted Oct 22 2024; Published Dec 2024

Constructing multiple, independent analyses in the

regression discontinuity design with multiple cutoffs

Youjin Lee youjin lee@brown.edu

Department of Biostatistics
Brown University
Providence, RI 02912, USA

Chichun Tan chichun tan@brown.edu

Department of Biostatistics
Brown University
Providence, RI 02912, USA

Bikram Karmakar bkarmakar@ufl.edu

Department of Statistics

University of Florida

Gainesville, FL 32611, USA

Abstract

The regression discontinuity (RD) design is a commonly used non-experimental approach
for evaluating policy or program effects. However, this approach heavily relies on the
untestable assumption that distribution of confounders or average potential outcomes near
or at the cutoff are comparable. When there are multiple cutoffs that create several discon-
tinuities in the treatment assignments, factors that can lead this assumption to the failure
at one cutoff may overlap with those at other cutoffs, invalidating the causal effects from
each cutoff. In this study, we propose a novel approach for testing the causal hypothesis
of no RD treatment effect that can remain valid even when the assumption commonly
considered in the RD design does not hold. We propose leveraging variations in multiple
available cutoffs and constructing a set of instrumental variables (IVs). We then combine
the evidence from multiple IVs with a direct comparison under the local randomization
framework. This reinforced design that combines multiple factors from a single data can
produce several, nearly independent inferential results that depend on very different as-
sumptions with each other. Our proposed approach can be extended to a fuzzy RD design.
We apply our method to evaluate the effect of having access to higher achievement schools
on students’ academic performances in Romania.

Keywords: Evidence factors, Local randomization, Regression discontinuity, Replication

1. Motivating example: the effect of attending higher achievement

schools on students’ performance

In education and social sciences, it is often of interest whether access to higher-achieving
schools has a causal effect on students’ future academic performance (Dale and Krueger,
2002; Cullen et al., 2005; Clark, 2010; Dobbie and Fryer Jr, 2014). Existence of such
effect could also have economic impacts by influencing housing prices and demographic
compositions at school district borders (Abdulkadiroğlu et al., 2014; Laliberté, 2021). The
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most ideal setting to evaluate this causal effect is to randomize students into a “better
school” (e.g., Duflo et al. (2011)) and compare academic performance between a group
of students who went to a better school and did not go to a better school. With this
design, concerns about confounding factors can be reduced, which could result in systematic
differences between the two different groups of students not due to attending a better
school. Alternatively, random assignment of encouragement to attend a better school, as in
the Moving to Opportunity (MTO) study (Chetty et al., 2016), could be used to enhance
children’s neighborhood environments. However, such experiments are often infeasible or
expensive in real world settings. It is challenging to identify the effect of going to a better
school unless a very compelling study design is adopted so that students who went to a better
school are comparable to those who did not go there otherwise in terms of confounders.
Instead, researchers often rely on the designs in which school assignments are affected by
students’ selections and school admission process. Fortunately, one can leverage natural
experiments embedded in the admission process in which admission to prestigious schools is
dominantly determined by students’ scores and schools’ own cutoffs. This process induces
a discontinuity in the treatment assignment with respect to students’ scores and creates
a regression discontinuity (RD) design (Thistlethwaite and Campbell, 1960; Hahn et al.,
2001).

In the sharp RD design, each unit’s treatment assignment depends solely on the values
of their running variable – units with values for the running variable (e.g., students’ scores)
above the cutoff receive the treatment while units with the values below the cutoff receive
the control (Thistlethwaite and Campbell, 1960; Hahn et al., 2001). One can exploit such
discontinuity in the treatment assignment (i.e., going to a better school or not) and then
compare the future outcomes of students who were barely admitted to a better school to
those who barely missed admission. As students’ preferences, as well as their scores, also
affect their school choices, school selection processes are often fuzzy RD designs where
having a running variable value above the cutoff would increase the probability of receiving
the treatment but does not solely determine the treatment assignment (Hahn et al., 2001).
To illustrate one example, Lucas and Mbiti (2014) used students’ scores on the national
standardized primary school exit exam as a running variable that determined the eligibility
for admission to the most prestigious secondary schools in Kenya. As cutoffs vary by
schools and school districts, the study used the standardized running variable by subtracting
the cutoff value, and then obtained the causal effect estimates through two-stage least
squares models. This analysis is based on the assumption that the indicator of having scores
above the cutoff serves as an instrumental variable (IV) (Angrist et al., 1996) for attending
prestigious schools. Their findings suggested little evidence of the effects of attending the
best Kenyan secondary schools in the districts on students’ academic achievement.

Contributing to this line to investigation, we use Romanian administrative data on ad-
mission to study the effect of attending the best high school in a student’s town on their
performance on the baccalaureate exam. The baccalaureate exam, which is taken at the end
of high school in July, is a critical criterion for university admissions. If attending prestigious
schools is found to have a significant effect, government-level interventions in the educa-
tion system, such as reallocating educational resources and incentivizing teachers, could be
considered to improve school performance and reduce disparities between schools. More-
over, it could provide motivation to reevaluate the admission guidelines for those schools
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Figure 1: (a)-(c): Distributions of transition scores (the running variable) and baccalaureate
exam scores (the outcome variable) of Romanian students from three towns with 539, 381,
and 371 students. Square dots denote students who went to the best school in their town
and round dots denote students who did not go to the best school. In each figure, a dashed
vertical line indicates the cutoff (the minimum transition score required to be admitted to
the best school). (d): The distribution of transition scores and the cutoff (dashed horizontal
lines) of three towns.

so that a larger population can benefit from it. Here the running variable is each student’s
score used for high school admission, so-called “transition score”, which is the average of
their performance on a national exam taken in grade 8 and their grade point average from
grades 5-8 (Pop-Eleches and Urquiola, 2013). Then the cutoff for entering each school is
determined by the minimum transition score among the students who are assigned to that
school at the same admission period. The best high school is identified by the school in the
town that has the highest minimum transition score required for admission. In this context,
the cutoff can be viewed as a random variable, whose value is influenced by various factors,
including student’s performance and the size of schools in their town. If a student’s score
is higher than the cutoff of their town, then she could enter a better school while she could
not enter the school if the score is lower than the cutoff. The administrative data provide
students’ transition scores and the high school they attended. We pull the data from 13
towns in Romania. Their cutoffs vary across towns but the actual treatment assignment
(i.e., going to a better school or not) is student-level.

Figures 1(a)-(c) illustrate the distribution of students’ transition scores and their bac-
calaureate exam scores from three randomly chosen towns in the dataset. We observe that
not all students whose transition scores exceeded the cutoff went to the best school; some
students chose to go to other schools even though their scores were higher than the min-
imum scores required. This could be due to a lack of information on school quality, and
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proximity, and household’s economic status (Ainsworth et al., 2023). It is also likely that
students were unable to attend their most preferred school among the eligible schools as
their choice has been full. In such a case, they were assigned to their next preferred school.
However, within these three towns, there was no student who went to the best school even
if their scores were below the cutoff (i.e., there are no square dots in the left side of the
vertical line). This presents a fuzzy RD design under non-compliance. Table 1 presents the
number of students who were eligible for attending the best school and who actually went
to the school.

Town 1 Town 2 Town 3

The number of students 539 381 371

Cutoff 8.07 7.56 7.34

The number (percentage) of students 255 (47.3%) 213 (55.9%) 207 (55.8%)
with transition scores greater than the cutoff

The number (percentage) of students 195 (36.2%) 154 (40.4%) 162 (43.7%)
who went to a better school

Table 1: Statistics of high school admissions in three towns in Romania.

As in the study of Lucas and Mbiti (2014), we can analyze the RD effect as if there were
a single cutoff value (e.g., zero) and use the standardized transition score as a new running
variable. Incorporating the data from different towns in this way could enhance statistical
power and generalizability of the findings compared to the study relying on a single town.
However, this standardization of the transition score discards any information on variations
in cutoffs assignments across different towns by pretending that they were all zeros. The
boxplot in Figure 1(d) and the third row of Table 1 suggest that comparatively large number
of students from towns with lower cutoffs had their scores above the cutoff, even though
transition scores and cutoffs are seemingly positively correlated. Consequently, pooling data
from multiple towns may result in a disproportionate distribution of treated and control
students across the towns; for example, more number of treated students would be pulled
from towns with lower scores. Moreover, when using standardized scores, students from
Town 1 with scores just above the new cutoff (i.e., zero) could have very different values
of transition scores compared to those from Town 3 with scores just below the new cutoff.
These all could lead to a bias if town-specific factors confound the causal effect.

In our work, in addition to using the actual treatment assignment, we use the cutoff
assignment as a potential IV that affected the admission to a better school but would not
necessarily have a direct effect on students’ future performances.

2. Evidence factors analysis in regression discontinuity design

2.1 Regression discontinuity design and two different frameworks

The RD design has been widely used for evaluating causal effects of program or policy
interventions in public health (e.g., Venkataramani et al. (2016)), social sciences (e.g., Lee
and Lemieux (2014); Gerber and Hopkins (2011)), and education (e.g., Moss and Yeaton
(2006); Robinson (2011); Figlio et al. (2018); Dı́az and Zubizarreta (2023)). There are two
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frameworks used to analyze the RD design. The first is the continuity-based design (Hahn
et al., 2001). Their key underlying assumption is that the average potential outcomes of
treated and control units at the cutoff are the same if their treatment assignment would
not change. Under this continuity assumption, the most popular inferential approach is via
local polynomial non-parametric regressions (Fan and Gijbels, 1996) that fit the outcome
on a multiple-order polynomial expansion of a running variable, each for treated and control
units near the cutoff. Then the difference in the estimated intercept coefficients in the two
polynomial regressions can be interpreted as the RD treatment effect at the cutoff.

The second framework is the local randomization design (Cattaneo et al., 2015). This
framework assumes that there exists a window around the cutoff within which units are
nearly randomly assigned to treatment. In this way, the RD design can be viewed as a
randomized experiment, also called a tie-breaking experiment (Trochim, 1984), in which
units below and above the cutoffs are randomly different (after some adjustment using
covariates) as long as they are within the window. Once the appropriate window is chosen,
several methods for inference can be applied based on the assumptions and the type of
causal hypotheses. For example, suppose that units within the window are matched on all
available confounders, and the sharp null hypothesis is of interest. Then randomization-
based inference on matched pairs can be adopted to calculate exact p-values, which utilizes
the known distribution of the random assignment of treatments within matched pairs. As
opposed to continuity-based approach, the local randomization does not necessarily require
the specifications of regressions. Moreover, inferential results derived from this framework
can be easily generalizable to other target populations as long as units in the window are
only randomly different other than the treatment assignment (Dı́az and Zubizarreta, 2023).
Our work focuses on the local randomization framework.

2.2 Multiple cutoffs, bias, and instrumental variables

Across different disciplines, including our motivating example of school admission, RD de-
signs often involve different cutoffs among units that determine or affect each unit’s treat-
ment assignment. For example, while studying the effect of winning an election, RD design
can be used with vote shares as a running variable. However, the minimum vote share
required for candidates to win an election may differ by election districts (Gerber and Hop-
kins, 2011; Cattaneo et al., 2016b). Similarly, in education, admission to specific schools
or programs is frequently determined by students’ academic or poverty scores, and these
cutoffs can vary across different levels of educational programs or across schools (Van der
Klaauw, 2002). Even though incorporating different populations with different cutoffs may
introduce heterogeneity in causal effects of interest, RD designs with multiple cutoffs typi-
cally enhance statistical power compared to the analysis using a single cutoff (e.g., that is
limited to a single district).

There are several different approaches commonly used for multiple cutoffs (hereafter
multi-cutoff) setting. One can analyze the RD treatment effect separately for subsets of
units with the same cutoff and then combine the results together from multiple subgroups.
This approach allows us to examine the causal effect multiple times with multiple, inde-
pendent sets of observations. Under the local randomization-based framework, multi-cutoff
RD design can be regarded as performing multiple randomized experiments at each cutoff.

67

[1
3
1
.9

3
.2

0
4
.1

5
7
] 
  
P

ro
je

c
t 
M

U
S

E
 (

2
0
2
5
-1

0
-0

5
 0

3
:0

8
 G

M
T

)



Lee, Tan and Karmakar

Rather than conducting several analyses, it is also a common practice to analyze the multi-
cutoff RD design as if all the units had a single cutoff, e.g., zero, and use a standardized
running variable, e.g., the original value of a running variable minus a cutoff (Pop-Eleches
and Urquiola, 2013; Önder and Shamsuddin, 2019; Melguizo et al., 2016; Cattaneo et al.,
2016b). This approach was adopted in the aforementioned study of Lucas and Mbiti (2014).
Despite its convenience and potential gains in sample sizes, if there exists a bias that inval-
idates the analysis at one cutoff, the whole, combined analysis would also be biased. For
instance, in the study of Lucas and Mbiti (2014), suppose that a grader from one school
district could manipulate some students’ scores based on subjective judgment to influence
their admission into prestigious secondary schools, or that the cutoff was adjusted to admit
specific students within that district. Then even if students from other school districts
were randomly different around their own cutoffs, without knowing which district had such
manipulation, the combined analysis would undermine the key RD assumptions.

It is commonly suspected that units with a running variable just below and above
the cutoff are systematically different not necessarily due to the treatment assignment but
potentially due to unobserved factors. Consequently, when using local randomization, it is
not guaranteed that the treated and control units are just randomly different. This could
easily introduce bias in the estimated causal effect. To our knowledge, there is no RD
approach available in the literature that remains valid when this assumption breaks. In this
work, we propose using IVs to separate the RD causal effect from this common type of bias.
The use of IV approaches in the RD setting has been dominantly discussed in a fuzzy RD
design. In our proposed approach, we suggest different types of IVs that are not affected by
the violation of the common assumption considered in the conventional, sharp or fuzzy RD
analysis. We illustrate how multi-cutoff settings can provide multiple potential IVs, each of
which is related to the treatment assignment but is believed not to have a direct effect on
the outcome (i.e., cutoff exclusion restriction) under certain conditions. Even in the case
where each of the potential IVs is violating the cutoff exclusion restriction, we demonstrate
that bias from such invalid IVs would be very different from bias that is typically concerned
in either the continuity-based or local randomization designs. We then propose combining
multiple IVs with a direct comparison between the two treatment arms under the local
randomization design. This approach can provide multiple pieces of evidence for testing the
RD treatment effect, which could enhance robustness and testing power together.

In this work, we focus on testing the causal hypothesis of no RD treatment effect, which
may be inverted to estimating the RD treatment effect. We specifically consider the sharp
null hypothesis of no treatment effect for all units and incorporate the local randomization
framework to our proposed approach. The sharp null hypothesis can be robust to a small
number of units with a value of the running variable being around the cutoffs (Cattaneo and
Titiunik, 2022). Consideration of the sharp null hypothesis is also useful in our setting as
we aggregate data from multiple subpopulations (e.g., multiple towns), each with distinct
cutoffs and potentially different treatment effects.

2.3 Evidence factors design

Researchers may be tempted to analyze the same RD design data using both the continuity
and local randomization frameworks. For example, they might fit local polynomial regres-
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sion models under the continuity-based design and also apply a Wilcoxon rank-sum test
within the selected window around the cutoff under the local randomization framework.
The former analysis can supplement a small number of samples within the window with
samples out of the window by relying on the model, while the latter analysis can be more
robust to model specification than the former regression analysis. Thus we would expect
that these two analyses provide complementary evidence. Consequently, if the estimated
causal effects are significant with a small p-value in both frameworks, this could suggest
stronger and more reliable evidence against the null hypothesis than relying on a single
approach.

In the context of RD design, the idea of corroborating causal conclusions from coupling
multiple analyses was first discussed by Donald Campbell in Trochim (1984).

“The statistical properties of estimates that we get out of coupling designs can be bet-
ter than those we get out of single approach designs. To put this more concretely,
even had a tie-breaking randomization been permitted, a supplementary regression-
discontinuity analysis would also have been desirable. In addition, a tie-breaking
randomization no matter how few its cases will always add inferential strength to
a regression-discontinuity analysis.”

Even though coupling the two frameworks together seems promising, it may not always
“add inferential strength.” If the two results are highly probabilistically correlated under
the null hypothesis, obtaining such agreeable results from them is not equivalent to having
complementary evidence. Thus, congruence of two analyses for the same causal hypothesis
will be most strengthened when the two inferential procedures are statistically independent
under the null. Furthermore, these two analyses might agree only because they are wrong
together. It is common in observational studies that evidence obtained from one analysis
is incorrect or invalid for some reasons that could also invalidate the evidence from other
analyses. In such a case, there could be no clear benefit from collecting evidence from
multiple analyses. For example, if an uncontrolled abrupt change occurs around the cutoff,
rendering units just below and just above incomparable, both the continuity-based and
local randomization designs could easily result in bias, potentially falsely rejecting the null
hypothesis. This abrupt change can also lead to sorting (Lee, 2008) that invalidates inference
based on the continuity framework.

Consequently, the benefits of “coupling designs” could be maximized if evidence from
each analysis is independent and does not overlap with each other. This enables multiple
pieces of evidence to be easily combined without relying on complex multiple testing pro-
cedures while the combined results are still robust to the existence of invalid pieces. When
multiple analyses for the same causal hypothesis satisfies these conditions, they are called
evidence factors (Rosenbaum, 2010). However, it is challenging to meet these properties
when conducting multiple analyses using a single data set, e.g., because in RD analysis, both
local randomization and continuity-based analysis use same units just below and above the
cutoff. In this work, we will propose a new method for evidence factors analysis for multi-
cutoff RD setting, which allows us to construct multiple pieces of evidence using a single
dataset while satisfying these desirable conditions.

We say that multiple analyses construct evidence factors when (i) each analysis testing
the same null hypothesis results in p-values that are nearly independent under the null
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and (ii) invalidity of one analysis does not necessarily lead to invalidity of another analy-
sis (Rosenbaum, 2010, 2011, 2017). When two or more evidence factors provide supportive
evidence, then evidence for a causal effect can be strengthened. This is because obtaining
significant results (e.g., p-values less than the significance level) from multiple and indepen-
dent sources is less likely than observing a significant result from just one source under the
null; and bias that might invalidate one source of evidence does not necessarily undermine
the supportive evidence from the other factors.

In this work, rather than combining inferences from the two frameworks used in RD
designs, we use both potential IVs and the local randomization design to produce several
evidence factors for testing the same sharp null hypothesis. This design is called reinforced
design (Karmakar et al., 2021) in which several IVs are used to construct multiple evidence
factors in addition to one direct comparison. Our proposed approach leverages the rein-
forced design and allows some proposed IVs to violate their key assumptions (e.g., exclusion
restriction). In that way, we can “add inferential strength” to the RD analysis, which is
often lacking in the RD design due to its heavy reliance on a subset of units near the cutoff
and also due to the violation of either continuity or local randomization assumptions that
may be present across different cutoffs.

3. Setting and Notation

Let W be a running variable and D be a treatment indicator. Consider the setting where
each unit has its own cutoff C ∈ C, treating C as a random variable. Suppose that we have
a finite number of cutoffs in observed dataset and denote the number of distinct cutoffs as
q (q g 2), i.e., |C| = q. Let C = {c1, . . . , cq}, where c1 < c2 < . . . < cq. We first consider
a sharp RD design where each unit receives a treatment if and only if W g C; in other
words, D = I(W g C) with I(·) denoting an indicator function. Let Y denote the outcome
of interest.

3.1 Proposed instrumental variables

We can propose up-to (q − 1) IVs when we have q distinct cutoffs: Zk = I(C f cq−k)
for k = 1, 2, . . . q − 1, indicating having a cutoff no larger than cq−k. Each of Zk can be
considered as a potential IV if units with the cutoff no larger than cq−k would be more likely
to be assigned to the treatment than those with the cutoff larger than cq−k under certain
conditions.

Definition 1 For k = 1, 2, . . . q − 1, we call Zk = I(C f cq−k) a potential IV when it
satisfies

E{I(W g C) | C f cq−k} > E{I(W g C) | C > cq−k}. (1)

In other words, each potential IV, Zk, is positively associated with the treatment assignment.
This condition can hold when C is independent of W .

Lemma 2 When W is independent of C and FW (cq−k+1) > FW (cq−k) with FW denoting
a density function of W , then Equation (1) holds for k = 1, 2, . . . , q − 1.
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On the other hand, if W is nearly centered around C (e.g., a higher value of C is asso-
ciated with a higher value of W ), then this condition is rarely satisfied unless there are
observed covariates available which make C and W conditionally independent. Regardless
of (conditional) independence between W and C, however, one can easily test (conditional)
associations between each of Zk and D.

Each of the proposed IVs violates the exclusion restriction and/or no unmeasured con-
founding assumption of IVs when a cutoff C has a direct effect on the outcome and/or there
are unmeasured confounders between the cutoff and the outcome of interest. In practice,
it is likely that C is correlated with the running variable W that is often associated with
the outcome so that Zk (the cutoff being no larger than cq−k) violates the IV assumptions
unless W is properly controlled for. Roughly speaking, the bias coming from the violation
of the IV assumptions is due to the uncontrolled correlation between the cutoff and the
outcome variables. This bias is very different from the bias due to the failure to the local
randomization design at each window.

In some settings, it is reasonable to assume randomness and the exclusion restriction of
cutoffs as potential IVs. Cutoffs assigned to each unit are often arbitrary and irrelevant to
factors related to the running variable and the outcome of interest. For example, vaccine
policies often assign units to treatment or to the status quo based on a certain cutoff of
a continuous running variable, such as age (Bor et al., 2014; Basta and Halloran, 2019;
Bermingham et al., 2023; Greene et al., 2022). In such a case, cutoffs vary mostly due to
administrative reasons that may not be necessarily related to the distribution of running
variables and other potential confounding factors. For example, human papillomavirus
(HPV) is recommended for adolescents aged 11–12 years in the United States and those
aged 9–13 years or in grades 4–8 in Canada. It is hard to be convinced that having a lower
or higher cutoff in one region than the others is related to different age distributions or
has a direct effect on the outcome of interest (e.g., sexual behaviors (Smith et al., 2015)).
Rather, it is more plausible that different cutoffs in each region might introduce other
interventions accompanying the HPV vaccination program that could affect the outcome,
which is likely to invalidate the conventional RD inference, but not the proposed IVs. As
an another example, Medicaid income eligibility criteria for children differ between states
and evolve over time, potentially depending on each state’s financial status (De La Mata,
2012); for instance, the eiligibility for children aged 1-18 is set at 261% of the federal poverty
level in Rhode Island and 133% for Florida in 2023. As this eligibility cutoff is related to
state-level financial status, it is reasonable to assume that different eligibility criteria would
not directly affect the health outcomes, even though they could be indirectly associated
through state-level infrastructure (e.g., the number of hospitals), which may be accounted
for as covariates in the analysis.

In our application study, the cutoffs are not necessarily random because students’ tran-
sition scores affect their cutoff. Here the cutoffs are the minimum transition scores among
students in the town who were eligible for entering the best school. Figure 1(d) suggests that
the students from towns with higher cutoffs (e.g., Town 1) tend to have higher transition
scores compared to those from towns with lower cutoff. However, as shown in Figure 1(a)-
(c) and Table 1, students with a cutoff no larger than 7.56 (i.e., students in Towns 2 and 3)
are more likely to have transition scores greater than their cutoff compared to students with
a cutoff larger than 7.56 (i.e., students in Town 1). A higher cutoff of Town 1 may be due
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to a smaller size of the best schools compared to the other two (i.e., being more selective)
in addition to overall better performance of students in Town 1. Similarly, students with
a cutoff no larger than 7.34 (i.e., students in Town 3) are more likely to be eligible for at-
tending the test school than students with a cutoff larger than 7.34 (i.e., students in Towns
1 and 2). These observations imply that variations in cutoff values satisfy Equation (1).

The cutoff exclusion restriction assumption can also be plausible in our motivating
example. A cutoff assigned to each student could be related to the performance of students
in the town who could make the best school in the town. It could also be related to the
size of the best school relative to other schools in the town as well (the smaller the school
size is, the more selective it would be). However, there is no clear reason to believe that
these factors directly affect the student’s performance on the exam that is taken at the end
of high school. In some cases, it might be plausible that a student’s performance is easily
influenced by their peers’ overall performance in the town. Then having higher cutoffs could
be associated with the outcome not necessarily through the treatment. This may lead to the
violation of the exclusion restriction of cutoffs. We develop a method to test the hypothesis
of no effect of going to the best school on baccalaureate scores, while allowing for some
degree of violation of the cutoff exclusion restriction.

Unit j Wij Cij Dij Zij,1 Zij,2 Zij,3 Zij,4 Zij,5

1 0.5 1 0 1 1 1 1 0
2 1.1 1 1 1 1 1 1 1
3 0.7 2 0 1 1 1 0 0
4 2.3 2 1 1 1 1 0 1
5 2.5 3 0 1 1 0 0 0
6 4.1 3 1 1 1 0 0 1
...

...
...

...
...

...
...

...
...

ni − 3 1.5 4 0 1 0 0 0 0
ni − 2 6.2 4 1 1 0 0 0 1
ni − 1 3.5 5 0 0 0 0 0 0

ni 5.1 5 1 0 0 0 0 1

Table 2: A hypothetical example with four nested candidate IVs and one treatment as-
signment variable in a stratum i.

3.2 Multiple instruments and treatment assignment models

In this section, we establish a formal representation for the random assignment of each
proposed IV and a treatment. Then we also illustrate the deviation from this random
assignment in the context of sensitivity analysis. The assignment models for proposed
IVs and a treatment are particularly useful for representing the nested and conditioning
structures among them. They can also be extended to explain the sources of bias that
hinder the random assignments of IVs and a treatment.

Let [m] = {1, 2, . . . ,m} denote a set of 1 to m. We assume that the observed covariates,
denoted by xij , are controlled by stratification. Consider N units with I different strata.
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For each stratum i, there are ni units with
∑I

i=1 ni = N . Under the multi-cutoff setting
with q distinct cutoffs, potential instruments for unit j from stratum i (hereafter unit ij)
for i ∈ [I] and j ∈ [ni] are Zij,k = I(Cij f cq−k) for k ∈ [q−1]. Let Zij,q denote an indicator
of Wij not being less than Cij . Let Zij,[q−1] = (Zij,1, ..., Zij,(q−1)). Table 2 illustrates a
hypothetical example with five cutoffs, C = {1, 2, 3, 4, 5}. Let Aij = Zij,[q−1] denote a set of
(q−1) binary variables. By definition, potential IVs in Aij are nested and Zij,q is equivalent
to Dij in a sharp RD design. Let A+

ij denote a length-q vector of Zij,[q], containing both
potential IVs and the actual treatment assignment. Let Aij,−k denote a length-(q − 2)
vector of (Zij,1, ..., Zij,(k−1), Zij,(k+1), ..., Zij,(q−1)).

With the nested structure, our IV assignment vector Aij can take q possible values so
that we have 2q possible assignments in A+

ij , because Dij is either 0 or 1. Let A+ denote
the set of collection of all these 2q vectors. Let raij denote the potential outcome with a =
(a1, a2, · · · , aq) ∈ A+ and rij = {raij , a ∈ A+} denote a collection of all possible potential

outcomes. Our null hypothesis is then H0 : rd=1
ij = rd=0

ij (equivalently, H0 : r
aq=1
ij = r

aq=0
ij

in a sharp RD design) for all units ij. To test this hypothesis with the whole vector in A+,
we require a certain assumption that restricts the way that potential IVs in Aij affect the
outcome. Definition 3 introduces the exclusion restriction for a set Q+ that contains valid
IVs.

Definition 3 Let Q+ ¦ [q] and Q = Q+∩[q−1]. The reinforced unordered partial exclusion
restriction holds for Q+ if each unit ij has two potential outcomes depending on the value
of Dij, i.e., r

d=1
ij if Dij = 1 and rd=0

ij if Dij = 0, when conditioning by (Zij,k)k/∈Q.

The above assumption contains “reinforced” feature as Q+ may contain the actual treat-
ment assignment in addition to IVs (Karmakar et al., 2021). Additionally, it is “unordered”
as the assumption holds by conditioning on the order-free IV sets, (Zij,k)k/∈Q. However,
unlike the exclusion restriction considered in Zhao et al. (2022), we do not condition on the
final component of evidence factors, Zij,q, even if q /∈ Q+.

Under the reinforced unordered partial exclusion restriction, we propose constructing
|Q+| (out of q) number of evidence factors for testing the null of H0 : rd=1

ij = rd=0
ij for all

units ij. From now we will formally state that each IV k or a direct comparison of treated
to control units is valid if and only if k ∈ Q+. For example, suppose that there are five
cutoffs, i.e., C = {c1, . . . , c5} and Q+ = {2, 3, 5}. This implies that two proposed IVs, i.e.,
Zij,2 = I(Cij f c3) and Zij,3 = I(Cij f c2), and a direct comparison, i.e., Zij,5 = I(Wij g
Cij), are valid. Each of the second and third proposed IVs is assumed to affect the outcome
only through Dij , conditioning on Zij,1 and Zij,4. Similarly, a direct comparison with Zij,5

directly affects the outcome conditioning on Zij,1 and Zij,4. The order of three analyses
with Zij,2, Zij,3, and Zij,5 would not affect the results (i.e., order-free). The three inferential
outcomes (i.e., p-values) derived from each analysis could provide nearly orthogonal pieces
of evidence for the same null hypothesis.

Next, consider the randomization-based inference method. We start by proposing a
general assignment model for the IV and treatment assignments which allows for unmea-
sured confounding in each assignment. This assignment model is motivated by sensitivity
analysis in Rosenbaum (2002). Let uij,k with 0 f uij,k f 1 denote an unmeasured covariate
that hinders a random assignment of Zij,k for k ∈ [q], even after stratification on observed

73



Lee, Tan and Karmakar

covariates xij . Then with F := {(rij ,xij , uij,k) : i ∈ [I], j ∈ [ni], k ∈ [q]}, we consider the
following IV assignment of Zij,k with »k being an arbitrary function. For the convenience
in notation, let Zij,0 ≡ 1. Then for i ∈ [I], j ∈ [ni], k ∈ [q − 2]:

Pr(Zij,k = 1|F ,Aij,−k) = Pr(Zij,k = 1|F , Zij,k−1, Zij,k+1)

= I(Zij,k−1 = 1, Zij,k+1 = 0)
exp{»k(xij) + µkuij,k}

1 + exp{»k(xij) + µkuij,k}

+ I(Zij,k−1 = 1, Zij,k+1 = 1); (2)

Pr(Zij,q−1 = 1|F ,Aij,−(q−1)) = I(Zij,q−2 = 1)
exp{»q−1(xij) + µq−1uij,q−1}

1 + exp{»q−1(xij) + µq−1uij,q−1}
.

The first line of Equation (2) is due to the nested structure in Aij , i.e., Zij,k is conditionally
independent of Zij,k′ for all k

′ ̸= k−1, k+1, and Zij,k = 1 only if Zij,k−1 = 1. A parameter µk
in (2) quantifies the influence of unmeasured covariates uij,k that is present after conditioned
on xij when Zij,k−1 = 1 and Zij,k+1 = 0. Roughly speaking, if I(cq−k−1 < Cij f cq−k) is
not random conditioning on the observed covariates, µk would be non-zero.

On the other hand, one of our proposed evidence factors is a direct comparison between
the treated and control units. Let W(Cij) denote the window around each standardized
cutoff that should include zero, and this window may vary depending on a value of Cij . For
example, in cases where the running variable exhibits dispersed values (e.g., students from
Town 3 in Figure 1(d)), we may consider a wider window around the cutoff within which
a random assignment to the treatment is assumed. Then the treatment assignment with
Zij,q is as follows.

Pr(Zij,q = 1 | F ,Aij ,Wij − Cij ∈ W(Cij)) =
exp{»q(xij) + µquij,q}

1 + exp{»q(xij) + µquij,q}
. (3)

Here a non-zero µq implies the presence of unmeasured covariate that renders treatment
assignment non-random within each window even after conditioning on the observed co-
variates and Aij . Conditioning on Aij is essentially conditioning on Cij ; once we know the
values of the whole (q-1) potential IVs, i.e., Aij , Cij is known. Therefore, the assignment
model (3) is analogous to the local randomization design using a standardized running vari-
able, assuming a single cutoff: Zij,q = 1 if and only if Dij = 1 regardless of the cutoff.
When the adjusting covariates xij include the running variable then the window W can be
implied by imposing a caliper on the running variable (e.g., setting that the difference in
Wij among the units within the window is no greater than 0.2 at each cutoff). Note that
unmeasured covariates from the IV assignment model in (2) and from the treatment assign-
ment model in (3), i.e., uij,[q−1] and uij,q, do not necessarily induce bias in other analyses.
A non-random assignment of the actual treatment variable would not affect the validity of
an IV (i.e., not affecting the reinforced unordered partial exclusion restriction). Moreover,
by conditioning on Aij in the assignment model (3), any bias in potential IVs would not
affect the validity of a direct comparison.
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4. Reinforced design with evidence from multiple cutoffs

4.1 Constructing evidence factors

Given the assignment models of (2) and (3), we propose building |Q+| many of evidence
factors as follows for testing the sharp null hypothesis H0 : r

d=1
ij = rd=0

ij when the reinforced
unordered partial exclusion restriction holds for Q+. For now let us assume that µk = 0
for all k ∈ Q+ so that the assignment of each IV or the treatment is not biased. We
will relax this restriction later. For each k ∈ Q, obtain a p-value Pk for testing the sharp
null hypothesis by conditioning on Aij,−k in addition to the observed covariates. If q ∈
Q+, obtain a p-value Pq by testing the same null hypothesis while conditioning on Aij

given the window where the local randomization is assumed to hold. For each analysis,
given the models (2) and (3), we perform randomization-based inference, which leverages
randomization mechanisms of IVs or a treatment within strata. We consider testing the
RD causal effect using an one-sided non-parametric test, such as stratified Wilcoxon rank-
sum statistics and Hodges-Lehman aligned rank statistics. As a result of |Q+| number of
analyses, we obtain {Pk : k ∈ Q+}. The following lemma demonstrates that each analysis
is valid (i.e., controlling Type-I error under the null) regardless of the invalidity of other
analyses.

Lemma 4 Suppose that the reinforced unordered partial exclusion restriction holds for Q+

and |Q+| g v with v g 1 and µk = 0 for all k ∈ Q+. Then we have Pr(Pk f pk) f pk for
pk ∈ [0, 1] under the null H0 regardless of other invalid instruments within the candidate
set in Aij or a direct comparison.

Then under the regularity conditions on the outcome outlined in Zhao et al. (2022)
(see Theorem 4.1), Theorem 5 demonstrates the nearly independence properties of p-values
among {Pk : k ∈ Q+}.

Theorem 5 Suppose that the regularity conditions hold and the reinforced unordered partial
exclusion restriction holds for Q+. Then under the assignments models (2) and (3) with
µk = 0 for all k ∈ Q+, p-values from the proposed reinforced design are stochastically larger
than the uniform under the null among valid IVs and a direct comparison. In other words,
for any pk ∈ [0, 1],

Pr(Pk f pk, ∀k ∈ Q+) f
∏

k∈Q+

pk

Due to the above properties of the p-values, we can easily combine the p-values from
cutoff-based IVs and the p-value from the local randomization framework. This allows
us to draw comprehensive causal conclusions while avoiding complicated multiple testing
procedures. In particular, we can obtain at least v number of nearly independent p-values
for any 1 f v f q and have a single, combined p-value. Let P(k) denote the kth order
statistic of (P1, . . . , Pq) and U1, . . . , Uv are iid Uniform[0,1] random variable.

Corollary 6 Suppose that the reinforced unordered exclusion restriction is satisfied for a
set Q+ ¦ [q] with |Q+| g v (v g 1). When f is coordinate-wise non-decreasing, satisfying
Pr{f(U1, . . . , Uv) f ³} f ³ for any 0 f ³ f 1, f(P(q), . . . , P(q−v+1)) is a valid p-value. In
other words, Pr{f(P(q), . . . , P(q−v+1)) f ³} f ³.
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The results of Corollary 6 suggest that we can use the v largest p-values, i.e.,
{P(q), . . . , P(q−v+1)}, among q to construct a single valid p-value. Different methods for
combining p-values determine the specifics of the function f . One of the simplest examples
includes Fisher’s method, where f(P(q), . . . , P(q−v+1)) = −2

∑v
k=1 ln(P(q−k+1)).

4.2 Sensitivity analysis

In RD designs, sensitivity analyses have largely focused on evaluating sensitivity to partic-
ular model specifications under the continuity-based design (Cattaneo et al., 2015; Bloom,
2012). For example, different parametric or non-parametric models can be applied to assess
how the causal estimates would change if the presumed model is wrong. The impact of
a range of observations around the cutoff included in the analysis (i.e., bandwidth size)
and variations in the width of window are also commonly considered in sensitivity analy-
ses (Oldenburg et al., 2016; Cattaneo et al., 2015). In our approach, we do not need to
posit any parametric models but rely on non-parametric tests (e.g., stratified Wilcoxon rank
tests). Therefore, we instead focus on examining sensitivity to the deviation from the IV
assumptions for each proposed IV and the random assignment of the treatment near the
cutoffs under the local randomization framework.

One of the advantages of evidence factors design is that it allows us to perform sensitiv-
ity analyses by varying the parameter of µk in the models (2) and (3) (k ∈ [q]). Note that a
non-zero value of µk in (2) implies a biased assignment of a cutoff cq−k given the observed
covariates (k ∈ [q−1]) while a non-zero value of µq in (3) implies a biased treatment assign-
ment given the observed covariates and the cutoffs. Given uijk and µk, one could calculate
a corresponding p-value for testing the sharp null using the assignment distribution. Since
uijk’s are unknown, we use the maximum p-value over uijk values in [0,1] denoted by P k,Γk

when the sensitivity parameter is at most Γk g 1. The next Corollary states that we can
consider the maximum p-value as a valid p-value and they also are stochastically larger than
the uniform distribution under the null using the same conditions as in Theorem 5. This is
because non-zero values of Γk′ (k

′ ̸= k, k′ ∈ [q]) would not necessarily affect the validity of
P k,Γk

, i.e., Pr(P k,Γk
f pk) f pk for any pk ∈ [0, 1] under the null.

Corollary 7 Suppose that the regularity conditions hold and the reinforced unordered par-
tial exclusion restriction holds for Q+. Then under the assignments models (2), the results
of Theorem 5 and Corollary 6 hold when we replace Pk by P k,Γk

for any k ∈ Q+.

Based on the above result, we can conduct sensitivity analysis by varying each of sen-
sitivity parameters Γk (k ∈ [q]). Specifically, by varying a parameter Γk (k ∈ [q − 1]), we
can examine the changes in our causal conclusion when each IV assignment is biased. Our
sensitivity parameter of Γq performs the sensitivity analysis that is typically conducted in
the local randomization-based framework, with conditioning on Aij . It is important to note
that the value of Γk (i.e., any departure from the underlying assumption of evidence factor
k) would not affect other factor k′ (k ̸= k′). This allows us to assess sensitivity to biases in
different directions that do not overlap.

Remark 8 Under the local randomization framework, we often transform the outcomes
while reflecting some (parametric) relationships between potential outcomes and a running
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variable so that within the window, the running variable would not confound the treatment
effect (Sales and Hansen, 2019; Cattaneo et al., 2016a). In this case, one can also examine
the impact of model specifications on the results, as well as investigating sensitivity to the
unmeasured confounding captured by Γq. However, a potential source of bias that affects
the former model specifications could also affect the local randomization assumption. Con-
sequently, different from sensitivity analyses within {Γk : k ∈ [q]}, the results of sensitivity
analyses to model specifications and local randomization are likely to be correlated, affecting
each other.

5. Fuzzy RD settings

Until now we only consider a sharp RD design where the treatment is received if and only
if Wij g Cij for all units ij. However, a fuzzy RD design is common in practice where
having Wij g Cij does not necessarily determine the treatment assignment but alters the
probability of receiving the treatment. In our application study, for example, we observe
that some eligible students, who could have attended the best school in their town, chose
to enroll in other schools. In a fuzzy RD design, Zij,q := I(Wij g Cij) is acting like an IV,
rather than a treatment variable, as having Zij,q = 1 increases the probability of receiving
the treatment but does not definitively determine the treatment assignment. Lemma 9
below demonstrates sufficient conditions for each of Zij,k (k ∈ [q − 1]) to be a potential IV
(Recall Definition 1).

Lemma 9 Suppose that Wij is independent of Cij and FW (cq−k+1) > FW (cq−k) with FW

denoting a density function of Wij. Assume that Condition (C1) and one of (C2.1) or
(C2.2) hold.

(C1) Pr(Dij = 1 | Wij g Cij , Cij = ck) g Pr(Dij = 1 | Wij g Cij , Cij = ck′) for all cutoffs
k and k′ such that ck < ck′.

(C2.1) Pr(Dij = 1 | Wij < Cij , Cij = ck) = 0 for all cutoffs k = [q]

(C2.2) Let ¶k := Pr(Dij = 1 | Wij g Cij , Cij = ck) − Pr(Dij = 1 | Wij < Cij , Cij = ck).
Then ¶k′/¶k g Pr(Wij < Cij | Cij = ck)/Pr(Wij < Cij | Cij = ck′) if ck < ck′ or
¶k = 0 for all k = [q].

Then Pr(Dij = 1 | Zij,k = 1) > Pr(Dij = 1 | Zij,k = 0) with Zij,k = I(Cij f cq−k) for
k = [q − 1].

Note that in a sharp RD setting, (C1) and (C2.1) are satisfied. Condition (C1) states that
the probability of receiving the treatment given that the value of a running variable is above
the cutoff is not decreasing as the cutoff is increasing. Condition (C2.1) implies that units
with the value of a running variable less than cutoff would not receive the treatment, so
non-compliance only occurs in one-direction (i.e., one-sided non-compliance). However, this
may not hold in many cases where units with the cutoff below the cutoff are able to receive
the treatment. In such a case, (C2.2) can be considered instead, where ¶k indicates the
difference in probability of accepting the treatment between eligible and ineligible units.
The ratio of this difference in a higher cutoff to a lower cutoff should be no less than the
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proportion of units with the running variable less than the cutoff between these two cutoffs.
The corollary below states that under a fuzzy RD design where we can have up-to q potential
IVs, evidence factors analysis can be performed.

Corollary 10 Under the same conditions as in Theorem 5, the results in Theorem 5 hold
under a fuzzy RD design with Zij,k = I(Cij f cq−k) and Zij,q = I(Wij g Cij).

Here the unmeasured confounder uij,q in the assignment model (3) indicates non-random
allocation of units below and above the cutoff rather than non-random treatment assign-
ment.

6. Cluster-level cutoffs settings

In Equation (2), each of the proposed IVs is assigned to a single unit, which implies that
the cutoff is also applied individually. However, in many other aforementioned studies, in
addition to our motivating study of school allocations, each cutoff is applied to clusters
of multiple units. For example, students in the same town were assigned the same cutoff
value; units within the same administrative districts are governed by the same vaccination
eligibility. These cluster-level cutoff assignments do not necessarily undermine the proper-
ties of evidence factors but could affect statistical power as the number of permutations in
obtaining p-values is reduced in randomization-based inference.

Consider Hi clusters (e.g., towns) in stratum i. Each cluster ih (h = 1, . . . , Hi) has
nih units with

∑Hi

h=1 nih = ni· and
∑I

i=1 ni· = N . Given that cutoffs are assigned to each
cluster, denoted by Cih·, consider a cluster-level binary potential IV, Zih·,k (k = [q−1]) and
a set of (q-1) IVs, Aih· = Zih·,[q−1]. Then we assign the same Aih· to nih units in cluster ih
so that Aihj = Aih· for all j ∈ [nih]. Compared to individual-level treatment allocations,
this likely reduces the number of possible permutations (e.g., ni·! to Hi! across i). Similarly
define the observed and potential outcomes for unit ihj in stratum i and cluster h, i.e., raihj
and rdihj (j = [nih], k = [q]). Our sharp null hypothesis is then H0 : rd=1

ihj = rd=0
ihj for all

i, h, j. Note that even in the presence of the within-cluster interference (e.g., where peers’
school choices affect one’s performance in the exam), randomization-based inference is valid
to test the sharp null hypothesis (Rosenbaum, 2007).

We have individual-level observed and unobserved confounders, i.e., xihj and uihj,k. Let
us define xih· as a collection of {xihj : j = [nih]} and uih· be a univariate summary of
{uihj : j = [nih]}. For example, uih· could be a measure of overall peer pressure in town ih
in our school admission study, which could be associated with the distribution of cutoffs and
the exam scores in the town. It is known that cluster-level treatment (or IV) assignments
are less likely susceptible to biases from unmeasured confounders compared to individual-
level assignments (Hansen et al., 2014). For example, biases could be larger if the treatment
assignment (e.g., cutoff assignment) is affected by the individual-level uihj and assigned to
each individual rather than being affected by a collective factor of uih· and assigned to a
group of individuals. Let F := {(rihj ,xihj , uihj,k) : i ∈ [I], h ∈ [Hi], j ∈ [nih], k ∈ [q]}.
Then we have the following cluster-level IV assignment of Zih·,k with »k being an arbitrary
function of the vector of the observed covariates from all units in the same cluster. Define
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Zih·,0 ≡ 1. For i ∈ [I], h ∈ [Hi], k ∈ [q − 2]:

Pr(Zih·,k = 1|F ,Aih·,−k) = I(Zih·,k−1 = 1, Zih·,k+1 = 0)
exp{»k(xih·) + µkuih·,k}

1 + exp{»k(xih·) + µkuih·,k}

+I(Zih·,k−1 = 1, Zih·,k+1 = 1);

Pr(Zih·,q−1 = 1|F ,Aih·,−(q−1)) = I(Zih·,q−2 = 1)
exp{»q−1(xih·) + µq−1uih·,q−1}

1 + exp{»q−1(xih·) + µq−1uih·,q−1}
.

Here µk implies the influence of unmeasured, univariate summary of cluster-level covariate
uih·,k on the cutoff assignment, specifically whether cluster ih’s cutoff is larger or no larger
than q−k (k = [q−1]). We can interpret these cluster-level IV assignments as replacement of
individual-level covariates and IVs in the assignment model in (2) with their corresponding
cluster-level variables. It is important to note that neither »k(xih·) nor uih·,k for k ∈
[q− 1] necessarily indicate the overall or average values of those variables within cluster ih.
Rather, this assignment may be largely driven by a small subset of units within clusters.
To illustrate, in our case study, the cutoff of the best school is likely determined by the
transition scores of a relatively small subgroup of students around the maximum size of the
best school. The scores of students who easily qualify for the best school or fall significantly
below the average would have little impact on determining the cutoff.

Even though cutoff assignments are cluster-level, the actual treatment assignment is
individual-level based on the individual-level running variable, Wihj .

Pr(Zihj,q = 1 | F ,Aih·,Wihj − Cih· ∈ W(Cih·)) =
exp{»q(xihj) + µquihj,q}

1 + exp{»q(xihj) + µquihj,q}
.

This treatment assignment model is analogous to the assignment model in (3), except that
the window is centered around a cluster-level cutoff Cih· rather than an individual-level
cutoff. Therefore, each individual ihj is included in the window only if a value of Wihj

is close enough to their cluster-specific cutoff, Cih·. Once they are in the window, the
model above assumes that the probability of receiving the treatment or not depends on
individual-level covariates, xihj and uihj,q.

7. Simulation studies

In our simulation studies, we examine the performance of the proposed reinforced
design under the multi-cutoff RD setting. We generate N = 1000 units with

five cutoffs, C = {1, 2, 3, 4, 5}. We generate Wij
i.i.d.
∼ Uniform(0, 6) and Cij

i.i.d.
∼

Multinomial(0.2, 0.2, 0.2, 0.2, 0.2). We first consider the sharp RD design where Pr(Dij =
1 | Wij , Cij) = Pr(I(Wij g Cij)). We also generate an unmeasured variable Uij := I(0 f
Wij − Cij < 0.3) to create the violation of the local randomization assumption (also conti-
nuity assumption). Let Zij,k = I(Cij f c5−k) for k = [4] and Zij,5 = I(Wij g Cij). We do
not consider other observed covariates than a running variable for simplicity. Here is the
data generating model for the outcome.
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Figure 2: (a)-(c): Treatment assignments (red: treated, blue: controls) based on each value
of Z1, Z3, and Z5. In each figure titled Zk = z, grey triangle dots denote the units with
Zk = 1− z (k = 1, 3, 5; z = 0, 1) (d): transformed outcomes (residuals) Y ∗ before and after
applying the window constraint.

Yij =
4∑

k=1

¼kZij,k + ¸Uij + ´Dij +Wij + ϵij (4)

=
4∑

k=1

¼kI(Cij f cq−k) + ¸I(0 f Wij − Cij < 0.3) + ´I(Wij g Cij) +Wij + ϵij ,

where ϵij ∼ N(0, 1). In the above model, a non-zero value for ¼k indicates the violation
of the reinforced unordered exclusion restriction of Zij,k (k = [4]). On the other hand, a
non-zero value for ¸ implies that having a running variable equal to or larger than the cutoff
by 0.3 affects the outcome not through the treatment, Dij . This would invalidate a direct
comparison with Zij,5.

Figure 2(a)-(c) illustrate the relationship between the running variable and the outcome,
where ¼k = ¸ = 0 (k = [4]) from the outcome model (4) using 100 data points. In
Figure 2(a), units with rounded dots in the left panel have a value of Zij,1 = 1, with the red
dots denoting treated units and blue dots denoting the control units. In the right panel,
units with Zij,1 = 0 have either red and blue dots, depending on their treatment assignment.
We observe that the proportion of units receiving the treatment is greater for units with

80



Multiple analyses in multi-cutoff regression discontinuity design

Zij,1 = 1 compared to those with Zij,1 = 0. Similar patterns are observed in Figure 2(b).
Figure 2(c) demonstrates that all units with Zij,5 = 1 are treated, while those with Zij,5 = 0
are controls (i.e., a sharp RD).

To test the same null hypothesis of H0 : ´ = 0, we use the stratified Wilcoxon signed
rank test for each factor. The analysis with Zij,k (k ∈ [q−1]) is stratified by Aij,−k (by exact
matching) and Wij (by 1:1 nearest matching). On the other hand, for the the analysis with
Zij,5, several strata are generated through the 1:1 nearest matching on the cutoff and the
running variable, in addition to the exact matching on Aij . We use the residuals from the
linear regression of Yij on Wij as transformed outcomes for the analysis with Zij,5. This is to
reduce the remaining dependency between the outcome and the running variable, ensuring
that while the potential outcome within the window may still depend on the treatment
assignment, the residuals should not (Sales and Hansen, 2019). Figure 2(d) illustrates the
relationship between the running variable W and the residuals Y ∗ (left panel), and the
standardized running variable W −C and the residuals Y ∗ (right panel). There is no clear
linear relationship between W and Y ∗ compared to the relationship between W and Y in
Figures 2(a)-(c).

Under the local randomization, only units within a specified window around the cutoff,
which are assumed to be randomly different, are used for RD analyses. The window selection
procedure employs the covariate balance test (Cattaneo et al., 2015, 2016a), which identifies
the largest window in which all covariates are balanced. In our illustrative and simulation
studies, without covariates, we consider a caliper of 0.2 on the running variable value for
the last analysis with Zij,q for illustrative purposes. This ensures that the differences in
the running variable value between matched treated and control units do not exceed 0.2,
thereby keeping the window width at or below 0.2. The right panel in Figure 2(d) highlights
the units that do not meet this caliper criterion in gray. We observe that only units near the
zero value of the standardized running variable are considered in the local randomization.

We consider four different cases, (i)-(iv). In case (i), λ = (0, 0, 0, 0) and ¸ = 0, implying
that each IV does not have a direct effect on the outcome and there is no effect of having
a running variable no less than the cutoff that is not through the treatment. On the other
hand, in case (ii), ¸ = 1, so a direct comparison with Zi5 is biased. In case (iii), ¸ = 0,
but ¼4 = 1, so the fourth IV is biased. Finally, in case (iv), the second and the fourth
IVs are invalid and so is a direct comparison. For each case, we combine v largest p-values
using Fisher’s method and denote the combined p-value given the minimum number of valid
factors as Pc,v.

Table 3 presents the rejection rates using p-values from each factor under four different
scenarios. We observe that for each case of violation, the invalidity of one factor does not
affect the type-I error of the other factors under the null. For example, in case (iii), except
for the results with P4, the rejection rates of other four factors are all close to or less than
³ = 0.05 level under the null. In general, the power of a direct comparison with P5 is much
greater than that from four IVs (see cases (i) and (iii)). This is expected as the number of
units used in the analysis would be much greater with Zij,5 and each of the proposed IV is
not as strong as Zij,5. When the combined p-value correctly specify the minimum number of
valid factors, its type-I error is no larger than ³ = 0.05. These results support that multiple
IVs and a direct comparison provide evidence factors for testing the RD treatment effect.
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Rejection rates P1 P2 P3 P4 P5 Pc,v

(i): λ = (0,0,0,0) and ¸ = 0 (v = 5)
´ =0.0 0.055 0.052 0.049 0.044 0.014 0.020

0.2 0.098 0.100 0.100 0.061 0.198 0.165
0.4 0.150 0.163 0.164 0.082 0.655 0.647
0.6 0.230 0.250 0.272 0.099 0.952 0.974
0.8 0.334 0.374 0.376 0.119 0.998 1.000

(ii): λ = (0,0,0,0) and ¸ =1 (v = 4)
´ =0.0 0.050 0.045 0.055 0.043 0.181 0.004

0.2 0.075 0.089 0.088 0.057 0.587 0.029
0.4 0.136 0.149 0.156 0.076 0.912 0.129
0.6 0.199 0.211 0.246 0.094 0.999 0.375
0.8 0.304 0.302 0.331 0.116 1.000 0.669

(iii): λ = (0,0,0,1) and ¸ =0 (v = 4)
´ =0.0 0.055 0.052 0.052 0.998 0.019 0.022

0.2 0.097 0.100 0.100 0.999 0.219 0.193
0.4 0.149 0.164 0.166 0.999 0.648 0.689
0.6 0.227 0.254 0.268 0.999 0.946 0.977
0.8 0.332 0.371 0.375 0.999 0.997 1.000

(iv): λ = (0,1,0,1) and ¸ =1 (v = 2)
´ =0.0 0.049 1.000 0.055 0.997 0.223 0.009

0.2 0.075 1.000 0.091 0.997 0.578 0.075
0.4 0.133 1.000 0.156 0.997 0.877 0.172
0.6 0.195 1.000 0.245 0.998 0.983 0.298
0.8 0.306 1.000 0.333 0.998 1.000 0.439

Table 3: Simulation results (rejection rates at ³ = 0.05 based on 1000 independent repli-
cates) for each of the five p-values and the combined P -value, Pc,v, where v indicates the
minimum number of valid analyses for each method.

We also perform the simulation studies under a fuzzy RD design and under cluster-level
cutoff settings in the Supplementary Material.

8. Real data application

In this section, we apply our proposed method to evaluate the effect of having access to
higher achievement schools on students’ performance in a graduation test using the admin-
istrative data from Romania (Pop-Eleches and Urquiola, 2013; Bertanha, 2020). We focus
on the data from 21 towns with three schools in the cohort of 2001. We focus on the towns
with the same number of schools (i.e., three). This is because with heterogeneous number
of schools, Equation (1) tends not to hold. For example, suppose that the cutoff of one
town with ten schools is lower than that of another town with three schools (even though
in fact cutoffs are likely to be higher in towns with more number of schools). Then having
a smaller cutoff value would be less likely to lead to a higher chance of attending a better
school.
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In our context, the running variable Wij denotes the transition score of each student
based on which the admission is determined. Our cutoff variable, Cij , denotes the minimum
transition score required for admission into the best school of student ij’s town, which is
in fact cluster-level. The outcome variable, Yij , is a student’s score on the baccalaureate
exam. Among the 21 towns, we only consider 13 towns, where the associated cutoff provides
a potential IV, satisfying the condition in Definition 1 and Condition (C2.1). There are four
towns where schools did not satisfy the condition (C2.1) and those towns are excluded from
the analysis as these towns might follow different admission processes. Figure 3 illustrates
the distribution of the running variable, the 13 cutoffs, and the outcome variable. It is
evident that as students’ transition scores increase, they are more likely to enter a better
school (denoted by red dots). However, the actual assignment varies depending on students’
town’s cutoff and their preferences.

6 7 8 9 10

6
7

8
9

1
0

Transition scores (W)

B
a

c
c
a

la
u

re
a

te
 e

x
a

m
 s

c
o

re
s
 (

Y
)

Treated

Controls

Figure 3: Distribution of the outcome according to the running variable. Each town’s
cutoff is denoted by 13 vertical lines, and the actual treatment assigned (attending a better
school) is denoted by shapes.

Different from the previous RD studies using the same dataset (e.g., Pop-Eleches and
Urquiola (2013) and Bertanha (2020)), we consider the effect of attending the best school
rather than a better school. In Pop-Eleches and Urquiola (2013) and Bertanha (2020),
the treatment is attending a better (not necessarily the best) school and each student’s
cutoff depends on their transition scores relative to each school’s minimum score required
to admission. If there are three schools in one town, there could be two “better” schools
available to students, and which school is their better school depends on students’ transition
scores. In our setting, on the other hand, each student’s cutoff is set to their town’s
best school’s cutoff. Then each of their outcome could be used in our proposed reinforced
design at most twice: one in the IV analyses and the other in a direct comparison. For
example, suppose that the cutoffs of the three towns are 8.07, 7.56, and 7.34 (as in the
case of Figure 1), and one student ij from Town 2 had her transition score of 7.45. As
I(Cij f c2) = 1 and I(Cij f c1) = 0 when (c1, c2, c3) = (7.34, 7.56, 8.07), this student’s
observation is used in the first IV analysis. If the distance between her score (7.45) and the
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cutoff (7.56) is considered close enough, then her observation is used in a direct comparison
as a control unit who was not admitted to the best school.

−2 −1 0 1 2 3 4

−
2

−
1

0
1

2

Scores − cutoff (W−C)

T
ra

n
s
fo

rm
e

d
 o

u
tc

o
m

e
s
 (

Y
*)

Treated

Controls

Figure 4: Distribution of the transformed outcome Y ∗(residuals from the polynomial model
that regressed Y on W ) according to the standardized running variable (W − C).

In this example, the continuity assumption suggests that the average exam scores would
be the same at the cutoff between the students who attended the best school and those
who did not if their high school assignments remained the same. On the other hand, the
local randomization framework assumes that students whose transition scores are within
the window around their town’s cutoffs are only randomly different other than their school
assignments. Each of these assumptions can be considered reasonable as it is unlikely that
students had information about their town’s cutoffs before the admission process so they
could manipulate their transition scores accordingly. However, the local randomization as-
sumption could be violated especially when the selected window is too wide so that students
with the scores far away from the cutoff in either directions could be different on other, un-
observed factors (e.g., self-motivation). To reduce the impact of the running variable on
the local randomization assumption, we transform the outcome using the residuals from the
third-degree polynomial regression model that regresses the outcome on the running vari-
able. Figure 4 presents the distribution of the transformed outcomes on the standardized
running variable. We observe that there are control students who did not attend a better
school with a higher transition score than the cutoff, but not the other way.

With 13 cutoffs, we can consider twelve potential IVs. The IV assumptions associated
with each of twelve IVs suggest that having a specific cutoff would be nearly random and
would not have a direct effect on the outcome. These assumptions could be violated when
there was a peer effect from other students within a town who were admitted to the best
school. However, the town’s cutoff is also related to the size of three schools within the
town, which is unlikely associated with the outcome. In our analysis, we construct the
stratification by performing the 1:1 nearest matching on the running variable. For a partic-
ular analysis k, we implement exact matching on Aij,−k (for k ∈ [12]) or Aij (for k = 13).
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i j Yij Dij Cij Wij Zij,1 Zij,2 Zij,3 Zij,[4:12] Zij,13

1 1 9.13 0 7.84 7.94 1 1 1 0 1
1 2 8.65 0 8.01 7.94 1 1 0 0 0

2 1 8.64 0 7.84 7.16 1 1 1 0 0
2 2 8.69 0 8.01 7.51 1 1 0 0 0

3 1 9.59 1 7.84 8.80 1 1 1 0 1
3 2 8.00 0 8.01 8.80 1 1 0 0 1

4 1 8.81 1 7.84 8.17 1 1 1 0 1
4 2 9.46 1 8.01 8.18 1 1 0 0 1

Table 4: An illustration of the matched pairs (strata) in the analysis of k = 3, where
Zij,[4:12] = {Zij,k : k = 4, 5, . . . , 12}.

By matching on individual-level Wij , for the analysis k ∈ [12], there is at most one student
from each town whose transition scores are similar in each stratum. Table 4 presents four
matched pairs (among 181) in the analysis of k = 3, where each pair has the same value
of Aij,−3 = (1, 1, 0, 0, . . . , 0) and similar values of Wij within pairs. On the other hand,
in the analysis of k = q, within each stratum, there are two students from one town, one
of whom was eligible for a better school while the other was not. We set the maximum
difference in a value of Wij between the matched pair as 0.2, which results in a standardized
mean difference (SMD) of Wij between eligible and ineligible students less than 0.8. We
investigate the impact of caliper widths on the matching results and the resulting p-value
in the Supplementary Material, which shows that a smaller caliper value provides better
balance and more insignificant p-value.

Γk,k∈[q] P 1,Γ1
P 2,Γ2

P 3,Γ3
P 4,Γ4

P 5,Γ5
P 6,Γ6

P 7,Γ7
P 8,Γ8

P 9,Γ9
P 10,Γ10

P 11,Γ11
P 12,Γ12

P 13,Γ13

1.00 1.000 0.053 1.000 1.000 0.000 1.000 0.000 1.000 0.937 1.000 0.000 0.001 0.148
1.05 1.000 0.114 1.000 1.000 0.000 1.000 0.000 1.000 0.965 1.000 0.000 0.003 0.321
1.10 1.000 0.210 1.000 1.000 0.000 1.000 0.000 1.000 0.981 1.000 0.000 0.006 0.535
1.20 1.000 0.473 1.000 1.000 0.000 1.000 0.000 1.000 0.995 1.000 0.000 0.024 0.869
1.50 1.000 0.967 1.000 1.000 0.025 1.000 0.000 1.000 1.000 1.000 0.006 0.241 1.000
2.00 1.000 1.000 1.000 1.000 0.447 1.000 0.007 1.000 1.000 1.000 0.224 0.825 1.000
2.50 1.000 1.000 1.000 1.000 0.900 1.000 0.150 1.000 1.000 1.000 0.726 0.987 1.000

Table 5: (The maximum) P -values from 13 evidence factors at different values of a sensi-
tivity parameter Γk.

Table 5 presents the (maximum) p-values from each of 13 evidence factors at different
values of a sensitivity parameter, {Γk : k ∈ [q]}. When there is no unmeasured confounder
for each factor (i.e., Γk = 1.00), there are four factors resulting in highly significant p-values
(< 0.01) and one factor resulting in a moderately significant p-value (0.053). As the value
of the sensitivity parameter increases, the maximum p-value for each factor increases. The
p-value from a comparison between the students whose scores above and below the cutoff
(i.e., P 13,Γ13

) fails to reject the null at Γk = 1.00. On the other hand, the maximum of
p-value from the 7th IV (i.e., having a cutoff no larger than 7.34) remains significant until
Γk = 2.00.
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Γk P c,v=13,Γ P c,v=12,Γ P c,v=11,Γ P c,v=10,Γ

1.00 0.000 0.000 0.000 0.054
1.05 0.000 0.000 0.002 0.206
1.10 0.000 0.000 0.015 0.468
1.20 0.000 0.001 0.070 0.627
1.50 0.003 0.238 0.683 1.000
2.00 0.631 1.000 1.000 1.000

Table 6: Combined p-values at different values of a sensitivity parameter Γk and the number
of minimum valid evidence factors, v (1 f v f q).

Table 6 presents the combined (maximum) p-value from 13 evidence factors, P c,v,Γ, when
we assume v minimum number of valid evidence factors given Γ = {Γk : k ∈ [13]}. We use
the Fisher’s method to combine multiple p-values. When there is no unmeasured confounder
(i.e., Γk = 1.00 for all k ∈ [13]), we could reject the null hypothesis with combined evidence
provided by 13 factors when v g 11. However, we could not reject the null when we set
v = 10 at ³ = 0.05. We observe the similar results at Γk = 1.05. At Γk = 1.20, we
require at least 12 valid evidence factors out of 13 to reject the null. We observe that as
the uncertainties due to unmeasured confounder increase, we require more number of valid
factors to obtain significant results. Based on these results, we can conclude that, in the
absence of unmeasured confounders, the combined evidence supports a significant effect of
attending the best school on the future academic performance. However, as this conclusion
is largely driven by a few evidence factors that are highly significant, it is sensitive to the
number of valid factors that satisfy the reinforced unordered partial exclusion restriction.

There are several limitations in our data application study. First, there were no
individual- nor town-level characteristics available other than students’ transition scores.
If there were town-level covariates, such as the size of the best school or the number of
teachers, that could affect the cutoff assignment, these factors could be used to match dif-
ferent towns instead of matching students. To mitigate the potential bias due to town-level
factors, we focused on the town within the same cohort year with the same number of high
schools. We match students based on their transition scores instead, assuming that given
the transition scores, the assignment to each cutoff (or each town) is random. That is, two
units from different towns with similar transition scores (e.g., matched pairs in Table 4)
are otherwise exchangeable. This assumption would not hold if there are other town-level
characteristics (e.g., the number of teachers available compared to the number of students)
that would affect the cutoff and the outcome; our proposed sensitivity analysis quantifies
the robustness of the inference to this confounding. Moreover, we only present a set of
p-values testing the sharp null hypothesis. The estimates of the additive treatment effect
and their corresponding confidence intervals can be obtained using the Hodges-Lehmann
estimator based on the Wilcoxon rank sum test. However, as each analysis k is conditioning
on different subsets (e.g., those with a cutoff of cq−k or those with a running variable value
around the cutoff), the interpretation of the treatment effect estimate from each analysis
could vary. It is our potential future research to examine corroborate point estimates across
multiple analyses in RD design.
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Codes and a sample dataset can be found on github: https://github.com/

youjin1207/IVs_inMultiRD.

9. Discussion

This work proposes a new evidence factors design applied to a multi-cutoff RD setting for
testing the RD treatment effect. We leverage multiple IVs constructed from multiple cutoffs
and combine these potential IVs with a treatment assignment to strengthen our causal
conclusions. Our proposed method can also be applied to a fuzzy RD design. While existing
literature on RD designs has been relying on the assumptions regarding continuous (or no)
changes in certain characteristics at (or near) the cutoffs, our proposed IVs assume the
cutoff exclusion restriction of each cutoff. These assumptions can be considered reasonable
when different cutoffs are assigned to units nearly arbitrarily or randomly. The evidence
factors design also allows us to examine the sensitivity to the cutoff exclusion restriction
assumptions. Compared to the literature on multi-level cutoff RD, we utilize the variations
in cutoffs rather than standardize them to a constant value and use observations far away
from the cutoffs.

In contrast to previous studies that used multiple, different kinds of IVs to construct
evidence factors (Karmakar et al., 2021; Zhao et al., 2022), our proposed IVs are all con-
structed from a cutoff variable. This could easily make bias from each IV analysis concur
(e.g., λ is likely to be either a vector of all 1’s or 0’s in our simulation models (4)). How-
ever, units with different cutoffs may be subject to different types of bias, particularly when
cutoffs are determined by administrative districts, which is common in vaccination eligibil-
ity (Bor et al., 2014; Bermingham et al., 2023), political elections (Cattaneo et al., 2016b),
and education opportunities (Pop-Eleches and Urquiola, 2013). Then having a smaller or
larger value of a cutoff to take the treatment in one district could be biased due to the
factors that do not affect the other districts.

As suggested by Donald Campbell in Trochim (1984), our future work includes con-
structing useful evidence by performing both continuity-based and local randomization
approaches that leverages the difference at the cutoff and around the cutoff. In such a
case, it would be challenging to disentangle dependency between the statistics from both
methods. We can also consider extending our approach to the RD design with multiple
running variables that determine the treatment assignments (Papay et al., 2011; Reardon
and Robinson, 2012; Dı́az and Zubizarreta, 2023).
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