Computational analyses of bacterial strains from shotgun reads
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Abstract

Shotgun sequencing is routinely employed to study bacteria in microbial communities.
With the vast amount of shotgun sequencing reads generated in a metagenomic project, it is
crucial to determine the microbial composition at the strain level. This study investigated twenty
computational tools that attempt to infer bacterial strain genomes from shotgun reads. For the
first time, we discussed the methodology behind these tools. We also systematically evaluated
six novel-strain-targeting tools on the same datasets and found that BHap, mixtureS and
StrainFinder performed better than other tools. Because the performance of the best tools is still
suboptimal, we discussed future directions that may address the limitations.

Keywords: metagenomics, shotgun sequencing, tool comparison, bacterial strains, bacterial
strain genome reconstruction.

Introduction

Shotgun metagenomic sequencing is routinely applied to study microbes [1-12]. In shotgun
metagenomic sequencing, mixed DNA from all microbial species and strains in an
environmental/clinical sample are randomly cut into pieces. These short DNA fragments are then
sequenced to generate reads. Ideally, these mixed shotgun reads from different species/strains in
a sample proportionally represent the abundance of the original DNA, with more reads from
more abundant species/strains, and vice versa. With the shotgun reads and other data, one may
then answer key questions such as which species are present, how abundant each species is, how
these species work together in the community under a specific condition, and so on [13].

Many computational methods have been developed to analyze shotgun metagenomic reads to
study microbial genomes [14-16]. These methods can be classified into two main categories:
assembly-based and binning-based. The assembly-based methods assemble the mixed reads into
individual microbial genomes [15-28]. These approaches face great challenges such as the mixed
reads from a large number of unknown species, sequencing errors in reads, uneven sequencing
coverage across microbial genomes, horizontal gene transfers (HGTs) that produce “duplicated”
genes in different species, etc. Moreover, when there are billions of reads involved in a project,
rarely can existing assembly approaches address the assembly problem even on commercial
computer servers [23, 29]. In addition, there are usually misassembled regions in the resulted
genomes and/or contigs, which are challenging to identify and resolve [16, 26]. Despite these
challenges, the assembly-based methods have successfully reconstructed a number of microbial
genomes. The other main category of computational methods is the binning-based methods.
These methods cluster reads into groups based on sequence composition and/or sequence



homology so that each group is likely to represent reads from a taxon at a specific taxonomic
level (phylum, class, order, family, genus, species) [16, 30-34]. Later, with the sequencing cost
dramatically decreased, multiple shotgun metagenomic samples from the same environments or
human body sites are widely available [35-45]. It becomes popular to bin pre-assembled contigs
from multiple metagenomic samples, resulting in a large number of metagenome-assembled-
genomes (MAGs) [35, 36]. Currently, contig-binning is arguably the best strategy to reconstruct
bacterial genomes. Although contig-binning barely produces close-to-complete genomes, certain
ones are of good quality [35, 36].

Despite the existence of many computational methods to analyze shotgun metagenomic reads,
most of them are developed to study taxons at the species or higher levels [16]. They are not
designed to analyze microbial strains, especially bacterial strains. Bacterial strains play critical
roles in our environments and human health [46-52]. Such potential roles can be seen in
bioremediation [53-55], their utility in probiotics development [56], and their diagnostic
potential for health and disease states [57, 58], etc. For instance, Acinetobacter calcoaceticus
GK2 strain [59], Mucor hiemalis strains [60], and Lactobacillus plantarum MF042018 [61] have
shown potential for diesel or metal bioremediation. Lactic acid bacterial strains of Lactobacillus,
Pediococcus and Weissella have the potential for probiotics development [62]. Lactobacillus
paracasei CP133, Lactobacillus plantarum CP134, and Bacillus subtilis CP350 have been found
to have probiotic potential when used as additives in feeds [63]. In human health and disease
research, Staphylococcus hominis A9 strain has been explored for its bacteriotherapy potential on
Atopic Dermatitis [64]. In cancer therapeutics studies, specific strains of Bifidobacterium
bifidum [65] and the attenuated recombinant Listeria strains [66] have shown their potential in
tumor reduction. Because of the important roles of bacterial strains, it is imperative to create
computational methods to study bacterial strains from shotgun reads.

It is still a daunting task to reconstruct bacterial strain genomes from shotgun metagenomic
reads. The complexity lies in the fact that the existing methods often mistake the variations in
strains for sequencing errors in reads, in addition to their inability to handle the low coverage of
species and the mixture nature of reads from a large number of species and strains [17, 67-70].
Even for the analysis of shotgun reads from an individual species, it is still not trivial to
reconstruct the strain genomes of this species from reads. The non-trivial nature of the bacterial
strain genome reconstruction is because bacterial DNA constantly evolves, with the mutation
rate from one to one hundred per billion base pairs per generation [71]. Such a small mutation
rate results in no pair of variant sites within the same read, and two strains of the same bacterial
species may share more than 99.9% sequence identities in their shared genomes [72, 73]. This
low mutation rate makes bacterial genomes different from viral genomes, in which the mutation
rate is so high that multiple variant sites in the same reads enable a ladder to connect adjacent
variant sites through read overlapping to reconstruct the viral strain genomes [72, 73].

Because of the importance of bacterial strains, we surveyed twenty tools on bacterial strain
analysis (Figure 1). The criteria to choose a tool to survey here were: (1) The tool does the strain
analysis with next-generation sequencing reads and a reference; (2). The tool is claimed to
identify known bacterial strains and/or predict novel bacterial strains; and (3) The tool is freely
available to the public. Unlike a couple of existing survey papers on bacterial strain analyses [46,



48], we focused more on the practical issues of the methodology involved and emphasized the
scenarios for their usage in the following sections.

Figure 1: A classification of the existing tools for bacterial strain analysis.

The tools we surveyed can be broadly classified into two categories: known-strain-based [74-82]
and novel-strain-targeting [47, 49, 72, 73, 83-89]. The known-strain-based tools rely on prior
knowledge of known strains to discover known strains, although they may detect or identify
novel strains. The novel-strain-targeting tools de novo reconstruct local or genome-wide novel
strains with shotgun metagenomic reads and a species reference. These tools thus do not require
any strain information and can be further divided into two categories, local or genome-wide
novel-strain-targeting tools. The former reconstruct novel strains at the marker gene regions with
the species marker genes, while the latter reconstruct novel strains in the entire genome with a
species reference genome. Because the current knowledge of known strains is limited and novel
strains are routinely present in different studies due to the constant mutations in bacterial
genomes, we emphasized the genome-wide novel-strain-targeting tools in this survey.

Although computational tools are available for novel strain genome reconstruction, their
performance has not been systematically evaluated on the same datasets. To understand these
tools better, we evaluated all five genome-wide novel-strain-targeting tools (BHap, EVORhA,
MetaSNV, mixtureS, and StrainFinder [72, 73, 87-89]). Although StrainPhlAn is a local novel-
strain-targeting tool, we included it because of its higher citations [49]. We also tried to evaluate
other local novel-strain-targeting tools such as MIDAS [83] and PStrain [86]. However, MIDAS
did not report the strains and their abundance on our test data, and we failed to run PStrain.

In the following, first, we provided an overview of the twenty tools and categorized them into
three types (Figure 1). We then presented the details of six local novel-strain-targeting tools and
five genome-wide novel-strain-targeting tools. Next, we evaluated the performance of the
aforementioned six tools for novel strain reconstruction. Finally, we commented on the future
directions of bacterial strain analyses.

Overview of the computational bacterial strain analysis tools

Similar to typical metagenomic analyses, bacterial strain analyses from shotgun reads attempt to
identify the strains present, the abundance of each strain, the function and evolution advantages
of different strains, etc. [90-95]. To answer these questions, it often needs to reconstruct the
bacterial strain genomes [46]. In some sense, this is equal to identifying the variant sites or
regions in different strains with respect to the species reference genomes [80, 88].

Many existing computational tools for bacterial strain analyses are known-strain-based [74, 75,
77, 78, 80-82, 96] (Figure 1, Table 1). For these tools, the strain genome sequences or strain
variant sites, k-mers, or gene contents are known for the species under consideration. The known
strain variant sites are often derived from genome-typing of individual culture isolates, such as
the Multi Locus Sequence Typing [82]. The known strain genomes are usually obtained from
whole-genome shotgun sequencing of culture isolates by Sanger sequencing [97], from which
the strain k-mers and gene contents can be inferred. With the known strain information, these
methods usually map reads to the strain or species genomes to define variant sites, k-mers, gene



contents, etc. They then compare the variants sites, k-mers, gene contents, etc., with the known
ones to determine whether a strain is present. They next measure the abundance of a known
strain by the coverage of its corresponding variant sites, unique k-mers, genes, etc., based on the
mapped reads. These methods, therefore, intend to determine which subset of known strains are
present and their abundance. Although this type of analysis is valuable to understand bacterial
strains, they are mostly for discovering known strains, instead of reconstructing novel strains. In
practice, many mutations are likely to have accumulated in bacterial strains. Novel instead of
known strain genomes are thus expected in samples. In other words, the known strain
information may be limited in practice [98, 99].

Table 1: The twenty tools surveyed.

Without prior knowledge of bacterial strains, almost all computational tools that reconstruct
novel strain genomes are reference-based (Figure 1, Table 1). In literature, reference-dependent
sometimes refers to tools based on known strains, while novel-strain-targeting tools are called
reference-independent [46]. Here we emphasize that the latter are also reference-dependent,
although no strain information is required. References are indispensable for computational strain
analysis because alternatively, one has to de novo assemble reads to reconstruct the species or
strain genomes, which rarely have the desired quality [84]. In addition, this becomes a
formidable task when we study low-abundance species [29]. A couple of methods claimed to
reconstruct strain genomes of low-abundance species, which are not widely tested or supported
by the literature [29, 100].

The novel-strain-targeting tools have a common workflow, which maps reads to the references,
identifies variant sites based on the mapped reads, and infers the mixture of strains based on the
frequency difference of the variant sites. These tools differed from each other mainly at the steps
of defining variant sites and assigning them into different strains. The rationale behind this
workflow is that the DNA segments from all strains are sampled and proportionally represented
in the shotgun reads. The variant sites in strains can be identified by mapping reads to the
reference, which may mistake sequencing errors in reads for variant sites. Because the
sequencing error rate is low, the frequency of the “variant sites” caused by sequencing errors in
the mapped reads is presumably much smaller than the coverage of true variant sites in
identifiable strains. Moreover, since different strains of a species often have different abundance
in a sample, variant sites of different strains have different read coverage and can thus be
separated from each other. Here the coverage of a genome, a genomic fragment, a genomic
position, or a variant site is defined as the average number of reads mapped to every position in
the corresponding region. The number of mapped reads containing any site unique to a strain is
thus similar due to the assumed uniform coverage of this strain genome in shotgun sequencing.
With the assumption of uniform coverage of every strain and different abundance of different
strains, one thus can classify the mixed sites based on their coverage so that the sites from
individual strains are clustered into separate groups. This uniform coverage and abundance
difference of strains are the basic assumptions and rationale behind the existing strain analysis
tools that aim to de novo reconstruct the bacterial strain genomes [47, 84, 88].

In summary, almost all existing computational strain analysis tools are reference-based, in the
sense that known-strain-based tools call for reference strain genomes or strain variant



information while novel-strain-targeting tools require species genomes or marker gene
sequences. In the following, we present the details of the novel-strain-targeting tools in two
sections and leave the details of the known-strain-based in Supplementary File S1.

Local novel-strain-targeting tools

This type of tools discover novel strains based on variant sites in local marker gene regions.
Identifying novel strains based on marker genes is fast and efficient, especially to pinpoint
potentially biologically or clinically important species. It is the way to have a global picture of
which species and strains are present in a microbiome. Here we described six such tools that
analyze bacterial strains based on marker genes.

ConStrains [47]. ConStrains can identify strains in one or multiple samples. In at least one
sample, the coverage of the species needs to be >=10X. It applies MetaPhlAn [101] to determine
the existence of a species in a sample. For every present species, ConStrains maps reads by
bowtie2 [102] to its PhyloPhlAn marker gene set stored in a custom database [103]. ConStrains
then processes the mapped reads with the SAMtools to identify single nucleotide polymorphisms
(SNPs) [104]. SNPs are clustered based on a flow algorithm to construct different candidate
strain models, assuming that SNPs from different strains have a different frequency pattern in the
sample(s). A Markov Chain Monte Carlo procedure then optimizes the candidate strain models
to obtain the abundance of the strain models. The Akaike information criterion then selects the
final strain models and their corresponding abundance.

MIDAS [83]. MIDAS requires a database of reference genomes of all species under
consideration. This database also has the universal single-copy genes in each of these species.
The universal single-copy genes are believed to be single-copy genes in a bacterial genome. A
few dozen universal single-copy genes were identified previously [105-107]. When multiple
reference genomes are available for a species, the gene content in its different strains is also
included in the MIDAS database. MIDAS maps reads in one or multiple samples to these genes
to determine the abundance of a species. For species with an abundance of at least 10X, MIDAS
maps reads to the corresponding species reference genome to define SNPs, minor and major
alleles, etc. MIDAS also provides gene content analysis for the abundant species with multiple
sequenced reference genomes. In summary, MIDAS does not reconstruct or determine the
presence of a strain but identifies the abundant species, their gene content, and SNPs. Because of
this, the authors acknowledge that strain abundance estimation is not possible with the tool.
Additionally, the strain level analysis relies on a majority rule to define a consensus allele for a
given position considered. The strain composed of the consensus alleles is likely to be a mixture
of multiple unknown strains.

StrainPhlAn [49]. StrainPhlAn maps reads to marker genes of each species defined in
MetaPhlAn2 [101] by bowtie 2 [102]. In general, 200 species-specific marker genes per species
are stored in MetaPhlAn2. The mapped reads are used to infer the consensus sequence for each
marker gene in each species. The consensus sequences for different marker genes in a species are
concatenated to represent this species genome, the marker gene portion of the species genome.
StrainPhlAn then defines polymorphic sites based on binomial testing, with the sequencing error
rate as 0.01. StrainPhlAn defines a dominant strain as the concatenated most frequent nucleotide
at each polymorphic site. Only one strain can be defined in this way, although StrainPhlAn can



detect the existence of more than one strain. Because the frequency of the dominant SNPs at
different locations could be very different, these SNPs may be from different strains instead of
one dominant strain, and there may be way more than two strains.

DESMAN [84]. DESMAN can de novo identify strains from multiple shotgun metagenomic
samples. It is claimed to be able to do so without a reference genome. This claim is somewhat
misleading as it starts with a MAG, an assembled draft genome. Although MAGs are obtained
from direct read assembly and contig binning, the quality of the MAGs may greatly affect the
identified strains. In this study, DESMAN has combined several MAGs to represent the E. coli
genome since the E. coli species genomes are grouped into multiple MAGs during assembly.
With the pre-assembled contigs in the merged MAG, DESMAN applies RPS-BLAST to map
contigs to the 36 universal single-copy genes to identify the corresponding genes in the MAG
under consideration. Then it maps reads to these identified genes and identifies SNPs. Note that
since the 36 genes may have multiple copies in a strain genome due to HGTs, it removes these
genes and only considers the remaining genes. From the SNPs in these remaining genes, it
considers them as a mixture multinomial distribution. It infers the strains based on Gibbs
sampling [108, 109], assuming that there are a fixed number of strains in input samples, and
these strains may have different coverage in different samples. Because DESMAN calls for
MAGs and contigs, it may not work well with the low-abundant species in samples.

Strain-GeMS [85]. Strain-GeMs is similar to ConStrains [47]. As ConStrains, it applies
MetaPhlAn to identify the present species and selects species with coverage >10X. Moreover, it
also maps read to PhyloPhlAn marker genes for each selected species to identify SNPs. Unlike
ConStrains, it defines and clusters SNPs in each sample with multiGeMs [110]. Finally, it
applies ConStrains to identify strains. There is another difference between Strain-GeMS and
Constrains in that Strain-GeMS requires more than 10X coverage per sample for a species, while
ConStrains requires the coverage of 10X in at least one sample.

PStrain [86]. PStrain infers the strains and their abundance in individual samples. It maps reads
to the MetaPhlAn2 marker gene database [101] with Bowtie 2 [102]. It then chooses species with
at least 5X coverage for strain analysis. It defines SNPs based on the mapped reads to the
MetaPhlAn2 marker genes with the GATK tool [111]. Assume there are k strains in a sample.
PStrain iteratively infers k strains (assigns SNPs to the k strains) and their abundance by
dynamic programming and linear programming. PStrain starts from k=1 and increases k by one
each time to determine the optimum k through the elbow method.

Genome-wide novel-strain-targeting tools

When the goal is to thoroughly understand the strains of a species and how a strain causes drug
resistance, one may want to reconstruct the entire strain genomes instead of local regions around
marker genes. Only a handful of methods are developed for this purpose, most of which are
designed to analyze individual samples, with essentially only StrainFinder developed for strain
core genome reconstruction in multiple samples [88] (Figure 1, Table 1). In this study, strain
core and accessory genomes are slightly different from those in literature. Here a strain core
genome refers to the genomic portion of this strain mapped to the species reference genome.
Similarly, a strain accessory genome is the unique genomic portion of this strain not represented



in the species reference genome. To our knowledge, the following are the only tools that can
reconstruct bacterial strain core genomes based on a species reference genome.

EVORhOA [73]. EVORhA is arguably the first tool for de novo bacterial strain genome
reconstruction from shotgun reads. It maps reads to the reference genome of interest,
reconstructs the local strains based on the shared SNPs in overlapping reads, and extends these
local strains as long as possible. Next, it groups the extended local strains by a mixture of
Gaussian modeling, with each distribution for the coverage of the local strains in a group.
Finally, it connects each group of local strains with the remaining extended local strains that are
not grouped and represent the shared regions by multiple strains into genome-wide strains,
assuming that different strains evolved from a common ancestor. EVORhA was tested on
simulated and experimental datasets and showed reliable performance.

MetaSNV [87]. MetaSNV requires a database of reference genomes, which users can also
provide. Shotgun reads in samples are mapped to the reference genomes to generate the
alignment file. The strain analysis from the alignment file involves the following three-step
procedure: First, the genome coverage in samples is determined. Second, MetaSNV determines
the genomic variation sites position-by-position, where at least four reads containing the variant
at a given position are considered a SNP. Variants are categorized as either population or
individual variants based on whether they are observed within the default threshold of >1%
frequency across samples or observed in more than three reads in at least one sample,
respectively. Third, the coverage and SNP information are used for taxon determination and
downstream analyses, such as the computation of distance matrices and nucleotide diversity. The
tool provides the identified variant sites in the reference genomes and does not reconstruct the
strain genomes as expected.

StrainFinder [88]. StrainFinder reconstructs strain genomes in one or multiple samples with a
reference genome of interest. It maps reads in one or multiple samples to the reference genome.
In the case of multiple samples, reads in each sample are mapped and counted separately.
StrainFinder considers the frequency of nucleotides in the mapped reads in every position of the
entire genome as a mixture of multinomial distributions. The multinomial distribution is
employed because the observed nucleotide frequency at a given locus is the sum of the
corresponding nucleotide frequency from different strains or independently and identically
distributed sequencing errors. StrainFinder applies an EM algorithm to model and infer the
present strains in the sample(s) to decompose this multinomial mixture. StrainFinder needs to
specify the strain number to run on a dataset.

BHap [72]. BHap reconstructs bacterial strain genomes in individual samples. It requires a
reference genome, and the shotgun reads in the sample. BHap applies Velvet [27] to assemble
reads into contigs without error correction, which prevents SNPs from being removed in the
assembly by Velvet. It then constructs a flow network with these uncorrected contigs that have
coverage larger than a threshold, which is likely to remove contigs that contain sequencing
errors. In this network, contigs are nodes, and weighted edges connect two contigs if they are
mapped to the overlapping regions in the reference genome. In this way, the strain genome
reconstruction problem becomes the flow decomposition problem. BHap applies an EM



algorithm to infer the strains and their abundance [112, 113]. Based on the testing on simulated
and experimental data, BHap can determine the strain number and the abundance of strains
reliably.

mixtureS [89]. Like BHap, mixtureS reconstructs bacterial strain genomes with a species
reference genome and the shotgun reads in individual samples. It does not have the read
assembly procedure in BHap and is thus much simpler. It maps reads to the reference genome
and then considers only the biallelic SNPs to infer the strain genomes. By assuming different
strains have different coverage in the sample, mixtureS models SNP frequency by the binomial
distribution and reconstructs the strain genomes by an EM algorithm. Because of the
consideration of the biallelic SNPs, the inference is fast while accurate. It performs better than
other strain genome reconstruction tools [72, 73, 88] in terms of a more accurate predicted
number of strains and the strain abundance. However, mixtureS does not consider
Triallelic/Quatra-allelic SNPs.

Material and Methods for tool comparisons

We tested the six tools on 108 simulated datasets and 196 experimental datasets on a desktop
computer with the following configuration: Intel core 19-9900KF CPU @3.6HZ with 16 cores,
32 gigabytes memory, and Ubuntu 18.04 Long Term Support. We ran each tool except
StrainFinder with their default parameters. We ran StrainFinder with the input of the correct
strain number in each dataset because otherwise StrainFinder predicted an incorrect strain
number and had a poor performance.

We tested the tools on datasets with reads from an individual species in most cases below. This is
because all tools we surveyed infer bacterial strain genomes from reads with a reference genome.
The majority of reads from a species of interest can thus be separated from other reads in a
microbiome by mapping reads to the given reference. This reference prerequisite may prevent
these tools from being applied to the study of strains of unknown species. However, we usually
have the known genomes for the pathogens that scientists are concerned about. Moreover, these
tools can still be applied to new species with the pre-assembled MAGs. In this case, the inferred
strain number and abundance are still reasonable, while the actual SNPs and genomes may be
different from the true ones because of the lower quality of the MAGs compared with the
sequenced reference genomes.

To evaluate the accuracy of the predicted SNPs on datasets with known strain SNPs, we
calculated the precision, recall and F1 scores of the predicted SNPs in strains. In brief, for each
known strain in a dataset, we identified its corresponding predicted strain as the predicted strain
that shared the largest number of SNPs with this known strain. One and only one predicted strain
was selected for each known strain, and vice versa. We then calculated how many percent of the
SNPs were predicted in the corresponding predicted strain (recall), how many percent of the
SNPs in a predicted strain were in the corresponding known strain (precision). We averaged the

recall and precision across all known strains in a dataset to obtain the final recall and precision in
2*precisionsrecall

this dataset. The F1 score was then calculated as — .
precision+recall

To assess the tool performance on the predicted strain abundance on datasets with known strain
abundance, we calculated the mean absolute difference (MAE) of the abundance of the predicted



strains and the abundance of their corresponding known strains in every dataset (Figure 2).
Assume there were n datasets, and m; strains in the i-th dataset for i from 1 to n. Assume the
known abundance were ay,ay, ...,y and the corresponding predicted abundance were

by, by, ..., by, in the i-th dataset. Then, the MAE in the i-th dataset is calculated as MAE =
(Z;n:i1|a]- - bj|) /m;. When there were more predicted strains than the known strains in the i-th

dataset, m; predicted strains that share most SNPs to the known strains were selected, with one
and only one predicted strain for every known strain. When there were fewer predicted strains
than the known strains in the dataset, each predicted strain was assigned to a different known
strain that shared most SNPs and the abundance was set to be 0 for unpredicted known strains.

We created the 108 simulated datasets with the tool dwgsim [114] and three randomly selected
bacterial reference genomes, namely Bartonella clarridgeiae (NC 014932), Enterococcus
casseliflavus (NC_020995) and Methanobrevibacter smithii (NC_009515). Each dataset was for
a specific reference genome, with 2 to 4 strains, a specified relative strain abundance, and a
coverage from 50X to 500X. See the commands used to simulate the data in Supplementary File
S2. Two types of simulated datasets, 36 unshared and 72 shared datasets (Supplementary Tables
S1-S5), were generated. The strains did not share any SNP in each unshared dataset, while at
least two strains shared a specified portion of their SNPs (10% to 30%) in every shared dataset.
In other words, the shared datasets consider the evolutionary relationship among strains, while
the unshared datasets do not consider such an evolution relationship.

We collected 196 experimental datasets from two previous studies: 195 datasets from an
investigation on mixed Mycobacterium tuberculosis infections [51] and a pooled dataset from the
genomics analysis of Staphylococcus epidermidis in infant gut microbiome [43]. We call the
datasets the MTB datasets and the Staph dataset, respectively. These datasets can be retrieved
with the provided reference numbers in Supplementary Tables S6 and S7. The MTB datasets
were the single-species-based datasets, in each of which reads from multiple strains of one
species were mixed. The Staph dataset was the typical metagenomics dataset, where multiple
strains of different species were mixed. In each MTB dataset, the number and abundance of
strains are inferred previously by two computational methods, while the SNPs in strains are
unknown [51]. We evaluated how well the tools predict the number and abundance of strains on
the MTB datasets. The Staph dataset consisted of paired-end reads of 100 base pairs in 18
samples (~1.5G base pairs per sample). A previous study assembled the reads and obtained two
close-to-complete strain genomes and one partially reconstructed strain genome [43]. Compared
with the reference Staphylococcus epidermidis genome NZ CP035288.1, there are 7342, 10836,
and 76 SNPs in these three assembled strains, respectively. We trimmed the adaptor sequences in
the raw reads, filtered low-quality reads with the tool Trimmomatic [115] and then mapped the
reads to the reference genome NZ CP035288.1 with the SAMtools [116]. The read coverage of
the reference genome is about 830, and the average coverage of the unique SNPs in the three
strains is 304, 296, and 271, respectively. Because the reference genome coverage is close to the
sum of the coverage of the three strains, there are likely three strains in this dataset. We thus
evaluated the tools on the predicted SNPs and strain abundance in this dataset.

Data Availability



All codes used for the generation, procession of the simulation data, including those used for the
creation of the figures are available at https://github.com/UCF-Li-Lab/StriainToolSurvey. Since
the size of the simulated data (184 GB) was too large to upload online, we provided one shared
dataset and one unshared dataset at https://doi.org/10.6084/m9.figshare.18092846, together with
the code to generate all simulated data. The accession number to the experimental datasets were
provided in the Supplementary Tables S6 and S7.

Tool comparison on simulated datasets

We studied the precision, recall and F1 scores of the predicted SNPs in strains by the six tools on
simulated datasets (Supplementary Tables S3 and S4). We found that mixtureS, StrainFinder and
BHap were the tools that consistently showed higher precision, recall and F1 scores compared
with EVORhA, MetaSNV and StrainPhlAn on all simulated datasets (Figure 2). The three tools
perform better because they had more accurate strain numbers to reconstruct the strains, with
more accurate prediction of the strain numbers by BHap and mixtureS and the actual strain
number input into StrainFinder. MixtureS had a larger F1 score than other tools on unshared
datasets, while BHap and StrainFinder performed similarly, with StrainFinder slightly better.
MixtureS and StrainFinder had a similar performance on the shared datasets, slightly better than
BHap. Note that the better performance of StrainFinder relies on the input of the actual strain
number to predict strains, while other tools do not require such an input.

Figure 2: Comparative performance of tools on unshared and shared simulated datasets.
(A) Precision, recall and F1 scores of the predicted strain SNPs. (B) Comparison of predicted
strain abundance with known strain abundance by MAE. (C) The difference between the number
of known strains and the number of predicted strains. (D) The number of datasets where the tools
correctly predicted the strain number.

We also studied the predicted strain abundance on the simulated datasets (Figure 2 and
Supplementary Tables S3, S4, and S5). We calculated the MAE of the abundance of the
predicted strains and the abundance of their corresponding known strains (Figure 2). MixtureS
and EVORhA predictions were four times closer to the true abundances compared to either
BHap and StrainFinder, and 8-10 times closer when compared to MetaSNV and StrainPhlAn
abundance predictions. While the other tools could predict multiple strains, MetaSNV and
StrainPhlAn could predict only one strain no matter how many strains there were in the datasets.

We studied the predicted strain numbers by different tools as well (Supplementary Tables S3 and
S4). As we mentioned above, we input the actual strain numbers to run StrainFinder since it
cannot predict the strain number. We thus did not include StrainFinder in this comparison. BHap,
EVORhA, MetaSNV, mixtureS, and StrainPhlAn predicted the correct strain numbers in 16, 7, 0,
33, and 0 of the 36 unshared datasets, respectively. Similarly, the five tools predicted the correct
strain numbers in 22, 10, 0, 45, and 0 of the 72 shared datasets, respectively. It is thus clear that
BHap and mixtureS predicted the correct strain numbers in much more datasets.

Tool comparison on experimental datasets
We evaluated the six tools on the MTB datasets and the Staph dataset. Since we had the
approximate strain number and abundance in each MTB dataset from a previous study [51], we


https://doi.org/10.6084/m9.figshare.18092846

could evaluate how well the tools predicted the correct strain number and abundance on the
MTB datasets. On the Staph dataset, two S. epidermis strains were assembled more completely
[43]. We thus could evaluate the abundance and SNPs on the Staph dataset.

We studied the predicted strain numbers on the MTB datasets. BHap, EVORhA and mixtureS
predicted the correct strain number in 22, 0, and 77 of the 195 datasets, respectively. As
mentioned above, StrainPhlAn and MetaSNV could not predict the strain number and always
output one strain in every dataset. For StrainFinder, we input the actual strain number to test it,
as it could not predict the correct strain number. It was thus evident that BHap and mixtureS
performed better in predicting the strain numbers (Table 2).

Table 2: Tool performance on the 195 MTB experimental datasets.

We also studied the predicted strain abundance on the MTB datasets. For each known strain in a
dataset, we identified its corresponding predicted strain, which had the most similar abundance
among all predicted strains. Because a predicted strain may have abundance most similar to the
abundance of multiple known strains, we assigned each known strain a different predicted strain.
With each pair composed of a known strain and its corresponding predicted strain, we calculated
MAE again as the largest difference of the abundance of the corresponding strains in a dataset
(Table 2). We found mixtureS predicted the correct strain numbers in more datasets and had the
smallest MAE on average across the 195 datasets. Although MetaSNV had the second smallest
average MAE, its better performance was because there were two strains, with one more
abundant than the other, in the vast majority of the 195 datasets here, which was in favor of
predicting one strain with the relative abundance of 1 (Supplementary Table S6 and Figure S1).

We also studied the tools on the Staph dataset [43] (Table 3 and Supplementary Table S7 and
Figure S2). Since MetaSNV and StrainPhlAn did not reconstruct strain genomes and Velvet used
in the BHap package failed to construct the contigs, we only studied the predicted strains from
EVORIA, mixtureS, and Strainfinder. We only considered SNPs that occurred in the three
assembled strains and supported by the mapped reads to the reference genome for easy
comparisons. Since there were three strains, we ran StrainFinder with the specified strain number
as three. In contrast, we ran mixtureS and EVORhA without the specified strain number. We
matched a known strain with a predicted strain that shared the most SNPs, and a predicted strain
was assigned to at most one known strain. EVORhA and mixtureS predicted 9 and 3 strains,
respectively. The three predicted strains by mixtureS shared much more SNPs with the
corresponding known strains. For instance, the three predicted strains by mixtureS had 91.06%,
79.72% and 90.0% of SNPs in the corresponding known strains, while the known strains had
38.86%, 64.53%, and 83.33% of SNPs in the corresponding predicted strains by mixtureS. None
of the three methods predicted the strain abundance well due to the challenging task of
distinguishing three strains with similar abundance here.

Table 3: Comparison on the Staph dataset.

Discussion and future directions



We surveyed twenty tools on bacterial strain analysis. We classified these tools into three
categories: known-strain-based, local novel-strain-targeting, and genome-scale novel-strain-
targeting. The tools in the first category are useful for studying the presence of known strains and
their abundance, where StrainSifter is a good choice for determining the source of the strains,
and PanPhlAn can study strain accessory genomes. Note that because these tools rely on the
known strain information, unknown strains in datasets could be left undetected or unreliably
assigned. With bacterial genomes evolving, one may thus wish to investigate novel strains in
samples. In this case, the tools in the last two categories are the right choice. The tools from the
second category are faster and provide a global understanding of different species and strains in
datasets, with StrainPhlAn as a popular choice. The tools from the third category provide more
detailed analyses and understanding of strains than those in the second category. In this category,
mixtureS has better accuracy on individual samples, while StrainFinder works well on multiple
samples when provided with the correct strain number as input.

We considered known-strain-based tools as those relying on known strain information to predict
strains. This consideration did not prevent the known-strain-based tools from predicting novel
strains. Indeed, certain tools in the first category claimed that they can identify novel strains. For
instance, StrainSeeker can detect the existence of new strains based on the difference between
the observed and expected k-mer counts in an evolutionary tree [77]. PanPhlAn can actually
define a new strain with the gene presence/absence profiles [80]. Because these tools depend on
their known strain databases, we distinguished them from the novel-strain-targeting tools, which
require only the species genome or marker genes instead of strain information.

Although dozens of tools are developed for bacterial strain analysis, no method and tool can
work without a reference. In other words, we still do not have an effective way to study the
strains of unknown species in metagenomics. Towards this goal, DESMAN tries to assemble
reads into MAGs and uses MAGs as the alternative reference [84]. DESMAN indeed shows the
hope to address this problem while clearly indicating the limitation of using MAGs. It has to use
multiple MAGs to represent the E. coli genome, which cannot be done without prior knowledge
of the reference E. coli genome. Some methods claim to be capable of constructing strain
genomes or strain genes, whose efficiency is not widely tested or accepted [29].

In addition, the current tools for novel strain analyses focus on SNPs and essentially neglect the
accessory genes in different strains. The accessory genes commonly exist in different strains of
the same species, with certain genes only occurring in one strain. Current methods consider
mainly the core genome or core genes of the reference species. PanPhlAn and MIDAS consider
the accessory genes. They can only work with species and strains with known accessory genes
[29, 84]. DESMAN mentions the accessory genes while not demonstrating the possibility of
inferring accessory genes. Moreover, the quality of the MAGs used in DESMAN will likely
affect the quality of the inference [84]. In the future, one has to consider the SNPs in the core
genomes together with the de novo assembly of reads and more advanced computational
methods to address this issue [117-119].

Almost all tools assume that different strains of the same species have different abundance in a
sample. This assumption may be unmet. When a large number of strains of a species exist,
different strains of the same species may have the same or similar abundance in individual



samples. To reliably distinguish these strains, we must consider multiple samples with the
assumption that there are a limited number of strains and different subsets of them occur in
different samples under consideration. In other words, methods that can work with multiple
samples may distinguish strains with similar abundance in individual samples and provide more
accurate reconstruction of bacterial strains in the future.

Finally, although it is the trend to consider multiple samples in the analyses, we need to be aware
of the sample-specific variations. In other words, when analyzing strains in multiple samples, we
expect that the same strains may have slightly different SNPs in different samples. Such a
difference of the same strain in different samples may seem strange. But it is still an open
question to define what a strain is and which two sequences should be considered two different
strains instead of one strain. We hope we can define strains better in the future.

Key points:

e Twenty tools on bacterial strain genome analysis are surveyed.

e Six tools, including all tools on de novo bacterial strain genome reconstruction, are
assessed on simulated and experimental datasets.

e Although some tools can predict the strain number and abundance quite well, none can
completely predict the actual strain variations in bacterial strains.

e Future reconstruction of bacterial strain genomes may consider accessory genes and
bacterial strains with similar abundance in multiple metagenomic samples.
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