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 14 

Abstract 15 

Small Proteins (SPs) are pivotal in various cellular functions such as immunity, defense, and 16 
communication. Despite their significance, identifying them is still in its infancy. Existing 17 
computational tools are tailored to specific eukaryotic species, leaving only a few options for SP 18 
identification in prokaryotes. In addition, these existing tools still have suboptimal performance in 19 
SP identification. To fill this gap, we introduce PSPI, a deep learning-based approach designed 20 
specifically for predicting prokaryotic SPs. We showed that PSPI had a high accuracy in predicting 21 
prokaryotic SPs. Compared with three existing tools, PSPI was faster and more accurate in almost 22 
every metric, not only for prokaryotic SPs but also for eukaryotic ones. We also observed that the 23 
incorporation of (n, k)-mers greatly enhances the performance of PSPI, suggesting that many SPs 24 
may contain short linear motifs. The PSPI tool, which is freely available at 25 
https://www.cs.ucf.edu/~xiaoman/tools/PSPI/, will be useful for studying SPs. 26 
 27 
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1 Introduction 29 

Small proteins (SPs), typically consisting of 100 amino acids (AA) or fewer, are indispensable 30 
components in cells, serving critical functions such as cell defense, adaptive immunity, and 31 
intercellular communication (Sberro et al., 2019). For instance, the SP MgrB regulates the activity 32 
of the sensor kinase PhoQ in response to antimicrobial peptides during bacterial infection (Jiang 33 
et al., 2023). Toddler, another SP, facilitates cell migration during embryonic gastrulation (Pauli et 34 
al., 2014). Because of the pivotal roles of SPs, identifying SPs is imperative for understanding 35 
cellular processes.   36 
 37 
The identification of SPs is still in its infancy. Traditionally, open reading frames (ORFs) are at 38 
least 303 nucleotide long and proteins encoded by these ORFs are thus at least 100 AA long (Su et 39 
al., 2013). Although these cutoffs are somewhat arbitrary, they are necessary because the shorter 40 
cutoffs would have resulted in a much higher false positive prediction of genes and proteins. 41 
Because of such a historical constraint, despite their widespread existence, SPs have only started 42 
to be appreciated and studied in the last decade or so.  43 
 44 
Experimentally, SPs are often identified by mass spectrometry or ribosome profiling (Kaltashov et 45 
al., 2013; Brar and Weissman, 2015; Ahrens et al., 2022). These experimental methods are 46 
originally designed for regular proteins of at least 100 AA long, while later adapted for SP 47 
identification. They have enabled our rudimentary understanding of SPs. Note that these 48 
experiments can only uncover SPs under a given experimental condition, as the activity of SPs or 49 
small ORFs (sORFs) coding them is condition-specific. Because it is impossible to do experiments 50 
under every condition, it is imperative to develop computational approaches for systematically 51 
predict SPs directly from nucleotide or peptide sequences without additional experimental data 52 
input.  53 
A handful of computational methods have been developed for predicting SPs without additional 54 
experimental data (Miravet-Verde et al., 2019; Zhu and Gribskov, 2019; Durrant and Bhatt, 2021; 55 
Yu et al., 2021; Zhang et al., 2021; Zhang et al., 2022). Most of these methods are created to target 56 
SPs or sORFs in eukaryotes, such as csORF-Finder, MiPepid, and DeepCPP. csORF-Finder is a 57 
tool focused on coding sORFs and can identify sORFs in the coding sequence and non-coding 58 
regions of DNA. It showed better performance than other existing methods (Zhang et al., 2022). 59 
MiPepid applies a logistic regression model with nucleotide tetramer features to predict whether a 60 
sequence contains sORFs coding for SPs (Zhu and Gribskov, 2019). DeepCPP is a deep-learning 61 
tool for RNA coding potential prediction, including sORFs coding SPs (Zhang et al., 2021). There 62 
are also three computational methods for prokaryotic SP identification directly from genomic 63 
sequences: RanSEPs (Miravet-Verde et al., 2019), SmORFinder (Durrant and Bhatt, 2021), and 64 
PsORF (Yu et al., 2021). RanSEPs and SmORFinder predict SPs in the input prokaryotic genome 65 
or metagenome. They thus require prior knowledge of certain genome features, such as a fraction 66 
of known ORFs and the genome structure. Such a prerequisite prevents their wide application to 67 
unassembled prokaryotic sequences or short sequences. Although PsORF considers short 68 
sequences as input for SP identification, it is no longer accessible. Therefore, there is a great need 69 
to develop computational methods for prokaryotic SP identification. 70 
 71 
To fill this gap, we present in this study a long short-term memory (LSTM) based approach for 72 
prokaryotic SP identification (PSPI). Through testing on known prokaryotic SPs, their randomly 73 
permuted negatives, and known non-coding negatives, we demonstrated that PSPI reliably 74 
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distinguishes known SPs from random or known negatives. Compared with three existing 75 
approaches, PSPI significantly outperforms in nearly every evaluated metric. Although it is 76 
developed for prokaryotes, PSPI also performs better than existing approaches on eukaryotic SPs. 77 
Additionally, we explored the crucial features for accurate SP prediction and identified gapped 78 
dimers as particularly significant. In the following, we detail the PSPI method, its evaluation and 79 
comparison with other methods, and the pivotal features enhancing its accuracy. 80 
 81 

2 Material and Methods 82 

2.1 Four sets of positive data  83 

We collected prokaryotic SPs from three sources. First, we extracted data from the prokaryotic 84 
dataset Pro-6318 by Yu et al. (Yu et al., 2021). This dataset comprises 6318 sORFs from 56 85 
prokaryotic species, with average and median lengths of 76 and 78 AA, respectively. Secondly, we 86 
retrieved SPs from the UniprotKB database (UniProt, 2023). We filtered for bacterial SPs with 87 
length ≤ 100 AA (taxonomy_id:2), resulting in 31125 SP sequences with an average length of 75 88 
AA and a median length of 79 AA. This SP collection was designated as UniprotKB-pro. Thirdly, 89 
we collected SPs from the study by Sberro et al. (Sberro et al., 2019). They analyzed 1773 human 90 
body site metagenomes and computationally predicted 4539 clusters of short peptide sequences 91 
and their corresponding nucleotide sequences. Each cluster comprises sequences from at least eight 92 
assembled contigs (“species”), indicating sequence conservation across species and thus likely 93 
representing authentic SPs. After filtering out sequences containing unknown AA, those with 94 
missing nucleotides in homologs, or containing intermittent stop codons, we retained 28090 95 
potential SPs and their corresponding nucleotide sequences, termed microbiome_hs. 96 
 97 
We also collected eukaryotic SPs from UniprotKB, similar to the prokaryotic SPs from UniprotKB 98 
described above. The distinction is the use of eukaryote taxonomy ID 2759 instead of taxonomy 99 
ID 2. This yielded 22075 SPs, averaging 57 AA in length with a median length of 62 AA. We called 100 
this set UnirprotKB-euk. The UniprotKB-euk set serves to explore the differences between 101 
prokaryotic and eukaryotic SPs and to assess the efficacy of PSPI in predicting eukaryotic SPs. 102 
 103 

2.2 Two types of negative data 104 

The above three sets of SPs represent positive data. We also constructed negative data in two ways. 105 
One was to permute the SP sequences. Given a SP sequence, we converted each of its AA into one 106 
of the codons it corresponds, followed by appending a stop codon to the end of the converted 107 
sequence. Subsequently, we randomly shuffled the obtained nucleotide sequence while preserving 108 
the start and stop codons. Finally, we converted the resulted nucleotide sequence back into a 109 
peptide sequence. Notably, we avoid permuting the original SP sequence to generate a negative 110 
sequence, as the permuted sequence shares the same AA composition, potentially still being a SP 111 
sequence. If provided with the sORF sequence as input, we directly permute it accordingly. If a 112 
stop codon occurs in the middle of the permuted sequence, it is randomly substituted with a non-113 
stop codon. This yielded four sets of negatives, corresponding to three positive sets of prokaryotic 114 
SPs and one positive set of eukaryotic SPs collected above. 115 
 116 
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The other way to construct the negatives was using eukaryotic microRNAs. A large number of 117 
microRNAs exist, and the short microRNAs are unlikely to contain sORFs. We could also include 118 
other non-coding RNAs. However, obtaining many other non-coding sequences that were unlikely 119 
to contain SPs was challenging. We downloaded the hairpin.fa file from miRbase (Kozomara et 120 
al., 2019), which contains the ~70 nucleotide long precursor microRNA sequences. We 121 
concatenated all sequences into a single sequence and then randomly partitioned it into non-122 
overlapping substrings, each ranging from 30 to 300 nucleotides in length. Any stop codons within 123 
these substrings were randomly replaced with non-stop codons. Subsequently, we converted each 124 
nucleotide sequence into its corresponding protein sequence, yielding 69153 negative sequences 125 
from microRNAs. We randomly divided this set of negatives into four subsets of negatives with 126 
17289, 17290, 17288, and 17286 negatives, respectively.   127 
 128 

2.3 Training and testing data 129 

We used SPs in pro-6318 as the positive training data and paired them with their corresponding 130 
permuted SPs alongside one set of microRNAs as the training negatives. This combination of the 131 
training positives and negatives, called the pro-6318 training dataset below (Figure 1A), was 132 
employed to train the PSPI model. We tested the trained PSPI on three independent testing datasets: 133 
the UniprotKB-pro testing dataset, the microbiome-hs testing dataset, and the UniprotKB-euk 134 
testing dataset. Similar to the training dataset, each testing dataset comprised of one of the three 135 
remaining sets of positive SPs (UniprotKB-pro, microbiome-hs, UniprotKB-euk) as positives, 136 
juxtaposed with the corresponding permuted SPs and one set of microRNAs as negatives (Figure 137 
1A). For instance, in the UniprotKB-pro testing data, its positives were the SPs in UniprotKB-pro, 138 
and its negatives were the permuted SPs from UniprotKB-pro alongside one set of randomly 139 
chosen microRNAs not utilized for training or testing.  140 
 141 

2.4 The PSPI model and its input 142 

We developed a deep learning model called PSPI to predict whether an input peptide sequence is 143 
an SP (Figure 1B). PSPI adopts a LSTM-based architecture. LSTMs are a type of recurrent neural 144 
networks, specializing in learning order dependence within data, not only the short patterns in 145 
sequences, but also the long and variable lengths of patterns (Hochreiter and Schmidhuber, 1997; 146 
Talukder et al., 2021; Athaya et al., 2023). LSTMs have been used to identify different types of 147 
proteins in the past (Yi et al., 2019; Youmans et al., 2020; Qin et al., 2023). Given the significance 148 
of AA order in protein folding and interaction, we employed LSTM to model the ordered AA within 149 
an SP. 150 
 151 
The PSPI model architecture, implemented using the Keras Python Package (Chollet, 2018), 152 
constitutes a multiplayer sequential model. The initial layer is an LSTM layer, which converts the 153 
input data into a 128-dimensional vector. Subsequently, a dropout layer with a dropout rate of .25 154 
is applied, followed by a dense layer and a Sigmoid activation layer, yielding a single decimal 155 
score within the range [0,1] (Figure 1B). We classified all sequences with a score ≥ .75 as positive 156 
and those below as negative. We assessed the LSTM model that output a 16, 32, 64, or 128-157 
dimensional vector and settled on 128 as it gave us the best overall results. Similarly, we assessed 158 
a dropout rate of .25 and .5 and settled it on .25.  159 
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 160 
We code the sequences in two different ways to train different PSPI models. One is to code each 161 
sequence as a binary vector of 2000 dimensions, in which each AA corresponds to a vector of 20 162 
dimensions, with only one of its entries having a value of 1 and the rest being zeros. For sequences 163 
shorter than 100 AA, the positions after their maximal lengths are represented by 20-dimensional 164 
zero vectors. That is, short sequences are paddled with 20-dimensional zero vectors to reach the 165 
maximal length of 100 AA. 166 
 167 
The other way to code a sequence is to use the aforementioned 2000 binary numbers together with 168 
the count of (n, k)-mers. An (n, k)-mer is a gap k-mer in peptide substrings of at most n AA long 169 
in input sequences. For instance, ACD, AC..D, and A..C..D are the same (7, 3)-mer, while A….C.D 170 
is not a (7, 3)-mer (longer than 7). With this said,  (n, k)-mers are different from the gapped k-mers 171 
mentioned in previous studies (Zhang et al., 2021), where every gapped k-mer has a fixed length. 172 
The (n, k)-mers considered here mimic short linear motifs in proteins (Van Roey et al., 2014), 173 
whose functions are determined by their ordered k AA and do not depend on their tertiary 174 
structures. Note that when k >2, the number of possible (n, k)-mers is too large to train PSPI well. 175 
We thus used degenerated AA. That is, we considered AA with similar chemical and physical 176 
properties as one type and grouped the 20 AA into the following nine groups (Yi et al., 2019): 177 
[AGILPV], [FW], [M], [C], [ST], [Y], [D], [HKR], and [NQ]. We also tried other possible 178 
groupings and found that PSPI performed slightly better with the above grouping. For each 179 
sequence in the training dataset, in addition to the 2000 binary numbers describing its AA in order, 180 
a vector of 9k is added to represent the count of the  9k (n, k)-mers in this sequence when k > 2. 181 
For k ≤ 2, a vector of 20𝑘𝑘 is used, since we use regular AA rather than the degenerated groups. 182 
We input such vectors 2000+9k (k>2) or 2000+20k (k ≤ 2) for the training sequences to train the 183 
PSPI model. Because of the limited training data, we consider k from 2 to 4. Because protein linear 184 
motifs are 3 to 10 AA long, we consider different n from 3 to 10. 185 
 186 
Figure.7¡.(A).Training.and.testing.datasets¡.(B).The.PSPI.model.architectures¡.Solid.lines.show.187 
the.final.parameters.used¡.Dotted.ones.are.other.parameters.evaluated¡ 188 
 189 

2.5 Comparison with other methods 190 

We compared PSPI with three representative tools, csORF-Finder, MiPepid, and DeepCPP, on the 191 
testing datasets (Zhu and Gribskov, 2019; Zhang et al., 2021; Zhang et al., 2022). We selected 192 
these tools for comparison because they are specifically designed to predict SPs from sequences. 193 
Moreover, csORF-Finder demonstrated superior performance in their own recent evaluation; 194 
MiPepid performed well in the study of csORF-Finder; and DeepCPP is a deep learning-based 195 
approach and expected to perform well. Because these tools use the nucleotide sequences as inputs, 196 
we generated the corresponding nucleotide sequences of the testing peptide sequences in our 197 
testing datasets when running the tools.  198 
 199 
With csORF-Finder, we configured it to predict SPs using its H.sapiens-CDS model and ran the 200 
following command for each testing dataset stored in separated files: “python3 201 
csorf_finder_predict_sORFs.py -i <filename> -o <filename>.csv -m H. sapiens-CDS”. CDS refers 202 
to the coding sequence regions of mRNA. csORF-finder has models trained using both CDS and 203 
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nonCDS regions. In their validation testing, CDS models consistently performed better than the 204 
non-CDS models, hence we opted for the CDS model for comparison (Zhang et al., 2022).   205 
 206 
With MiPepid, we ran the following command for each of our testing datasets: “python3 207 
./src/mipepid.py <filename> <filename>.csv”. MiPepid attempts to find sORFs in a sequence 208 
without the requirement to set any specific species. It can thus predict an input sequence in any 209 
eukaryotic species as an sORF or its substrings as a sORF. The MiPepid results we reported refer 210 
to all sequences instead of their substrings it considers a potential sORF, since each sequence in 211 
our testing datasets was either a sORF or not a sORF. 212 
 213 
DeepCPP includes a file DeepCPP.ipynb used to run the tool. For each testing dataset, we gave the 214 
.ipynb file the command “test_model(‘../input_files/’, ‘../output_files/’, ‘<filename>’, ‘human’, 215 
‘sorf’)”. Similarly, we configured DeepCPP to predict SPs using its human sORF model.  216 
 217 

3 Results 218 

3.1 PSPI predicted prokaryotic SPs with high accuracy 219 

We trained the original PSPI model on the pro-6318 training dataset with the 2000-dimensional 220 
binary vector representation of an input sequence (Material and Methods). We evaluated this PSPI 221 
model on three independent testing datasets (Table 1). PSPI had a high accuracy in predicting 222 
prokaryotic SPs. It had an area under the receiver operating characteristic curve (AUROC) of 0.994 223 
and an area under the precision-recall curve (AUPR) of 0.986 on the UniprotKB-pro testing 224 
dataset. The AUROC and AUPR were similar but slightly lower on the microbiome-hs testing 225 
dataset, indicating that the UniprotKB annotated SPs are of higher quality than the computationally 226 
inferred SPs in micriobiome-hs, although these inferred SPs were conserved in at least eight 227 
species. The AUROC and AUPR were at least 19% lower on the UniprotKB-euk testing dataset, 228 
suggesting that the eukaryotic SPs may have different characteristics from their prokaryotic 229 
counterparts.  230 
 231 
 232 
To assess the impact of the positive training dataset on PSPI performance, we trained additional 233 
PSPI models using three subsets of SPs from UniprotKB-pro. With 31125 SPs in UniprotKB-pro, 234 
we randomly divided them into three non-overlapping similar-sized subsets. Each subset served 235 
as positive training data, while corresponding permuted SPs and microRNA negatives from the 236 
original PSPI model were retained as negatives to train a different PSPI model. Testing these 237 
models on independent datasets revealed AUROC and AUPR values very close to the original ones 238 
(e.g., AUROC 0.985 versus 0.994 on the UniprotKB-pro testing data), indicating minimal 239 
influence of the positive SPs on model performance. The similar SUROC and AUPR also suggests 240 
that SPs in pro-6318 are as reliable as those in UniprotKB-pro.  241 
 242 
Subsequently, we investigated how the choice of the training negatives impacted PSPI accuracy.  243 
Two PSPI models were trained with SPs from pro-6318 as positives, employing either permuted 244 
SPs from pro-6318 or one set of microRNA negatives as negatives, instead of the combined set 245 
used in the original model. Testing these models on the same dataset, while positives remained 246 
constant, revealed variations in measurements related to negative data when training and testing 247 
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sources differed. For example, specificity drastically differed when using permuted SPs as 248 
negatives during training and microRNA negatives during testing, and vice versa. This discrepancy 249 
in specificity suggests distinct characteristics between permuted and microRNA negatives. Hence, 250 
utilizing combined negatives in the original PSPI model yielded improved performance. 251 
Comparing results in Tables 1 and 2, employing both negative data sources in training enhanced 252 
the model's ability to correctly label negative data (specificity: 0.972) without compromising its 253 
capacity to label positive data (sensitivity: 0.975). 254 
 255 

3.2 PSPI had superior performance to three existing tools 256 

We evaluated the original PSPI model with csORF-Finder, MiPepid, and DeepCPP on the three 257 
independent testing datasets (Figure 2). These comparing tools were all for eukaryotic SP 258 
identification. We chose them because they are specifically designed for SP identification. 259 
Moreover, the existing few tools for prokaryotic SP identification cannot be applied to the short 260 
testing sequences we had or inaccessible.  261 
 262 
Figure.8.The.Comparison.of.PSPI?.csORF‗finder?.MiPepid?.and.DeepCPP.on.three.testing.datasets¡.(A).UniprotKB‗pro·.(B).263 
UniprotKB‗euk·.and.(C).microbiome‗hs¡.. 264 
 265 
PSPI had superior performance to these tools in almost every metric we compared (Figure 2). For 266 
instance, when tested on the UniprotKB-pro testing dataset, PSPI had a precision of 0.911, a 267 
sensitivity or recall of 0.975, a specificity of 0.972, an AUROC of 0.994, and an AUPR of 0.986, 268 
while the three existing tools had the best precision of 0.663 (DeepCPP), the best sensitivity of 269 
0.988 (MiPepid), the best specificity of 0.908 (DeepCPP), the best AUROC of 0.805 (csORF-270 
Finder), and the best AUPR of 0.646 (DeepCPP). Since the three tools were designed for 271 
eukaryotic SP identification, it would be fair to compare them on the UniprotKB-euk testing 272 
dataset. Again, PSPI consistently performed much better than the three tools in every metric except 273 
the sensitivity and F1 scores. Because PSPI had a better AUPR and AUROC on the UniprotKB-274 
euk testing dataset, it could have better sensitivity, specificity, and F1 score than other tools when 275 
using different cutoffs instead of the default one for prokaryotic SPs.  276 
 277 
As pointed out above, PSPI did not perform so well on eukaryotic SPs as on prokaryotic SPs (Table 278 
1). This was likely because PSPI was trained on the prokaryotic SPs. To see whether the training 279 
on the eukaryotic SPs would improve the performance of PSPI, we also trained another PSPI model 280 
with one-third of sequences randomly selected from the UniprotKB-euk testing dataset as the 281 
training dataset and tested the new PSPI model on the remaining two-thirds of the sequences in 282 
the UniprotKB-euk, including positives and negatives. We found that the performance of the new 283 
PSPI model significantly improved on the eukaryotic SPs (Table 3), with much better performance 284 
than the three tools in every metric except the sensitivity. The sensitivity for eukaryotic sequences 285 
(0.867) became comparable to the other three tools, losing only to MiPepid (0.955). However, its 286 
performance on prokaryotic SPs was not as good as the original PSPI model on prokaryotic SPs, 287 
although it has comparable AUPR and AUROC, suggesting that the eukaryotic SPs have certain 288 
unique unknown features different from the prokaryotic SPs. 289 
 290 
We also compared the runtime of the original PSPI model, csORF-Finder, MiPepid, and DeepCPP 291 
on two datasets with 3500 and 6500 sequences, respectively. We did not include the time it took to 292 
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build the PSPI model from scratch when we measured the running time of PSPI. All tests were 293 
done on an Acer x86_64 laptop using an Intel® Core™ i3-8130U 2.2GHz processor with 4 cores. 294 
The laptop was equipped with 16 GB of random access memory. PSPI took roughly 450 – 500 295 
seconds to build the model. However, it took only 9.30 and 16.02 seconds to process 3500 and 296 
6500 sequences, respectively. This is better than all other tools since the best of the three tools, 297 
MiPepid, took 18.93 seconds and 39 seconds, respectively. We also noticed that the running time 298 
of PSPI is linearly increasing with the increment of the input sequence number with additional 299 
testing. 300 
  301 

3.3 Gapped (n, k)-mers enhanced the performance of PSPI 302 

Previous studies has highlighted the significance of gapped motifs in SP predictions (Zhang et al., 303 
2021). It is also suggested that many SPs may not have the tertiary structures (Neidigh et al., 2002; 304 
Kubatova et al., 2020). We thus hypothesize that SPs are likely to contain short linear motifs such 305 
as the (n, k)-mers (Van Roey et al., 2014). Short linear motifs often exist in unstructured protein 306 
regions, usually responsible for signaling. It is not the structure but the actual AA sequence that 307 
determines the function of these motifs.  308 
 309 
We investigated how different gapped (n, k)-mers would affect the performance of PSPI. Recall 310 
that the original PSPI was trained on the pro-6318 training dataset, with each input sequence 311 
represented by a binary vector of 2000 dimensions. To utilize gapped (n, k)-mers, we trained PSPI 312 
on the same pro-6318 training dataset, with each input sequence represented by a vector of 313 
2000+9k (k>2) or 2000+20k (k ≤ 2) dimensions (Material and Methods). 314 
 315 
We studied how the AUROC and AUPR of the trained PSPI model changed with different (n, k)-316 
mers when it was tested on the UniprotKB-pro and microbiome-hs datasets. We considered n in 317 
[3,10], the typical range of short linear motifs. We only considered k = 2 to 4, because of the 318 
limited number of SPs in the training dataset. The AUROC and AUPR had their largest or close-319 
to-the-largest values for different k when n=4. For instance, on the UnitprotKB-pro testing dataset, 320 
when k=2,  the PSPI model using (4, 2)-mers would result in the second largest AUROC (0.9967) 321 
and AUPR (0.9972), close to the largest AUROC (0.9968) and AUPR (0.9973). When k=3, the 322 
PSPI model using (4, 3)-mers would have the largest AUROC (0.9959) and AUPR (0.9965). We 323 
thus fixed n = 4. 324 
 325 
Subsequently, we studied how the AUROC and AUPR of the trained PSPI model changed with 326 
different (4, k)-mers when tested on all three testing datasets. Our baseline model used only a 2000-327 
dimension binary vector representation of an input sequence. We compared the baseline model 328 
with the PSPI models trained with the addition of 1-mers (the frequency of 20 AA), (4, 2)-mers 329 
(dimers), (4, 3)-mers (trimers), (4, 4)-mers (tetramer), or all of them together (Table 3). We 330 
observed that improvements in correctly on the UniprotKB-pro testing dataset were minimal. 331 
However, there were noticeable improvements in identifying the microbiome-hs dataset and great 332 
improvements in the UniprotKB-euk dataset. The different degrees of improvement on different 333 
testing datasets are likely due to the different improvement space on these datasets, with much 334 
more space to improve on the UniprotKB-euk testing dataset. This analysis also implied that there 335 
are subtle signals like (n, k)-mers in SPs. In all cases, the model trained with (4, 2)-mers always 336 
performed best (Tables 1 and 3).  337 
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 338 
 339 

4 Discussion 340 

We developed PSPI, a tool utilizing LSTM to predict SPs in prokaryotes. We demonstrated its 341 
superior performance over existing tools in both accuracy and speed, particularly in identifying 342 
prokaryotic SPs. We also showed that with proper training on eukaryotic SPs, PSPI can effectively 343 
predict SPs in eukaryotes.   344 
 345 
Incorporating the (n, k)-mer feature to represent input sequences improves the model performance. 346 
(n, k)-mers are modified k-mers, which allow a flexible number of gaps inside. They help to 347 
represent the relative order of AA without the exponential growth burden of the parameters that 348 
would have with the regular k-mers. In our study, we found that the incorporation of (4, 2)-mers 349 
improved the PSPI performance most. (4, 2)-mers may represent undiscovered signals in SPs, 350 
which warrant further investigation. 351 
 352 
Notably, the distinction between identifying coding sORFs and SPs influenced tool performance.  353 
All tools we compared are intended to identify coding sORFs whereas PSPI is meant to identify 354 
SPs. Because of this difference, other tools all did better than themselves when the negatives were 355 
microRNAs than when the negatives were permuted SPs. Certain parameters these tools used, such 356 
as 3-mer or 4-mer counts, may be not nearly as capable of distinguishing coding from non-coding 357 
sORFs when the number of nucleotides in a sequence is multiples of three. It also explains why 358 
these tools had high accuracy in their original testing on sORFs while not having even close 359 
accuracy here on the SP sequences.  360 
 361 
Interesting, we observed that the trained PSPI model using eukaryotic SPs was still capable of 362 
identifying prokaryotic SPs (Table 1). The eukaryote-trained model had a noticeably low 363 
sensitivity score when identifying sequences in UniprotKB-pro (0.793), but it still maintained a 364 
high AUROC and AUPR (0.961 and 0.939), which implied that it was the high threshold score 365 
rather than the model that was unable to identify prokaryotic SPs. This may also indicate the 366 
common traits between prokaryotic and eukaryotic SPs albeit with differences.  367 
 368 
In the future, several directions may be explored to improve the accuracy of SP identification 369 
further. First, one may want to have better negative datasets to predict SPs. Our research showed 370 
that the negatives greatly affect the prediction accuracy. More representative negatives obtained in 371 
the future may produce better models. Second, we should systematically identify short linear 372 
motifs in SPs. Our research suggested that short linear motifs may exist in SPs. However, the 373 
identification of these short linear motifs is still challenging. Existing tools are often designed for 374 
a specific genome, not a mixture of genomes. Moreover, their accuracy is insufficient to prevent 375 
the high false positive rate in predictions. Finally, one may study the difference between eukaryotic 376 
and prokaryotic SPs. Our study implied the difference between them, but had no clue what exactly 377 
the difference is. Addressing these problems may lead to more accurate prediction of SPs and a 378 
better understanding of their functions. 379 
 380 
 381 
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prokaryotes. This contribution is particularly pertinent to this journal as there exists a notable 399 
scarcity of tools and methodologies tailored for prokaryotic small protein identification. Most 400 
existing tools focus on identifying short open reading frames rather than the small protein 401 
sequences themselves. Additionally, we introduce (n,k)-mers as a new feature, which 402 
significantly enhances the model's performance. This feature holds promise for future 403 
exploration to identify distinctive characteristics of small proteins and to distinguish between 404 
prokaryotic and eukaryotic small proteins.  405 

https://www.cs.ucf.edu/%7Exiaoman/tools/PSPI/


12 
 

References 406 

Ahrens, C.H., Wade, J.T., Champion, M.M., and Langer, J.D. (2022). A Practical Guide to 407 
Small Protein Discovery and Characterization Using Mass Spectrometry. J.Bacteriol 408 
204(1), e0035321. doi: 10.1128/JB.00353-21. 409 

Athaya, T., Ripan, R.C., Li, X., and Hu, H. (2023). Multimodal deep learning approaches for 410 
single-cell multi-omics data integration. Brief.Bioinform 24(5). doi: 411 
10.1093/bib/bbad313. 412 

Brar, G.A., and Weissman, J.S. (2015). Ribosome profiling reveals the what, when, where 413 
and how of protein synthesis. Nat.Rev.Mol.Cell.Biol 16(11), 651-664. doi: 414 
10.1038/nrm4069. 415 

Chollet, F. (2018). Keras: The python deep learning library. Astrophysics.source.code.416 
library, ascl: 1806.1022. 417 

Durrant, M.G., and Bhatt, A.S. (2021). Automated Prediction and Annotation of Small Open 418 
Reading Frames in Microbial Genomes. Cell.Host.Microbe 29(1), 121-131 e124. doi: 419 
10.1016/j.chom.2020.11.002. 420 

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural.Comput 9(8), 421 
1735-1780. doi: 10.1162/neco.1997.9.8.1735. 422 

Jiang, S., Steup, L.C., Kippnich, C., Lazaridi, S., Malengo, G., Lemmin, T., et al. (2023). The 423 
inhibitory mechanism of a small protein reveals its role in antimicrobial peptide 424 
sensing. Proc.Natl.Acad.Sci.U.S.A 120(41), e2309607120. doi: 425 
10.1073/pnas.2309607120. 426 

Kaltashov, I.A., Bobst, C.E., and Abzalimov, R.R. (2013). Mass spectrometry-based 427 
methods to study protein architecture and dynamics. Protein.Sci 22(5), 530-544. 428 
doi: 10.1002/pro.2238. 429 

Kozomara, A., Birgaoanu, M., and Griffiths-Jones, S. (2019). miRBase: from microRNA 430 
sequences to function. Nucleic.Acids.Res 47(D1), D155-D162. doi: 431 
10.1093/nar/gky1141. 432 

Kubatova, N., Pyper, D.J., Jonker, H.R.A., Saxena, K., Remmel, L., Richter, C., et al. (2020). 433 
Rapid Biophysical Characterization and NMR Spectroscopy Structural Analysis of 434 
Small Proteins from Bacteria and Archaea. Chembiochem 21(8), 1178-1187. doi: 435 
10.1002/cbic.201900677. 436 

Miravet-Verde, S., Ferrar, T., Espadas-Garcia, G., Mazzolini, R., Gharrab, A., Sabido, E., et al. 437 
(2019). Unraveling the hidden universe of small proteins in bacterial genomes. Mol.438 
Syst.Biol 15(2), e8290. doi: 10.15252/msb.20188290. 439 

Neidigh, J.W., Fesinmeyer, R.M., and Andersen, N.H. (2002). Designing a 20-residue 440 
protein. Nat.Struct.Biol 9(6), 425-430. doi: 10.1038/nsb798. 441 

Pauli, A., Norris, M.L., Valen, E., Chew, G.L., Gagnon, J.A., Zimmerman, S., et al. (2014). 442 
Toddler: an embryonic signal that promotes cell movement via Apelin receptors. 443 
Science 343(6172), 1248636. doi: 10.1126/science.1248636. 444 

Qin, D., Jiao, L., Wang, R., Zhao, Y., Hao, Y., and Liang, G. (2023). Prediction of antioxidant 445 
peptides using a quantitative structure-activity relationship predictor (AnOxPP) 446 
based on bidirectional long short-term memory neural network and interpretable 447 



13 
 

amino acid descriptors. Comput.Biol.Med 154, 106591. doi: 448 
10.1016/j.compbiomed.2023.106591. 449 

Sberro, H., Fremin, B.J., Zlitni, S., Edfors, F., Greenfield, N., Snyder, M.P., et al. (2019). 450 
Large-Scale Analyses of Human Microbiomes Reveal Thousands of Small, Novel 451 
Genes. Cell 178(5), 1245-1259 e1214. doi: 10.1016/j.cell.2019.07.016. 452 

Su, M., Ling, Y., Yu, J., Wu, J., and Xiao, J. (2013). Small proteins: untapped area of potential 453 
biological importance. Front.Genet 4, 286. doi: 10.3389/fgene.2013.00286. 454 

Talukder, A., Barham, C., Li, X., and Hu, H. (2021). Interpretation of deep learning in 455 
genomics and epigenomics. Brief.Bioinform 22(3). doi: 10.1093/bib/bbaa177. 456 

UniProt, C. (2023). UniProt: the Universal Protein Knowledgebase in 2023. Nucleic.Acids.457 
Res 51(D1), D523-D531. doi: 10.1093/nar/gkac1052. 458 

Van Roey, K., Uyar, B., Weatheritt, R.J., Dinkel, H., Seiler, M., Budd, A., et al. (2014). Short 459 
linear motifs: ubiquitous and functionally diverse protein interaction modules 460 
directing cell regulation. Chem.Rev 114(13), 6733-6778. doi: 10.1021/cr400585q. 461 

Yi, H.C., You, Z.H., Zhou, X., Cheng, L., Li, X., Jiang, T.H., et al. (2019). ACP-DL: A Deep 462 
Learning Long Short-Term Memory Model to Predict Anticancer Peptides Using High-463 
Efficiency Feature Representation. Mol.Ther.Nucleic.Acids 17, 1-9. doi: 464 
10.1016/j.omtn.2019.04.025. 465 

Youmans, M., Spainhour, J.C.G., and Qiu, P. (2020). Classification of Antibacterial Peptides 466 
Using Long Short-Term Memory Recurrent Neural Networks. IEEE―ACM.Trans.467 
Comput.Biol.Bioinform 17(4), 1134-1140. doi: 10.1109/TCBB.2019.2903800. 468 

Yu, J., Guo, L., Dou, X., Jiang, W., Qian, B., Liu, J., et al. (2021). Comprehensive evaluation of 469 
protein-coding sORFs prediction based on a random sequence strategy. Front.470 
Biosci.(Landmark.Ed) 26(8), 272-278. doi: 10.52586/4943. 471 

Zhang, M., Zhao, J., Li, C., Ge, F., Wu, J., Jiang, B., et al. (2022). csORF-finder: an effective 472 
ensemble learning framework for accurate identification of multi-species coding 473 
short open reading frames. Brief.Bioinform 23(6). doi: 10.1093/bib/bbac392. 474 

Zhang, Y., Jia, C., Fullwood, M.J., and Kwoh, C.K. (2021). DeepCPP: a deep neural network 475 
based on nucleotide bias information and minimum distribution similarity feature 476 
selection for RNA coding potential prediction. Brief.Bioinform 22(2), 2073-2084. doi: 477 
10.1093/bib/bbaa039. 478 

Zhu, M., and Gribskov, M. (2019). MiPepid: MicroPeptide identification tool using machine 479 
learning. BMC.Bioinformatics 20(1), 559. doi: 10.1186/s12859-019-3033-9. 480 

 481 
  482 



14 
 

 483 
Table 1: The performance of PSPI on three testing datasets. 484 
PSPI Dataset Precision Sensitivity Specificity F1 AUROC AUPR 
Original 
PSPI 

UniprotKB-pro 0.911 0.975 0.972 0.942 0.994 0.986 
UniprotKB-euk 0.876 0.416 0.955 0.564 0.762 0.770 
microbiome-hs 0.818 0.937 0.893 0.873 0.974 0.959 

PSPI from 
eukaryotic 
data 

UniprotKB-pro 0.917 0.793 0.965 0.850 0.961 0.939 
UniprotKB-euk 0.868 0.867 0.933 0.868 0.954 0.942 
microbiome-hs 0.843 0.934 0.921 0.839 0.947 0.923 

Final 
PSPI 
model 

UniprotKB-pro 0.956 0.976 0.987 0.966 0.997 0.993 
UniprotKB-euk 0.931 0.478 0.973 0.631 0.852 0.849 
microbiome-hs 0.883 0.950 0.936 0.915 0.986 0.976 

 485 
 486 
Table 2: Average scores when the model is trained using only one type of negative data.  487 
Training 
negatives 

Testing 
negatives 

Precision Sensitivity Specificity F1 AUROC AUPR 

Permutation Permutation 0.965 0.952 0.942 0.959 0.987 0.992 
Permutation microRNA 0.677 0.952 0.728 0.792 0.937 0.905 
microRNA microRNA 0.976 0.976 0.986 0.976 0.996 0.994 
microRNA Permutation 0.783 0.976 0.551 0.869 0.929 0.959 

 488 
 489 
Table 3: AUROC and AUPR of the PSPI models with various (n, k)-mers. 490 
Dataset Baseline 1mers Dimers Trimers Tetramer All 
AUROC UniprotKB-pro  0.994 0.993 0.997 0.995 0.994 0.996 

UniprotKB-euk  0.762 0.765 0.852 0.823 0.814 0.80 
microbiome-hs 0.974 0.975 0.985 0.978 0.974 0.979 

AUPR UniprotKB-pro  0.986 0.985 0.993 0.991 0.988 0.993 
UniprotKB-euk  0.769 0.771 0.849 0.820 0.814 0.816 
microbiome-hs  0.958 0.959 0.976 0.968 0.962 0.971 

 491 
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