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Abstract 
 
The analysis of the bacterial strains is important for understanding drug resistance. Despite the existence 

of dozens of computational tools for bacterial strain studies, most of them are for known bacterial strains. 

Almost all remaining tools are designed to analyze individual samples or local strain regions. With 

multiple shotgun metagenomic samples routinely generated in a project, it is necessary to create methods 

to infer novel bacterial strain genomes in multiple samples. To fill this gap, we developed a novel 

computational approach called SMS to de novo reconstruct bacterial Strain genomes in Multiple Samples. 

Tested on 702 simulated and 195 experimental datasets, SMS reliably identified the strain number, 

abundance, and polymorphisms. Compared with two existing approaches, SMS showed superior 

performance. The SMS source code and tool are available at https://github.com/UCF-Li-Lab/SMS. 
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1. Introduction 
 

Bacteria are ubiquitous and play crucial roles in disease progression and human health [1-8]. Multiple 

strains of a bacterial species usually coexist in an environmental niche. These strain genomes of the same 

species are different from each other, with small variations such as single nucleotide polymorphisms 

(SNPs), different gene contents, and/or different plasmid genes [9]. Such a difference results in different 

fitness to survive or react to stimuli, which is often the cause of different host responses, drug resistance, 

mixed infection, etc. [10, 11]. It is thus important to study and reconstruct bacterial strain genomes. 

 

Shotgun metagenomic sequencing is routinely employed to study microbes and reconstruct bacterial 

genomes [1, 6, 8, 12-14]. In shotgun metagenomics, the DNA of all species and strains in a clinical or 

environmental sample is randomly fragmented and sequenced. These sequenced DNA fragments called 

reads are then applied to infer the present species, their abundance, functionality, etc. Because reads are 

short and mixed from different species, it is still challenging to study low-abudnant species and strains 

in shotgun metagenomics [15-18]. Moreover, current assembly methods usually cannot distinguish 

different strains of the same species, which leaves most studies on taxons no lower than the species level 

and the strain analysis still at its infancy [18, 19]. On the other hand, with the sequencing cost 

dramatically decreasing, multiple shotgun metagenomic samples are often available from the same type 

of environments or clinical setups [20-22]. The multiple samples from the same or similar environmental 

niche are likely to share bacterial strains and thus provide an unprecedented opportunity to study and 

reconstruct bacterial strain genomes [20-22].  

 

Dozens of computational methods are available to infer bacterial strains from shotgun metagenomic reads 

[16, 23-37]. Most of them rely on prior knowledge of known strains, and they have successfully identified 

known strains while cannot be applied to study new strains that commonly exist. A handful of methods 



that do not depend on known strains are thus developed, which can be divided into two groups [27, 29, 

31-33, 38, 39]. One group defines strain variations and strains based on species-specific marker genes, 

which can significantly speed up the process of analyzing a large number of species in a microbiome 

while depending on the quality and quantity of the marker genes [32, 38]. The other group considers the 

SNPs across the entire reference genomes of a species instead of only the marker gene regions, which 

can delineate the strain genomes in detail and are important for studying individual pathogen species [16, 

26, 28, 29]. These methods have shed new light on bacterial strains in environmental samples. However, 

their performance is still suboptimal in terms of the predicted strain number and abundance. For instance, 

a recent method, StrainFinder, did not have good accuracy in predicting strain SNPs and strain abundance, 

even provided with the correct strain number [26, 40]. 

 

To accurately identify strains in shotgun metagenomic samples, we developed a novel method called 

SMS (Strains in Multiple Samples). Starting from a species genome, SMS de novo reconstructs its strain 

genomes from shtogun reads in multiple shotgun metagenomic samples. It models the coverage of every 

strain in individual samples by zero-inflated Poisson (ZIP) distributions and classifies SNPs with 

adaptively inferred centers, which enables it to identify low-coverage strains and predict strains with high 

accuracy. Tested on 702 simulated and 195 experimental datasets, SMS accurately predicted the strain 

number, abundance, and SNPs. Compared with two recent approaches, SMS showed much better 

performance.  

 

2. Material and Methods 
 
 
SMS reconstructs bacterial strain genomes with a reference genome and raw reads in multiple shotgun 

metagenomic samples (Fig. 1). The basic assumption is that different SNPs from the same strain follow 

a common ZIP distribution in a sample, and SNPs from different strains follow different ZIP distributions 



in individual samples. Assume there are R strains of a species of interest in m samples. Starting from the 

cleaned raw reads, SMS defines SNPs based on the reads mapped to the reference. Because of the species 

reference genome, SMS considers only the mixed reads in shotgun metagenomic samples that are 

mapped to the reference genome. In other words, SMS considers only the reads from one species in the 

m samples, as most reads mapped to the reference genome are likely from the reference species. 

Considering only one species makes sense because we often have a pathogen of interest and want to 

study its strains in clinical or environmental samples in practice. With the mapped reads, SMS then 

determines the initial strains and their abundance with the pooled sample, the combined m samples. Next, 

SMS refines the initial strains and their abundance based on the SNP coverage patterns across samples. 

The rationale is that SNPs from the same strain will have more similar coverage patterns across samples 

than SNPs from different strains. Finally, SMS outputs the predicted strains and their abundance. The 

details are in the following sections. 

 
Fig. 1. The SMS workflow. 
 
 
2.1. Identification of potential SNPs 
 
 
With reads from the m samples, SMS trims reads, and filters low-quality reads with the tool trimmomatic 



[41]. SMS then maps the cleaned reads to the reference genome by bowtie2 [42]. In every sample, SMS 

obtains a 4 by n sample-specific matrix composed of the frequencies of A, C, G, and T in the mapped 

reads at each of the n reference genome positions. Similarly, SMS acquires a pooled matrix of 4 by n for 

the pooled sample, the sum of the m sample-specific matrices. SMS then determines the 𝑛𝑛′ potential 

polymorphic positions based on these m+1 matrices. A reference genome position is potentially 

polymorphic if the following criteria are satisfied: 1). It has a coverage larger than 10% of the pooled 

coverage. The coverage of a genome (position or SNP) is calculated as the average number of reads 

mapped to this genome (position or SNP); 2). It has at least two nucleotides, each with no smaller than 

5% of the pooled coverage. Note that when the reference nucleotide at a position has fewer than 5% of 

the pooled coverage, the reference nucleotide is replaced with the most frequent nucleotide at this 

position; 3). Each of its two most frequent nucleotides must occur in at least 5% of the m samples. Finally, 

SMS considers all n1 nucleotides with coverage larger than 5% of the genome coverage at these positions 

as potential SNPs, where 𝑛𝑛′ ≤ 𝑛𝑛1 ≤ 3𝑛𝑛′. Note that despite the default requirement of at least 5% of the 

pooled coverage for any strain to be identified, SMS can identify low-abundance strains in multiple 

samples. A low-abundance strain may account for fewer than 0.01% of a metagenome. However, with a 

few dozen samples, its species may already have a reasonable coverage in the pooled sample, and SMS 

will identify each of its strains with at least 5% of the pooled species coverage in the pooled sample. As 

demonstrated in the following simulated studies, with the pooled species coverage 100X, SMS identified 

strains with a pooled coverage of 10X in 214 out of 216 datasets for three randomly chosen bacterial 

species.  

   

2.2. Prediction of the strain number and abundance 
 
 

With the n1 potential SNPs, SMS infers the strain number and abundance in four steps.  

First, SMS obtains an initial number of strains and their SNPs. SMS applies mixtureS to the above n1 



SNPs with the pooled sample and outputs the predicted strains and their abundance. MixtureS 

reconstructs the strain genomes instead of local strain regions corresponding to marker genes from 

shotgun reads in one sample and has shown good performance previously [26, 40]. In this way, the strains 

with different pooled coverage are separated into R strains. R is automatically inferred.  

Second, SMS refines the predicted strains so that almost all SNPs in an actual strain are assigned to one 

predicted strain. Since the coverage of SNPs from the same strain is expected to follow the same ZIP 

distributions in individual samples, the coverage vectors of two SNPs from the same strain are more 

similar than those of two SNPs from different strains. Here the coverage vector of an SNP is a vector 

composed of its coverage in the m samples. The similarity measurement of two vectors is described in 

the next section. Based on this observation, SMS iteratively regroups the n1 SNPs into R groups so that 

SNPs from the same group have more similar vectors. Starting from the predicted R strains by mixtureS, 

the majority of SNPs in each of which are likely from the same strain, SMS represents each strain by an 

m by 1 coverage vector, the average of the coverage vectors of the SNPs currently assigned to this strain. 

SMS then reassigns each of the n1 SNPs to the strain with the most similar coverage vector to the 

coverage vector of this SNP. With the reassigned SNPs, the coverage vectors of the strains are 

recalculated. This process is repeated a given number of times or until the assigned SNPs to each strain 

do not change. In this way, the coverage vector of each predicted strain and the assignment of the n1 

SNPs become more and more accurate, with almost all SNPs from an actual strain grouped together. 

Third, SMS investigates whether there are more or fewer than R strains. SMS divides each strain into 

two strains, one strain at a time. To determine whether a strain should be divided, SMS models each 

strain in a sample by a ZIP distribution, estimates the parameters of the ZIP distributions, and calculates 

the likelihood ratio of observing the SNPs in this strain across the m samples to that in two divided strains. 

The details of the ZIP parameter estimation and the likelihood testing are in the following sections. A 

strain is divided only when its division significantly increases the likelihood (Chi-square test p-

value<0.001). If a strain is divided, SMS considers whether the two new divided strains can be further 



divided similarly. This process is repeated until no strain can be further divided. With all possible 

divisions that significantly increase the likelihood, SMS obtains the updated R strains and repeats Step 

two to reassign the n1 SNPs to these R strains again. SMS then considers removing each strain, one strain 

at a time. The process is similar to dividing a strain based on the ZIP parameter estimation and the 

likelihood test.  

Finally, SMS removes the predicted strains that are majorly composed of shared SNPs by multiple strains 

and reassigns their SNPs to the corresponding strains. To remove a strain, SMS identifies its consistent 

strains. Strain one is a consistent strain of strain two if every entry in the coverage vector of strain one is 

no large than the corresponding entry in the coverage vector of strain two plus a small cutoff. Similarly, 

multiple strains together are consistent with strain two if the sum of the corresponding entries in their 

coverage vectors is no large than the corresponding entry in the coverage vector of strain two plus the 

same cutoff. With the consistent strains of a strain, SMS constructs a graph, with each consistent strain 

as a node and edges connecting pairs of strains that are together still consistent with this strain. SMS then 

identifies the largest cliques in this graph with the corresponding groups of strains together consistent 

with this strain. With a clique identified, SMS removes this strain and reassigns its SNPs to all consistent 

strains in this clique. In this way, SMS finalizes the predicted strains and their SNPs. The abundance of 

every strain is calculated as the average coverage of the SNPs unique to this strain. 

 

2.3. The similarity of two coverage vectors 
 
 

SMS calculates the similarity of two coverage vectors (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑚𝑚)  and (𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑚𝑚)  by a pre-

defined regression formula: 79.25d+ 43.06(c+c3)-0.04/(0.0025+d), where d is the distance between the 

two vectors, and c is their Kendall rank correlation. This formula was constructed based on a set of 18 

pre-simulated training datasets. SMS chooses this similarity measurement, because it shows better 

performance than others, including correlation, Euclendian distance, relative entropy, etc.  



 
2.4. ZIP model of a strain in a sample 
 
 

SMS models the coverage of the SNPs from the p-th strain in the q-th sample by a ZIP distribution 

𝑍𝑍𝑍𝑍𝑍𝑍�𝑥𝑥,𝜋𝜋𝑝𝑝𝑝𝑝, 𝜆𝜆𝑝𝑝𝑝𝑝� when the p-th strain occurs in the q-th sample, where 

 

𝑍𝑍𝑍𝑍𝑍𝑍(𝑥𝑥,𝜋𝜋, 𝜆𝜆) = �
𝜋𝜋 + (1 − 𝜋𝜋) ∗ exp(−𝜆𝜆),𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 = 0

(1 − 𝜋𝜋) ∗ 𝜆𝜆𝑥𝑥

𝑥𝑥!
∗ exp(−𝜆𝜆),𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 = 1, 2, 3, …

 

Assume we have an n1 by m matrix, 𝑋𝑋 = �𝑥𝑥𝑖𝑖𝑖𝑖�, which store the coverage of the above n1 SNPs in the m 

samples. Assume 𝑍𝑍 = (𝑧𝑧𝑖𝑖𝑖𝑖) is the indicator to tell whether the i-th SNP belongs to the r-th strain, where 

∑ 𝑧𝑧𝑖𝑖𝑖𝑖𝑅𝑅
𝑟𝑟=1 = 1 for all i from 1 to n1 and 𝑧𝑧𝑖𝑖𝑖𝑖 can be only 0 or 1. Assume Y= �𝑦𝑦𝑗𝑗𝑗𝑗� is the indicator to show 

whether the r-th strain occurs in the j-th sample, where 𝑦𝑦𝑗𝑗𝑗𝑗 can be only 0 or 1. If at least one SNP from a 

strain has a non-zero coverage in a sample, we tentatively claim that this strain occurs in this sample. 

When 𝑦𝑦𝑗𝑗𝑗𝑗 = 1,  we also define 𝑏𝑏𝑗𝑗𝑗𝑗 = ∑ 𝑧𝑧𝑖𝑖𝑖𝑖𝐼𝐼𝑥𝑥𝑖𝑖𝑖𝑖=0
𝑛𝑛1
𝑖𝑖=1 , 𝑛𝑛𝑗𝑗𝑗𝑗 = ∑ 𝑧𝑧𝑖𝑖𝑖𝑖𝑛𝑛1

𝑖𝑖=1 , and 𝑎𝑎𝑗𝑗𝑗𝑗 = ∑ 𝑧𝑧𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛1
𝑖𝑖=1 /𝑛𝑛𝑗𝑗𝑗𝑗. 

To estimate the parameters in the ZIP, for a given strain that occurs in a given sample, say the r-th strain 

in the j-th sample (i.e., 𝑦𝑦𝑗𝑗𝑗𝑗 =1), SMS initializes 𝜆𝜆𝑗𝑗𝑗𝑗 =
𝑠𝑠𝑗𝑗𝑗𝑗
2 +𝑎𝑎𝑗𝑗𝑗𝑗

2

𝑎𝑎𝑗𝑗𝑗𝑗
− 1 , 𝜋𝜋𝑗𝑗𝑗𝑗 =

𝑠𝑠𝑗𝑗𝑗𝑗
2 −𝑎𝑎𝑗𝑗𝑗𝑗

𝑠𝑠𝑗𝑗𝑗𝑗
2 +𝑎𝑎𝑗𝑗𝑗𝑗

2 −𝑎𝑎𝑗𝑗𝑗𝑗
,  with 𝑠𝑠𝑗𝑗𝑗𝑗2 =

∑ 𝑧𝑧𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖𝑖𝑖−𝑎𝑎𝑗𝑗𝑗𝑗)2𝑛𝑛1
𝑖𝑖=1
∑ 𝑧𝑧𝑖𝑖𝑖𝑖𝑛𝑛1
𝑖𝑖=1 −1

 . SMS then uses the following iteration method to obtain the maximal likelihood 

estimation of 𝜋𝜋𝑗𝑗𝑗𝑗 and 𝜆𝜆𝑗𝑗𝑗𝑗: first replaces 𝜋𝜋𝑗𝑗𝑗𝑗 by 𝜋𝜋𝑗𝑗𝑗𝑗 = 𝑛𝑛𝑗𝑗𝑗𝑗(𝜆𝜆𝑗𝑗𝑗𝑗−𝑎𝑎𝑗𝑗𝑗𝑗)𝑒𝑒−𝜆𝜆𝑗𝑗𝑗𝑗

𝜆𝜆𝑗𝑗𝑗𝑗𝑏𝑏𝑗𝑗𝑗𝑗−𝑛𝑛𝑗𝑗𝑗𝑗(𝜆𝜆𝑗𝑗𝑗𝑗−𝑎𝑎𝑗𝑗𝑗𝑗)�1−𝑒𝑒−𝜆𝜆𝑗𝑗𝑗𝑗�
 in the equation 𝑛𝑛𝑗𝑗𝑗𝑗𝑎𝑎𝑗𝑗𝑗𝑗

𝜆𝜆𝑗𝑗𝑗𝑗
−

(1−𝜋𝜋𝑗𝑗𝑗𝑗)𝑏𝑏𝑗𝑗𝑗𝑗
𝜋𝜋𝑗𝑗𝑗𝑗+�1−𝜋𝜋𝑗𝑗𝑗𝑗�𝑒𝑒

−𝜆𝜆𝑗𝑗𝑗𝑗
= 0  to obtain an equation of 𝜆𝜆𝑗𝑗𝑗𝑗, then solves this equation by the Newton’s iteration 

method. Everywhere in this process, if 𝜋𝜋𝑗𝑗𝑗𝑗=0, you will directly estimate 𝜆𝜆𝑗𝑗𝑗𝑗=𝑎𝑎𝑗𝑗𝑗𝑗.  

 

2.5. Log likelihood test 
 



Given R strains, the full likelihood of observation the frequencies of these n1 SNPs in the m samples is  

𝐿𝐿(𝑋𝑋,𝑍𝑍|𝜋𝜋, 𝜆𝜆) = ��(�𝑧𝑧𝑖𝑖𝑖𝑖𝑦𝑦𝑗𝑗𝑗𝑗𝑍𝑍𝑍𝑍𝑍𝑍(𝑥𝑥𝑖𝑖𝑖𝑖 ,
𝑅𝑅

𝑟𝑟=1

𝑚𝑚

𝑗𝑗=1

𝜋𝜋𝑗𝑗𝑗𝑗 , 𝜆𝜆𝑗𝑗𝑗𝑗)
𝑛𝑛1

𝑖𝑖=1

). 

When SMS splits one strain into two or removes one strain, the likelihood can be similarly calculated. 

To assess the significance of changing the current R strains, we calculate the ratio of the likelihood after 

changing (split or remove) to the likelihood before changing. The ratio approximately follows a Chi-

square distribution with the degree of freedom equal to the difference of the parameters in the two models. 

If the Chi-square test p-value is smaller than a pre-defined cutoff, SMS correspondingly modifies the 

current R strains.  

 
2.6. Simulated and experimental datasets 
 
 
We simulated 702 datasets (Supplementary Table S1). As mentioned above, because SMS uses a species 

reference genome, we only need to consider reads from one species in a dataset. We thus simulated data 

with only one species in each dataset. In every dataset, a species reference genome was randomly chosen, 

2 to 4 strains were simulated, and 5 to 35 samples were generated. For each reference genome, their four 

strains were generated by randomly choosing 0.01% of the genome positions and then randomly 

substituting the reference nucleotide with another nucleotide. This 0.01% mutation rate was from 

previous studies [16, 28], representing relatively more similar strains of a species (99.99% sequence 

identities) that are thus more challenging to distinguish from each other. The read coverage of a reference 

genome in a dataset was one of the following four coverage, 100x, 150x, 200x, and 300x. The number 

of strains and their relative abundance in a dataset were specified by one of the following five 

configurations: 10:20:30:40, 10:25:25:40, 10:30:60, 15:30:55, and 30:70. For a dataset, with the chosen 

configuration and the number of samples, a subset of samples were randomly chosen for each strain and 

the coverage of this strain in one of the samples was then randomly determined so that the pooled 

coverage of this strain was the same as what was specified in the configuration. With the coverage of 



strains in a sample, paired reads of 100 base pairs long were randomly generated using dwgsim 

(https://github.com/nh13/DWGSIM).  

We tested SMS on 195 experimental datasets [11]. Each dataset is known to have two Mycobacterium 

tuberculosis strains with predicted abundance. The abundance is inferred from two different 

computational methods. The actual SNPs in each strain are unknown.  

 
2.7. Comparison with existing methods 
 
 

We compared SMS with mixtureS and StrainFinder in a desktop computer with the Intel Core i9-9900KF 

CPU (16 cores@3.6GHz) and 32 gigabytes memory. We used the following commands to run the three 

tools respectively: 

SMS: python SMS/running.py --output_name %s  --genome_len %s --genome_name %s --

genome_file_loc %s --bam_loc_file %s --res_dir %s 

MixtureS: python mixtureS/mixture_model.py --sample_name %s  --genome_len %s --

genome_name %s --genome_file_loc %s --bam_file %s --res_dir %s 

StrainFinder: python StrainFinder/StrainFinder.py --aln %s -N %s --max_reps 10 --dtol 1 --ntol 2 --

max_time 3600 --coverage --em_out %s --out_out %s --log %s --n_keep %s --force_update --merge_out 

–msg 

 

3. Results 
 
3.1. SMS correctly predicted the strain numbers 

 

We studied the number of strains predicted in 702 simulated datasets (Supplementary Table S1). There 

were 5 to 35 samples and 2 to 4 strains in every dataset, with the pooled coverage of strains from 100X 

to 300X. The pooled coverage was the sum of the coverage of all strains of a species in all samples. The 

https://github.com/nh13/DWGSIM
mailto:cores@3.6GHz


number of strains and their relative abundance are specified by one of the following five configurations 

in each dataset: 10:20:30:40, 10:25:25:40; 10:30:60, 15:30:55, and 30:70. For instance,  for a dataset 

with the configuration 10:20:30:40, the proportion of reads from the four strains was 10%, 20%, 30% 

and 40%, respectively. 

Overall, SMS predicted the correct strain numbers in all but five datasets (Supplementary Tables S2-S5). 

Interestingly, SMS did not predict the correct strain number in at least one dataset for each of the three 

randomly selected species, implying that its performance was not species-specific. In each of the five 

datasets, a pair of strains shared 30% of their SNPs. In four of the five datasets, three strains shared 20% 

of their SNPs. These shared SNPs may have confused SMS when the coverage was 100X. When the 

coverage was increased, SMS predicted the correct strain number in each of the five corresponding 

datasets. These analyses suggested that SMS can accurately predict the strain number, even when the 

pooled coverage was 100X, and there were only five samples in a dataset. Moreover, the predicted strain 

number was even more accurate with a larger pooled coverage (200X coverage for perfect prediction 

here).  

 

3.2. SMS reliably estimated the strain abundance 

 

We investigated how well SMS predicted the strain abundance. No matter whether the strain number was 

correctly predicted, the predicted strain abundance agreed well with the known strain abundance (Fig. 2, 

Supplementary Tables S2-S5). This agreement did not depend on the sample number, the pooled 

coverage, the strain number, etc.  

 
 



 
Fig. 2. The predicted strain abundance. A) Unshared datasets; B) Shared datasets; and C) All 
datasets. MAE is the average Maximal Absolute Difference between the predicted abundance and the 
corresponding true abundance across datasets. 
 
In the 697 datasets SMS correctly predicted the strain number, the predicted strain abundance was within 

97.31% of the true abundance. The mean and median ratio of the predicted abundance to the true 

abundance were 0.99 and 1.00, respectively. Even in the five datasets with the incorrectly predicted strain 

number, the predicted strain abundance was similar to the true abundance. For instance, SMS predicted 

four strains in three datasets with three strains (Supplementary Table S5). In two datasets, two strains had 

a predicted abundance of about 0.08 and 0.29, respectively, which were close to the corresponding true 

abundance of 0.10 and 0.30. The two remaining predicted abundance were about 0.42 and 0.21, which 

differed from the third true abundance, 0.60. In the third dataset, one strain was predicted with an 

abundance of 0.31, close to the true abundance of 0.30. The wrong prediction of the strain number and 

strain abundance was likely due to the third strain’s uneven and relatively limited coverage. After 

increasing the coverage, SMS predicted the correct strain number and more similar abundance 

(Supplementary Table S5).  

The accuracy was in general improved with more samples and a larger pooled coverage in a dataset (Fig. 

2). For instance,  when the sample number was larger, the median of the predicted abundance was closer 



to the true abundance, and the variation of the maximal absolute difference (MAE) between the predicted 

abundance and the true abundance was smaller. The accuracy was not affected much by different species 

or the number of strains in a dataset (Fig. 2). For instance, the MAE was within a similar range and with 

a similar mean/median when there were different numbers of strains. The small variations suggested that 

the predicted abundance by SMS was robust to different bacterial genomes, different numbers of strains, 

etc.   

 

3.3. SMS faithfully determined the SNPs 

 

Existing methods mainly focus on the predicted strain number and only occasionally consider their 

abundance. Rarely do they mention the accuracy of the predicted strain SNPs. With the simulated datasets, 

we systematically evaluated the predicted SNPs. We found that SMS has a precision of 0.97 and a recall 

of 0.96 to predict strain SNPs.  

We studied the datasets without shared SNPs among strains (Supplementary Table S6). In all 216 datasets, 

on average, SMS had a precision of 0.98 and a recall of 0.98. For a given species with a specified pooled 

coverage, the precision and recall were higher on datasets with more samples in general. Similarly, they 

were generally higher on datasets with a larger pooled coverage when the species and the sample number 

were fixed. For instance, for the reference species genome NC_009515.1 and the sample number 20, the 

precison increased from 0.98 to 0.99 and the recall increased from 0.97 to 0.99 when the pooled coverage  

increased from 100X to 300X. 

We also studied the predicted strains on datasets with shared SNPs among strains (Supplementary Tables 

S7-S9). We again focused on the two most challenging configurations: 10:20:30:40 and 10:25:25:40. 

They were challenging because the shared SNPs among strains may have similar coverage across 

samples with SNPs unique to other strains. For instance, the shared SNPs between the first two strains 

in the configuration 10:20:30:40 had a relative abundance of 30%, the same as the relative abundance of 



the third strain. Even with such complexity, SMS on average had a precision of 0.97 and a recall of 0.96 

on all datasets (Supplementary Tables S7 and S8). The performance suggested that SMS could 

reconstruct the complicated evolutionary trajectories of strains with shotgun sequencing reads. 

 

3.4. SMS performed well on experimental datasets 

 

We tested SMS on 195 experimental datasets (Supplementary Table S10). We chose these datasets 

because their strain numbers were known. The strain abundance was also predicted previously [11]. Note 

that the datasets from the Critical Assessment of Metagenome Interpretation challenge did not provide 

the strain number, strain abundance and SNPs unique to strains, thus not suitable for the strain genome 

reconstruction here [18].  

SMS identified two strains in each of these 195 datasets, which agreed well with the previous study [11]. 

This study showed that there were at least 11 heterozygous sites in each of these 195 datasets. 

Interestingly, SMS showed that the two strains in different datasets were the same, which was consistent 

with the fact that these datasets were from clinical samples collected from the same region. Moreover, 

SMS distinguished strains with similar abundance in these datasets. For instance, in the dataset 

ERR323056, there were 69 heterozygous sites observed in reads [11]. SMS predicted two strains with a 

relative abundance of 0.52 and 0.48. The previous study based on the SNP frequency identified only one 

strain, likely due to their similar abundance. Since the strain abundance was unknown, we compared the 

predicted abundance by SMS and the previous study. The difference between the predicted strain 

abundance to the predicted abundance previously had a mean and median of 0.16 and 0.12, respectively, 

if we considered only the 186 datasets where the previous study correctly predicted the strain number.   

 

3.5 SMS reconstructed strain genomes better than existing methods 

 



We compared SMS with mixtureS [26] and StrainFinder [29]. We did not compare other tools because 

mixtureS and StrainFinder showed better performance previously, and other tools may only work for 

marker gene regions instead of on the genome-scale [26]. Since mixtureS works on one sample, we ran 

it on the pooled sample in each dataset. Because StrainFinder cannot determine the strain numbers, we 

specified the known strain numbers in the corresponding datasets.  

We compared the strain number, abundance and SNPs predicted by the three methods. SMS performed 

much better than others (Table 1). For instance, for simulated datasets with no shared SNPs among strains, 

SMS predicted the correct strain number in all 216 datasets while mixtureS correctly predicted the strain 

number in 98 datasets. On average, the predicted SNPs by SMS had a precision of 0.97 and a recall of 

0.98, larger than those of mixtureS and SStrainFinder. Moreover, the predicted strain abundance by SMS 

had an average MAE of 0.004, compared with 0.08 by mixtureS and 0.07 by StrainFinder.  

 
Table 1 The performance of the three tools. 
 

Dataset SMS mixtureS StrainFinder 

# (%) of 
datasets 

Precision, 
Recall, F1 

MAE # (%) of 
datasets 

Precision, 
Recall, F1 

MAE Precision, 
Recall, F1 

MAE 

702 
simulated 
datasets 

Unshared 216 
(100%) 

0.97, 0.98, 
0.98 

0.004 98 
(45.37%) 

0.81, 0.83, 
0.80 

0.08 0.66, 0.56, 
0.53 

0.07 

Shared 481 
(98.97%) 

0.97, 0.96, 
0.96 

0.008 184 
37.86% 

0.83, 0.58, 
0.63 

0.07 0.68, 0.56, 
0.56 

0.06 

All 697 
(99.29%) 

0.97, 
0.96,0.96 

0.007 282 
40.17% 

0.82, 0.66, 
0.68 

0.07 0.68, 0.56, 
0.55 

0.06 

195 experimental 
datasets 

195 
(100%) 

NA 0.16 146 
74.87% 

NA 0.12 NA 0.26 

The three columns for each tool are the number (percentage) of datasets where the tool predicted the correct strain number; 
the precision, recall and F1 score of the predicted strain SNPs; and the average MAE of the predicted strain abundance. 

 
We also studied the running time of different methods (Supplementary Table S11). SMS took a little more 

time to run than mixtureS. However, the difference was not so evident. For all tools, the time cost mainly 

depended on the number of strains and SNPs, instead of the dataset sizes.  

 



4. Discussion 
 
 

SMS reconstructs bacterial strain genomes with multiple shotgun metagenomic samples. It considers the 

coverage variation of individual strains across samples to distinguish strains of the same bacterial species. 

As demonstrated in simulated and experimental datasets, SMS is able to separate strains with similar 

abundance. The capability to separate strains with similar abundance is in general improved with more 

samples and larger pooled coverage. 

SMS reconstructs bacterial strain genomes with a species reference genome and the raw sequencing reads. 

The reference is employed to map the cleaned reads. The chosen reference thus does not affect the 

predicted strain number and abundance, as they are inferred from the SNPs in strains that come from the 

mapped reads. SMS defines SNPs with an in-house procedure, which may affect the quality of individual 

SNPs. However, we do not think that the potential false SNPs will affect the predicted strain number and 

abundance, as they are determined by the coverage of the majority of SNPs in individual strains. Users 

may choose existing tools like SAMtools [43] to define SNPs in samples. Moreover, since reads are 

mapped to the reference genomes in advance, SMS can be applied to general metagenomic datasets 

instead of the simulated shotgun samples for individual species illustrated here.    

SMS is not designed for the strain analysis of novel species. With more and more sequenced bacterial 

genomes, this issue may not be of concern in the future. Moreover, SMS considers only the reference 

genomic regions to reconstruct bacterial strain genomes. It thus does not consider accessory genes that 

are not represented in the chosen reference genomes. In this sense, what SMS reconstructs is similar to 

the strain core genomes but may include additional reference-specific regions. In the future, one may 

apply other machine learning and data mining methods [44-48] to further discover accessory genes in 

strains, with the inferred strain number and abundance in samples.   

  
 



Author Contributions 
 
H.H. and X.L. designed the study. S.W., M.V., H.H. and X.L. analyzed data and wrote the manuscript. 
 
Conflict of interest 
 
The authors declare no cometing interests. 
 
Acknowledgement 
 
This work was supported by the National Science Foundation [1661414, 2015838, 2120907]. 
 
References 
 
[1] B.A. Methe, K.E. Nelson, M. Pop, H.H. Creasy, M.G. Giglio, C. Huttenhower, D. Gevers, J.F. 

Petrosino, S. Abubucker, J.H. Badger, A.T. Chinwalla, A.M. Earl, M.G. FitzGerald, R.S. Fulton, K. 

Hallsworth-Pepin, E.A. Lobos, R. Madupu, V. Magrini, J.C. Martin, M. Mitreva, D.M. Muzny, E.J. 

Sodergren, J. Versalovic, A.M. Wollam, K.C. Worley, J.R. Wortman, S.K. Young, Q. Zeng, K.M. 

Aagaard, O.O. Abolude, E. Allen-Vercoe, E.J. Alm, L. Alvarado, G.L. Andersen, S. Anderson, E. 

Appelbaum, H.M. Arachchi, G. Armitage, C.A. Arze, T. Ayvaz, C.C. Baker, L. Begg, T. Belachew, V. 

Bhonagiri, M. Bihan, M.J. Blaser, T. Bloom, V.R. Bonazzi, P. Brooks, G. Buck, C.J. Buhay, D.A. 

Busam, J.L. Campbell, S.R. Canon, B.L. Cantarel, P.S. Chain, I.M.A. Chen, L. Chen, S. Chhibba, K. 

Chu, D.M. Ciulla, J.C. Clemente, S.W. Clifton, S. Conlan, J. Crabtree, M.A. Cutting, N.J. Davidovics, 

C.C. Davis, T.Z. DeSantis, C. Deal, K.D. Delehaunty, F.E. Dewhisrst, E. Deych, Y. Ding, D.J. Dooling, 

S.P. Dugan, W.M. Dunne, A.S. Durkin, R.C. Edgar, R.L. Erlich, C.N. Farmer, R.M. Farrell, K. Faust, 

M. Feldgarden, V.M. Felix, S. Fisher, A.A. Fodor, L. Forney, L. Foster, V. Di Francesco, J. Friedman, 

D.C. Friedrich, C.C. Fronick, L.L. Fulton, H. Gao, N. Garcia, G. Giannoukos, C. Giblin, M.Y. 

Giovanni, J.M. Goldberg, J. Goll, A. Gonzalez, A. Griggs, S. Gujja, B.J. Haas, H.A. Hamilton, E.L. 

Harris, T.A. Hepburn, B. Herter, D.E. Hoffmann, M.E. Holder, C. Howarth, K.H. Huang, S.M. Huse, J. 

Izard, J.K. Jansson, H.Y. Jiang, C. Jordan, V. Joshi, J. Katancik, W. Keitel, S.T. Kelley, C. Kells, S. 

Kinder-Haake, N.B. King, R. Knight, D. Knights, H.H. Kong, O. Koren, S. Koren, K.C. Kota, C.L. 

Kovar, N.C. Kyrpides, P.S. La Rosa, S.L. Lee, K.P. Lemon, N. Lennon, C.M. Lewis, L. Lewis, R.E. 

Ley, K. Li, K. Liolios, B. Liu, Y. Liu, C.C. Lo, C.A. Lozupone, R.D. Lunsford, T. Madden, A.A. 

Mahurkar, P.J. Mannon, E.R. Mardis, V.M. Markowitz, K. Mavrommatis, J.M. McCorrison, D. 

McDonald, J. McEwen, A.L. McGuire, P. McInnes, T. Mehta, K.A. Mihindukulasuriya, J.R. Miller, P.J. 

Minx, I. Newsham, C. Nusbaum, M. O'Laughlin, J. Orvis, I. Pagani, K. Palaniappan, S.M. Patel, M. 



Pearson, J. Peterson, M. Podar, C. Pohl, K.S. Pollard, M.E. Priest, L.M. Proctor, X. Qin, J. Raes, J. 

Ravel, J.G. Reid, M. Rho, R. Rhodes, K.P. Riehle, M.C. Rivera, B. Rodriguez-Mueller, Y.H. Rogers, 

M.C. Ross, C. Russ, R.K. Sanka, P. Sankar, J.F. Sathirapongsasuti, J.A. Schloss, P.D. Schloss, T.M. 

Schmidt, M. Scholz, L. Schriml, A.M. Schubert, N. Segata, J.A. Segre, W.D. Shannon, R.R. Sharp, T.J. 

Sharpton, N. Shenoy, N.U. Sheth, G.A. Simone, I. Singh, C.S. Smillie, J.D. Sobel, D.D. Sommer, P. 

Spicer, G.G. Sutton, S.M. Sykes, D.G. Tabbaa, M. Thiagarajan, C.M. Tomlinson, M. Torralba, T.J. 

Treangen, R.M. Truty, T.A. Vishnivetskaya, J. Walker, L. Wang, Z. Wang, D.V. Ward, W. Warren, M.A. 

Watson, C. Wellington, K.A. Wetterstrand, J.R. White, K. Wilczek-Boney, Y.Q. Wu, K.M. Wylie, T. 

Wylie, C. Yandava, L. Ye, Y. Ye, S. Yooseph, B.P. Youmans, L. Zhang, Y.J. Zhou, Y.M. Zhu, L. Zoloth, 

J.D. Zucker, B.W. Birren, R.A. Gibbs, S.K. Highlander, G.M. Weinstock, R.K. Wilson, O. White, 

H.M.P. Consortiu, A framework for human microbiome research, Nature, 486 (2012) 215-221. 

[2] L.M. Proctor, H.H. Creasy, J.M. Fettweis, J. Lloyd-Price, A. Mahurkar, W.Y. Zhou, G.A. Buck, 

M.P. Snyder, J.F. Strauss, G.M. Weinstock, O. White, C. Huttenhower, I.H.i.R. Network, The 

Integrative Human Microbiome Project, Nature, 569 (2019) 641-648. 

[3] L.M. Proctor, I.H.i.R. Network, The Integrative Human Microbiome Project: Dynamic Analysis of 

Microbiome-Host Omics Profiles during Periods of Human Health and Disease, Cell host & microbe, 

16 (2014) 276-289. 

[4] D.A. Rasko, V. Sperandio, Anti-virulence strategies to combat bacteria-mediated disease, Nat Rev 

Drug Discov, 9 (2010) 117-128. 

[5] G.W. Tyson, J. Chapman, P. Hugenholtz, E.E. Allen, R.J. Ram, P.M. Richardson, V.V. Solovyev, 

E.M. Rubin, D.S. Rokhsar, J.F. Banfield, Community structure and metabolism through reconstruction 

of microbial genomes from the environment, Nature, 428 (2004) 37-43. 

[6] J.C. Venter, K. Remington, J.F. Heidelberg, A.L. Halpern, D. Rusch, J.A. Eisen, D. Wu, I. Paulsen, 

K.E. Nelson, W. Nelson, D.E. Fouts, S. Levy, A.H. Knap, M.W. Lomas, K. Nealson, O. White, J. 

Peterson, J. Hoffman, R. Parsons, H. Baden-Tillson, C. Pfannkoch, Y.H. Rogers, H.O. Smith, 

Environmental genome shotgun sequencing of the Sargasso Sea, Science (New York, N.Y, 304 (2004) 

66-74. 

[7] Y. Wang, S. Goodison, X. Li, H. Hu, Prognostic cancer gene signatures share common regulatory 

motifs, Sci Rep, 7 (2017) 4750. 

[8] J.C. Wooley, A. Godzik, I. Friedberg, A primer on metagenomics, PLoS computational biology, 6 

(2010) e1000667. 

[9] T. Van Rossum, P. Ferretti, O.M. Maistrenko, P. Bork, Diversity within species: interpreting strains 

in microbiomes, Nat Rev Microbiol, 18 (2020) 491-506. 



[10] D.W. Eyre, M.L. Cule, D. Griffiths, D.W. Crook, T.E. Peto, A.S. Walker, D.J. Wilson, Detection of 

mixed infection from bacterial whole genome sequence data allows assessment of its role in 

Clostridium difficile transmission, PLoS computational biology, 9 (2013) e1003059. 

[11] B. Sobkowiak, J.R. Glynn, R.M.G.J. Houben, K. Mallard, J.E. Phelan, J.A. Guerra-Assuncao, L. 

Banda, T. Mzembe, M. Viveiros, R. McNerney, J. Parkhill, A.C. Crampin, T.G. Clark, Identifying 

mixed Mycobacterium tuberculosis infections from whole genome sequence data, BMC genomics, 19 

(2018) 613. 

[12] J.A. Eisen, Environmental shotgun sequencing: its potential and challenges for studying the hidden 

world of microbes, PLoS biology, 5 (2007) e82. 

[13] X. Li, S.A. Naser, A. Khaled, H. Hu, X. Li, When old metagenomic data meet newly sequenced 

genomes, a case study, PloS one, 13 (2018) e0198773. 

[14] Y. Wang, H. Hu, X. Li, MBMC: An Effective Markov Chain Approach for Binning Metagenomic 

Reads from Environmental Shotgun Sequencing Projects, Omics : a journal of integrative biology, 20 

(2016) 470-479. 

[15] B. Cleary, I.L. Brito, K. Huang, D. Gevers, T. Shea, S. Young, E.J. Alm, Detection of low-

abundance bacterial strains in metagenomic datasets by eigengenome partitioning, Nature 

biotechnology, 33 (2015) 1053-1060. 

[16] X. Li, S. Saadat, H.Y. Hu, X.M. Li, BHap: a novel approach for bacterial haplotype reconstruction, 

Bioinformatics (Oxford, England), 35 (2019) 4624-4631. 

[17] O. Kyrgyzov, V. Prost, S. Gazut, B. Farcy, T. Bruls, Binning unassembled short reads based on k-

mer abundance covariance using sparse coding, GigaScience, 9 (2020). 

[18] A. Sczyrba, P. Hofmann, P. Belmann, D. Koslicki, S. Janssen, J. Droge, I. Gregor, S. Majda, J. 

Fiedler, E. Dahms, A. Bremges, A. Fritz, R. Garrido-Oter, T.S. Jorgensen, N. Shapiro, P.D. Blood, A. 

Gurevich, Y. Bai, D. Turaev, M.Z. DeMaere, R. Chikhi, N. Nagarajan, C. Quince, F. Meyer, M. 

Balvociute, L.H. Hansen, S.J. Sorensen, B.K.H. Chia, B. Denis, J.L. Froula, Z. Wang, R. Egan, D. Don 

Kang, J.J. Cook, C. Deltel, M. Beckstette, C. Lemaitre, P. Peterlongo, G. Rizk, D. Lavenier, Y.W. Wu, 

S.W. Singer, C. Jain, M. Strous, H. Klingenberg, P. Meinicke, M.D. Barton, T. Lingner, H.H. Lin, Y.C. 

Liao, G.G.Z. Silva, D.A. Cuevas, R.A. Edwards, S. Saha, V.C. Piro, B.Y. Renard, M. Pop, H.P. Klenk, 

M. Goker, N.C. Kyrpides, T. Woyke, J.A. Vorholt, P. Schulze-Lefert, E.M. Rubin, A.E. Darling, T. 

Rattei, A.C. McHardy, Critical Assessment of Metagenome Interpretation-a benchmark of 

metagenomics software, Nature methods, 14 (2017) 1063-1071. 

[19] A.J. van der Walt, M.W. van Goethem, J.B. Ramond, T.P. Makhalanyane, O. Reva, D.A. Cowan, 

Assembling metagenomes, one community at a time, BMC genomics, 18 (2017). 



[20] D. Gevers, S. Kugathasan, D. Knights, A.D. Kostic, R. Knight, R.J. Xavier, A Microbiome 

Foundation for the Study of Crohn's Disease, Cell host & microbe, 21 (2017) 301-304. 

[21] D.H. Parks, C. Rinke, M. Chuvochina, P.A. Chaumeil, B.J. Woodcroft, P.N. Evans, P. Hugenholtz, 

G.W. Tyson, Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree 

of life, Nat Microbiol, 2 (2017) 1533-1542. 

[22] E. Pasolli, F. Asnicar, S. Manara, M. Zolfo, N. Karcher, F. Armanini, F. Beghini, P. Manghi, A. 

Tett, P. Ghensi, M.C. Collado, B.L. Rice, C. DuLong, X.C. Morgan, C.D. Golden, C. Quince, C. 

Huttenhower, N. Segata, Extensive Unexplored Human Microbiome Diversity Revealed by Over 

150,000 Genomes from Metagenomes Spanning Age, Geography, and Lifestyle, Cell, 176 (2019) 649-

+. 

[23] D. Albanese, C. Donati, Strain profiling and epidemiology of bacterial species from metagenomic 

sequencing, Nat Commun, 8 (2017). 

[24] C. Anyansi, T.J. Straub, A.L. Manson, A.M. Earl, T. Abeel, Computational Methods for Strain-

Level Microbial Detection in Colony and Metagenome Sequencing Data, Front Microbiol, 11 (2020) 

1925. 

[25] C.J. Hong, S. Manimaran, Y. Shen, J.F. Perez-Rogers, A.L. Byrd, E. Castro-Nallar, K.A. Crandall, 

W.E. Johnson, PathoScope 2.0: a complete computational framework for strain identification in 

environmental or clinical sequencing samples, Microbiome, 2 (2014). 

[26] X. Li, H. Hu, X. Li, mixtureS: a novel tool for bacterial strain reconstruction from reads, 

Bioinformatics (Oxford, England), (2020). 

[27] C. Luo, R. Knight, H. Siljander, M. Knip, R.J. Xavier, D. Gevers, ConStrains identifies microbial 

strains in metagenomic datasets, Nature biotechnology, 33 (2015) 1045-1052. 

[28] S. Pulido-Tamayo, A. Sanchez-Rodriguez, T. Swings, B. Van den Bergh, A. Dubey, H. 

Steenackers, J. Michiels, J. Fostier, K. Marchal, Frequency-based haplotype reconstruction from deep 

sequencing data of bacterial populations, Nucleic acids research, 43 (2015) e105. 

[29] C.S. Smillie, J. Sauk, D. Gevers, J. Friedman, J. Sung, I. Youngster, E.L. Hohmann, C. Staley, A. 

Khoruts, M.J. Sadowsky, J.R. Allegretti, M.B. Smith, R.J. Xavier, E.J. Alm, Strain Tracking Reveals 

the Determinants of Bacterial Engraftment in the Human Gut Following Fecal Microbiota 

Transplantation, Cell host & microbe, 23 (2018) 229-+. 

[30] T.H. Ahn, J.J. Chai, C.L. Pan, Sigma: Strain-level inference of genomes from metagenomic 

analysis for biosurveillance, Bioinformatics (Oxford, England), 31 (2015) 170-177. 

[31] P.I. Costea, R. Munch, L.P. Coelho, L. Paoli, S. Sunagawa, P. Bork, metaSNV: A tool for 

metagenomic strain level analysis, PloS one, 12 (2017) e0182392. 



[32] S. Nayfach, B. Rodriguez-Mueller, N. Garud, K.S. Pollard, An integrated metagenomics pipeline 

for strain profiling reveals novel patterns of bacterial transmission and biogeography, Genome research, 

26 (2016) 1612-1625. 

[33] C. Quince, T.O. Delmont, S. Raguideau, J. Alneberg, A.E. Darling, G. Collins, A.M. Eren, 

DESMAN: a new tool for de novo extraction of strains from metagenomes, Genome biology, 18 (2017) 

181. 

[34] M. Roosaare, M. Vaher, L. Kaplinski, M. Mols, R. Andreson, M. Lepamets, T. Koressaar, P. 

Naaber, S. Koljalg, M. Remm, StrainSeeker: fast identification of bacterial strains from raw sequencing 

reads using user-provided guide trees, PeerJ, 5 (2017) e3353. 

[35] A. Sankar, B. Malone, S.C. Bayliss, B. Pascoe, G. Meric, M.D. Hitchings, S.K. Sheppard, E.J. 

Feil, J. Corander, A. Honkela, Bayesian identification of bacterial strains from sequencing data, Microb 

Genom, 2 (2016) e000075. 

[36] M. Scholz, D.V. Ward, E. Pasolli, T. Tolio, M. Zolfo, F. Asnicar, D.T. Truong, A. Tett, A.L. 

Morrow, N. Segata, Strain-level microbial epidemiology and population genomics from shotgun 

metagenomics, Nature methods, 13 (2016) 435-438. 

[37] F.B. Tamburini, T.M. Andermann, E. Tkachenko, F. Senchyna, N. Banaei, A.S. Bhatt, Precision 

identification of diverse bloodstream pathogens in the gut microbiome, Nat Med, 24 (2018) 1809-1814. 

[38] D.T. Truong, A. Tett, E. Pasolli, C. Huttenhower, N. Segata, Microbial strain-level population 

structure and genetic diversity from metagenomes, Genome research, 27 (2017) 626-638. 

[39] C. Quince, S. Nurk, S. Raguideau, R. James, O.S. Soyer, J.K. Summers, A. Limasset, A.M. Eren, 

R. Chikhi, A.E. Darling, STRONG: metagenomics strain resolution on assembly graphs, Genome 

biology, 22 (2021) 214. 

[40] M.F. Ventolero, S. Wang, H. Hu, X. Li, Computational analyses of bacterial strains from shotgun 

reads, Briefings in bioinformatics, 23 (2022). 

[41] A.M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data, 

Bioinformatics (Oxford, England), 30 (2014) 2114-2120. 

[42] B. Langmead, S.L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nature methods, 9 (2012) 

357-359. 

[43] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. 

Durbin, S. Genome Project Data Processing, The Sequence Alignment/Map format and SAMtools, 

Bioinformatics (Oxford, England), 25 (2009) 2078-2079. 

[44] K. Murphy, Machine Learning: A Probabilistic Perspective, The MIT Press, 2012. 

[45] A. Talukder, S. Saadat, X. Li, H. Hu, EPIP: a novel approach for condition-specific enhancer-



promoter interaction prediction, Bioinformatics (Oxford, England), 35 (2019) 3877-3883. 

[46] R. Tibshirani, P. Wang, Spatial smoothing and hot spot detection for CGH data using the fused 

lasso, Biostatistics, 9 (2008) 18-29. 

[47] C. Zhao, X. Li, H. Hu, PETModule: a motif module based approach for enhancer target gene 

prediction, Sci Rep, 6 (2016) 30043. 

[48] J. Zhou, J. Liu, V.A. Narayan, J. Ye, Modeling Disease Progression via Fused Sparse Group Lasso, 

KDD, 2012 (2012) 1095-1103. 
 

 
 
 
 


