
Parallel Peeling of Invertible Bloom Lookup
Tables in a Constant Number of Rounds

Michael T. Goodrich1, Ryuto Kitagawa1, and Michael Mitzenmacher2

1Univ. of California, Irvine, 2Harvard University

Abstract. Invertible Bloom lookup tables (IBLTs) are a compact way
of probabilistically representing a set of n key-value pairs so as to
support insertions, deletions, and lookups. If an IBLT is not overloaded
(as a function of its size and number of key-value pairs that have
been inserted), then reporting all the stored key-value pairs can also
be done via a “parallel peeling” process. For the case when the IBLT
is represented in a very compact form, this can be implemented to
run in O(log log n) parallel rounds, with all but inversely polynomial
probability, as shown in prior work by Jiang, Mitzenmacher, and Thaler,
as well as in Gao’s work on parallel peeling algorithms for random
hypergraphs. Although O(log log n) is practically constant for reasonable
values of n, there are nevertheless scenarios (such as in the parallel
GPU or MapReduce frameworks) where parallel peeling is desired to
run in a constant number of rounds, with failure probabilities that are
negligible rather than simply being polynomially small. In this paper,
we study simple constant-round parallel peeling algorithms for IBLTs,
focusing on negligible failure probabilities based on table size, number of
elements stored, and number of hash functions. We prove the surprising
result that with O(n log n) space a one-round parallel peeling process
succeeds with high probability while a two-round parallel peeling process
succeeds with overwhelming probability. We then provide a time-space
trade-off theorem for parallel peeling in a constant k number of rounds
while still maintaining overwhelming success probability. We also give
several new algorithmic applications of parallel peeling of IBLTs and we
experimentally study the effectiveness of our approach in practice.

1 Introduction

An invertible Bloom lookup table (IBLT) [16,23,36] is a probabilistic
hash-based data structure that concisely represents a set of key-value pairs
to support insertion, deletion, lookup, and (if the IBLT is not overloaded)
the listing of all the stored key-value entries. Previous work on IBLTs has
focused primarily on applications of IBLTs addressing the distributed com-
puting challenges of set reconciliation, blockchain reconciliation, and network
synchronization [16,17,19,21,30,34]. In these applications, one may have a large
distributed data store, and one is interested in synchronizing a set of data files
or blocks across multiple servers.

Invertible Bloom Lookup Tables. When an IBLT B is first created, it
initializes k arrays T1, . . . , Tk of m cells, so each Ti has m/k cells. Each of the
cells in a Ti table stores a constant number of fields, each of which, in turn,
corresponds to a single memory word (we define these fields below), which is
initially 0. An important feature of an IBLT is that at times the number of
key-value pairs in B can be large (even larger than m), but the space used for
B remains O(m) words. The insert and delete methods never fail, whereas the
listEntries method, which lists out all the key-value pairs, only guarantees good
probabilistic success when the number of stored key-value pairs, n, is below
an appropriate threshold. (For more details about the thresholds, see the prior
works by Goodrich and Mitzenmacher [23] or Molloy [31,32].)

An IBLT uses a set of k random hash functions, h1, h2, . . ., hk, to determine
where key-value pairs are stored. In our case, each key-value pair, (x, y), is placed
into cells T1[h1(x)], T2[h2(x)], . . . Tk[hk(x)], respectively, with fields that support
all the IBLT operations. We sometimes refer to this subdivision of the IBLT into
k tables as “splitting.” Such splitting does not affect the asymptotic behavior
in our analysis and can yield other benefits, including ease of parallelization of
reads and writes into the hash table, as we show. Each cell contains the following
four fields:

– count, which is a (signed) count of the number of key-value pairs that have
been mapped to this cell,

– keySum, which is the XOR of every key, x, that has been mapped to this
cell,

– valueSum, which is the XOR of every value, y, that has been mapped to this
cell,

– hashSum, which is the XOR of a cryptographic hash, g(x), of the key, x, for
every key-value pair, (x, y), that has been mapped to this cell. This field is
used for error-checking purposes.

Inserting a new key-value pair, (x, y), involves incrementing the count field for
each cell, Ti[hi(x)], and XOR-ing into the other fields the respective parameters.
Similarly, deleting a key-value pair, (x, y), involves decrementing the count
field for each cell, Ti[hi(x)], and XOR-ing into the other fields the respective
parameters, since every number is its own inverse under the XOR operation. For
applications where we are finding symmetric set differences, we also allow for
counts to become negative; that is you can delete a key-value pair that has not
been inserted (as we described in the introduction). Hence a count of negative
1 can correspond to a cell that contains a single item that has been deleted.
However, a count of 1 or negative 1 might correspond to multiple key-value
pairs, some of which have been inserted and some of which have been deleted.
The hashSum field is meant to provide an additional layer of protection to ensure
that a count of 1 or negative 1 truly corresponds to a single key, by comparing
the hash of the key to this field. (Note the hashSum field is not necessary if only
inserting items, or only deleting items that have previously been inserted.)

The listEntries operation is more interesting. The usual way it is described
is in terms of a sequential peeling process, where we look for a cell with a

2

– listEntries():

while there is an i and j such that Ti[j].count = 1 or −1 do
for each such i and j in parallel do

if Ti[hi(x)].hashSum = g(Ti[hi(x)].keySum) then
output the pair, (Ti[j].keySum , Ti[j].valueSum)
if Ti[j].count = 1 then

call delete(Ti[j].keySum,Ti[j].valueSum), parallelizing the XORs
else

call insert(Ti[j].keySum,Ti[j].valueSum), parallelizing the XORs

Fig. 1: Listing entries in an IBLT. Note that in the case of a count that is −1 we
actually remove its corresponding key-value pair by performing an insert.

count field that is 1 or −1, remove and report the key-value pair that is stored
there, and repeat. Jiang, Mitzenmacher, and Thaler [27] study a parallel version
of this peeling process, but their approach is focused on optimizing the space
used, not the number of rounds, and their analysis results in a non-constant
number of parallel peeling rounds. Instead, in this paper, we are interested in
parameters that result in one or two or some constant, k, number of rounds of
parallel peeling. For example, such approaches allow for parallel peeling to be
more easily implemented in the MapReduce framework, since we can specify a
specific number of peeling rounds (possibly even just one round). We describe
pseudocode for a parallel peeling algorithm in Figure 1.

One of the unfortunate aspects of the pseudocode for the listEntries algorithm,
from a parallel implementation standpoint, is that the outer loop is a while loop
that implies a conditional number of iterations, which we call peeling rounds .
Implementing parallel peeling can be much easier, however, if we can simply
bound the number of parallel peeling rounds to be one or two or some constant, k,
and hard code that constant into our implementation, using, say, the MapReduce
framework (which also simplifies combining the XORs for colliding cells). This
desire, therefore, motivates the analysis that follows, which shows how to set the
parameters for an IBLT to guarantee with high probability (or all but negligible
probability)1 that parallel peeling can succeed in one, two, or k rounds.

Set Synchronization. For example, using IBLTs allows one to synchronize
two data sets, S1 and S2, using storage and communication proportional to the
size of symmetric set difference between the two sets, n = |S1 ⊕S2|, rather than
the size of the sets themselves.2

At a high level, synchronizing a set S that is intended to be mirrored at two
servers, which we call “Alice” and “Bob,” works as follows. Alice and Bob hold

1 We say that an event occurs with high probability if the failure probability is 1/nc,
for some constant, c > 0, and with overwhelming probability if the failure probability
is negligible, that is, the failure probability is asymptotically less than 1/nc for any
constant c > 0.

2 We denote the symmetric set difference of two sets, S1 and S2, by S1 ⊕ S2. Recall
that S1 ⊕ S2 = (S1 − S2) ∪ (S2 − S1), which is sometimes alternatively denoted as
S1 ⊖ S2 or S1∆S2.

3

item sets SA and SB , respectively, with S = SA ∪ SB . Alice and Bob each store
their items in respective IBLTs, TA and TB , each holding m cells, where m is
linear in the size of the set difference SA ⊕ SB , and each sends their IBLT to
the other. Then, each of Alice and Bob computes an entrywise table difference
TA − TB , which allows both Alice and Bob to list out the elements of SA ⊕ SB

with high probability, so long as the size of that difference is indeed at most a
threshold that depends only on and is linear in m. Note that computing the table
difference also yields which set (Alice’s or Bob’s) each element in the symmetric
difference belongs to; we therefore say that IBLTs provide signed symmetric
set differences. While this is an interesting and useful application of IBLTs, in
this paper we are interested in applications of IBLTs to another challenge that
arises in large-scale distributed computing, namely, for data compression [38] and
deduplication [44], which can involve using IBLTs in arguably a more “parallel”
way. For instance, in data compression and deduplication applications, one is
often interested in computing the symmetric or set differences between all pairs
of a collection of sets, not just two. Thus, we desire IBLT difference operations
that can be done quickly in parallel, where each difference itself is computed using
a parallel algorithm, ideally with a constant number of computation rounds.

Prior Work on Parallel Peeling. Computing the entrywise table difference
TA − TB between two IBLTs TA and TB is easy enough to do in parallel, but
listing out the elements of the result in parallel is more challenging. Indeed,
the algorithm for performing such a listing is usually described as a sequential
peeling process, where items are removed iteratively one at a time [23,36]. Still,
there is prior work on parallel peeling of various graph structures, e.g., by
Cao, Fineman, and Russell [10], Goodrich and Pszona [24], Chang, Pettie, and
Zhang [11], Dhulipala, Blelloch, and Shun [14], Ghaffari, Grunau, and Jin [22],
Shi, Dhulipala, and Shun [39], and Shi and Shun [40]. More relevant to this paper,
Jiang, Mitzenmacher, and Thaler [27] and Gao [20] provide parallel peeling
results for random hypergraphs and IBLTs. These results yield a super-constant
number of rounds, however, rather than a small constant number of rounds, as
would be desired for the applications we explore here. Specifically, to peel n items
in the IBLT, their results correspond to Θ(log log n) rounds of parallel peeling.

Our Results. In this paper, we study constant-round parallel peeling both
theoretically and experimentally. What makes our study of the IBLT data
structure different from prior parallel-peeling results is that here we focus more
on optimizing (parallel) time and work and less on space, which was the focus
in prior works [20,27]. In particular, we guarantee that with high (and, as
we describe later, with overwhelming) probability our parallel peeling process
completes in a small constant number of rounds—ideally one or two. Past work
on parallel peeling for IBLTs [20,27], instead aimed for a constant number of
hash functions per item, a linear number of cells in the IBLT table, and an
asymptotically good, but super-constant, number of rounds (where additional
O(1) terms were not considered consequential) with high, but not overwhelming
probability. On the theoretical front, we show that if an IBLT has O(n log n)
cells and uses O(log n) hash functions (where suitably chosen constant factors

4

are used in the order notation), then, with high probability, we can peel the IBLT
in a single parallel round. More surprisingly, we also show that the probability
that we would fail to peel such an IBLT in only two rounds is negligible (recall
that a function is negligible if it approaches zero faster than the reciprocal
of any polynomial, e.g., see Bellare [4]). Further, we provide a full time-space
trade-off between the number of rounds and space needed to achieve constant-
round parallel peeling with overwhelming probability. Also, we explicitly describe
how to use IBLTs in some interesting applications, including deduplication and
symmetric-difference minimum spanning trees.

2 Analysis

In this section, we provide our theoretical analysis, showing that, for a table
of m = O(n log n) cells, parallel peeling succeeds with high probability in one
round and with overwhelming probability in two, and we then provide a time-
space trade-off while achieving overwhelming probability with a constant number
of rounds. We note that in the analysis in this section, we assume that there is
no false positive in the peeling process in checking the hashSum field; that is,
we assume items have only been inserted, or the fingerprints have been chosen
large enough to avoid this issue. Before beginning, we recall that previous work
(e.g., [23]) has shown for an IBLT with m = cn cells for some constant c and a
constant number of hash functions k, if c is above the threshold where decoding
occurs with high probability, the failure probability is Θ(n−k+2).

Analysis of One and Two Rounds. As we are focused on such a small
number of rounds, we first explicitly consider the case of a single round and then
analyze the probability of parallel peeling succeeding in two rounds. We note
that something akin to our analysis for one round appeared previously in work
by Eppstein and Goodrich [15], but we nevertheless provide a complete analysis
of one round parallel peeling to set the table for our other results, which are
novel.

For concreteness, we consider an IBLT with m = cn log2 n cells for some
constant c. Each of n items hashes to log2 n cells (we assume n is a power of two
for convenience). As we previously described, we assume the IBLT is split ; that
is, there are log2 n subtables, each with cn cells, and the jth hash of each item is
independently and uniformly chosen in the jth subtable. Call a cell single if it
holds exactly one item. We show for sufficiently large constant c each item has
at least one hash to a single cell with high probability, implying peelability in a
single round.

Theorem 1. For a table of m = cn log2 n cells using log2 n hash functions,
where c ≥ 1 is a constant, an IBLT peels in one round with probability at least
1− n−c′+1 where c′ = − log2(1− e−1/c).

Proof: Let Xi,j be a random variable such that Xi,j = 1 if the jth hash of the
ith item is not single and 0 otherwise. Since the jth table has cn cells, we have

Pr(Xi,j = 0) = (1− 1/(cn))n−1 ≥ e−1/c.

5

(The inequality holds as long as c ≥ 1 for example.) Since subtables are
independent, we therefore have the probability that no hash for the ith item
is single is at most

(1− e−1/c)log2 n = nlog2(1−e−1/c) = n−c′ ,

for c′ = − log2(1−e−1/c). By a union bound, all items hash to at least one single
cell with probability n−c′+1, and one can choose c to obtain any suitably small
probability that is inversely polynomial in n.

Thus, in our setup, parallel peeling succeeds in one round with high proba-
bility and with reasonable constant factors. For example, one can peel in a single
round with probability at least 1− 1/n using slightly less than 3.5n log2 n cells,
and with probability at least 1 − 1/n2 with slightly less than 7.5n log2 n cells.
Further, we expect a threshold where the probability that one round suffices
jumps toward 1 at slightly over 1.443n log2 n cells, since 1.443 ≈ 1/ ln 2 and at
c = 1/ ln 2 we have c′ = 1.

We note the above proof doesn’t really require c ≥ 1, in that for smaller c we
have that (1−1/(cn))n−1 = e−1/c(1−o(1)) and the proof remains essentially the
same. This fact will be helpful in what follows. Also, the proof naturally extends
to other scenarios, such as if one uses α log n hash functions for some constant
α (or some larger number of hash functions).

We now consider just the case of two rounds. We use the same setup as
before. For an item to be peeled within two rounds, either

– one of its cells is single, or
– one of its cells has that all the other items that hash to that cell are peeled

after the first round.

We prove that with just two rounds the failure probability is negligible; specifi-
cally, the probability of failing to peel every item is n−Ω(log n).

Theorem 2. For a table of m = cn log2 n cells using log2 n hash functions,
where c > 0 is a constant, an IBLT peels in two rounds with probability at least
1− n−Ω(log n).

Proof: Consider a specific item y. Let Yj be the number of other items that
hash to the same cell as y in the jth subtable. We first note that Yj is at most
(lnn)2 with probability at least 1 − n−Ω(log n). This follows readily from the
Poisson approximation of the number of items that hash to each cell, along
with Stirling’s approximation. We therefore assume that every cell has at most
(lnn)2 items that hash to it henceforth, as this conditioning does not affect our
arguments further. Let Xi = 1 if y is single in the ith table or all other items that
share the cell in the ith table all peel after the first round. Otherwise Xi = 0.
We wish to show that the probability that all Xi = 0 is n−Ω(log n).

First consider X1. Let z be some other item in the same cell. Following the
same argument as in the proof of Theorem 1, the probability that z is not single
in at least one of the other subtables is(

1− (1− 1/(cn))n−1
)log2 n−1

,

6

which is at most n−c1 , for some constant c1. As we have assumed Y1 is at most
(lnn)2, by a union bound, the probability any of the items is not single in at
least one other subtable is at most (ln n)2n−c1 , and this shows the probability
X1 = 0 is at most (lnn)2n−c1 .

If the Xi were all independent, we would now be done. However, the Xi

are only “roughly independent”; there are unfortunately some problematic cases
to consider. For example, consider Pr(X2 = 1 | X1 = 0). That is, what is the
probability the second subtable allows us to peel the item y even though the
first subtable does not. A difficult subcase showing the dependency is when the
same second item hashes to the same location as y in both hash tables. That is,
the reason X1 = 0 might be that there is an item z in the second hash table at
the same location as y in both the first and second table.

We circumvent the dependency by showing the following two conditions hold:

1. With probability 1 − n−Ω(log n), at least (log2 n)/2 subtables have no items
in the cell with y that also appear with y in earlier subtables.

2. For each such subtable, the event Xi = 0 satisfies Pr(Xi = 0 | X1 = 0, X2 =
0, . . . , Xi−1 = 0) = O(n−c2), for some constant c2.

The result would then follow, as (implicitly conditioning on none of the rare
n−Ω(log n) events we have considered occurring)

Pr(X1 = 0, X2 = 0, . . . , Xlog2 n = 0) =

Pr(X1 = 0)

log2 n∏
i=2

Pr(Xi = 0 | X1 = 0, X2 = 0, . . . , Xi−1 = 0),

and the right hand side would have at least (log2 n)/2 terms that were O(n−c2).

For the first condition, as we sequentially consider each new subtable, there
are at most O((log n)3) items that share a cell with y. The probability that in a
new subtable any of these elements are in the same cell as y is at most q, where
q is O((log n)3)/n. The probability at least (log2 n)/2 subtables would fail to
avoid such elements is at most

log2 n∑
i=(log2 n)/2

(
log2 n

i

)
qi(1− q)log2 n−i,

which is n−Ω(log n).

7

For the second condition, following previous work, it is useful to think of
gathering a history of all the item-cell pairs we have seen as we explore the
hash table subtable by subtable. We start with y and its position in all the
tables. In the first subtable, we consider all the items that share the cell with
y; we then consider the cells for those items in all the other tables (to check
if those other items are single in some table, and are hence peeled in the first
round), and correspondingly all the items in those cells (which, because we have
now seen them, we must consider their effect on the conditioning). Similarly, at
the second table, we consider all the items that share the cell with y; we then
consider the cells for those items in all the other tables, and correspondingly
all the items in those cells. Under our assumption that any cell contains at
most (lnn)2 items, we see that this history can only consist of O((log n)6) item-
cell pairs throughout the process.

Now consider Pr(Xi = 0 | X1 = 0, X2 = 0, . . . , Xi−1 = 0) for some subtable
i where the items colliding with y are all distinct from other levels. The past
history introduces some conditioning in evaluating whether each of these items is
single in another subtable, because we know the location of some items in other
tables in our history. However, we only know at most O((log n)6) item-cell pairs
in our history. This has at worst a 1−o(1) effect on the probability (1−1/(cn))n−1

that an item colliding with y in the ith table is single in another table, as from
the calculation in the proof of Theorem 1. In particular, any such new item that
collides with y must avoid cells known to contain other items in other subtables.
As we have said, there are polylog(n) such cells from our history, so this happens
with probability 1−polylog(n)/(cn) in any given subtable. And it can affect the
number of other items that might collide with the new item (instead of n − 1
other items may be n − polylog(n), as polylog(n) items might already their
position known in a subtable). It remains the case that any new item is single

in each subtable with probability (1−polylog(n)/(cn))n−polylog(n) = e−1/c(1−
o(1)), and correspondingly each new item is single in some other subtable with
probability at least 1− n−c3 , for some constant c3. The probability that all new
items in the ith subtable are not single is then polylog(n)/nc3 = O(n−c2) for
some constant c2, giving the result.

A Time-Space Trade-off for Constant-Round Peeling. Theorem 2 shows
parallel peeling succeeds in two rounds with overwhelming probability. Let us
next provide our time-space trade-off.

Theorem 3. For a table of m = cn(log2 n)
1/k cells using (log2 n)

1/k hash
functions, where where k is a positive integer constant and c > 0 is a constant,

an IBLT peels in k + 1 rounds with probability at least 1− n−Ω((log n)1/k).

Proof: We sketch the proof, since it follows roughly the same conceptual
framework as the proof of Theorem 2. Consider a specific item, y. For y not
to be peeled in k + 1 rounds, in the ith subtable there must be some element
zi that has not been peeled after k rounds in the same cell as y; for each zi, in
each of the other subtables there must be some element that has not been peeled
after k − 1 rounds in the same cell as zi, and so on.

8

Accordingly, the failure of an IBLT to peel corresponds to what is commonly
referred to as a witness tree (e.g., [41]), with the root of the tree being an
element y not peeled after k + 1 rounds, connected by labeled edges to children
that correspond to elements that share a cell with y in some subtable that are
not peeled after k rounds, with the label denoting which subtable y and the other
element share a cell. (An element can conceivably be in more than one labeled
edge.) These elements have children corresponding to elements that share a cell
with them in some other subtable (other than the one in the edge connecting
them to the root) that are not peeled after k − 1 rounds, and so on.

We can again use the fact that there are at most (ln n)2 elements in any cell
with probability at least 1−n−Ω(log n) to limit the size of the tree built this way,
so that with overwhelming probability the tree has size polylogarithmic in n.

We think of going through this tree in a breadth first manner from the
root, and temporarily assume that elements are not repeated as we expand this
recursive exploration of the table and likewise ignore dependencies introduced by
knowledge of where elements we have seen in the tree are placed. The probability
that an element q is not single in at least one of (log2 n)

1/k − 1 subtables is(
1− (1− 1/(cn))n−1

)(log2 n)1/k−1
,

which is at most c
(log2 n)1/k

1 , for some constant c1 < 1 and sufficiently large n. The
probability that an element q′ in a cell is not peeled after two rounds, implying
that in all of the other (log2 n)

1/k − 1 subtables there is some element in the
same cell as q′ that is not peeled after 1 round, is at most

(lnn)2(log2 n)
1/k

(
c
(log2 n)1/k

1

)(log2 n)1/k−1

≤ c
(log2 n)2/k

2 ,

for some constant c2 < 1 and sufficiently large n. Continuing in this manner, the
probability an element sharing a cell with y in one of its subtables has not been
peeled for sufficiently large n is bounded by

c
(log2 n)k/k

k = nlog2 ck ,

where ck < 1. The result would correspondingly follow, but for the assumptions
that elements in the table are not repeated and that dependencies can be ignored.

As in the proof of Theorem 2, however, because the witness tree is only
polylogarithmic in size, this does not affect the asymptotics of the result;
the dependencies can be dealt with by using the fact that we only see a
polylogarithmic number of elements throughout the tree, and most of the cells
will not contain repeated elements from the tree.

3 Applications

In this section, we describe some applications of constant-round parallel peeling
algorithms for IBLTs to a simplified deduplication problem.

9

All-pairs Signed Symmetric Set Differences. We begin by describing how
to use an IBLT for computing the (signed) symmetric set differences between
every pair of a collection of N sets, S1, S2, . . . , SN , by adapting an approach of
Goodrich and Mitzenmacher [23] to our framework. (Note this is equivalent to
finding the set difference between every pair of sets.) Let n > 1 be an upper
bound for the anticipated size of any difference, Si ⊕ Sj . (Note that n can be
much smaller than the size of any Si.) We begin by computing an IBLT, TSi

, for
each set, Si, of O(n log n) cells, and with O(log n) hash functions (and subtables),
based on the theoretical and/or experimental analysis we provide above. In this
case, we store each element, x, from a set, Si, as a key-value pair, (x, 1), since
we are treating the Si’s as sets.

For each pair, (i, j), where i ̸= j, i, j = 1, 2, . . . , N , we compute a set-
difference IBLT, Ti,j , by computing an indexed difference of the corresponding
count fields in TSi

and TSj
and an indexed XOR of the corresponding keySum,

valueSum, and hashSum fields. We emphasize that in the results of this section,
we assume that cell operations (such as XORing the various fields of a cell)
are unit cost, even if the fields are large. (As we have noted, in theory the
hashSum field may need to be ω(log n) bits for some applications and/or for
negligible failure probability; in practice, we expect all fields to fit in one or a
small constant number of machine words.) Thus, Ti,j is a representation of the
signed symmetric set difference,3 Si ⊕ Sj , where each element, x, that is in Si

and not in Sj , adds 1 to its respective count fields, and each element, x, that
is in Sj and not in Si, adds −1 to its respective count fields. We then apply
the method described in Section 1 to perform a parallel peeling to list of the
elements in Ti,j , optionally noting which elements in the difference are from Si

and which are from Sj .

Theorem 4. Given N sets, S1, S2, . . . , SN , if the size of the difference between
two sets, Si and Sj, is at most a given size parameter, n > 1, then the probability
that our algorithm will fail to compute the signed set difference between Si and
Sj in at most two rounds is negligible as a function of n. The total work needed
is O(NM log n+N2n log n).

Proof: The work bound follows from the work need to insert each element into
its set’s IBLT and then perform all the set differences. The probability bounds
follow by Theorem 2.

Deduplication via Difference Encodings. Consider now a simple deduplica-
tion [44] problem. Suppose we are given a collection of sets, S = {S1, S2, . . . , SN}.
For example, each Si could represent a file or a database, and its elements could
be disk blocks, database rows, or identifiers for disk blocks or database rows
derived from a cryptographic hash function, such as SHA-256. In deduplication
applications, it is anticipated that there are a lot of common elements among

3 Recall that we say that Si ⊕ Sj is a signed symmetric difference if we can
separately identify the members of Si − Sj and Sj − Si, that is, the members of
Si not in Sj and the members of Sj not in Si.

10

the sets in S; hence, we would like to represent each Si concisely, e.g., just in
terms of a small number of differences with another set in S.

One such representation is a difference encoding of S, which is a (re)ordering
of the sets in S, as (S1, S2, . . . , SN), such that, for i > 1, each set, Si, is encoded
in terms of the differences between Si and some Sj where j < i. That is,
we encode Si with the signed symmetric difference, Si ⊕ Sj . Thus, if there is
considerable overlap of elements among the sets in S, then a difference encoding
could save a lot of memory space over explicitly representing each set in S.
The corresponding optimization problem, therefore, is to find an ordering of
the sets and a difference encoding that minimizes the total amount of storage
required, over all possible orderings and difference encodings. Finding such a
minimum difference encoding might at first seem like a computationally
difficult problem, e.g., since there are N ! possible orders and each one can have
(N − 1)! difference encodings. Nevertheless, as we show below, we can solve this
problem quickly in parallel with reasonable work.

Symmetric-difference MSTs. As has been well-known since at least the
1950s, e.g., see Restle [37], given a collection of sets, S = {S1, S2, . . . , SN}, and
a measure function, m, for sets (such as their size if all the sets are finite), then
d(Si, Sj) = m(Si ⊕ Sj) is a distance metric. In our case, since the sets we are
dealing with are finite, we define m(S) to be the size of the set, S, which we
denote as |S|.

Define a graph, G, which we call the symmetric-difference graph , such
that each set, Si, in S is associated with a vertex, i, in G, and each edge, (i, j),
has weight equal to |Si ⊕ Sj |.

Lemma 1. Finding a minimum difference encoding for a collection of sets, S =
{S1, S2, . . . , SN}, can be reduced to finding a minimum spanning tree (MST) in
the symmetric-difference graph, G, for S.

Proof: Let H be a spanning tree of G. We can derive a difference encoding of S
from H by choosing the string associated with a vertex in H (it doesn’t matter
which one) to be the first string in the order. We then root the tree H at this
first vertex and order the remaining vertices according to a preorder traversal
of H, and let this be the ordering of the corresponding strings. In this way, we
are guaranteed that for each vertex, i, its parent in H appears earlier in the
ordering. We then encode every vertex, i, besides the first one in terms of the
symmetric difference between Si and Sj , where j is the parent of i in H. Thus,
H corresponds to a difference encoding of S.

Alternatively, let D be a difference encoding of S and let the corresponding
order be (S1, S2, . . . , SN). For each set, Si, for i > 1, choose the (directed) edge,
(i, j), in G such that Si is encoded as a difference with Sj , and let H be the
resulting subgraph of G. Then H has no cycles, because each vertex, i > 1, we
chose an out-going edge to a vertex for j where j < i. In addition, for the same
reason, H is connected, with each directed path leading to the first vertex (for
S1). Thus, H is a spanning tree, with n− 1 edges.

11

Therefore, every spanning tree corresponds to a difference encoding and every
difference encoding corresponds to a spanning tree; hence, an MST for G will
correspond to a minimum difference encoding for S.

A major computational bottleneck for solving the above symmetric-difference
MST problem is in constructing a representation of the symmetric-difference
graph, G. Of course, since we are interested in finding an MST in G, it is sufficient
to construct a representation of G such that every edge has weight at most some
size threshold, n > 0, while keeping G connected. Typically, we desire n to be
much smaller than M , the average size of each set in S.

Our method for constructing G is to use IBLTs and our parallel peeling
algorithm. Namely, we use our algorithm for the all-pairs set difference problem.
We define a reasonable threshold, n, for the maximum expected symmetric
difference so that G is connected, and run our all-pairs set difference algorithm
of Theorem 4. Note that if our threshold, n, is large enough, then the probability
that any of our parallel peeling algorithms fail after two rounds is negligible in
n, by Theorem 2; hence, if our peeling algorithm fails for some pair (Si, Sj), we
can safely assume that |Si ⊕ Sj | > n. Thus, if after running our all-pairs set
difference algorithm, this results in a graph, G, that is not connected, then we
double our estimate for n and run it again. Since we double the value of n in
each such run and our work bound is at least linear in n, the work needed the
runs forms a geometric sequence that is dominated by the work for the last run.
This gives us the following:

Theorem 5. Given a collection, S = {S1, S2, . . . , SN}, of N sets, with average
size, M , we can determine a threshold value, n, and we can construct a connected
subgraph of the symmetric-difference graph, G, for S, containing every edge with
weight at most n in O(log n) rounds in parallel, with total work O(NM log n +
N2n log n), with a failure probability that is negligible in n.

Given such a connected subgraph of the symmetric-difference graph, G, we
can then compute an MST in G using any known parallel MST algorithm,
e.g., see [2,5,13,28]. Note that the above method also applies to a set, S =
{s1, s2, . . . , sN}, of N character strings of length, M ≥ 1, each, since we can
construct a set, Si, from each character string, si, by defining each element
in Si to be the pair, (k, si[k]). In this case, the symmetric-difference graph,
G, would be defined so that each string si corresponds to a vertex and the
weight of an edge, (i, j), is the Hamming distance4 between the strings si and
sj . This approach could be used, for example, to concisely encode a set of DNA
strings where differences are character swaps or replacements (but not insertions
or deletions). In this case, the minimum difference encoding would provide an
optimized concise encoding of all the strings in S.

4 Recall that the Hamming distance between two strings, s and t, is the number of
positions, i, where s[i] ̸= t[i].

12

References

1. Adhikari, V.K., Guo, Y., Hao, F., Varvello, M., Hilt, V., Steiner, M., Zhang,
Z.L.: Unreeling Netflix: Understanding and improving multi-CDN movie delivery.
In: IEEE INFOCOM. pp. 1620–1628 (2012). https://doi.org/10.1109/INFCOM.
2012.6195531

2. Adler, M., Dittrich, W., Juurlink, B., Kuty lowski, M., Rieping, I.: Communication-
optimal parallel minimum spanning tree algorithms. In: 10th ACM Symp. on
Parallel Algorithms and Architectures (SPAA). pp. 27–36 (1998)

3. B. Jenkins: A hash function for hash table lookup. https://burtleburtle.net/
bob/hash/doobs.html (1997)

4. Bellare, M.: A note on negligible functions. Journal of Cryptology 15(4) (2002)
5. Bentley, J.L.: A parallel algorithm for constructing minimum spanning trees. Jour-

nal of Algorithms 1(1), 51–59 (1980). https://doi.org/10.1016/0196-6774(80)
90004-8

6. Bloom, B.: Space/time trade-offs in hash coding with allowable errors. Communi-
cations of the ACM 13(7), 422–426 (1970)

7. Böttger, T., Cuadrado, F., Tyson, G., Castro, I., Uhlig, S.: Open Connect
everywhere: A glimpse at the Internet ecosystem through the lens of the Netflix
CDN. SIGCOMM Comput. Commun. Rev. 48(1), 28–34 (apr 2018). https:

//doi.org/10.1145/3211852.3211857, doi.org/10.1145/3211852.3211857
8. Broder, A., Mitzenmacher, M.: Network applications of Bloom filters: A survey.

Internet Mathematics 1(4), 485–509 (2004)
9. Brodtkorb, A.R., Hagen, T.R., Schulz, C., Hasle, G.: GPU computing in discrete

optimization. Part I: Introduction to the GPU. EURO Journal on Transporta-
tion and Logistics 2(1), 129–157 (2013). https://doi.org/https://doi.org/10.
1007/s13676-013-0025-1, https://www.sciencedirect.com/science/article/

pii/S2192437620600267
10. Cao, N., Fineman, J.T., Russell, K.: Parallel shortest paths with negative edge

weights. In: 34th ACM Symp. on Parallelism in Algorithms and Architectures
(SPAA). pp. 177–190 (2022)

11. Chang, Y.J., Pettie, S., Zhang, H.: Distributed triangle detection via expander
decomposition. In: 13th ACM-SIAM Symposium on Discrete Algorithms (SODA).
pp. 821–840. SIAM (2019)

12. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.
Communications of the ACM 51(1), 107–113 (2008)

13. Dehne, F., Gotz, S.: Practical parallel algorithms for minimum spanning trees.
In: 17th IEEE Symposium on Reliable Distributed Systems. pp. 366–371 (1998).
https://doi.org/10.1109/RELDIS.1998.740525

14. Dhulipala, L., Blelloch, G., Shun, J.: Julienne: A framework for parallel graph
algorithms using work-efficient bucketing. In: 29th ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA). pp. 293–304 (2017)

15. Eppstein, D., Goodrich, M.T.: Straggler identification in round-trip data streams
via Newton’s identities and invertible Bloom filters. IEEE Transactions on
Knowledge and Data Engineering (to appear)

16. Eppstein, D., Goodrich, M.T.: Straggler identification in round-trip data streams
via Newton’s identities and invertible Bloom filters. IEEE Transactions on
Knowledge and Data Engineering 23(2), 297–306 (2010)

17. Eppstein, D., Goodrich, M.T., Uyeda, F., Varghese, G.: What’s the difference?
efficient set reconciliation without prior context. ACM SIGCOMM Computer
Communication Review 41(4), 218–229 (2011)

13

https://doi.org/10.1109/INFCOM.2012.6195531
https://doi.org/10.1109/INFCOM.2012.6195531
https://doi.org/10.1109/INFCOM.2012.6195531
https://doi.org/10.1109/INFCOM.2012.6195531
https://burtleburtle.net/bob/hash/doobs.html
https://burtleburtle.net/bob/hash/doobs.html
https://doi.org/10.1016/0196-6774(80)90004-8
https://doi.org/10.1016/0196-6774(80)90004-8
https://doi.org/10.1016/0196-6774(80)90004-8
https://doi.org/10.1016/0196-6774(80)90004-8
https://doi.org/10.1145/3211852.3211857
https://doi.org/10.1145/3211852.3211857
https://doi.org/10.1145/3211852.3211857
https://doi.org/10.1145/3211852.3211857
doi.org/10.1145/3211852.3211857
https://doi.org/https://doi.org/10.1007/s13676-013-0025-1
https://doi.org/https://doi.org/10.1007/s13676-013-0025-1
https://doi.org/https://doi.org/10.1007/s13676-013-0025-1
https://doi.org/https://doi.org/10.1007/s13676-013-0025-1
https://www.sciencedirect.com/science/article/pii/S2192437620600267
https://www.sciencedirect.com/science/article/pii/S2192437620600267
https://doi.org/10.1109/RELDIS.1998.740525
https://doi.org/10.1109/RELDIS.1998.740525

18. Fagerjord, A., Kueng, L.: Mapping the core actors and flows in streaming video
services: What Netflix can tell us about these new media networks. Journal
of Media Business Studies 16(3), 166–181 (2019). https://doi.org/10.1080/

16522354.2019.1684717, doi.org/10.1080/16522354.2019.1684717

19. Fu, W., Abraham, H.B., Crowley, P.: Synchronizing namespaces with invertible
Bloom filters. In: ACM/IEEE Symp. on Architectures for Networking and Com-
munications Systems (ANCS). pp. 123–134 (2015). https://doi.org/10.1109/

ANCS.2015.7110126

20. Gao, P.: Analysis of the parallel peeling algorithm: A short proof (2014),
arxiv.org/abs/1402.7326

21. Gentili, M.: Set Reconciliation and File Synchronization Using Invertible Bloom
Lookup Tables. Ph.D. thesis, Harvard Univ. (2015)

22. Ghaffari, M., Grunau, C., Jin, C.: Improved MPC algorithms for MIS, matching,
and coloring on trees and beyond. In: 34th International Symposium on Distributed
Computing. pp. 34:1–34:18 (2020)

23. Goodrich, M.T., Mitzenmacher, M.: Invertible Bloom lookup tables. In: 49th An-
nual Allerton Conference on Communication, Control, and Computing (Allerton).
pp. 792–799. IEEE (2011), arxiv.org/abs/1101.2245

24. Goodrich, M.T., Pszona, P.: External-memory network analysis algorithms for
naturally sparse graphs. In: Demetrescu, C., Halldórsson, M.M. (eds.) Algorithms
– ESA 2011. pp. 664–676. Springer, Berlin, Heidelberg (2011)

25. Hijma, P., Heldens, S., Sclocco, A., van Werkhoven, B., Bal, H.E.: Optimization
techniques for GPU programming. ACM Comput. Surv. 55(11) (2023). https:

//doi.org/10.1145/3570638, https://doi.org/10.1145/3570638

26. Hussain, A., Aleem, M.: GoCJ: Google cloud jobs dataset for distributed and cloud
computing infrastructures. Data 3(4), 38 (2018)

27. Jiang, J., Mitzenmacher, M., Thaler, J.: Parallel peeling algorithms. ACM Trans.
Parallel Comput. 3(1) (Jan 2017). https://doi.org/10.1145/2938412, doi.org/
10.1145/2938412

28. Karloff, H., Suri, S., Vassilvitskii, S.: A model of computation for MapRe-
duce. In: ACM-SIAM Symposium on Discrete Algorithms (SODA). pp. 938–948
(2010). https://doi.org/10.1137/1.9781611973075.76, https://epubs.siam.

org/doi/abs/10.1137/1.9781611973075.76

29. Karloff, H., Suri, S., Vassilvitskii, S.: A model of computation for MapReduce. In:
21st ACM-SIAM Symposium on Discrete Algorithms (SODA). pp. 938–948 (2010)

30. Mizrahi, A., Bar-Lev, D., Yaakobi, E., Rottenstreich, O.: Invertible Bloom lookup
tables with listing guarantees. arXiv:2212.13812 (2022)

31. Molloy, M.: The pure literal rule threshold and cores in random hypergraphs.
In: 15th ACM-SIAM Symposium on Discrete Algorithms (SODA). pp. 672–681.
Society for Industrial and Applied Mathematics (2004)

32. Molloy, M.: Cores in random hypergraphs and boolean formulas. Random Struc-
tures & Algorithms 27(1), 124–135 (2005)

33. Odun-Ayo, I., Ajayi, O., Akanle, B., Ahuja, R.: An overview of data storage in cloud
computing. In: IEEE Int. Conf. on Next Generation Computing and Information
Systems (ICNGCIS). pp. 29–34. IEEE (2017)

34. Ozisik, A.P., Andresen, G., Levine, B.N., Tapp, D., Bissias, G., Katkuri, S.:
Graphene: Efficient interactive set reconciliation applied to blockchain propagation.
In: ACM SIGCOMM. p. 303–317 (2019). https://doi.org/10.1145/3341302.

3342082, doi.org/10.1145/3341302.3342082

14

https://doi.org/10.1080/16522354.2019.1684717
https://doi.org/10.1080/16522354.2019.1684717
https://doi.org/10.1080/16522354.2019.1684717
https://doi.org/10.1080/16522354.2019.1684717
doi.org/10.1080/16522354.2019.1684717
https://doi.org/10.1109/ANCS.2015.7110126
https://doi.org/10.1109/ANCS.2015.7110126
https://doi.org/10.1109/ANCS.2015.7110126
https://doi.org/10.1109/ANCS.2015.7110126
https://doi.org/10.1145/3570638
https://doi.org/10.1145/3570638
https://doi.org/10.1145/3570638
https://doi.org/10.1145/3570638
https://doi.org/10.1145/3570638
https://doi.org/10.1145/2938412
https://doi.org/10.1145/2938412
doi.org/10.1145/2938412
doi.org/10.1145/2938412
https://doi.org/10.1137/1.9781611973075.76
https://doi.org/10.1137/1.9781611973075.76
https://epubs.siam.org/doi/abs/10.1137/1.9781611973075.76
https://epubs.siam.org/doi/abs/10.1137/1.9781611973075.76
https://doi.org/10.1145/3341302.3342082
https://doi.org/10.1145/3341302.3342082
https://doi.org/10.1145/3341302.3342082
https://doi.org/10.1145/3341302.3342082
doi.org/10.1145/3341302.3342082

35. Palankar, M.R., Iamnitchi, A., Ripeanu, M., Garfinkel, S.: Amazon S3 for science
grids: A viable solution? In: ACM Int. Workshop on Data-Aware Distributed
Computing. p. 55–64 (2008). https://doi.org/10.1145/1383519.1383526, doi.
org/10.1145/1383519.1383526

36. Pontarelli, S., Reviriego, P., Mitzenmacher, M.: Improving the performance of
invertible Bloom lookup tables. Information Processing Letters 114(4), 185–191
(2014)

37. Restle, F.: A metric and an ordering on sets. Psychometrika 24(3), 207–220 (1959)
38. Sayood, K.: Introduction to Data Compression. Morgan Kaufmann (2017)
39. Shi, J., Dhulipala, L., Shun, J.: Parallel clique counting and peeling algorithms.

In: SIAM Conf. on Applied and Computational Discrete Algorithms (ACDA).
pp. 135–146 (2021). https://doi.org/10.1137/1.9781611976830.13, https://

epubs.siam.org/doi/abs/10.1137/1.9781611976830.13

40. Shi, J., Shun, J.: Parallel algorithms for butterfly computations. In: Symposium
on Algorithmic Principles of Computer Systems (APOCS). pp. 16–30 (2020).
https://doi.org/10.1137/1.9781611976021.2, https://epubs.siam.org/doi/

abs/10.1137/1.9781611976021.2

41. Vöcking, B.: How asymmetry helps load balancing. J. ACM 50(4), 568–589
(2003). https://doi.org/10.1145/792538.792546, https://doi.org/10.1145/

792538.792546

42. Wilder, B.: Cloud Architecture Patterns: Using Microsoft Azure. ”O’Reilly Media,
Inc.” (2012)

43. Wittig, M., Wittig, A.: Amazon Web Services in Action. Simon and Schuster (2018)
44. Xia, W., Jiang, H., Feng, D., Douglis, F., Shilane, P., Hua, Y., Fu, M., Zhang,

Y., Zhou, Y.: A comprehensive study of the past, present, and future of data
deduplication. Proceedings of the IEEE 104(9), 1681–1710 (2016)

15

https://doi.org/10.1145/1383519.1383526
https://doi.org/10.1145/1383519.1383526
doi.org/10.1145/1383519.1383526
doi.org/10.1145/1383519.1383526
https://doi.org/10.1137/1.9781611976830.13
https://doi.org/10.1137/1.9781611976830.13
https://epubs.siam.org/doi/abs/10.1137/1.9781611976830.13
https://epubs.siam.org/doi/abs/10.1137/1.9781611976830.13
https://doi.org/10.1137/1.9781611976021.2
https://doi.org/10.1137/1.9781611976021.2
https://epubs.siam.org/doi/abs/10.1137/1.9781611976021.2
https://epubs.siam.org/doi/abs/10.1137/1.9781611976021.2
https://doi.org/10.1145/792538.792546
https://doi.org/10.1145/792538.792546
https://doi.org/10.1145/792538.792546
https://doi.org/10.1145/792538.792546

	Parallel Peeling of Invertible Bloom Lookup Tables in a Constant Number of Rounds

