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Abstract—Identifying heavy hitters and estimating the fre-
quencies of flows are fundamental tasks in various network
domains. Existing approaches to this challenge can broadly
be categorized into two groups, hashing-based and competing-
counter-based. The Count-Min sketch is a standard example of a
hashing-based algorithm, and the Space Saving algorithm is an
example of a competing-counter algorithm. Recent works have
explored the use of machine learning to enhance algorithms
for frequency estimation problems, under the algorithms with
prediction framework. However, these works have focused solely
on the hashing-based approach, which may not be best for
identifying heavy hitters.

In this paper, we present the first learned competing-counter-
based algorithm, called LSS, for identifying heavy hitters, top k,
and flow frequency estimation that utilizes the well-known Space
Saving algorithm. We provide theoretical insights into how and
to what extent our approach can improve upon Space Saving,
backed by experimental results on both synthetic and real-world
datasets. Our evaluation demonstrates that LSS can enhance
the accuracy and efficiency of Space Saving in identifying heavy
hitters, top %, and estimating flow frequencies.

I. INTRODUCTION

The paradigm of learning-augmented algorithms, also
known as algorithms with predictions, combines machine
learning and traditional algorithms. This approach aims to
enhance algorithms and data structures by leveraging predic-
tions from machine learning models. Such learning-augmented
algorithms have demonstrated theoretical and empirical ben-
efits across numerous areas, including scheduling [1]-[4],
caching [5], [6], and approximate frequency estimation [7].
In the realm of approximate frequency estimation, the goal
is to utilize predictive models to improve the accuracy of the
estimation.

A stream of packets flowing through a network or a specific
switch can be divided into multiple flows, each identified by
a unique set of attributes. For example, the 5-tuple consists
of source IP, source port, destination IP, destination port, and
protocol is often used as a flow identifier. Two fundamental
problems in network statistics are determining the frequency
of a flow, i.e., counting the number of packets with a given
flow identifier that passes through the network or switch,
and identifying the heavy hitter flows (the most frequent
ones), as these flows often have the most significant impact.
These monitoring capabilities are desirable for various network
algorithms and domains, such as load balancing [8], routing,
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fairness [9], intrusion detection [10], [11], caching [12], and
policy enforcement [13].

In a modern network, as the number of flows can be
massive, providing precise answers to queries regarding flow!
frequencies and identifying heavy hitters? is often prohibitively
costly. To that end, streaming algorithms process the data
in a single pass while efficiently estimating flow frequencies
with minimal storage space are essential. These algorithms
build a sketch; a compact data structure that extracts statistical
information in one pass on the entire data.

Standard frequency estimation algorithms can be broadly
classified into two categories: hashing-based and competing-
counter-based approaches. The hashing-based approach [14]-
[16] hashes data items into buckets, potentially leading to
collisions among different items. It then calculates item fre-
quencies based on the number of items hashed into each
bucket. In contrast, the competing-counter-based approach,
such as Space Saving [17], maintains a fixed number of
counters that at any time tracks a subset of the input items,
without hashing and corresponding collisions. These data
stream items “compete” for the limited counters, with the
algorithm aiming to allocate counters to the most frequent
items. For identifying heavy hitters and top k, while hashing-
based approaches require additional structures like heaps,
competing-counter-based approaches do not necessitate such
auxiliary components, making them more space-efficient. In-
deed, competing-counter-based algorithms have been shown to
be more space-efficient than hashing-based algorithms, both
empirically and asymptotically [18], [19], as hashing-based
algorithms require allocating significantly more counters and
space than theoretical lower bounds to mitigate the impact of
hash collisions on counter accuracy. Additionally, competing-
counter-based algorithms offer deterministic error guarantees,
in contrast to hashing-based, which are randomized.

Hsu et al. [7] introduced a learned hashing-based algorithm
for frequency estimation that utilizes a heavy hitter predictor.
When an incoming item is predicted to be a heavy hitter, it
is assigned a unique bucket for accurate counting. Items not
predicted as heavy hitters are processed using a conventional
sketching algorithm. This approach reduces collisions between
heavy hitters and less frequent items, leading to improved
overall accuracy. It is important to note that heavy hitter

IThe terms flow and item are used interchangeably.
>The terms heavy hitters and frequent items are used interchangeably.



predictors may exhibit errors, and thus relying solely on them
to identify heavy hitters can violate error guarantees. To our
knowledge, there is a lack of research on learned competing-
counter-based algorithms. Unfortunately, directly applying the
same strategy to competing-counter-based algorithms by sim-
ply assigning all counters to predicted heavy hitters leads to
unbounded estimation error. For instance, a falsely predicted
heavy hitter item occupies a counter that could have been used
for a real heavy hitter. (Recall that competing-counter-based
approaches have a fixed number of counters.) Even worse, a
true heavy hitter might be mistakenly identified as a non-heavy
hitter and consequently ignored. Unlike learned hashing-based
algorithms that focus only on heavy-hitter items, we propose
an approach that employs a predictor to filter out noise caused
by items predicted to have low frequencies as in many network
traces [20] and practical distributions (e.g. Zipfian), many
items have only one occurrence.

In this paper, we introduce a learned competing-counter-
based algorithm for identifying heavy hitters, top %, and
flow frequency estimation. We focus on the Space Saving
algorithm, although our approach could be applied to any
competing-counter-based algorithm, such as the MG algo-
rithm [21]. We present Learned Space Saving (LSS), a novel
technique that leverages machine learning predictions to guide
the competition for limited counters among data items. Specif-
ically, LSS aims to exclude predicted “weak” or low-frequency
items from the competition, while ensuring that predicted
“strong” or heavy-hitter items remain in the competition. In
this way, the Space Saving accuracy is improved.

LSS is designed to be resilient against prediction errors.
Our LSS method employs a filtering mechanism to exclude
predicted low-frequency items, resulting in a “cleaner” data
structure. To ensure robustness against incorrectly predicting
a high-frequency item as a low-frequency item, we employ a
Counting Bloom filter that tracks these items and ensures an
item is not consistently ignored just because it is (repeatedly)
predicted as low frequency. When using the heavy hitter pre-
dictor, we divide the counters into fixed and mutable counters.
A predicted heavy hitter can be allocated a fixed counter, to
achieve an accurate count. But fixed counters are limited, so
if there are excessive incorrect heavy hitter predictors, the
mutable counters allow for a standard Space Saving algorithm
on items after the fixed counters are filled. We break LSS into
two variants, LSS-LF and LSS-HH, each utilizes a distinct
learning model and is designed to exhibit resilience against
prediction errors.

Our contributions are: 1) We propose LSS, a learning-based
approach for identifying heavy hitters, top k& and frequency
estimation, improving Space Saving’s accuracy and designed
to be robust against prediction errors (Section III). 2) We break
down LSS into LSS-LF (Section IV) and LSS-HH (Section V),
showing each component’s robustness. 3) We present theorems
providing insight into potential gains 4) We propose LSS+,
a variation of LSS offering higher update throughput by re-
laxing deterministic to probabilistic approximation guarantees
(Section VI). 5) We implement and evaluate LSS and variants

(Section VII) on synthetic and real-world datasets (Internet
traffic, web search); LSS demonstrated up to 18% better top-
k precision, 24% higher heavy hitter recall, and 34% lower
RMSE for frequency estimation compared to Space Saving
under certain configurations.

II. BACKGROUND
A. Preliminaries

Given a universe U, a stream S = uy,ug,... € UN is a
sequence of arrivals from the universe. (We assume the stream
is finite here.) We define the frequency of an item ¢ in S as
the number of items corresponding to ¢ in S and denote this
quantity by f;.

We seek algorithms that support the following operations:

o ADD(i): given an element i € U, append i to S.

o QUERY(%): return an estimate f; of f;

A weighted stream consists of tuples of the form (u;, w;),
where u; represents the item’s id and w; its (non-negative)
weight. At each step, a new tuple is added to the stream. In
this setting, the weight w; is added to the corresponding item’s
frequency. Frequency estimation algorithms typically assume
unweighted updates, such as click streams, while others as-
sume weighted updates, such as network traffic volumes. In
this paper, we focus on the unweighted updates model for ease
of exposition, although our approach applies to weighted data
streams as well, with straightforward modifications.

Definition 1. An algorithm solves e-Frequency if given any
Query(i) it returns f; satisfying

fiSJ?iSfi-‘rNG-

A (randomized) algorithm is said to solve e-Frequency with
probability 1 — § if, for any i chosen before the stream is
processed, Query(i) returns f; satisfying the above bound with
probability 1 — 4. Similarly, a (randomized) algorithm solves
e-Frequency in expectation if given any Query(i) it returns f;
satisfying R

fi < E[fi] < fi+ Ne.

Definition 2. An algorithm solves (e,0)-HeavyHitters if it
returns a set of items B, such that for every item i: if f; > 6N,
then i € B, and if f; < (6 — €)N then i ¢ B. An algorithm
solves (e, 0)-HeavyHitters with probability 1 —§ if it returns a
set of items B satisfying the above conditions with probability
1-24.

Deterministic solutions (competing-counter-based) [17],
[21] for the e-HeavyHitters problem ensure the identification
of all items with sufficiently large counts, but potentially may
include some items with counts smaller than the given heavy
hitter threshold. In contrast, hashing-based [14], [15] for the
e-HeavyHitters problem may introduce a probability of failure.

B. Robustness in Learning-Augmented Algorithms

As mentioned, a learned-augmented algorithm combines
traditional algorithms with machine learning models. (It should
be noted, however, that this approach generally treats the



machine learning models as black boxes, allowing it to work
with any model that provides usable predictions.) However,
machine learning methods are inherently imperfect and may
exhibit errors, including substantial and unexpected errors.
A key question is how can we use predictions while main-
taining robustness, which refers to ability of an algorithm
to maintain reasonable performance even if the predictions
are simply wrong [5], [22]. Ensuring robustness is essential
because machine learning models are rarely perfect in practice.
There are several reasons why learned models may exhibit
errors. First, most models are trained to perform well on
average by minimizing expected losses. In doing so, they
may reduce errors on the majority of inputs at the expense of
increasing errors on outlier cases. Additionally, generalization
error guarantees only hold when the training and test samples
are drawn from the same distribution. If this assumption is
violated, due to distribution drift or adversarial samples, the
predictions can vary from the ground truth.

One general approach for learned-augmented algorithms to
try to achieve robustness is to fall back on the traditional algo-
rithm when the model is inaccurate. This requires being able
to notice inaccurate predictions and change to the traditional
algorithm quickly and effectively. Another related approach,
which we use here, is to find ways to limit the damage that
can be caused by incorrect predictions by using additional
algorithm or data structure.

C. Space Saving

The Space Saving (SS) algorithm [17] is a competing-
counter algorithm that provides frequency estimation for data
stream items. Space Saving maintains a set of k entries,
denoted by 7', each entry has an associated item ¢ and counter,
and we use ¢; to denote the counter value associated with
item ¢ if any exists. When k = %, Space Saving estimates
the frequency of any item with an additive error less than Ne
where [V is the stream size.

When an item ¢ is encountered within the stream that is in
the set T, the algorithm increments its corresponding counter
¢;. In cases where the item 7 is not present in 7" and the size
of T is less than k, the algorithm adds 7 to the set 7" and
initializes its count to 1 (¢; = 1). Otherwise, when the item
¢ is not in 7" and the size of 7" has reached k, Space Saving
identifies an item j within 7" with the minimum non-zero count
¢;, denoted by minCount. The algorithm then executes an
update in which ¢; is assigned the value of ¢; + 1, and the set
T is updated to replace item j with item i. To estimate the
frequency of an item, if the item is in 7" then we report its
count. Otherwise, we report the smallest counter stored in 7.
Pseudocode for SS is presented (in black) in Algorithm 1.

Space Saving satisfies the following properties (the first two
properties are proved in [17] while the latter is proved in [23]):

Lemma 1. Space Saving with k = ¢! counters ensures that

after processing N insertions, the minimum count of all mon-
itored items is no more than % = Ne, i.e, minCount < Ne.

Fig. 1: Overview of LSS, combining the approaches of LSS-
LF and LSS-HH. LSS-LF utilizes a low-frequency predictor
to exclude infrequent items. LSS-HH divides entries into fixed
and mutable entries, using a heavy hitters predictor to allocate
fixed entries for frequent items while processing remaining
items through the mutable entries. To mitigate the impact of
prediction errors, LSS-LF utilizes a Counting Bloom Filter
(CBF), while LSS-HH sets a limit (kj;) on the number of
fixed entries (represented in green color).

Lemma 2. All items with frequency larger than or equal to
minCount are in the set T, the set of items with associated
counters.

Lemma 3. Space Saving with €' counters can estimate the
frequency of any item with an additive error less than Ne.

III. LEARNED SPACE SAVING

We propose a learning-based approach to enhance the
accuracy of the Space Saving algorithm, called Learned Space
Saving (LSS). Our approach allows for two types of pre-
dictors: one for identifying low-frequency items and another
for identifying heavy hitters. Either or both can be used.
Alternatively, a single stronger predictor capable of predicting
item frequencies could be employed. To accommodate the
availability of predictors in different systems, we divide LSS
into two components: LSS with low frequency predictor (LSS-
LF) when only the low-frequency predictor is available, and
LSS with heavy hitter predictor (LSS-HH) when only the
heavy hitters predictor is available. When both predictors
are available, or when a single predictor can predict item
frequencies, we utilize the full LSS, which combines the
strengths of the individual components.

LSS-LF employs a filtering mechanism to exclude low-
frequency items, resulting in a ‘“cleaner” data structure. It
utilizes a Counting Bloom Filter to ensure robustness against
prediction errors. LSS-HH takes a different approach by
dividing the Space Saving counters into two categories: fixed
counters and mutable counters. It uses a heavy hitters predictor
to allocate fixed counters for items identified as heavy hitters.
The remaining items are processed using the traditional Space
Saving algorithm, using mutable counters for maintaining their
counts. This overall approach is illustrated in Figure 1.



Algorithm 1 LSS

1: Initialization: T < @, T, utabie— Mutable entries in T
2: C'BF- Counting Bloom filter, t— CBF threshold

3: freqPredictor — frequency predictor

4: fizedEntries < 0

5: HH - heavy hitters predictor, kpj; - number of allowed

fixed entries

6: function INSERT(7)

7 if freqPredictor(i) >t or CBF.GET (i) >t then
8: if i € T then

9: ci+c+1

10: else

11: if |T'| < k then

12: T+ TU{i}

13: ci 1

14: else

15: J ¢ argmin;eq ¢

16: cic;+1

17: T+« TU{i}\ {5}

18: end if

19: if HH(G) and fizedEntries < kp; then
20: mark entry of ¢; as fixed entry

21: fizedEntries < fixedEntries + 1
22: end if

23: end if

24: else

25: CBF.ADD(%)

26: end if

27: end function
28: function QUERY(7)
29: if i € T then

30: return c; 17

31: else

32: return minjer c; +1
33: end if

34: end function

Our design decouples the robustness logic (highlighted
in green in Figure 1) from the remaining algorithm logic.
Figure 2 illustrates the algorithms presented in this paper. We
have employed a color-coding scheme to aid readers in visual-
izing and distinguishing between the presented algorithms. We
represent four algorithms in the pseudo-code of Algorithm 1,
each uniquely represented using specific colors, as follows:
Space Saving is represented in black. LSS-LF combines black
and brown colors. LSS-HH combines black and blue colors.
Finally LSS combines all of them.

IV. LSS-LF: LEARNED SPACE SAVING WITHOUT Low
FREQUENCIES

We claim that by selectively removing low-frequency items
and properly adjusting their estimation, we can enhance the
accuracy of the Space Saving algorithm. We first consider
the case of items appearing only once in a stream and
“remembering” their count as 1 as a special case. Then, we

Fig. 2: An illustration of our algorithms. Consider an input
stream S of 11 items as shown, where A is predicted as a
heavy hitter, the first arrival of B is predicted (incorrectly) as
low frequency, D, E, F,G, H, I, J, K are predicted (correctly)
as low-frequency items. In this example, low-frequency items
take over the SS counters. In LSS-HH, by allocating a fixed
entry for the predicted heavy hitter A, the remaining counters
again are taken over by low-frequency items. LSS-LF, how-
ever, ensures that low-frequency items do not dominate by
filtering them. When B arrives after being previously stored
in the filter, it is tracked again. Note that LSS-LF uses fewer
counters than SS and LSS-HH to account for the additional
memory required for the filter.

present the general case of removing low-frequency items up
to ¢ occurrences.

Our intuition is that occurrences of items that appear once
“disturb” the accuracy of items that are in 7'. Space Saving
could set a counter of an item that is potentially frequent (i.e.
heavy hitter) to zero by encountering a single occurrence item.
Eventually, the replaced frequent item will return to the Space
Saving table (from correctness), but in this case, the “counter
history” will be lost, causing inaccuracy in the counters.

We accordingly introduce LSS-LF (Learned Space Saving
without Low Frequencies), which aims to exclude items that
are predicted to have up to ¢ occurrences from being inserted
into Space Saving. We refer to the special case when ¢t = 1
by LSS-LFS (Learned Space Saving Low Frequency Singles).

A. Addressing Items with Single Occurrence

We focus on this particular case for two primary reasons:
First, for some distributions (see Figure 3), the majority of
low-frequency items are items that occur only once. Second,
in certain setups (e.g. sliding windows [24]), obtaining a
predictor for single occurrence items is more achievable than
a general low-frequency predictor. Even by addressing this
special case of single occurrences, we demonstrate improved
performance.

LSS-LFS employs a predictor that, for a specific item ¢,
predicts if item ¢ has a single occurrence. Note that we perform
predictions for every incoming arrival.

Unless some mitigating structure is added, ignoring pre-
dicted single items can lead to unbounded errors. For example,
if a heavy hitter is predicted incorrectly as a single item, this
item is excluded from the SS, violating the error guarantee.



We therefore add a structure to ensure that when the
predictor suggests an item be ignored, a verification process
is used to determine if the item has been previously ignored,
and ignores the prediction if that has occurred. Our approach
uses a Bloom Filter (BF) [25], [26]° (we consider further
generalizations later). A BF is an efficient probabilistic data
structure that checks if an item is in a set, allowing false
positives but no false negatives.

Specifically, we keep a Bloom filter of predicted single
occurrence items previously ignored to ensure robustness. If
the predictor predicts an item is a single occurrence, but the
Bloom filter returns that it has been previously ignored, this
indicates the item is not a single occurrence item, we disregard
the predictor’s suggestion and instead insert the item into the
Space Saving. Otherwise, if the item is not found in the Bloom
filter, we add it to the filter and ignore it. For example, in
Figure 2, the items B, D, E, F,G, H,1,J, K are predicted as
low-frequency items and are eliminated from being inserted
into the table. Instead, they are placed in the filter. B is tracked
again as it was incorrectly predicted as a low frequency item.
As a result, the counters remain dedicated to tracking non-
low-frequency items.

The effect is that faulty predictions will not cause us to
ignore an item more than once, because Bloom filters are
designed so that there are no false negatives. However, we may
underestimate the count of mispredicted items by 1, because
an item is not included in the Space Saving when it is inserted
in the Bloom filter. We compensate for this by adding 1 to the
query result of the Space Saving. This approach differs from
the strawman method that uses a Bloom filter before Space
Saving to filter out infrequent items. The strawman’s Bloom
filter includes all distinct items in the stream, leading to higher
memory usage. In LSS-LFS, leveraging predictions, the filter
contains only items the predictor suggests ignoring.

1) Robustness Result: We first present theoretical results
showing that LSS-LFS is robust, in the sense that it cannot
behave too much worse than the corresponding algorithm that
does not use predictions (denoted by SS).

Theorem 1. Let S be an algorithm for (¢ — +)-Frequency.
Then LSS-LFS (Algorithm 1) solves e-Frequency.

Proof. For any item ¢ and stream size N, we have

12 SS(c— 1)-QUERY (i) + 1. (1)

That is, our estimate is the query result for ¢ from S'S, which
is an algorithm for (e — %)-Frequency, with at most one
occurence of i removed from the stream SS processes and
an extra count of 1 added back in. It follows the smallest
possible return value is (f; — 1) +1 = f;, and the largest
possible return value is (f,; + (e - %) N) +1 = f; + €N,
proving the claim.

Note that we alternatively could have used a e-Frequency
algorithm for S\S and not added 1 to the query result, yielding

3The BF could be replaced with any similar filter structure, such as a cuckoo
filter or ribbon filter [27], [28].

a largest possible return value ﬁ of f; + eN, but might yield
a smallest value of f; — 1 (as a lower bound). We chose the
presentation of Theorem 1 to maintain the same guarantees as
without predictions. O

Theorem 2. Given k = ¢~ ' available counters and the

availability of perfect predictions for items with a single oc-
currence, let ¢ represents the count of such items. By utilizing
this predictor specifically to filter out single-occurrence items,
Space Saving can estimate the frequency of any item with
additive error less than (N — {)e, where N denotes the size
of the stream.

Proof. In the Space Saving algorithm, the minimal counter
value is always greater than or equal to the ratio of the number
of inserted items to the number of counters. Since we eliminate
items with single occurrences, the total number of inserted
items becomes N — /. By using ¢! counters, we ensure that
the minimal counter value is greater than or equal to (N —{)e.
The rest of the proof follows immediately from Lemma 1, 3.

O

Our LSS-LFS algorithm will, of course, not be as good as
Theorem 2 even with perfect predictions, because it does not
assume predictions are perfect, and uses a Bloom filter for
robustness. However, the following theorem provides insight
into why we expect strong benefits, given suitably good
predictors. In stating the theorem, we recall that a Bloom filter
has a false positive rate, which corresponds to the probability
a non-set item creates a false positive, and further, for any
sequence of M Bloom filter queries, the fraction of false
positives is at most (1 + )M for any constant v with high
probability (that is, O(M~%) for any constant «; note the
result may require sufficiently large M).

Theorem 3. Given SS with k = e~ to solve the e-Frequency
problem and given perfect predictions of whether an item is
a single occurrence. LSS-LFS using k counters can estimate
the frequency of any item with additive error less than (N —
£-(1— (14 v)fpr)e with high probability, where fpr is the
false positive rate of its Bloom filter and v > 0 can be any
suitable constant.

Proof. Based on Algorithm 1, LSS-LFS uses a predictor to
filter out arrivals with a single occurrence. A perfect predictor
is assumed, but without knowing that it is perfect. As LSS-LFS
utilizes a Bloom filter to handle the predictor’s imperfections,
which may yield false positives that include unnecessary items
in its Space Saving instance. The expected number of false
positives can be expressed as £- fpr, and with high probability
the number of false positives is at most (14v)¢- fpr. Following
the same logic as in Theorems 2, it can be deduced that the
total number of inserted items, with high probability, is N —
- (1= (1+v)fpr). O

B. Addressing Items Up to t Occurrences

For given t, the previous approach can be generalized by
addressing items with up to ¢ occurrences, where ¢ is a
threshold that depends on the specific distribution.



We now present LSS-LF, a generalization of LSS-LFS. We
use a predictor that, for a specific item ¢ and threshold ¢,
predicts if item ¢ has more than ¢ occurrences. LSS-LF re-
places the standard Bloom filter with a Counting Bloom Filter
(CBF) [29] which expands on the Bloom filter capabilities by
tracking how many times each item appears in a multi-set. The
CBF tracks the number of times an item is inserted into it, so
we can (approximately) count how many times an item that
is predicted to have less than ¢ occurrences within the stream,
and then we place items into the Space Saving if their CBF
count reaches a predefined threshold ¢. This generalizes the
previous algorithm using the Bloom filter which corresponds
to the case t = 1. Now, however, our underestimation might
be as much as ¢, from ¢ insertions until reaching the CBF
threshold. We correct this by adding ¢ to the value returned
by SS in LSS-LF.

Theorem 4. Given a threshold t, let SS be an algorithm for
(e — %)-Frequency. Then LSS-LF solves e-Frequency.

Proof. The proof follows the same logic as that of Theorem 1.
Here, however, we may lose up to ¢ entries for an item ¢ within
the stream. O

V. LSS-HH: LEARNED SPACE SAVING WITH HEAVY
HITTERS

Here, we explore the case where a predictor for heavy
hitters is included. We propose LSS-HH as an approach that
exploits the heavy hitter predictor for better performance. LSS-
HH assigns a set number of entries specifically for predicted
heavy hitters in the Space Saving algorithm. As a result, these
entries are protected from replacement, even when a new item
appears. The other remain mutable, as with the original Space
Saving algorithm; in particular, when an item appears that
replaces the item with the lowest counter value, it does so
only with respect to the mutable entries. We discuss additions
to this approach to ensure it remains robust in the face of
potential prediction errors.

Inaccurate predictions can lead to a scenario where small
items erroneously take up fixed entries and reduce the available
fixed entries originally intended for actual heavy hitters. As
a result, heavy hitters are subject to frequent inclusion and
removal from the structure, resulting in unbounded errors.
To ensure the robustness of our approach, we set a limit on
the maximum number of fixed entries (kyp). In cases where
the number of predicted heavy hitters exceeds the defined
threshold, the initial heavy hitters encountered in the data
stream fill the fixed entries, while the remaining heavy hitters
compete on regular mutable entries. In contrast, if the number
of predicted heavy hitters is less than the fixed entries, those
entries will be given to non-heavy hitters. This is due to the
fact that we only mark entries as fixed when a heavy hitter
shows up. In Figure 2, there is one fixed entry allocated for
A, which is predicted as a heavy hitter. This prevents low-
frequency items from replacing the counter tracking the heavy
hitter A.

Theorem 5. Given the availability of perfect predictions for
heavy hitters, LSS-HH using k counters, where kp, among
them are fixed entries, provides exact frequencies for kpp,
heavy hitters (zero errors) and estimates the frequency of the
other items with additive error less than Nk__kiw where 0 is
the heavy hitters’ threshold. '

Proof. Since heavy hitters have dedicated counters, their error
is zero. For the remaining items, we have k — kjp; (mutable)
counters. As before, the minimal counter value among the
mutable counters is always greater than or equal to the ratio of
the number of inserted items to the number of counters. How-
ever, since we eliminate heavy hitter items, each appearing at
least 6N times, the total number of inserted items becomes
N — kpp0N. Thus, the rest of the proof follows immediately
from Lemma 1 and Lemma 3. O]

If the frequency distribution of items is Zipfian, then the
number of §-heavy hitters is at most ﬁ, where n represents
the total number of unique items in the stream (Remark 9.13

in [7]). In this case, kp; can be set to ﬁ

nn’

VI. LSS+: FASTER LSS

The inclusion of the filter (BF or CBF), while crucial for
robustness, can potentially slow down overall performance
and increase memory usage. We present LSS+ that offers
potentials for speedup at the cost of loosening our determinis-
tic approximation guarantees to probabilistic guarantees. For
simplicity, we describe LSS+ for the case of filtering out single
occurrences, but the approach also applies to filtering out items
with up to ¢ occurrences.

Whenever the predictor suggests an item will have a single
occurrence, LSS checks for the item’s presence in the Bloom
filter, and either adds it to the Bloom filter if it is not there, or
adds 1 to the item count in the Space Saving data structure if it
is. LSS+ mitigates this overhead by selectively executing this
step with probability 7, and adding 7! to the item count in
the Space Saving data structure if needed. (For convenience,
we assume here that 7! is an integer, to avoid floating point
arithmetic, but one could develop alternative implementations.)

In the special case where 7 equals 1, LSS+ coincides with
LSS. When 7 is less than 1, it takes on average 7! predictions
that an item will have a single occurrence before checking the
Bloom filter, reducing accesses to and memory required for the
Bloom filter. However, now the guarantees for the algorithm
are only in expectation; when an item is in the Bloom filter, its
expected count increases by one each time such a prediction
occurs. The value of the parameter 7 in LSS+ can be chosen
to balance between robustness and efficiency.

As LSS+ checks the Bloom filter probabilistically, it makes
sense to consider the expected value of the query response;
we refer to this as solving the query problem in expectation.

Theorem 6. Let SS be an algorithm for (e — %)—Frequency.
Then LSS+ solves e-Frequency in expectation.
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Fig. 3: Histogram of predicted frequencies up to 50 of the
used datasets (Log scale). For Web search and IP datasets, we
use the learned model described in Section VII, for the Zipf
distribution, we used the simulated predictor with p = 0.9.

Proof. The proof follows similar logic as that of Theorem 1.
The return value of LSS+ is

i S8 _=1)-QUERY(i) + 7t 2

Each time item ¢ is encountered, if the prediction says
it will appear again in the stream, its count is increased
by 1 deterministically. If the prediction says it has a single
occurrence, but it is in the Bloom filter, its expected count
increases by 1, as it goes up by 7! with probability 7 (when
the Bloom filter is checked). The only times the expected
count does not increase by 1 on each appearance is when
the item is not in the Bloom filter and it is predicted to be a
single occurrence; this occurs an expected 77! times before
the item is put in the Bloom filter. It follows that E[f;] > f;
and E[ﬁ] < fi+ (e— %>N+T*1 = f, +€N.

O

VII. EVALUATION

Our evaluation examines LSS’s effectiveness compared to
SS using the following datasets:

o IP Trace Datasets: : We use the anonymized IP trace
streams collected from CAIDA [20]. The traffic data is
collected at a backbone link of a Tier 1 ISP between
Chicago and Seattle in 2016. Each recording session lasts
approximately one hour, with around 30 million packets
and 1 million unique flows observed within each minute.

o Web Search Query Datasets: We use the AOL query log
dataset [30], which comprises 21 million search queries
collected from 650 thousand anonymized users over a
90-day period. The dataset contains 3.8 million unique
queries, each consisting of a multi-word search phrase.

« Synthetic Datasets: We generated synthetic datasets fol-
lowing the Zipf [31] distribution with varying skewness
levels, each dataset contains 10 million items.

Implementation and Computation Platform: We imple-
mented the learned versions of Space Saving in Python 3.7.6.
The evaluation was performed on an AMD EPYC 7313 16-
Core Processor with an NVIDIA A100 80GB PCle GPU,
running Ubuntu 20.04.6 LTS with Linux kernel 5.4.0-172-
generic, and TensorFlow 2.4.1.

The Learned Model: We follow the implementation of the
learned model in [7] and adapt it using TensorFlow 2.4.1 for
the discussed datasets CAIDA [20] and AOL [30]. For the

CAIDA dataset, we train a neural network? to predict the log
of the packet counts for each flow. The model takes as input
the IP addresses, ports, and protocol type of each packet. We
employ Recurrent Neural Networks (RNNs) with 64 hidden
units to encode IP addresses and extract the final states
as features. Ports are encoded by two-layer fully-connected
networks with 16 and 8 hidden units. The encoded IP and
port vectors are concatenated with the protocol type, and this
combined feature vector is used for frequency estimation via
a two-layer fully-connected network with 32 hidden units. For
the AOL dataset, we construct the predictor by training a
neural network to predict the number of times a search phrase
appears. To process the search phrase, we train an RNN with
LSTM cells that take the characters of a search phrase as
input. The final states encoded by the RNN are fed to a fully
connected layer to predict the query frequency. The model is
trained on a subset of data to identify properties that correlate
with item frequencies instead of memorizing specific items.
This trained model is then tested on a separate dataset.

Simulated Frequency Prediction: For synthetic datasets,
given true frequencies, we generate predicted frequencies.We
simulate a predictor as follows: given a threshold ¢ and
probability p, items are classified as either small (true count
< t) or big (true count > ¢). With probability 1 —p, an item is
mispredicted where small (big) items are mispredicted as big
(small) items, and their predicted count is randomly chosen
from the set of big (small) item counts. With probability p, the
prediction of an item is its true count multiplied by a factor that
slightly varies around 1, within a range defined by the noise
level (default 5%).In addition, for items below the threshold ¢,
a small probability (default 1%) controls the likelihood that the
added noise will cause these items to be predicted above ¢. For
CAIDA and AOL datasets, we use the learned predictor from
Section VII. When demonstrating robustness on real datasets,
we employ controlled prediction with a simulated predictor to
introduce non-perfect predictions.

Parameter Setting: Our approach does not aim to optimize
every parameter thoroughly. In practice, parameters can be
fine-tuned based on knowledge of data distribution, or by
iterative refinement over time, benefiting from our scheme’s
inherent robustness. Here we state the default parameters we
used in the experiments unless stated otherwise. For a fair
comparison with the same memory consumption as SS, we
allocated 90% of the memory consumed by SS counters to the
LSS counters and the remaining 10% to the filter (CBF), we
refer to this as filter ratio in the experiments. When using fixed
counters, particularly for finding heavy hitters, we designated
10% of the total counters as fixed counters. (We also explore
the effects of varying the number of fixed counters.) Since we
do not assume a prior knowledge of the dataset, we set a low
frequency threshold ¢ = 4. To set the threshold for identifying
heavy hitters, we used the theoretical error guarantee € based

4Again, the implementation of such a predictor is our tailored approach,
and it is just one of many possible options. Depending on the requirements,
our design may be replaced or enhanced with any other effective prediction
technique.



on the used memory (Lemma 1). The default value for this
threshold is chosen to be 6§ = 0.25¢. To simulate periodic
queries throughout the data stream, we execute a query at
intervals of every 1000 arrivals. The reported accuracy is the
average across all windows.

A. Problems and Metrics

We explored three problems: (1) detecting heavy hitters
in the stream, i.e., items whose frequency exceeds a given
threshold; (2) finding the top &£ most frequent items in the
stream, where k is given; and (3) estimating the frequencies
of individual items in the stream. Our error metrics are:

Root Mean Square Error (RMSE) for Frequency Es-
timation: measures the square root of the average squared
differences between the estimated frequency and actual fre-
quency. RMSE = \/% S (fi— f)2

Precision for Top-k: ratio of the number of correctly re-
ported instances to the number of reported instances (%),
where T'P is the true positive and F'P is the false positive.

Recall for Heavy Hitters: ratio of the number of cor-
rectly reported instances to the number of correct instances
(%) where F'N is the false negative.

Operations performance: insertions or queries per second.

B. End-to-End Performance

a) Data Skew: To show how the numerous less frequent
tail items could collectively dominate the counters in a space-
saving algorithm, we present in Figure 3 histograms for the
frequency range of 1 to 50, plotted on a logarithmic scale. The
scale highlights that there are a large number of low-frequency
items. We observe a sharp peak at the lowest frequency (1)
and as the predicted frequencies increase, the number of items
decreases roughly exponentially.

b) Predictions overhead: The inference time of the
used predictors is 2.8 microseconds per item on a single
GPU without optimization, which ensures minimal impact
on throughput. To evaluate memory overhead, we calculated
the total number of parameters and corresponding memory
requirements for each predictor model, which depends on
the dataset. For the network flow predictor, the model has
167,521 parameters: 76,800 for IP address embeddings, 82,176
for encoding ports, and 8,545 for the frequency estimation
network. With 32-bit float representations, this translates to
around 0.67 MB of memory. The AOL dataset predictor is even
more lightweight, with 7,680 parameters: 4,000 for character
embeddings (RNN with LSTM cells), and 3,680 for the fully-
connected layer, using approximately 0.03 MB of memory.
Thus, the prediction overhead, which includes inference and
memory, is therefore small. Note that inference overhead is
expected to be less significant in the future [32] due to special-
ized hardware such as Google TPUs, hardware accelerators,
and network compression [33], [34], [35], [36]. In terms of
memory, there is a growing research field, TinyML [37],
focused on creating tiny machine learning models for efficient
on-device execution. It involves model compression techniques
and high-performance system design for efficient ML. Here

we present one example of predictors, which can be treated as
black boxes without focusing on their internal functioning;
our approach can therefore be used with any suitable and
efficient learning scheme that yields a predictor, given the
rapid advancements in machine learning research.

¢) Robustness: Figure 4 shows the robustness of LSS
that our theorems suggest using the web search dataset with a
simulated predictor. Figure 4a evaluates the precision of top-k
as function of the consumed space when k = 10, where the
prediction for every item arrival is 1. Even in this extreme case,
we observe only a small degradation in accuracy compared to
SS. This degradation arises because we do not benefit from
filtering since the filter is overloaded with items, causing items
to be frequently replaced in the SS table. Additionally, the
filter consumes some memory, so less memory is available for
tracking items compared to SS. At the other extreme, Figure 4b
shows the recall of finding heavy hitters when every item is
predicted as a heavy hitter. In this scenario, the fixed entries
in the counters could be filled with non-heavy hitter items,
leaving fewer counters available for tracking the actual heavy
hitters. This results in a decreased recall rate. However, once
again, the decrease is small. Figure 4c illustrates the precision
rate of the top-k task as a function of the prediction accuracy
(p), as explained in the simulated predictor. When p = 0, it
implies that all items are mispredicted, in which case SS yields
a higher recall rate than LSS because the predictions provide
no benefit. As p increases, LSS outperforms SS, and in the
other extreme, when p = 1 (perfect prediction), LSS achieves
around 50% improvement in precision compared to SS.

d) Accuracy vs. Fixed Counters: Figures 4d, 4e show the
recall of finding top-k items and heavy hitters as a function
of the number of fixed counters using the web search dataset
with the learned model. As this number increases, the recall for
identifying top-k items decreases because the fixed counters
may be populated with heavy hitters that are not among
the top-k items. Since these entries are fixed in a first-come
manner, the top items may not be placed in the fixed counters.
Allocating fixed counters for heavy hitters that are not top-
k items results in fewer mutable counters for tracking top-
k. However, as the number of fixed counters increases, the
recall for detecting heavy hitters improves since having fixed
counters dedicated to tracking heavy hitters aligns with this
objective. Thus, for finding top-k items, we set the number
of fixed entries to zero, while for finding heavy hitters, we
allocated 10% of the counters as fixed counters.

e) Accuracy vs. Memory: We examine the accuracy of
SS, LSS, and LSS+ (with 7 = 0.5) across three tasks: finding
top-k items, identifying heavy hitters, and frequency estima-
tion using web search, IP, and synthetic datasets. The accuracy
is evaluated as a function of the memory used. Figure 5
shows the results for top-k and heavy hitter identification tasks.
As expected, higher available memory results in improved
precision and recall rates. For the top-k task, no fixed entries
were used. LSS and LSS+ achieve better precision than SS
when finding top-k items and better recall when identifying
heavy hitters. LSS slightly outperforms LSS+, as one might



Iy

=)
o
w»

Precision Rate
o
S

e
~

Precision Rate
o
”n
Recall Rate
o
N

o
=)
o
=)

o

w
-
5
)\

o
o

Recall Rate
o
)

Precision Rate
=] =}
w »

216 218 . 215 217 0.0
Spacel[bits] Space[bits]
(a) All predictions are 1~ (b) All predictions are
heavy hitters

—&— SS

(c) Predictions accuracy

[ S— [ ———
0.5 1.0 0.0 0.2 0.4 0.0 0.2 0.4
P Fixed Counters ratio (%) Fixed Counters ratio (%)

(e) Heavy hitters vs. fixed
counters

(d) Top-k vs. fixed coun-
ters

—&— LSS

Fig. 4: (a-c) Robustness of LSS using web search dataset (a) precision of top-k (k = 10) with all predictions as 1 (b) recall
of finding heavy hitters when all predictions are heavy hitters (c) precision of top-k vs. prediction accuracy p. (d-e) Impact of
fixed counters on top-k (k = 64) and heavy hitters using web search dataset.

expect; here for both the filters we allocate allocate 10%
of the memory. Figure 6 illustrates the RMSE of frequency
estimation and shows the accuracy of each variant, LSS-LF
and LSS-HH, separately. As expected, increasing memory
consumption decreases RMSE. We observe that each variant
improves the accuracy compared to SS, and the combined
usage of techniques in LSS achieves higher accuracy in
frequency estimation.

f) Accuracy vs. Filter Size: Figure 7a presents the impact
of the filter ratio on the precision of top-k (k = 64) items using
the IP dataset. In this experiment, we keep the threshold ¢ fixed
to default (t = 4) and vary only the filter ratio. Allocating less
space to the filter does not affect LSS’s correctness but it leads
to a higher false positive rate for the filter. As a result, more
items are included in the space-saving table, which affects
accuracy and makes the approach more similar to falling back
on the traditional space-saving algorithm.

g) Accuracy vs. Stream Length: Figure 7b shows the
recall of finding heavy hitters using 2!7 bit memory using web
search dataset. At the beginning of the stream, LSS maintains
an accurate result (high recall rate 1) by effectively filtering
out low-frequency items. As the stream grows larger, medium
items also accumulate, leading to a decrease in the recall rate
for both methods.

h) Accuracy vs. t: Figure 7c displays the RMSE vs. t
using a synthetic dataset with o = 1.3 and p = 0.9. The
RMSE decreases until a certain point and then increases. This
behavior is due to the increasing false positive rate of the
filter at larger values of t, which is related to the number of
low-frequency items and the filter size. In general, with larger
memory (here we used 2'° bit memory), the filter size can
be increased proportionally, allowing it to handle more low-
frequency items. However, the number of low-frequency items
depends on the data distribution. If prior knowledge of the
distribution is available, the filter size and ¢ can be adjusted.

i) Accuracy vs. a: Using synthetic datasets with p = 0.9,
Figure 7d shows the precision of top-k (K = 124) vs.
«, the skewness parameter of a Zipfian distribution. As «
increases, the distribution becomes more skewed, with a higher
concentration of low-frequency items (“heavier tail””). LSS has
improvements over SS until a certain point (o = 2). After this

point, LSS’s precision starts to decrease due to the saturation
of the filter with low-frequency items, resulting in higher false
positive rates. When o > 2.2, LSS has lower precision than
SS since the filter becomes ineffective and fewer counters are
allocated to the Space Saving table compared to SS.

J) Performance Comparison: Figure 6d examines the
update performance of SS, LSS, LSS-HH, LSS-CBF and LSS+
algorithms using the IP dataset. We set ¢ = 1 and use [38] and
have not optimized further. A key consideration in comparing
LSS to SS is the computational cost of inserting elements
into the Bloom filter versus integrating them into the Space-
Saving data structure. When an item is inserted or queried
within a Bloom filter, additional hash computations take place.
The performance of LSS degrades slightly due to the fact that
insertion into the Bloom filter is less efficient than updating
the Space-Saving data structure. Meanwhile, LSS+, configured
with 7 = 0.5, noticeably outperforms both the aforementioned
versions. This superior performance is due to its ability to
minimize the number of insertions to the Bloom filter and
to the SS. We skip query speed below since the discussed
algorithms have the same query process. Figure 6e examines
the update performance of LSS and LSS+ as a function of
the parameter 7. (These experiments all use 32-bit floating
point counters.) As 7 increases, LSS+ saves more Bloom
filter operations, resulting in improved update performance
up to 7 = 0.8. Following this, LSS+ shows a slight drop
in performance compared to LSS.

VIII. RELATED WORKS

There are many algorithms proposed in the literature for
frequency estimation, top-k, and identifying heavy hitters.
See [18] for a survey.

Algorithms with predictions is, as we have stated, a rapidly
growing area. The site [39] contains a collection of over a
hundred papers on the topic. Related work on predictions for
streaming algorithms [7], [40]-[43] introduced the concept of
a heavy hitter predictor within the data stream which predicts
whether it will be a heavy hitter or not. It was shown that such
a predictor can reduce the estimation errors of classical hash-
based algorithms, such as [14], [15], which approximately
count item frequency based on a hashing process that maps



Rt 1. Rt 1. 1.

© 3 e ] 3 F P —

€ 0.75 . & 0.75 P o & 0.7 Boms o — soms NI e

8 050 P = 0:50* e 5 os = 050 e — = 050 37/,,:—/

@ - T T @ ] [ ] -

9 025 s o 2 0.25 g 02 @ 0.25 = . g 0.25

a0 zxe. 218 0. Ry 2% a0 pg 218 0.0 g 216 & 0.0 216 216 0.0 216 21

Space[bits] Space[bits] Space[bits] Space[bits] Space[bits] Space[bits]
(a) Web, Top-k (b) Web, HH (c) IP, Top-k (d) IP, HH (e) Zipf, Top-k (f) Zipf, HH
—&— 55 —&k— LSS —»— LS55+

Fig. 5: Precision and recall vs. memory of identifying top-k (k = 64) and heavy hitters. LSS+ configured with 7 = 0.5. We
use web search, IP and Zipf (o = 1.3) datasets.

6000 'g .g 700000 Y e
400000 g o —k— LSS+
0 v 600000 *
w 4000 w w = Q
2 g E 20000 g % 500000
2 2000 & 200000 - k; g
|3 -] ] | | I
= 2 - B e O
<
0 21 21 2% 218 21 2 < \(;) (’)g\‘z‘%‘?\/, \(?(,)X > 02 04 06 08 10
Space[bits] Space[bits] Space[bits] NY T
(a) Web search (b) IP (c) Zipf a = 1.3 (d) Update (e) as function of 7
LSS LF —— LSS HH —# S5 —a— LSS
Fig. 6: RMSE vs. memory of frequency estimation using web search, IP and Zipf (o = 1.3) datasets.
3 ° 1.0 29 E
© —— S5 “ ©
‘: 0.5 —— LSS ;ri 08 w 08
. - 0 | 13
8 = | B L / S0
@ 0.4 © © ]
< ¥ v 0.6 — ss ] 0.4 o S5
0 £ —— LSS [ —— LSS
o3 0.2 0.4 0.4 0 100 200 & 15 2.0 255
Filter Ratio(%) 0 30000 100000 t a

Stream Length

(a) IP, Top-k (b) Web search, HH

(c) Synthetic, Frequency (d) Synthetic, Top-k

Fig. 7: Impact of parameters (a) Precision vs. filter ratio of identifying top-k frequent item using IP dataset (b) recall rate for
identifying heavy hitters in a web search dataset, focusing on the initial part of the stream (c) RMSE vs. t using synthetic
dataset (v = 1.3) (d) Precision vs. « of identifying top-k frequent item using synthetic dataset.

items to buckets. With the learning process, items that are
predicted to be heavy hitters were not placed in the sketch
but assigned their own counters, so they would be counted
accurately. Intuitively, this not only gives these items accurate
counts but also reduces the error of the items that use the
sketch. Unfortunately, this approach does not directly translate
to the competing counter-based as counters in this approach
are not shared among items. Eliminating low cardinality hosts
was also introduced by [44], which presents a two-phase
filtering method specifically designed to identify high cardi-
nality hosts in network traffic. Their technique, optimized for
moderately high cardinalities, employs multi-stage sampling
and multiple Bloom filters. In contrast, our approach uses a
prediction-based method to identify and filter low-frequency
items without relying on sampling and is designed as a general
scheme adaptable to any stream distribution.

IX. CONCLUSION

Identifying heavy hitters and estimating the frequencies of
flows are fundamental tasks in various network domains. Re-

cent studies have used machine learning to enhance algorithms
for approximate frequency estimation, but they focus solely on
hashing-based methods, which may not be best for identifying
heavy hitters. In this work, we have presented a novel learning-
based approach for identifying heavy hitters, top k, and flow
frequency estimation. We have applied this approach to the
well-known Space Saving algorithm, which we have called
Learned Space Saving (LSS). Our approach is designed to
be resilient against prediction errors.We demonstrated our
design’s benefits analytically and empirically. Experiments
on real-world datasets show that LSS achieves higher recall,
precision, and improved RMSE compared to the traditional
Space Saving algorithm. Code is available online [45].
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