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Abstract

Integrating single-cell multi-omics data is a challenging task that has led to new insights into complex cellular systems.
Various computational methods have been proposed to effectively integrate these rapidly accumulating datasets,
including deep learning. However, despite the proven success of deep learning in integrating multi-omics data and its
better performance over classical computational methods, there has been no systematic study of its application to
single-cell multi-omics data integration. To fill this gap, we conducted a literature review to explore the use of
multimodal deep learning techniques in single-cell multi-omics data integration, taking into account recent studies
from multiple perspectives. Specifically, we first summarized different modalities found in single-cell multi-omics
data. We then reviewed current deep learning techniques for processing multimodal data and categorized deep
learning-based integration methods for single-cell multi-omics data according to data modality, deep learning
architecture, fusion strategy, key tasks, and downstream analysis. Finally, we provided insights into using these deep
learning models to integrate multi-omics data and better understand single-cell biological mechanisms.
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1. Introduction

Single-cell technologies have revolutionized how biologists study cellular systems, enabling biologists to examine the
molecular characteristics of individual cells within a population [1]. Single-cell omics data generated by single-cell
technologies have numerous applications, such as novel cell type discovery and regulatory network identification.
Recent biotechnology advancements have generated various types of omics data, including genomics, transcriptomics,
epigenomics, and proteomics. Integrating these multi-omics datasets can enhance our biological understanding, which
would have been unachievable using omics data of a single modality [2,3].

Recently, there has been a surge in the development of multimodal deep learning (MDL) approaches for integrating
single-cell multi-omics data. They have demonstrated impressive predictive power [4] and offered several advantages
over existing computational methods [5,6]. For example, MDL techniques can uncover complex patterns and provide
a more comprehensive understanding of the molecular characteristics of individual cells [7]. Unlike existing
computational methods like matrix factorization [8,9] and correlation-based approaches [5,6] that require manually
extracted features for each modality, MDL can automatically learn a hierarchical representation for each modality by
extracting meaningful features through a multi-layer neural network model. MDL can better manage high-dimensional
data by mapping features from different modalities into a smaller, unified subspace [10]. This is especially true when
non-linear feature relationships are expected [11] because each model layer involves non-linear feature mapping [12].

While MDL approaches for single-cell data integration hold great potential, several challenges need to be addressed.
For example, overfitting can be a problem during MDL model training, especially for high-dimensional, imbalanced
single-cell multi-omics data [12]. Additionally, the sparsity of the data can also be an issue, as single-cell multi-omics
data often contains numerous missing values [13]. Furthermore, there is a lack of consensus on the best methods for
integrating single-cell multi-omics data using MDL techniques, making comparing results across different studies
challenging. Nonetheless, MDL is an active area of research, and ongoing efforts are to improve these methods and
make them more accessible to researchers.
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There is a lack of systematic investigation into the application of MDL approaches for single-cell multi-omics data
integration. There are reviews on computational strategies for single-cell multi-omics integration [10,14]. However,
these reviews focused on computational methods other than MDL approaches and did not include more recently
published works on MDL. Considering the advancement of deep learning methods and the development of next-
generation sequencing data, this study aims to review various modalities of single-cell multi-omics data and the current
state-of-the-art MDL models for their integration. We categorize the published work based on MDL model
architecture, fusion strategy, key integration tasks, and downstream biological analysis.

The paper is structured as follows: Section 2 provides an overview of the different modalities of single-cell omics
data. Section 3 describes the deep learning techniques commonly used for multimodal data analysis. Section 4
discusses the current state-of-the-art MDL models for single-cell data integration. Finally, Section 5 focuses on the
limitations of the current approaches, future research directions, and conclusions.

2. Overview of Single-Cell Multi-omics Data Modalities

Single-cell technologies aim to comprehensively measure biological molecules like RNAs, proteins, and chromatin
structures at a single-cell resolution [15]. The major data modalities for single-cell multi-omics data are summarized
in Table 1.

Table 1: Single-cell multi-omics data modalities.

I.  Single-cell Genomics Data

Single-cell DNA sequencing (scDNA-seq), has proven effective in identifying copy number aberrations [16],
somatic mutations [17], and tracking cell lineage [18]. It has found extensive use in cancer research, where
it helps track the growth of different cell clones and understand tumor development [19-21]. It also enables
the identification of rare cell types that may be missed in conventional bulk analysis methods [22]. Various
scDNA-seq whole genome amplification techniques exist, such as degenerate oligonucleotide-primed
polymerase chain reaction (DOP-PCR), multiple displacement amplification (MDA), and multiple annealing
and looping—based amplification cycles (MALBAC) [23].

II.  Single-cell Transcriptomics Data

scRNA-seq, also known as single-cell transcriptomics or gene expression data, is a powerful method for
measuring the expression levels of genes in individual cells, enabling scientists to characterize cellular
diversity and heterogeneity at a high resolution [24]. Various scRNA-seq protocols are available that differ
in the extent of transcript analysis. While some analyze the entire transcript, others examine only the 3' or 5'
end [25]. Examples of such protocols include 10x Chromium, CEL-seq2, and MARS-seq, among others.
Full-length transcript methods can detect allele-specific expression, low expressive genes, and alternative
splicing occurrences. In contrast, partial-length methods can analyze a bulk amount of single-cells, but cannot
detect allele-specified expression [26,27].

III.  Single-cell Epigenomics Data

Epigenomics measures genome-wide epigenomic modifications, such as DNA methylation, histone
modifications, and chromosome accessibilities [28—30]. Recent developments in single-cell epigenomic
approaches have led to the creation of methods such as single-cell bisulfite sequencing (scBS-seq) and single-
cell reduced representation bisulfite sequencing (scRRBS-seq) for the single-base resolution mapping of
DNA methylation in individual cells [31-33]. Other techniques, such as TET-assisted bisulfite sequencing
and Aba-seq, have also been used to study hydroxymethylated cytosine (ShmC) in bulk samples and have
the potential to be adapted for single-cell analysis [34—37]. Histone modification can be detected using
chromatin immunoprecipitation sequencing (ChIP-seq) [38]. Finally, high-throughput sequencing
techniques, such as transposase-accessible chromatin with sequencing (ATAC-seq) and DNase I
hypersensitive site sequencing (DNase-seq), can identify genome regions open for transcription and thus
measure chromatin accessibility in single cells [39,40].

IV.  Single-cell Proteomics Data



Single-cell proteomics investigates individual cells' protein content, analyzing their roles and interactions
[41]. This technique is especially valuable when studying cells with distinct functions or at varying stages of
development. Various methods are employed in single-cell proteomics, such as fluorescence-activated cell
sorting (FACS), single-cell mass spectrometry (CyTOF), and microfluidics-based techniques.

V.  Joint-modality Single-cell Multiomics Data

New techniques have allowed for the simultaneous measurement of multiple modalities, resulting in joint-
modality data that provides a more comprehensive understanding of the molecular and cellular processes
involved in tissue and organ function [42,43]. Several techniques allow researchers to simultaneously
measure the DNA methylation and transcriptomic data in individual cells, such as scM&T-seq [44], scMT-
seq [45], scTrio-seq [46], and snmCT-seq. Perturb-seq [47,48] and CRISP-seq [49] are techniques that
measure CRISPR-based transcriptional interference and high-throughput scRNA-seq. Similar techniques,
such as Paired-seq [50] and SNARE-seq [51], investigate transcriptome and chromatin accessibility in single
cells or nuclei. The data generated by these techniques allow multimodal omics analysis at the single-cell
level.

3. Overview of MDL Techniques

Recent studies have investigated the potential of deep learning models in tackling complex and multimodal biological
challenges [52] with encouraging outcomes. The main goal of deep learning is to train models that can learn high-
level features of input data by processing them through a series of layers. In this process, earlier layers learn simpler
data abstractions, which are combined in deeper layers to form more informative and complex representations relevant
to the task at hand [53]. Deep learning can capture nonlinear and cross-modal relationships, making it a powerful tool
for addressing multimodal biological problems.

FCNN: A fully connected neural network (FCNN) connects all the nodes of one layer to the subsequent layer's nodes.
Researchers have employed FCNN in various studies to solve different problems. For example, Park et al. [54] used
FCNN to predict Alzheimer's disease (AD) by concatenating gene expression and DNA methylation data. Huang et
al. [55] utilized FCNN to integrate mRNA and miRNA data to predict cancer patient survival. Dent et al. [56] trained
four FCNNs with four types of drug features and integrated their predictions by taking the mean of the probabilities
of the 65 targets. Huang et al. [57] fused clinical and imaging data using FCNN during the final decision stage.

CNN: Convolutional Neural Network (CNN) is a model that comprises three layers: the convolutional layer, the
pooling layer, and the fully connected layer. It has demonstrated impressive performance in dealing with image and
audio data. Chang et al. [S8] combined genomic profiles of 787 human cancer cell lines and structural profiles of 244
drugs and applied CNN to predict drug effectiveness. Similarly, Islam et al. [59] used a deep CNN model to combine
copy number alteration and gene expression data to classify molecular subtypes of breast cancer. Spasov et al. [60]
utilized a CNN to fuse magnetic resonance images (MRI) and clinical data to predict AD.

RNN: A Recurrent Neural Network (RNN) maintains a state vector that encodes information from past time steps and
updates it at each time step. It is particularly effective for analyzing temporal data. For instance, Bichindaritz et al.
[61] utilized long short-term memory techniques to predict the survival rate for breast cancer by integrating gene
expression and DNA methylation data. Lee et al. [62] used gated recurrent units to learn marginal representation
from multi-omics data to predict AD progression.

AE: Autoencoder (AE) is a neural network architecture that consists of an encoder and a decoder, and it is commonly
used for representation learning. The encoder learns a compressed latent representation of the input data, and the
decoder aims to reconstruct the input data from the latent representation. To tackle multimodal biological problems,
AE and its variations have been widely used. For instance, Guo et al. [63] applied denoising autoencoders to multi-
omics ovarian cancer data to identify cancer subtypes. Islam et al. [59] employed a stacked autoencoder to predict
breast cancer subtypes using early fused copy number alteration and gene expression data. Ronen et al. [64] utilized
a stacked variational AE (VAE) to measure the similarity between colorectal tumors and cancer cell lines.

DBN: A deep belief network (DBN) comprises multiple Boltzmann machines arranged in a specific order, with lower
computational complexity than deep neural networks. Suk et al. [65] adopted a multimodal DBN to predict AD by
aggregating positron emission tomography scans and MRI. To predict disease-gene associations, Luo et al. [52]



utilized two DBNs to learn latent representation from protein-protein interaction networks and gene ontology. A joint
representation was then learned from that latent representation using another DBN.

Heterogenous Model: Zhang et al. [66] developed fusion models based on CNNs and RNNs to learn patient
representation by combining sequential clinical notes, static demographic, and admission data. In another study, Lin
et al. [67] utilized three separate encoder networks to learn marginal representations of mRNA, DNA methylation,
and copy number variation data for breast cancer subtype prediction. These marginal representations were
concatenated and fed into a classification subnetwork to learn a joint representation. More recently, sciCAN [68]
combined Generative Adversarial Networks (GAN) and encoder models for integrating single-cell multi-omics data.

4. MDL Models for Single-Cell Data Integration

We were able to identify a total of twenty-one studies published by 2022. Figure 1 shows the workflow of integrating
single-cell multi-omics data using MDL techniques. We first analyze the single-cell multi-omics data (Table 2) and
the proposed models (Table 3). Then, we categorized the studies based on fusion strategy, data type, key task, and
downstream analysis.

Figure 1: Workflow of deep learning-based single-cell multi-omics data integration.

Table 2: Data description of current works of MDL-based single-cell multi-omics data integration.

L Data Description

The input datasets of the studies (Table 2) are classified as “paired” or “unpaired”. “Paired” means the same cells or
the same type of cells are selected from different integrating modalities and used as anchors for the integration task.
“Unpaired” means the cells are not matched between different modalities, and no anchor is defined.

MDL integration methods can be classified into three types: horizontal, vertical, and diagonal data integration,
depending on pairing and anchor information [137]. Horizontal integration uses shared features like genes to link data
from different modalities, while vertical integration uses paired cells as anchors. In contrast, diagonal integration
methods perform integration without using paired cells or shared features as anchors. These methods aim to build a
simplified representation of the relationships between data modalities, assuming an underlying low-dimensional
structure links them. The current review excludes studies in the horizontal category because they often use only one
data modality from different sources. As shown in Table 2, only a few papers have used unpaired cells of different
modalities to perform diagonal integration. SCIM, crossmodal-AE, STACI, GLUE, scJoint, sciCAN, scDART, and
Portal are examples of diagonal integration methods. Crossmodal-AE, scJoint, and Portal perform both vertical and
diagonal integration on paired or unpaired cell types.

Table 2 also describes the datasets based on data sources, technology, or platform used for sequencing the data and
comparing modalities. Most studies performed the integration task between scRNA-seq and scATAC-seq
[68,76,77,83,85,91,96,101,102,106,108,120,124,131,132]. Some studies performed integration of multiple
modality pairs like scMM [76], Cobolt [77], SMILE [96], Portal [ 124], scMoGNN, and scMDC [134]. For example,
besides integrating scRNA-seq and scATAC-seq data, scMM and totalVI also integrated scRNA-seq and surface
protein profiling data. Crossmodal-AE is the only study that performed integration between chromatin image and
scRNA-seq data. STACI [136] integrated single-cell spatial transcriptomics data with chromatin images. Some studies
go beyond modality pairs and can integrate multiple data modalities. For example, GLUE integrated three different
omics data modalities and named it triple omics integration. SMILE also integrated three modalities using a
combination of the two model variants.

II. Model Architecture

Table 3: Current work on deep learning-based single-cell multi-omics data integration.



Table 3 summarizes the recent MDL models developed for single-cell multi-omics data integration. All the models
used two-dimensional numerical matrices to represent the input data. We categorize these models into seven groups:
VAE, AE, encoders, GAN, FCNN, GNN, and heterogenous models, detailed as follows.

VAE: Most studies we surveyed utilized VAE. For instance, SCIM employs VAE to integrate scRNA-seq and CyTOF
modalities. In SCIM, each modality is modeled by an encoder-decoder network, and a discriminator is incorporated
to identify a specific source modality from the latent representation of other modalities. Through adversarial training,
SCIM can generate an integrated latent space. However, SCIM cannot predict one modality from another and thus
cannot accomplish cross-modal translation tasks.

scMM, similar to SCIM, aims to integrate multiple modalities into a shared space. However, scMM has the additional
capability of cross-modal translation. scMM uses a VAE to integrate two modalities. The encoder-decoder network
first takes the feature vectors for each modality as input. An encoder is trained to generate a low-dimensional joint
variational posterior that can be factorized by a “mixture of experts model” (MOE) [138]. This joint representation is
then used to train decoders that reconstruct the underlying data distribution in each modality. The MOE factorization
enables the separation of each modality from the joint representations, which helps scMM to perform cross-modality
predictions.

Cobolt adopts an approach similar to scMM in projecting different modalities into a shared latent space. However,
Cobolt distinguishes itself from scMM in its attempt to integrate joint-modality data with single-modality data. Given
the current prevalence of single-modality data over joint-modality data in both quality and quantity [77], there is a
strong interest in integrating both types of multi-omics data. Cobolt employs three encoders to learn the latent feature
distributions of the input modalities: one for scRNA-seq, one for joint-modality data (scRNA-seq + scATAC-seq),
and another for scATAC-seq. Each encoder learns separate latent embeddings and posterior distributions of latent
variables. Cobolt then projects the modalities into a shared latent space by taking the posterior mean of these
distributions. Finally, three separate decoders learn from the shared latent embeddings.

The MDL models described earlier can generate a shared feature representation (joint embedding) that preserves
modality-specific information [106]. However, when significant noise or sparsity exists in joint-modality data, the
resulting joint embedding may not accurately capture the biological variation, causing difficulties in downstream
analysis and interpretation [106]. To address this issue, sScsMVAE and scMVP were developed. scsMVAE utilizes one
multimodal encoder, two single-modal encoders, and two single-modal decoders. The multimodal encoder models
scRNA-seq and scATAC-seq data with three joint learning techniques. One is to estimate a joint posterior from the
product of posteriors of each modality. One is to learn a joint-learning space using a neural network, and another is to
obtain a concatenation of the original features of each modality. Meanwhile, the single-modal encoders play the roles
of data normalization, denoising, and imputation of the input modalities. scMVP has the same architecture as
scMVAE, but scMVP’s joint-modality encoder only uses a neural network to learn the joint-learning space of the
scRNA-seq and scATAC-seq modalities. scMVP improves joint embedding by connecting its two decoders through
a cell-type-guided attention module that captures the correlation between the two modalities. Furthermore, scMVP's
single-modal encoders are connected to the joint embedding with two extra modules that ensure clustering consistency.

The assumption that all data sources are equally valuable and follow the same distribution is not always true. For
example, in scATAC-seq experiments, the amount of data per cell is typically lower and more variable than in sScRNA-
Seq experiments from the same cell [101]. Directly combining data using neural networks from such imbalanced
modalities can lead to overfitting [101]. SAILERX was introduced to address these challenges by only learning
scATAC-seq data with a VAE, and for scRNA-seq, using pre-trained scRNA-seq embeddings. SAILERX also
enforces similarity between the latent space of both modalities through regularization, which preserves local cell
structure across modalities. The goal is to avoid overfitting and allow hybrid integration of joint profiling data with
single-modality data, similar to Cobolt.

Combining RNA and protein data to create a unified representation of cell state is challenging due to technical biases
and inherent noise in each data modality. In particular, protein data presents a unique challenge due to background
noise from ambient or nonspecifically bound antibodies [87]. The VAE-based total VI model provides a solution for
integrating scRNA-seq and protein data while correcting for protein background noise. To achieve this, total VI takes
matrices of sScCRNA-seq and protein count data as input, along with categorical covariates such as experimental batch
or donor information. The encoder then generates a joint latent representation of both modalities, which helps to



control modality-specific noise properties and batch effects. Finally, the decoder estimates the parameters of the
underlying distributions of both modalities from the joint latent representation while correcting for protein background
noise.

Integrating unpaired multi-omics data can be difficult since each modality has unique feature spaces. To address this
issue, GLUE was developed to integrate unpaired multi-omics data via graph-guided embeddings. GLUE uses a
separate VAE to model each data modality. To merge modality-specific feature spaces, GLUE constructed a
knowledge-based graph using cross-modality regulatory interactions, with vertices representing the features of
different omics data modalities and edges representing regulatory interactions. A variational graph AE (VGAE) is
adopted to create graph embeddings from the knowledge-based graph. The VGAE is then connected with the modality-
specific decoders to help integrate these unpaired multi-omics data.

The above-discussed MDL techniques were not designed specifically for online integration tasks [132]. As a solution,
SCALEX was developed to continuously integrate new single-cell multi-omics data without recalculating all previous
integrations [132]. The VAE-based SCALEX model aims to create a generalized encoder for data projection without
retraining, and it achieves this through three key design elements.

AE: Several studies have adopted AEs for multimodal data integration. One such approach is the K-coupled AE,
which uses a multi-agent AE approach [71], where each AE agent learns a modality separately. These agent AEs are
coupled by an overall cost function that measures the dissimilarity among the representations learned by the agent
AEs. All agent AEs minimize this overall cost function during training to produce a better integrated latent
representation. The k-coupled AE is useful for cross-modal translation. Another study, BABEL, uses two AE-based
architecture to generate cross-modal translation. Two separate encoders learn two modalities separately and project
them into a shared latent space, which is learned by two decoders to create the original modalities. Another AE-based
model, scMDC, focuses on accurately clustering single-cell data. It uses a multimodal AE to learn a joint latent
representation from the concatenated modalities of scRNA-seq and (CITE-seq or scATAC-sesq). Unlike the previous
studies focusing on sequencing data only, crossmodal-AE integrates image and sequencing data. The approach of the
crossmodal-AE is similar to BABEL. However, the AEs are customized according to specific modalities in
crossmodal-AE. For example, to project single-cell image data, scRNA-seq, scATAC-seq, and single-cell Hi-C data
into the shared latent space, AEs corresponding to CNN, FCNN, and GNN are designed, respectively. STACI extended
the work of crossmodal-AE, which used AE with over-parameterization. Over-parameterization means extending the
size of hidden layers to be greater than the input feature space. The model used separate decoders to obtain each
modality from the latent embedding.

Encoders: The encoder-based SMILE model integrates single-cell multi-omics data using contrastive learning. There
are two variants of SMILE: pSMILE and mpSMILE. The former has two encoders corresponding to two input
modalities. One-layer multilayer perceptrons (MLPs) are applied to each encoder to reduce the dimensionality of its
output. The outputs are then subjected to noise contrastive estimation to maximize mutual information in the shared
latent space. mpSMILE uses two encoders as well but has one encoder duplicated to give more weight to the
corresponding data modality. Doing so can improve discriminative representations [108,139]. Another study, scJoint
presents an encoder-based transfer learning method that learns a joint embedding space from scRNA-seq and
scATAC-seq data. Since unpaired multi-omics data integration is challenging due to distinct feature spaces, scJoint
uses two loss functions to identify orthogonal latent features and maximize the alignment of different modalities. In
addition to a cross-entropy loss for cell type prediction, the joint embedding space can be used by a k-nearest neighbor
approach to transfer cell labels from scRNA-seq cells to ATAC-seq cells, further improving the joint embedding
space.

GAN: MAGAN is a model that addresses the challenge of integrating unpaired data using a manifold alignment
strategy. MAGAN uses a dual GAN framework consisting of two GANs, which align manifolds from two modalities.
One GAN is responsible for creating a mapping from the first modality to the second modality, while the other GAN
learns the mapping from the second to the first modality.

FCNN: Existing methods for integrating unpaired data into a single latent space primarily focus on cells that form
clusters rather than continuous cells that follow trajectories [9,140,141]. scDART addresses this limitation by utilizing
a FCNN to project data into a shared latent space while preserving cell trajectories. The scDART model consists of
two parts: the gene activity function, which generates a "pseudo-scRNA-seq" count matrix from scATAC-seq data,



and the projection module, which takes both the original sScRNA-seq data and the "pseudo-scRNA-seq" data as input
to produce a shared latent space. The diffusion/random-walk-based distances between cells along the trajectory
manifold in the original and the latent space are considered in the overall loss function to preserve the cell trajectory
structure.

Graph Neural Network (GNN): Integration studies like BABEL, scMM, and Cobolt often treat each cell as an
independent input, which can overlook important high-order interactions between cells and modalities. Such
interactions are critical for effective learning from single-cell data's high-dimensional and sparse cell features.
scMoGNN leverages GNNs to integrate single-cell modalities while preserving high-order structural information to
address this limitation. Specifically, scMoGNN first constructs a cell-feature graph from a given modality and applies
a graph CNN (GCNN) to obtain latent embeddings of cells. These cell embeddings are then fed into a task-specific
head for downstream tasks such as modality prediction, matching, and joint embedding.

Heterogenous Model: The SMILE model, mentioned earlier, requires cell anchors and can only be applied when
corresponding cells are known across multiple modalities. sciCAN was developed to address this limitation. The
sciCAN model consists of representation learning using an encoder and modality alignment using a GAN. The encoder
employs noise contrastive estimation as its loss function to learn a joint low-dimensional representation. The GAN
component includes two discriminators: one identifies source domains represented by a latent representation, and the
other generates one data modality from the other, such as chromatin accessibility data from gene expression data.
sciCAN differentiates itself from similar models like single-cell GAN (scGAN) [142] and AD-AE by using one
additional cycle-consistent adversarial network, which introduces cycle-consistent loss to learn the connections
between two modalities.

With the emergence of Atlas-level scRNA-seq datasets, there is a growing need for integration techniques that can
handle large numbers of cell populations and are computationally scalable. In response, the Portal model was
developed. To align single-cell datasets, the Portal model employs a domain translation network of two encoders,
generators, and discriminators. The encoders learn latent embeddings for input modalities, the generators generate one
modality data from the latent embedding of the other modality, and the discriminators identify non-aligned data points
to improve network training further.

II1. Key Tasks

Single-cell data integration can be divided into three key tasks: modality prediction, matching, and joint embedding
[99]. In the modality prediction task, one modality is predicted given the other modality. Among the surveyed papers,
MAGAN and K-coupled AE both perform modality prediction tasks, as shown in Table 3. MAGAN predicts scRNA-
seq from CyTOF or vice versa, while K-coupled AE predicts neuron morphological data from scRNA-seq. No studies
have focused solely on modality matching. SCIM, Cobolt, ssMVAE, SAILERX, GLUE, scMVP, Portal, MIRA, and
SCALEX all perform joint embedding tasks exclusively. In contrast, scMM performs joint embedding and modality
prediction simultaneously. First, scRNA-seq and scATAC-seq modalities are jointly embedded, then used by decoders
to predict one modality given another. Similarly, BABEL, scJoint, sciCAN, totalVI, crossmodal-AE, STACI, and
scDART perform both joint embedding and modality prediction tasks on various single-cell omics data modalities.
SMILE performs joint embedding and modality matching tasks with scRNA-seq, sScATAC-seq, DNA methylation,
and Hi-C modalities. scMoGNN performs all three tasks (joint embedding, modality prediction, and modality
matching) with mRNA, scATAC-seq, and ADT modalities.

IV. Fusion Methods

Methods for integrating data from multiple modalities in an MDL model architecture are called fusion methods. Three
types of fusion strategies have been identified: early fusion, intermediate fusion, and late fusion [52] (as shown in Fig.
2). The fusion strategies of the various studies are detailed as follows (Table 4).

Early Fusion: The strategy of "early fusion" involves concatenating input features from different modalities to serve
as the input of a deep learning model(Figure 3(A)). scMVAE, totalVI, STACI, and SCALEX are among the studies
that utilized the early fusion strategy. These studies aggregated modalities first and then utilized VAE to learn the joint
latent embedding.



Intermediate Fusion: The majority of studies we surveyed have used intermediate fusion, where the modalities are
learned first and fused later inside the MDL model. For instance, in Figure 3(B), the marginal representation of
modality 1 and 2 are learned first and integrated later inside the neural network layer. Intermediate fusion can be
further classified into two categories: homogenous and heterogeneous. Homogenous fusion is used when the
modalities are learned through the same type of neural network. In contrast, heterogeneous fusion is used when the
modalities are learned through different types of neural networks. Moreover, based on representation, both
homogenous and heterogeneous fusion can be divided into marginal and joint types. The marginal representation uses
features to represent latent components based on a single modality, while joint representation encodes information
from several modalities.

In joint homogeneous fusion, marginal representations are first concatenated, and then a joint representation is learned
from that concatenated marginal representation. For example, SCIM assumes joint homogeneous fusion since
modalities are learned by two separate VAEs and then imposed into a shared latent space. Joint heterogeneous
intermediate fusion is a good strategy for learning informative cross-modality interactions, where different modalities
are learned through different types of neural networks concatenated. Then a joint representation is learned from that
concatenated marginal representation using a separate neural network. For example, crossmodal-AE, SAILERX, and
sciCAN follow the joint heterogeneous fusion strategy.

The marginal homogenous fusion strategy involves using the same type of neural network to learn marginal feature
representation from different modalities, which are later merged into the decision function. For example, SMILE
adopted this strategy by using two separate encoders to learn two modalities and create two latent embeddings,
followed by two MLPs that learned from both embeddings to minimize the model's loss.

Late Fusion: Late fusion integrates the decisions of separate models to make a final decision (Figure 3(C)). K-
coupled AE and MIRA are examples of models that use the late fusion strategy. In K-coupled AE, two modalities are
learned through two separate coupled AE, and the latent representations are later aggregated. In MIRA, two modalities
are learned through two separate VAEs, and the latent representations are combined later to make the final decision.

Table 4: Classification of single-cell multi-modal studies according to fusion strategy.

Figure 2: Classification of Fusion Strategy.

Figure 3: A) Early fusion strategy. B) Intermediate fusion strategy. C) Late fusion strategy. Layers enclosed in blue
rounded rectangle are shared between modalities and used to integrate modalities [52].

V. Downstream Analysis

The integration of single-cell modalities using MDL provides great assistance for downstream analysis. Following
integration, the MDL models are assessed through downstream analysis and utilized for such purposes. Commonly
practiced downstream analysis includes cell type discovery, differential expression analysis (DE), cell trajectory
inference, cell matching, and cis-regulatory analysis, as detailed below (Table 3).

Cell Type Discovery: The goal of cell type discovery is to identify the different types of cells present within a sample.
Most tools performed cell type discovery to validate their results and illustrate their usage. For example, SCIM
recovered T-cells by integrating scRNA and CyTOF modalities. scJoint found 19 cell types common between scRNA-
seq and scATAC-seq data. However, the detected cell types often vary across the studies. For instance, in the
crossmodal-AE study, scRNA-seq data from human PBMCs [93] was analyzed and clustered, revealing the presence
of four types of T-cells. In comparison, SAILERX clustered the PBMC 10k dataset [2] and identified 29 cell types.
Similarly, scMM performed clustering on the same PBMC dataset [2] and identified 54 cell types. Cell type discovery
accuracy is often validated by comparing the consistency of the detected cell types with the cell labels annotated in
the original data. For example, scMM compared their discovered cell types with the cell type annotation of PBMC



dataset [2]. Some studies such as SCALEX validated cell type discovery by assessing through quantitative clustering
metrics such as ARI (Adjusted Rand Index), NMI (Normalized Mutual Information), silhouette scores. cross-modal
AE performed protein immunofluorescence staining to validate the discovered cell types. In this experiment, they
selected two genes, CORO1A and RPL10A, that were predicted to be strongly upregulated in specific subpopulations
of naive T-cells with distinct patterns of chromatin density. They then analyzed immunofluorescence staining data of
the two proteins along with the chromatin images. They demonstrated that the tool effectively aligns gene expression
with the image features, allowing for the characterization of distinct subpopulations of naive T-cells.

DE: The process of DE involves identifying genes that are expressed differently across distinct cell types. This
analysis provides insights into how gene expression changes in response to various biological conditions [143]. The
reviewed studies utilized DE analysis on several single-cell multi-omics datasets to investigate alterations in gene
expression. For example, in a study conducted by Cobolt, DE analysis showed distinct expression levels of Adarb2
and Sox6 genes in sScCRNA-seq and scATAC-seq clusters, which are known markers distinguishing between CGE and
Pvalb clusters. The scDART, SCALEX, STACI, and SMILE also performed DE on their data and made discoveries
supported by the literature. Most studies validated their DE analysis results utilizing the existing evidence. For
instance, sScDART compared their DE analysis findings with existing evidence [51]. On the other hand, totalVI
performed Welch’s t-test and Wilcoxon rank-sum test to validate their DE analysis findings [87].

Trajectory Inference: Trajectory inference aims to identify the progression of a cellular dynamic process and
organize cells based on their movement through the process. scMVP, sciCAN, scDART, and MIRA all performed
trajectory inference. For example, scMVP conducted trajectory inference analysis on growing bulge cells of the
SHARE-seq mouse skin dataset and identified two paths from ahigh CD34+ bulge to new bulge cells. sciCAN
conducted co-trajectory analysis to investigate the hematopoietic hierarchy. The scDART algorithm was evaluated by
trajectory inference analysis on a neonatal mouse brain cortex dataset. Moreover, MIRA investigated hair follicle
maintenance and differentiation, revealed the hierarchy of different follicle lineages, and recreated the true layout of
the follicle. All studies validated the trajectory inference results by comparing with the existing evidence [3].

Cell Matching: cell matching has been used as an assessment technique to evaluate the effectiveness of joint latent
embedding. For example, SCIM employed this strategy to match cells between scRNA and CyTOF modalities in a
melanoma tumor sample. crossmodal-AE employed the cell-matching strategy on the human lung adenocarcinoma
dataset [92] to match samples between RNA-seq and ATAC-seq modalities. In addition, scDART evaluated the cell
matching capability using the mouse neonatal brain cortex dataset [51]. To evaluate cell matching accuracy, several
metrics such as k-nearest neighbors’ accuracy, neighborhood overlapping score, and cosine similarity score were
utilized. For instance, scDART utilized neighborhood overlapping and cosine similarity scores to evaluate their cell
matching accuracy and achieved the neighborhood overlapping scores of 0.6 and the cosine similarity scores of
0.712 in the mouse neonatal brain cortex dataset [S1].

Cis-regulatory Analysis: Cis-regulatory analysis studies various cis-acting DNA sequences that modulate gene
transcription. It includes identifying distal and proximal gene regulatory regions such as enhancers and promoters,
transcription factor binding sites and their binding patterns called motifs in regulatory regions, as well as the grammars
orchestrated by these binding elements and motifs. Several tools, including scMM, SAILERX, MIRA, GLUE, and
scMVP, have performed cis-regulatory analysis as a downstream analysis of multi-omics data integration. For
example, scMM identified enriched regulatory motifs in genes and peaks associated with latent dimensions, while
SAILERX determined the top motifs that were most enriched in individual cell types. MIRA used topic modeling of
cell states and the regulatory-potential modeling of individual gene loci to identify enriched motifs, while GLUE
identified distal gene regulatory regions based on the cosine similarity between feature embeddings. All studies
evaluated cis-regulatory analysis findings by comparing their predictions with the existing evidence. For example,
scMVP compared their cis-regulatory analysis findings with a previous study [51] and found a higher enrichment of
H3K27ac and H3K4mel in the translation start site (TSS) distal peaks and H3K4me3 in the TSS proximal regions.

5. Discussion and Conclusion

Several limitations and challenges must be addressed to effectively integrate single-cell multi-omics data using deep
learning models. Firstly, data preprocessing is crucial for efficiently integrating multi-omics data, but defining a
unified pipeline for data preprocessing tasks is challenging. Although many deep learning models use one-hot
encoding to standardize two data modalities, other preprocessing tasks like gene finding, cell labeling, filtering,



scaling, normalization, and data formatting are not standardized. As a result, there is a disparity in results, even for
the same input data, making it difficult to explain the differences.

Secondly, more data information is always needed. For example, studies such as SMILE and BABEL, require paired
data as cell anchors that are often not readily available. scJoint requires cell annotations for scRNA-seq data. But
paired information or annotated cell anchors are not present in all datasets. Although the diagonal integration method
addresses this limitation, as no pairing information is required for this type of integration, it isn't easy to find common
ground to perform the integration among different modalities without using any anchors. Besides, when multiple
encoders are involved in the AE-based models, it can be difficult to train them at once without linking information
from various modalities. In addition, as the data becomes more complex, it becomes harder to find a shared embedding
space. Moreover, as different studies used different datasets, it is difficult to compare the methodologies fairly.
Furthermore, MDL models need a large amount of data for training and testing. For example, scMM faces limitations
in generating cell populations due to insufficient large-scale atlas data for training. Cobolt needs a large amount of
single-modality data for cross-modality prediction. An imbalance in data for the input modalities may create
overfitting issues.

The third challenge in integrating multiple modalities is the lack of interpretability of modality-specific information
from the joint latent embedding. To address this challenge, scMM created pseudocells and used Spearman correlation
to associate each latent dimension with the features of each modality. However, interpreting the latent dimensions
limits the model to specific data, and predicting cell populations not included in the training data could be challenging.

Another challenge in DL methods is the selection of appropriate hyperparameters. These models require extensive
tuning of various parameters, such as the number of hidden nodes, layers, training epochs, and batch size, among
others, which can be time-consuming and computationally intensive. While some models have specific parameters to
tune, such as scJoint's cosine similarity loss, which requires tuning the fraction of data pairs to achieve optimal results,
other models require more general tuning. Furthermore, DL models suffer from a lack of generalizability, and
customizations in the architecture are often required for new modalities of data. For instance, crossmodal-AE requires
changing the model architecture for each data modality. As a result, there are still numerous areas to investigate and
significant potential for growth in the field.

Our study shows that MDL is gaining popularity in single-cell multi-omics data integration. As the technology
continues to improve and data increases in different modalities (e.g., single-cell imaging), the model performance has
room for improvement in single-cell multi-omics data integration. Although deep learning methods demonstrate their
influence in single-cell multi-omics integration, no benchmark pipeline has been defined for dataset selection, data
preprocessing, architecture design, etc. So, future research can be conducted to obtain a benchmark for specific tasks.
The current studies not only perform single-cell multi-omics data integration, but also explore various downstream
analyses. However, the downstream analysis tasks are validated mostly with the existing evidence. To show the power
of the integration methods and generate new biological knowledge, future research can be conducted to validate the
downstream analysis findings by performing experiments such as multiplex FISH [144].

MDL is a crucial area of research that aims to enhance our understanding of single-cell data and potentially reveal
novel biological insights [145]. With a growing body of published research, new and innovative MDL architectures
are expected to emerge. This review does not provide specific recommendations for architecture design, as it depends
on the problem being addressed. However, the insights presented in this review can serve as a valuable reference for
future research and help advance the field more coherently.

Key Points

e Surveyed twenty-two recent studies on single-cell MDL

e Analyzed these studies from five aspects

e No unified pipeline for data processing in MDL studies

e Interpreting of modality-specific information is still challenging
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