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Abstract

Small Proteins (SPs) are pivotal in various cellular functions such as immunity, defense, and
communication. Despite their significance, identifying them is still in its infancy. Existing
computational tools are tailored to specific eukaryotic species, leaving only a few options for SP
identification in prokaryotes. In addition, these existing tools still have suboptimal performance in
SP identification. To fill this gap, we introduce PSPI, a deep learning-based approach designed
specifically for predicting prokaryotic SPs. We showed that PSPI had a high accuracy in predicting
prokaryotic SPs. Compared with three existing tools, PSPI was faster and more accurate in almost
every metric, not only for prokaryotic SPs but also for eukaryotic ones. We also observed that the
incorporation of (n, k)-mers greatly enhances the performance of PSPI, suggesting that many SPs
may contain short linear motifs. The PSPI tool, which 1is freely available at
https://www.cs.ucf.edu/~xiaoman/tools/PSP1/, will be useful for studying SPs.
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1 Introduction

Small proteins (SPs), typically consisting of 100 amino acids (AA) or fewer, are indispensable
components in cells, serving critical functions such as cell defense, adaptive immunity, and
intercellular communication (Sberro et al., 2019). For instance, the SP MgrB regulates the activity
of the sensor kinase PhoQ in response to antimicrobial peptides during bacterial infection (Jiang
et al., 2023). Toddler, another SP, facilitates cell migration during embryonic gastrulation (Pauli et
al., 2014). Because of the pivotal roles of SPs, identifying SPs is imperative for understanding
cellular processes.

The identification of SPs is still in its infancy. Traditionally, open reading frames (ORFs) are at
least 303 nucleotide long and proteins encoded by these ORFs are thus at least 100 AA long (Su et
al., 2013). Although these cutoffs are somewhat arbitrary, they are necessary because the shorter
cutoffs would have resulted in a much higher false positive prediction of genes and proteins.
Because of such a historical constraint, despite their widespread existence, SPs have only started
to be appreciated and studied in the last decade or so.

Experimentally, SPs are often identified by mass spectrometry or ribosome profiling (Kaltashov et
al., 2013; Brar and Weissman, 2015; Ahrens et al., 2022). These experimental methods are
originally designed for regular proteins of at least 100 AA long, while later adapted for SP
identification. They have enabled our rudimentary understanding of SPs. Note that these
experiments can only uncover SPs under a given experimental condition, as the activity of SPs or
small ORFs (sORFs) coding them is condition-specific. Because it is impossible to do experiments
under every condition, it is imperative to develop computational approaches for systematically
predict SPs directly from nucleotide or peptide sequences without additional experimental data
input.

A handful of computational methods have been developed for predicting SPs without additional
experimental data (Miravet-Verde et al., 2019; Zhu and Gribskov, 2019; Durrant and Bhatt, 2021;
Yu et al., 2021; Zhang et al., 2021; Zhang et al., 2022). Most of these methods are created to target
SPs or sORFs in eukaryotes, such as csORF-Finder, MiPepid, and DeepCPP. csORF-Finder is a
tool focused on coding sORFs and can identify sORFs in the coding sequence and non-coding
regions of DNA. It showed better performance than other existing methods (Zhang et al., 2022).
MiPepid applies a logistic regression model with nucleotide tetramer features to predict whether a
sequence contains SORFs coding for SPs (Zhu and Gribskov, 2019). DeepCPP is a deep-learning
tool for RNA coding potential prediction, including SORFs coding SPs (Zhang et al., 2021). There
are also three computational methods for prokaryotic SP identification directly from genomic
sequences: RanSEPs (Miravet-Verde et al., 2019), SmORFinder (Durrant and Bhatt, 2021), and
PsORF (Yu et al., 2021). RanSEPs and SmORFinder predict SPs in the input prokaryotic genome
or metagenome. They thus require prior knowledge of certain genome features, such as a fraction
of known ORFs and the genome structure. Such a prerequisite prevents their wide application to
unassembled prokaryotic sequences or short sequences. Although PsORF considers short
sequences as input for SP identification, it is no longer accessible. Therefore, there is a great need
to develop computational methods for prokaryotic SP identification.

To fill this gap, we present in this study a long short-term memory (LSTM) based approach for
prokaryotic SP identification (PSPI). Through testing on known prokaryotic SPs, their randomly
permuted negatives, and known non-coding negatives, we demonstrated that PSPI reliably
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distinguishes known SPs from random or known negatives. Compared with three existing
approaches, PSPI significantly outperforms in nearly every evaluated metric. Although it is
developed for prokaryotes, PSPI also performs better than existing approaches on eukaryotic SPs.
Additionally, we explored the crucial features for accurate SP prediction and identified gapped
dimers as particularly significant. In the following, we detail the PSPI method, its evaluation and
comparison with other methods, and the pivotal features enhancing its accuracy.

2 Material and Methods

2.1 Four sets of positive data

We collected prokaryotic SPs from three sources. First, we extracted data from the prokaryotic
dataset Pro-6318 by Yu et al. (Yu et al., 2021). This dataset comprises 6318 sORFs from 56
prokaryotic species, with average and median lengths of 76 and 78 AA, respectively. Secondly, we
retrieved SPs from the UniprotKB database (UniProt, 2023). We filtered for bacterial SPs with
length < 100 AA (taxonomy id:2), resulting in 31125 SP sequences with an average length of 75
AA and a median length of 79 AA. This SP collection was designated as UniprotKB-pro. Thirdly,
we collected SPs from the study by Sberro et al. (Sberro et al., 2019). They analyzed 1773 human
body site metagenomes and computationally predicted 4539 clusters of short peptide sequences
and their corresponding nucleotide sequences. Each cluster comprises sequences from at least eight
assembled contigs (“species”), indicating sequence conservation across species and thus likely
representing authentic SPs. After filtering out sequences containing unknown AA, those with
missing nucleotides in homologs, or containing intermittent stop codons, we retained 28090
potential SPs and their corresponding nucleotide sequences, termed microbiome hs.

We also collected eukaryotic SPs from UniprotKB, similar to the prokaryotic SPs from UniprotKB
described above. The distinction is the use of eukaryote taxonomy ID 2759 instead of taxonomy
ID 2. This yielded 22075 SPs, averaging 57 AA in length with a median length of 62 AA. We called
this set UnirprotKB-euk. The UniprotKB-euk set serves to explore the differences between
prokaryotic and eukaryotic SPs and to assess the efficacy of PSPI in predicting eukaryotic SPs.

2.2  Two types of negative data

The above three sets of SPs represent positive data. We also constructed negative data in two ways.
One was to permute the SP sequences. Given a SP sequence, we converted each of its AA into one
of the codons it corresponds, followed by appending a stop codon to the end of the converted
sequence. Subsequently, we randomly shuffled the obtained nucleotide sequence while preserving
the start and stop codons. Finally, we converted the resulted nucleotide sequence back into a
peptide sequence. Notably, we avoid permuting the original SP sequence to generate a negative
sequence, as the permuted sequence shares the same AA composition, potentially still being a SP
sequence. If provided with the sORF sequence as input, we directly permute it accordingly. If a
stop codon occurs in the middle of the permuted sequence, it is randomly substituted with a non-
stop codon. This yielded four sets of negatives, corresponding to three positive sets of prokaryotic
SPs and one positive set of eukaryotic SPs collected above.
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The other way to construct the negatives was using eukaryotic microRNAs. A large number of
microRNAs exist, and the short microRNAs are unlikely to contain sORFs. We could also include
other non-coding RNAs. However, obtaining many other non-coding sequences that were unlikely
to contain SPs was challenging. We downloaded the hairpin.fa file from miRbase (Kozomara et
al., 2019), which contains the ~70 nucleotide long precursor microRNA sequences. We
concatenated all sequences into a single sequence and then randomly partitioned it into non-
overlapping substrings, each ranging from 30 to 300 nucleotides in length. Any stop codons within
these substrings were randomly replaced with non-stop codons. Subsequently, we converted each
nucleotide sequence into its corresponding protein sequence, yielding 69153 negative sequences
from microRNAs. We randomly divided this set of negatives into four subsets of negatives with
17289, 17290, 17288, and 17286 negatives, respectively.

2.3 Training and testing data

We used SPs in pro-6318 as the positive training data and paired them with their corresponding
permuted SPs alongside one set of microRNAs as the training negatives. This combination of the
training positives and negatives, called the pro-6318 training dataset below (Figure 1A), was
employed to train the PSPI model. We tested the trained PSPI on three independent testing datasets:
the UniprotKB-pro testing dataset, the microbiome-hs testing dataset, and the UniprotKB-euk
testing dataset. Similar to the training dataset, each testing dataset comprised of one of the three
remaining sets of positive SPs (UniprotKB-pro, microbiome-hs, UniprotKB-euk) as positives,
juxtaposed with the corresponding permuted SPs and one set of microRNAs as negatives (Figure
1A). For instance, in the UniprotKB-pro testing data, its positives were the SPs in UniprotKB-pro,
and its negatives were the permuted SPs from UniprotKB-pro alongside one set of randomly
chosen microRNAs not utilized for training or testing.

2.4 The PSPI model and its input

We developed a deep learning model called PSPI to predict whether an input peptide sequence is
an SP (Figure 1B). PSPI adopts a LSTM-based architecture. LSTMs are a type of recurrent neural
networks, specializing in learning order dependence within data, not only the short patterns in
sequences, but also the long and variable lengths of patterns (Hochreiter and Schmidhuber, 1997,
Talukder et al., 2021; Athaya et al., 2023). LSTMs have been used to identify different types of
proteins in the past (Yi et al., 2019; Youmans et al., 2020; Qin et al., 2023). Given the significance
of AA order in protein folding and interaction, we employed LSTM to model the ordered AA within
an SP.

The PSPI model architecture, implemented using the Keras Python Package (Chollet, 2018),
constitutes a multiplayer sequential model. The initial layer is an LSTM layer, which converts the
input data into a 128-dimensional vector. Subsequently, a dropout layer with a dropout rate of .25
is applied, followed by a dense layer and a Sigmoid activation layer, yielding a single decimal
score within the range [0,1] (Figure 1B). We classified all sequences with a score = .75 as positive
and those below as negative. We assessed the LSTM model that output a 16, 32, 64, or 128-
dimensional vector and settled on 128 as it gave us the best overall results. Similarly, we assessed
a dropout rate of .25 and .5 and settled it on .25.
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We code the sequences in two different ways to train different PSPI models. One is to code each
sequence as a binary vector of 2000 dimensions, in which each AA corresponds to a vector of 20
dimensions, with only one of its entries having a value of 1 and the rest being zeros. For sequences
shorter than 100 AA, the positions after their maximal lengths are represented by 20-dimensional
zero vectors. That is, short sequences are paddled with 20-dimensional zero vectors to reach the
maximal length of 100 AA.

The other way to code a sequence is to use the aforementioned 2000 binary numbers together with
the count of (n, k)-mers. An (n, k)-mer is a gap k-mer in peptide substrings of at most n AA long
in input sequences. For instance, ACD, AC..D, and A..C..D are the same (7, 3)-mer, while A....C.D
is not a (7, 3)-mer (longer than 7). With this said, (n, k)-mers are different from the gapped k-mers
mentioned in previous studies (Zhang et al., 2021), where every gapped k-mer has a fixed length.
The (n, k)-mers considered here mimic short linear motifs in proteins (Van Roey et al., 2014),
whose functions are determined by their ordered & AA and do not depend on their tertiary
structures. Note that when &k >2, the number of possible (n, k)-mers is too large to train PSPI well.
We thus used degenerated AA. That is, we considered AA with similar chemical and physical
properties as one type and grouped the 20 AA into the following nine groups (Yi et al., 2019):
[AGILPV], [FW], [M], [C], [ST], [Y], [D], [HKR], and [NQ]. We also tried other possible
groupings and found that PSPI performed slightly better with the above grouping. For each
sequence in the training dataset, in addition to the 2000 binary numbers describing its AA in order,
a vector of 9% is added to represent the count of the 9* (n, k)-mers in this sequence when k > 2.
For k < 2, a vector of 20¥ is used, since we use regular AA rather than the degenerated groups.
We input such vectors 2000+9* (k>2) or 2000+20* (k < 2) for the training sequences to train the
PSPI model. Because of the limited training data, we consider k from 2 to 4. Because protein linear
motifs are 3 to 10 AA long, we consider different # from 3 to 10.

Figure.7;(A)Training.and testing.datasets;.(B) The PSPl.model.architectures;.Solid.lines.show.
the.final.parameters.used;.Dotted.ones.are.other.parameters.evaluated;

2.5 Comparison with other methods

We compared PSPI with three representative tools, csORF-Finder, MiPepid, and DeepCPP, on the
testing datasets (Zhu and Gribskov, 2019; Zhang et al., 2021; Zhang et al., 2022). We selected
these tools for comparison because they are specifically designed to predict SPs from sequences.
Moreover, csORF-Finder demonstrated superior performance in their own recent evaluation;
MiPepid performed well in the study of csORF-Finder; and DeepCPP is a deep learning-based
approach and expected to perform well. Because these tools use the nucleotide sequences as inputs,
we generated the corresponding nucleotide sequences of the testing peptide sequences in our
testing datasets when running the tools.

With csORF-Finder, we configured it to predict SPs using its H.sapiens-CDS model and ran the
following command for each testing dataset stored in separated files: “python3
csorf finder predict sORFs.py -1 <filename> -0 <filename>.csv -m H. sapiens-CDS”. CDS refers
to the coding sequence regions of mRNA. csORF-finder has models trained using both CDS and
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nonCDS regions. In their validation testing, CDS models consistently performed better than the
non-CDS models, hence we opted for the CDS model for comparison (Zhang et al., 2022).

With MiPepid, we ran the following command for each of our testing datasets: “python3
Jsrc/mipepid.py <filename> <filename>.csv”’. MiPepid attempts to find sORFs in a sequence
without the requirement to set any specific species. It can thus predict an input sequence in any
eukaryotic species as an SORF or its substrings as a SORF. The MiPepid results we reported refer
to all sequences instead of their substrings it considers a potential SORF, since each sequence in
our testing datasets was either a SORF or not a SORF.

DeepCPP includes a file DeepCPP.ipynb used to run the tool. For each testing dataset, we gave the
.ipynb file the command “test model(‘../input files/’, ../output files/’, ‘<filename>’, ‘human’,
‘sorf”)”. Similarly, we configured DeepCPP to predict SPs using its human sORF model.

3 Results

3.1 PSPI predicted prokaryotic SPs with high accuracy

We trained the original PSPI model on the pro-6318 training dataset with the 2000-dimensional
binary vector representation of an input sequence (Material and Methods). We evaluated this PSPI
model on three independent testing datasets (Table 1). PSPI had a high accuracy in predicting
prokaryotic SPs. It had an area under the receiver operating characteristic curve (AUROC) of 0.994
and an area under the precision-recall curve (AUPR) of 0.986 on the UniprotKB-pro testing
dataset. The AUROC and AUPR were similar but slightly lower on the microbiome-hs testing
dataset, indicating that the UniprotKB annotated SPs are of higher quality than the computationally
inferred SPs in micriobiome-hs, although these inferred SPs were conserved in at least eight
species. The AUROC and AUPR were at least 19% lower on the UniprotKB-euk testing dataset,
suggesting that the eukaryotic SPs may have different characteristics from their prokaryotic
counterparts.

To assess the impact of the positive training dataset on PSPI performance, we trained additional
PSPI models using three subsets of SPs from UniprotKB-pro. With 31125 SPs in UniprotKB-pro,
we randomly divided them into three non-overlapping similar-sized subsets. Each subset served
as positive training data, while corresponding permuted SPs and microRNA negatives from the
original PSPI model were retained as negatives to train a different PSPI model. Testing these
models on independent datasets revealed AUROC and AUPR values very close to the original ones
(e.g., AUROC 0.985 versus 0.994 on the UniprotKB-pro testing data), indicating minimal
influence of the positive SPs on model performance. The similar SUROC and AUPR also suggests
that SPs in pro-6318 are as reliable as those in UniprotKB-pro.

Subsequently, we investigated how the choice of the training negatives impacted PSPI accuracy.

Two PSPI models were trained with SPs from pro-6318 as positives, employing either permuted
SPs from pro-6318 or one set of microRNA negatives as negatives, instead of the combined set
used in the original model. Testing these models on the same dataset, while positives remained
constant, revealed variations in measurements related to negative data when training and testing
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sources differed. For example, specificity drastically differed when using permuted SPs as
negatives during training and microRNA negatives during testing, and vice versa. This discrepancy
in specificity suggests distinct characteristics between permuted and microRNA negatives. Hence,
utilizing combined negatives in the original PSPI model yielded improved performance.
Comparing results in Tables 1 and 2, employing both negative data sources in training enhanced
the model's ability to correctly label negative data (specificity: 0.972) without compromising its
capacity to label positive data (sensitivity: 0.975).

3.2 PSPI had superior performance to three existing tools

We evaluated the original PSPI model with csORF-Finder, MiPepid, and DeepCPP on the three
independent testing datasets (Figure 2). These comparing tools were all for eukaryotic SP
identification. We chose them because they are specifically designed for SP identification.
Moreover, the existing few tools for prokaryotic SP identification cannot be applied to the short
testing sequences we had or inaccessible.

Figure.8.The.Comparison.of.PSPI2csORF_finder2MiPepid2and.DeepCPP.on.three.testing.datasets;.(A).UniprotKB_pro-.(B).
UniprotKB_euk-.and.(C).microbiome_hs;..

PSPI had superior performance to these tools in almost every metric we compared (Figure 2). For
instance, when tested on the UniprotKB-pro testing dataset, PSPI had a precision of 0.911, a
sensitivity or recall of 0.975, a specificity of 0.972, an AUROC of 0.994, and an AUPR of 0.986,
while the three existing tools had the best precision of 0.663 (DeepCPP), the best sensitivity of
0.988 (MiPepid), the best specificity of 0.908 (DeepCPP), the best AUROC of 0.805 (csORF-
Finder), and the best AUPR of 0.646 (DeepCPP). Since the three tools were designed for
eukaryotic SP identification, it would be fair to compare them on the UniprotKB-euk testing
dataset. Again, PSPI consistently performed much better than the three tools in every metric except
the sensitivity and F1 scores. Because PSPI had a better AUPR and AUROC on the UniprotKB-
euk testing dataset, it could have better sensitivity, specificity, and F1 score than other tools when
using different cutoffs instead of the default one for prokaryotic SPs.

As pointed out above, PSPI did not perform so well on eukaryotic SPs as on prokaryotic SPs (Table
1). This was likely because PSPI was trained on the prokaryotic SPs. To see whether the training
on the eukaryotic SPs would improve the performance of PSPI, we also trained another PSPI model
with one-third of sequences randomly selected from the UniprotKB-euk testing dataset as the
training dataset and tested the new PSPI model on the remaining two-thirds of the sequences in
the UniprotKB-euk, including positives and negatives. We found that the performance of the new
PSPI model significantly improved on the eukaryotic SPs (Table 3), with much better performance
than the three tools in every metric except the sensitivity. The sensitivity for eukaryotic sequences
(0.867) became comparable to the other three tools, losing only to MiPepid (0.955). However, its
performance on prokaryotic SPs was not as good as the original PSPI model on prokaryotic SPs,
although it has comparable AUPR and AUROC, suggesting that the eukaryotic SPs have certain
unique unknown features different from the prokaryotic SPs.

We also compared the runtime of the original PSPI model, csORF-Finder, MiPepid, and DeepCPP
on two datasets with 3500 and 6500 sequences, respectively. We did not include the time it took to

8
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build the PSPI model from scratch when we measured the running time of PSPI. All tests were
done on an Acer x86_64 laptop using an Intel® Core™ i3-8130U 2.2GHz processor with 4 cores.
The laptop was equipped with 16 GB of random access memory. PSPI took roughly 450 — 500
seconds to build the model. However, it took only 9.30 and 16.02 seconds to process 3500 and
6500 sequences, respectively. This is better than all other tools since the best of the three tools,
MiPepid, took 18.93 seconds and 39 seconds, respectively. We also noticed that the running time
of PSPI is linearly increasing with the increment of the input sequence number with additional
testing.

3.3 Gapped (n, k)-mers enhanced the performance of PSPI

Previous studies has highlighted the significance of gapped motifs in SP predictions (Zhang et al.,
2021). It is also suggested that many SPs may not have the tertiary structures (Neidigh et al., 2002;
Kubatova et al., 2020). We thus hypothesize that SPs are likely to contain short linear motifs such
as the (n, k)-mers (Van Roey et al., 2014). Short linear motifs often exist in unstructured protein
regions, usually responsible for signaling. It is not the structure but the actual AA sequence that
determines the function of these motifs.

We investigated how different gapped (n, k)-mers would affect the performance of PSPI. Recall
that the original PSPI was trained on the pro-6318 training dataset, with each input sequence
represented by a binary vector of 2000 dimensions. To utilize gapped (n, k)-mers, we trained PSPI
on the same pro-6318 training dataset, with each input sequence represented by a vector of
2000+9% (k>2) or 2000+20* (k < 2) dimensions (Material and Methods).

We studied how the AUROC and AUPR of the trained PSPI model changed with different (n, k)-
mers when it was tested on the UniprotKB-pro and microbiome-hs datasets. We considered 7 in
[3,10], the typical range of short linear motifs. We only considered & = 2 to 4, because of the
limited number of SPs in the training dataset. The AUROC and AUPR had their largest or close-
to-the-largest values for different k when n=4. For instance, on the UnitprotKB-pro testing dataset,
when k=2, the PSPI model using (4, 2)-mers would result in the second largest AUROC (0.9967)
and AUPR (0.9972), close to the largest AUROC (0.9968) and AUPR (0.9973). When k=3, the
PSPI model using (4, 3)-mers would have the largest AUROC (0.9959) and AUPR (0.9965). We
thus fixed n = 4.

Subsequently, we studied how the AUROC and AUPR of the trained PSPI model changed with
different (4, k)-mers when tested on all three testing datasets. Our baseline model used only a 2000-
dimension binary vector representation of an input sequence. We compared the baseline model
with the PSPI models trained with the addition of 1-mers (the frequency of 20 AA), (4, 2)-mers
(dimers), (4, 3)-mers (trimers), (4, 4)-mers (tetramer), or all of them together (Table 3). We
observed that improvements in correctly on the UniprotKB-pro testing dataset were minimal.
However, there were noticeable improvements in identifying the microbiome-hs dataset and great
improvements in the UniprotKB-euk dataset. The different degrees of improvement on different
testing datasets are likely due to the different improvement space on these datasets, with much
more space to improve on the UniprotKB-euk testing dataset. This analysis also implied that there
are subtle signals like (n, k)-mers in SPs. In all cases, the model trained with (4, 2)-mers always
performed best (Tables 1 and 3).
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4 Discussion

We developed PSPI, a tool utilizing LSTM to predict SPs in prokaryotes. We demonstrated its
superior performance over existing tools in both accuracy and speed, particularly in identifying
prokaryotic SPs. We also showed that with proper training on eukaryotic SPs, PSPI can effectively
predict SPs in eukaryotes.

Incorporating the (n, k)-mer feature to represent input sequences improves the model performance.
(n, k)-mers are modified k-mers, which allow a flexible number of gaps inside. They help to
represent the relative order of AA without the exponential growth burden of the parameters that
would have with the regular k-mers. In our study, we found that the incorporation of (4, 2)-mers
improved the PSPI performance most. (4, 2)-mers may represent undiscovered signals in SPs,
which warrant further investigation.

Notably, the distinction between identifying coding SORFs and SPs influenced tool performance.
All tools we compared are intended to identify coding sORFs whereas PSPI is meant to identify
SPs. Because of this difference, other tools all did better than themselves when the negatives were
microRNAs than when the negatives were permuted SPs. Certain parameters these tools used, such
as 3-mer or 4-mer counts, may be not nearly as capable of distinguishing coding from non-coding
sORFs when the number of nucleotides in a sequence is multiples of three. It also explains why
these tools had high accuracy in their original testing on sORFs while not having even close
accuracy here on the SP sequences.

Interesting, we observed that the trained PSPI model using eukaryotic SPs was still capable of
identifying prokaryotic SPs (Table 1). The eukaryote-trained model had a noticeably low
sensitivity score when identifying sequences in UniprotKB-pro (0.793), but it still maintained a
high AUROC and AUPR (0.961 and 0.939), which implied that it was the high threshold score
rather than the model that was unable to identify prokaryotic SPs. This may also indicate the
common traits between prokaryotic and eukaryotic SPs albeit with differences.

In the future, several directions may be explored to improve the accuracy of SP identification
further. First, one may want to have better negative datasets to predict SPs. Our research showed
that the negatives greatly affect the prediction accuracy. More representative negatives obtained in
the future may produce better models. Second, we should systematically identify short linear
motifs in SPs. Our research suggested that short linear motifs may exist in SPs. However, the
identification of these short linear motifs is still challenging. Existing tools are often designed for
a specific genome, not a mixture of genomes. Moreover, their accuracy is insufficient to prevent
the high false positive rate in predictions. Finally, one may study the difference between eukaryotic
and prokaryotic SPs. Our study implied the difference between them, but had no clue what exactly
the difference is. Addressing these problems may lead to more accurate prediction of SPs and a
better understanding of their functions.
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Table 1: The performance of PSPI on three testing datasets.

PSPI Dataset Precision | Sensitivity | Specificity | F1 AUROC | AUPR
Original | UniprotKB-pro | 0.911 0.975 0.972 0.942 | 0.994 0.986
PSPI UniprotKB-euk | 0.876 0.416 0.955 0.564 | 0.762 0.770
microbiome-hs | 0.818 0.937 0.893 0.873 | 0.974 0.959
PSPI from | UniprotKB-pro | 0.917 0.793 0.965 0.850 | 0.961 0.939
eukaryotic | UniprotKB-euk | 0.868 0.867 0.933 0.868 | 0.954 0.942
data microbiome-hs | 0.843 0.934 0.921 0.839 | 0.947 0.923
Final UniprotKB-pro | 0.956 0.976 0.987 0.966 | 0.997 0.993
PSPI UniprotKB-euk | 0.931 0.478 0.973 0.631 | 0.852 0.849
model microbiome-hs | 0.883 0.950 0.936 0.915 | 0.986 0.976
Table 2: Average scores when the model is trained using only one type of negative data.
Training Testing Precision | Sensitivity | Specificity | F1 AUROC | AUPR
negatives negatives
Permutation | Permutation | 0.965 0.952 0.942 0.959 10.987 0.992
Permutation | microRNA | 0.677 0.952 0.728 0.792 | 0.937 0.905
microRNA | microRNA | 0.976 0.976 0.986 0.976 |0.996 0.994
microRNA | Permutation | 0.783 0.976 0.551 0.869 |0.929 0.959
Table 3: AUROC and AUPR of the PSPI models with various (n, k)-mers.
Dataset Baseline | Imers | Dimers | Trimers | Tetramer | All
AUROC | UniprotKB-pro 0.994 0.993 10.997 |0.995 0.994 0.996
UniprotKB-euk 0.762 0.765 10.852 |0.823 0.814 0.80
microbiome-hs 0.974 0.975 | 0.985 0.978 0.974 0.979
AUPR | UniprotKB-pro 0.986 0.985 10.993 0.991 0.988 0.993
UniprotKB-euk 0.769 0.771 10.849 |0.820 0.814 0.816
microbiome-hs 0.958 0.959 10.976 |0.968 0.962 0.971
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