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Abstract: We investigate silicon waveguides with subwavelength-scale modulation for appli-
cations in free-electron-photon interactions. The modulation enables velocity matching and
efficient interactions between low-energy electrons and co-propagating photons. Specifically, we
design a subwavelength-grating (SWG) waveguide for interactions between 23-keV free electrons
and ≈1500-nm photons. The SWG waveguide and electron system exhibit a coupling coefficient
of |gQu | = 0.23, and as we corroborate with time-domain, particle-in-cell simulations, the system
operates as a backward-wave oscillator. Overall, our results show that modulated waveguides
could open the door to strong, extended interactions between photons and low-energy (10-keV-
scale) electrons, like those typically present in scanning electron microscopes. Additionally,
our SWG waveguide design suggests that periodic waveguides could offer intriguing dispersion
engineering opportunities for tailoring these interactions.
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1. Introduction

The interaction of free electrons and photons in electron microscopes has recently attracted
significant attention. In these interactions, electron beams are focused near structures supporting
electromagnetic excitations, e.g., waveguides or nanoscale tips. As electrons pass these structures,
they can coherently interact with the supported excitations and accelerate or decelerate, that is,
they can absorb or emit photons. By measuring the electron energy spectra or the generated
photons (or both) after the interaction, researchers have demonstrated novel microscopy modalities
as well as unique opportunities for quantum technology. For example, such free-electron-photon
interactions have been used in so-called photon-induced near-field electron microscopy (PINEM)
to probe electromagnetic near fields around nanostructures at nm-scale spatial resolution [1,2]
and with attosecond-level temporal resolution [3,4]. Furthermore, in the quantum realm, these
interactions have been shown to enable correlation-enhanced imaging [5] and may support the
generation of intriguing quantum states [6–10]. However, despite their promise for advanced
microscopy and quantum science, these experiments have primarily been confined to large-scale,
expensive transmission electron microscopes (TEMs).

TEM systems produce high-energy, typically >100-keV, electron beams that can enable strong
free-electron-photon interactions. A strong interaction between a free electron and a photon
requires two ingredients: a long interaction length and velocity matching, that is, the electron
velocity should match the phase velocity of the interacting photon. As we will discuss further,
when velocity-matched, the electron will experience a near constant electric field and can thereby
exchange significant energy with the interacting electromagnetic wave. These two requirements
can be achieved with high-energy electron beams (like those in TEM systems) and dielectric
waveguides. For instance, an 120-keV electron has a velocity of 0.59c, and common dielectric
materials, like silicon nitride (refractive index ≈ 2), can readily be used to slow light to match this
velocity. Indeed, researchers have recently demonstrated strong free-electron-photon interactions
by velocity matching TEM-based, 120-keV electron beams to silicon nitride waveguides [5],
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as well as by matching ≈200-keV beams to evanescent electromagnetic surface waves on glass
interfaces [11,12].

Although high-energy electrons in TEM systems can support strong free-electron-photon
interactions, low-energy electrons could provide new technological and scientific opportunities.
First, on the technological side, scanning electron microscopes (SEMs) are an attractive platform
for these interactions. In particular, in contrast to TEMs, SEMs offer large, easy-to-work-with
interaction chambers, come at a comparatively low cost, and provide unique imaging capabilities.
However, SEMs typically only support low-energy (10-keV-scale) electron beams; and, as we
will discuss, it is challenging to design waveguides made of common dielectric materials that
support modes with phase velocities matching such low electron energies. (We should note
that free-electron-photon interactions have been demonstrated by passing SEM-based electron
beams near optically-excited nanostructures [13]; however, these interactions, with only nm-scale
interaction lengths, have remained relatively weak compared to their TEM-based counterparts.)
Beyond technological opportunities, on the scientific side, recent work has shown that the
free-electron-photon interaction strength might be maximized for low energy electrons [14].
Additionally, it has been demonstrated that very low energy (eV-scale) electrons might lead to
intriguing new physical effects associated with recoil [15,16].

In this work, we aim to design structures to bring free-electron-photon interactions to the
low-energy regime. Towards this end, we explore periodic dielectric waveguides to velocity match
10-keV-scale electrons to co-propagating photons over extended interaction lengths. We should
mention that other researchers have recently begun to explore periodic waveguide structures for
a similar purpose [17,18]. Here, we specifically look at periodic waveguides based on silicon
photonics. We investigate these waveguides in the well-developed telecommunications band, at a
free-space wavelength of ≈1500 nm, i.e., a frequency of ≈200 THz. As we will discuss, such
periodic waveguides support slow spatial harmonics. These harmonics enable the coupling of
slow, low-energy electrons to the guided photons, and our simulations indicate the possibility of
achieving coupling coefficients with low-energy electrons comparable to those achieved with
high-energy beams in TEM-based experiments.

The paper is organized into four sections. Following this introduction, in Section 2, we provide
background information on the coupling of free electrons to modes of a waveguide. Next, in
Section 3, we introduce the basics of periodic waveguides with subwavelength-scale modulation,
and we analyze the coupling of an electron to the co-propagating modes of such a waveguide. In
Section 4, we further our analysis by performing time-domain, particle-in-cell (PIC) simulations
of our periodic waveguide. These simulations enable us to visualize the coupling and explore
higher-order mode effects. Finally, we conclude with a brief summary of our results.

2. Background: free electrons coupling to uniform waveguides

The coupling of a free electron to a waveguide is illustrated in Fig. 1(a). In this work, we
consider silicon waveguides on SiO2 substrates, that is, silicon-on-insulator (SOI) waveguides.
Additionally, throughout this work, we will use a coordinate system such that waveguide modes
are confined in the xy-plane, and they propagate in the z-direction. In Fig. 1(a) and in this section,
we consider a uniform waveguide; we call this waveguide uniform since it does not vary in
the longitudinal z-direction. A cross section of the specific waveguide under consideration is
shown in Fig. 1(b). The waveguide has a height of 250 nm and a width of 350 nm. The electron
interacting with this waveguide travels in the z-direction above the waveguide at a height (that is,
an impact parameter) of 50 nm. (This height is consistent with previous experimental results [5].)

Throughout this work, we investigate the electromagnetic characteristics of our waveguides
numerically. Specifically, to analyze the basic modal properties of the waveguides, we use
2D modal analysis and 3D eigenfrequency simulations. (These simulations are performed in
COMSOL.) For the uniform waveguide, since there is no variation in the z-direction, 2D modal
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Fig. 1. Free-electron-photon coupling with a uniform waveguide. (a) Illustration (side view)
of the waveguide with the propagating free electron. (b) The time-average Poynting vector
in the z-direction (i.e., the intensity) of the fundamental TM-like mode in the waveguide
(normalized). (c) Dispersion diagram showing that at 200 THz (1500-nm wavelength)
the fundamental TM-like mode in the designed uniform waveguide velocity matches with
116-keV free electrons (ve = 0.58c). (The waveguide cross-section has been selected to put
the frequency of interest, 200 THz, near cutoff.) (d) Longitudinal (z-directed) electric field
distribution of the fundamental TM-like mode (normalized).

analysis is sufficient. This solver returns the complex field amplitudes and propagation constants
for a given frequency. Accordingly, mode profiles, dispersion, and (as we will discuss) coupling
strength can be readily computed. For instance, in Fig. 1(b), we show the intensity profile of the
fundamental TM-like mode of our uniform waveguide; and in Fig. 1(d), we show the magnitude
of the z-directed electric field of this mode. Both of these plots correspond to a frequency of
200 THz, that is, a free-space wavelength of 1500 nm.

The interaction of an electron with a waveguide mode is controlled by the longitudinal,
z-directed electric field. For a strong interaction between the electron and the mode, the electron
must experience a strong electric field in its direction of propagation. As illustrated in Fig. 1(d),
the fundamental TM-like mode possesses a strong z-directed electric field above the waveguide
at the position of the electron [19]. Therefore, in this work, we will primarily focus on the
fundamental TM-like mode.

Beyond a strong z-directed field, a strong electron-mode interaction requires velocity matching.
For a strong interaction, we want the electron to experience a near-constant electric field. A
constant field can consistently accelerate (or decelerate) the electron and can thereby enable
a significant energy exchange between the electron and the mode. To achieve such a constant
field, we require the electron velocity, ve, to match the phase velocity of the interacting mode,
vph. Velocity matching can be visualized on a dispersion diagram, as illustrated in Fig. 1(c). In
Fig. 1(c), we show the dispersion of the fundamental TM-like mode of our uniform waveguide
from 185 to 240 THz. (The cutoff frequency is 180 THz.) Overlapping the dispersion, we include
a beam line; the beam line corresponds to all points in ω-k space with phase velocity equal to ve.
Therefore, the intersection of this beam line with the dispersion curve of our mode indicates a
velocity-matching point, where ve = vph. In Fig. 1(c), the beam line corresponds to an electron
velocity of 0.58c or an electron energy of Ee = 116 keV. This electron velocity matches the phase
velocity of our mode at the frequency of interest, 200 THz. Lastly, we should also note that
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slowing down the electron corresponds to changing the slope of our beam line, as indicated in
Fig. 1(c).

To quantify the strength of the electron-mode interaction, we use the standard coupling
coefficient, gQu. The coupling coefficient is defined in Ref. [6], and can be written as:

gQu =
e

2ℏω√nph

∫ Lint

0
Ẽz(z′)ejωz′/vedz′, (1)

where Ẽz is the z-directed electric field (in phasor form) of the waveguide mode at frequency
ω and at the beam position; Lint is the interaction length between the electron and the mode;
and nph is the average number of photons in the waveguide (over the length Lint). The average
number of photons in the waveguide is equal to the total time-average electromagnetic energy
in the waveguide (over the length Lint) divided by the photon energy (that is, ℏω). We should
additionally note that for the waveguides considered here this time-average electromagnetic
energy is proportional to the peak value of |Ẽz |

2 as well as Lint. Lastly, to define our conventions,
we should note that the real, z-directed electric field in our formulation is given by Ez(x, y, z, t) =
Re{Ẽz(x, y, z)ejωt}.

The expression for gQu can be understood intuitively by considering it in two parts. First, the
integral in gQu can be seen to be Lint multiplied by the average, z-directed electric field that an
electron moving at velocity ve experiences when traveling near the waveguide mode at frequency
ω. Second, the term preceding the integral acts as a normalization term. So, gQu gives us an
idea of the average, normalized, z-directed electric field experienced by the interacting electron.
With this understanding, we see that with velocity matching, we expect a large average field and,
thereby, a large gQu. Lastly, to provide a more concrete physical meaning of gQu, we should
mention that it has been argued that |gQu |

2 is equal to the expected number of photons produced
by a single electron interacting with the specified mode [6]. (More specifically, a single electron
is expected to produce a coherent state with an average number of photons given by |gQu |

2 [6].)
In Fig. 2, we plot the coupling coefficient for the interaction of an electron with the fundamental

TM-like mode of the uniform waveguide presented in Fig. 1. Specifically, we plot |gQu | versus the
(experimentally relevant) electron velocity and frequency of the mode. Looking at the results, we
see that high values of |gQu | map out a curve. This curve corresponds directly to the dispersion
of the mode: given a specific frequency ω, the point of high |gQu | corresponds to the electron
velocity where the beam line intersects the dispersion curve at ω (that is, the velocity-matching
point). For instance, the intersection shown in Fig. 1(c) is labeled with the black dot in Fig. 2.
Additionally, the orange arrow in Fig. 2 indicates the movement along the dispersion curve
associated with slowing the electron velocity (as also indicated in Fig. 1(c)). In the right panel
of Fig. 2, we also plot |gQu | along the vertical line passing through the black dot (that is, we
plot |gQu | at varying electron velocities at a frequency of 200 THz). We see that |gQu | exhibits
sinc-like oscillations, as expected from the nature of the phase-matching integral in the definition
for gQu [20].

From the results in Fig. 2, we can extract several important lessons about the interaction
between an electron and a waveguide mode. First, the coupling should be stronger at frequencies
closer to the cutoff frequency. This has been previously observed [21] and is intuitive: near
cutoff, more of the mode is pushed out of the high-index core of the waveguide. Therefore, the
electric field at the position of the electron is greater. For example, the black dot in Fig. 2 (at
200 THz) is near cutoff, and at this point, we find |gQu | = 0.50. Moving closer to cutoff along the
curve of high |gQu |, we find that |gQu | grows, but not significantly: at 185 THz, |gQu | ≈ 0.51.
On the other hand, moving far from cutoff, at the edge of Fig. 2, at 240 THz, we find that |gQu |
decreases to 0.37. Beyond these cutoff behaviors, we additionally notice that the curve of high
|gQu | always remains above an electron velocity of ve = 0.29c (corresponding to an electron
energy of Ee = 23 keV). As we move further away from cutoff, more of the mode is confined
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Fig. 2. Coupling coefficient magnitude for the uniform waveguide versus electron velocity
(ve) and mode frequency (ω). gQu is calculated according to Eq. (1) with an interaction
length of Lint = 45 µm and an impact parameter of 50 nm. (These parameters are similar
to those used in recent experiments [5].) The refractive index of silicon sets the minimum
phase velocity of a mode to 0.29c (corresponding to an electron energy of 23 keV).

in the high-index, silicon portion of the waveguide. Therefore, the phase velocity of the mode
approaches c/nSi = 0.29c, where nSi is the refractive index of silicon. So, for a uniform, silicon
waveguide, we expect that we will not be able to achieve velocity matching for electron velocities
<0.29c (corresponding to electron energies Ee<23 keV). Additionally, we should note that as we
approach these low energies, we expect the interaction to become weaker and weaker as the mode
becomes more confined within the waveguide. Indeed, we simulated our uniform waveguide at
400 THz, with the velocity-matched electron velocity of 0.33c (Ee = 30 keV). Here, with most of
the mode confined in the silicon, we find |gQu | = 0.10. (We should note that 400 THz was only
used here for illustrative purposes; 400 THz is an unrealistic frequency for a silicon waveguide
due to linear absorption.)

3. Free electrons coupling to subwavelength grating (SWG) waveguides

To extend electron-mode coupling to lower energy electrons, we explore periodic waveguides.
Periodic waveguides, including photonic crystal waveguides [22] and dielectric grating waveguides
[23], among other examples, have been used in a wide range of photonics applications, from
quantum emitters [24] to distributed feedback lasers [25]. Here, we will focus on periodic
waveguides with subwavelength-scale modulation [26]. Specifically, we will explore so-called
subwavelength grating (SWG) waveguides.

SWG waveguides resemble uniform waveguides but with periodic changes to the refractive
index in the longitudinal direction. These periodic changes occur with periodicity Λ<λ/2neff,
where λ is the free-space wavelength of the guided light, and neff is the effective refractive index.
This effective index is defined such that fundamental component of the propagation constant,
k0, associated with a waveguide mode (at free-space wavelength λ) is given by k0 = 2πneff/λ.
With modulation at this scale, that is, with Λ<λ/2neff, guided light (at λ) cannot be diffracted
from the waveguide, and low-loss, guided modes can exist [26]. Indeed, SWG waveguides can
be approximated as uniform waveguides with anisotropic refractive indices given by effective
medium theory [27], and SWG waveguides in SOI platforms have been demonstrated with
exceptionally low propagation losses of ≈ 2 dB/cm [26,28]. (For reference, typical foundry-made
uniform SOI waveguides exhibit propagation losses in the range of 1-2 dB/cm [29].)
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The coupling of a free electron to an SWG waveguide is illustrated in Fig. 3(a). The SWG
waveguide under consideration looks just like our uniform waveguide but with sections of the
silicon removed and replaced by air. The waveguide has a periodicity (in the longitudinal,
z-direction) of Λ = 300 nm, and it has a duty cycle of 50%; each period of the guide consists of
an 150-nm long stretch of silicon followed by an 150-nm long stretch of air. (We also note that
for the waveguide under consideration, at 200 THz, 300 nm <λ/2neff ≈ 475 nm; this periodicity
is common for SWGs in the communications bands around 1500 nm [28].) In Fig. 3(b), we
illustrate a cross-section of the waveguide; the particular SWG under consideration has a height
of 450 nm and a width of 550 nm. Overlaid on the cross-section, we also plot the intensity of the
fundamental TM-like mode of this waveguide. Note that the intensity distribution is less confined
in the SWG waveguide than in the uniform waveguide; since the SWG waveguide consists of
air and silicon, we expect it to support modes that are less confined than those in the uniform
waveguide. We should additionally note that the SWG waveguide cross-section was chosen
such that the cutoff of the fundamental TM-like mode of this waveguide occurs near 200 THz.
The fundamental TM-like mode is again studied due to its strong z-directed electric field at the
position of the electron; see plot in Fig. 3(d).

Fig. 3. Free-electron-photon coupling with a periodically modulated, subwavelength grating
waveguide. (a) Illustration (side view) of the SWG waveguide, including the propagating
free-electron (50 nm above the waveguide). The SWG waveguide has a periodicity of
300 nm with 50% duty cycle. (b) The time-average Poynting vector in the z-direction (i.e.,
the intensity) of the fundamental TM-like mode (normalized). (c) Dispersion diagram
showing that the fundamental TM-like mode consists of different spatial harmonics that
can match to different electron velocities; note that the n = 0 zone (the first Brillouin
zone) is shaded gray, the n = −1 zone is shaded red, and the n = 1 zone is shaded blue.
(d) Longitudinal (z-directed) electric field distribution of the fundamental TM-like mode in
the SWG waveguide (normalized). The profiles in (b) and (d) are midway through an air
region of the SWG waveguide.

Before discussing electron coupling to the SWG waveguide, we should mention that since our
waveguides now vary in the z-direction, in this section we use 3D eigenfrequency simulations.
Prior to these simulations, we first approximate the behavior of our SWG waveguides by modeling
them via effective medium theory. Specifically, we approximate our SWG waveguides as uniform
waveguides with anisotropic refractive indices, and we perform 2D modal analysis on these
uniform waveguides. This modal analysis gives us the approximate dispersion of the modes of our
SWG waveguides, and using this dispersion as a guide, we perform complete, 3D eigenfrequency
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simulations of the real SWG structures. We should note that each point on our dispersion
curve is carefully investigated to ensure lossless behavior (i.e., real frequencies). As before, all
simulations are performed in COMSOL.

The periodic, SWG waveguide enables the coupling of low-energy electrons to modes via
spatial harmonics. To understand this, let us consider a mode in our periodic, SWG waveguide.
According to Floquet’s theorem, the complex, z-directed electric field associated with this
mode can be expressed as Ẽz(x, y, z) = F(x, y, z)e−jk0z where F(x, y, z) is a periodic function in
z, with period Λ. The periodic function F(x, y, z) can be expressed as a sum of harmonics,
F(x, y, z) =

∑︁∞
n=−∞ fn(x, y)e−j2πnz/Λ, where n represents the order of the harmonic, and fn(x, y)

represents the Fourier series coefficient for the nth harmonic. Plugging this sum into the
expression for Ẽz(x, y, z), we find:

Ẽz(x, y, z) =
∞∑︂

n=−∞
fn(x, y)e−j2πnz/Λe−jk0z =

∞∑︂
n=−∞

fn(x, y)e−jknz, (2)

where kn = k0 + n(2π/Λ). The real, z-directed electric field becomes Ez(x, y, z, t)
= Re{

∑︁∞
n=−∞ fn(x, y)ej(ωt−knz)}. So, the electric field is composed of a superposition of spatial

harmonics, with each complex spatial harmonic given by fnej(ωt−knz), and k0 corresponding to
the propagation constant of the fundamental spatial harmonic. Importantly, we should note that
these spatial harmonics can have low phase velocities; as n grows, the phase velocity of the nth
harmonic, vph,n = ω/(k0 + 2πn/Λ), becomes small. These slow spatial harmonics can velocity
match with low-energy, slow electrons. When velocity matched, the electrons can exchange
energy with the slow spatial harmonics and, accordingly, with the entire waveguide mode. This
basic idea is foundational to numerous vacuum electronic devices, including traveling-wave tubes,
backward-wave oscillators, and Smith-Purcell-based radiation sources [30–32].

We can visualize the coupling of low-energy electrons to our SWG waveguide with a dispersion
diagram, as illustrated in Fig. 3(c). First, we notice that, as is well known, the dispersion
diagram is periodic, with period 2π/Λ. Since each mode is composed of spatial harmonics with
propagation constants kn, each ω point in the diagram is associated with propagation constants k0,
k1 = k0 + 2π/Λ, k2 = k0 + 4π/Λ, etc. Specifically, in Fig. 3(c), we consider a mode at 199.5 THz.
This mode has a fundamental spatial harmonic of k0 = 0.32 × (2π/Λ), as shown by the black
dot. From Fig. 3(c), we see that the fundamental spatial harmonic intersects with a beam line
corresponding to ve = 0.63c (Ee = 147 keV). Furthermore, this mode has its first (n = 1) spatial
harmonic at a propagation constant k1 = (0.32 + 1) × (2π/Λ), as shown by the blue dot. The first
spatial harmonic intersects with a beam line corresponding to ve = 0.15c (Ee = 6 keV). Therefore,
an electron with an energy of 147 keV or 6 keV energy could couple to the fundamental or first
spatial harmonics, respectively; and this coupling would result in an energy exchange with the
mode.

There is one further coupling point shown in Fig. 3(c) that is worth consideration, the point
associated with the n = −1 harmonic. In Fig. 3(c), we see that a beam line corresponding to
ve = 0.29c (Ee = 23 keV) also intersects the dispersion curve at a frequency of 199.5 THz, as
shown by the red dot. Inspection of this point indicates that it corresponds to the n = −1 harmonic
of the mode. The n = −1 harmonic should have a propagation constant k−1 = (0.32−1)× (2π/Λ),
exactly −1 times the propagation constant at the red point. So, this coupling point corresponds
to the n = −1 harmonic of the backwards propagating version of the mode under consideration
at 199.5 THz. (Each mode of the SWG waveguide can be thought of as having a forwards and
backwards propagating version.)

To quantify the strength of the coupling between the electron and the SWG-waveguide mode,
we plot |gQu | for the fundamental TM-like mode in Fig. 4, as we did for our uniform waveguide
in Fig. 2. For larger electron velocities, we observe behavior similar to that of the uniform
waveguide: the electron couples to the fundamental harmonic and exhibits a large |gQu |. The
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black dot in Fig. 4 corresponds to the black dot in Fig. 3(c), and we find that at 199.5 THz, an
electron with Ee = 147 keV shows |gQu | = 0.46. As the electron velocity decreases, the behaviors
shift. Eventually, as the velocity continues to decrease, the beam line no longer intersects with
the fundamental harmonic, and it begins hitting the n = −1 harmonic. In this regime, we see
the velocity-matching frequency begins to decrease with decreasing velocity, and we hit the
red point Fig. 4, corresponding to the intersection at the red point in Fig. 3(c). Here, we find
that at 199.5 THz, an electron with Ee = 23 keV has |gQu | = 0.23. We should emphasize that
23-keV electrons are easily achievable in SEMs, and the coupling coefficient here is comparable
in magnitude to the coupling at 147 keV. We should also note that recent experiments with
free-electron-photon coupling in TEMs have used a similar impact parameter (≈50 nm) and
interaction length (Lint ≈ 40 µm) and found comparable coupling coefficients with 120-keV
electrons [5]. Finally, as we continue to decrease the electron velocity, we find coupling with the
n = 1 harmonic at the blue point, and we also see coupling to the n = −2 harmonic.

Fig. 4. Coupling coefficient magnitude for the SWG waveguide versus electron velocity
(ve) and mode frequency (ω). As in Fig. 2, gQu is calculated according to Eq. (1) with an
interaction length of Lint = 45 µm and an impact parameter of 50 nm. We should note that in
the bottom right panel, |gQu | appears to have a “background” that decreases with decreasing
ve; this background follows from the slowly decaying tail of the sinc-like curves associated
with strong matching points at higher electron velocities.

Looking at the results in Fig. 3 and Fig. 4, we can draw several conclusions. Firstly, we notice
that as we couple to higher spatial harmonics, the coupling strength decreases. This is exactly
what we should expect. Higher harmonics have larger kn values. These larger kn values mean that
the transverse propagation constants, which are imaginary for the waveguide modes, must also be
large. In other words, the large kn values mean the higher spatial harmonics are more confined
to the waveguide core and are weaker at the position of the electron. Additionally, we notice
that the n = −1 harmonic exhibits the largest coupling. This is also an expected observation.
It is well-known that the n = −1 harmonic in periodic waveguide structures is typically the
strongest harmonic (excluding the fundamental) [33]. Finally, we can make one other intriguing
observation: the n = −1 harmonic is backwards propagating. This was noted previously and
is easily seen in Fig. 3(c): the group velocity at the red intersection point is negative. We will
explore this point further in the subsequent section.

Beyond these conclusions, we should make several final notes regarding loss. As mentioned,
SWG waveguides in similar material platforms have been demonstrated with low propagation
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losses of ≈ 2 dB/cm [26,28]. However, it may seem concerning that our waveguide designs
operate relatively close to cutoff, where a less confined mode might experience greater propagation
losses. To alleviate this concern, we make two notes. First, we note that uniform waveguides
have been demonstrated to operate with a similar proximity to cutoff with minimal additional
loss (typically, ∼ 1 dB/cm) [34]; additionally, SWG waveguides and components with similar
mode confinement (i.e., effective refractive indices) have also been demonstrated with low loss
[35]. Second, we note that even if our waveguides experience moderate loss due to fabrication
imperfections or near-cutoff operation, the interaction lengths under consideration are sufficiently
short that loss should minimally affect performance. For instance, even with a very conservative
estimate of 6 dB/cm loss, over an interaction length of 45 µm (as considered here), mode power
in our waveguides would only be attenuated by ∼ 0.6%.

Before proceeding to the next section, we should briefly summarize our results so far. Here, we
have seen that periodic, SWG waveguides should enable electron-mode coupling with low-energy
electrons. This coupling should be comparable in strength to that experimentally demonstrated
with high-energy electrons, and these periodic waveguides may also allow coupling to interesting
modes, including backwards propagating ones. Furthermore, we should note that, beyond the
free-electron-photon interaction applications that we have stressed thus far, these waveguides
could also find applications in dielectric laser accelerators (DLAs) [36]. DLAs similarly involve
velocity matching electrons with light waves, and these periodic waveguides may be useful for
developing DLAs with co-propagating electrons and driving light [37,38].

4. Time-domain particle-in-cell simulations

Our results from Section 3 show that periodic, SWG waveguides can enable electron-mode
coupling for low-energy electrons. However, the simulations in Section 3 only examine the
behavior of a single mode; they do not tell us if higher-order mode coupling is a problem
[21]. To gain more insight, in this section we study our SWG waveguide with time-domain,
particle-in-cell (PIC) simulations. (For our PIC simulations, we use CST.) We should note that
the PIC simulations account for the complete classical interaction of the electron with the field:
the simulations include the impact of electric and magnetic fields on a passing electron, as well
as the radiation produced by the electron.

We perform time-domain, PIC simulations for two velocity-matched electron velocities, 0.63c
and 0.29c, in the SWG waveguide. These velocities correspond to the black and red points,
respectively, in Fig. 3(c) and Fig. 4. In our PIC solver, an electron passes above our SWG
waveguide at an impact parameter of 50 nm (as considered in the previous sections). The electron
is defined as a Gaussian-shaped pulse of macroparticles. Here, since we are considering a single
electron, these macroparticles represent a fraction of the electron charge. Specifically, for our
simulations, a Gaussian-shaped electron pulse with a 6σ width of 400 nm is used, where σ is
the standard deviation of the Gaussian profile. (So, ≈99.7% of the electron charge is contained
in a 400-nm length.) This electron pulse width was chosen to be short enough such that nearly
all (≈97.5%) of the electron charge is contained within one 300-nm period of the waveguide; at
the same time, the pulse width was made long enough such that our PIC simulations smoothly
converged. Additionally, we should note that due to machine memory constraints, our total
simulation length was limited to 60 periods (18 µm) of the SWG waveguide.

The results of our simulations at ve = 0.63c (Ee = 147 keV) are displayed in Fig. 5. We should
emphasize that the electron pulses are injected into our simulations without any electromagnetic
power present in the adjacent waveguide. In Fig. 5(a), we plot the normalized z-component
of the Poynting vector at t = 70 fs, corresponding to the time when the electron has traveled
13.2 µm over the waveguide. (t = 0 fs corresponds to when the electron begins to traverse
the waveguide.) (A movie associated with Fig. 5(a) is provided as supplementary material in
Visualization 1.) The electron is clearly exciting modes in the waveguide, and in Fig. 5(b) we

https://doi.org/10.6084/m9.figshare.26352358


Research Article Vol. 32, No. 23 / 4 Nov 2024 / Optics Express 41901

show a calculation of the z-directed power carried by these modes. Specifically, we plot the total
z-directed electromagnetic power traversing the xy-plane at z = 14 µm (that is, the integral of Sz
over the xy-plane at this position). The power clearly consists of two parts. First, there is a part
associated with the near field carried locally by the electron. This is shaded in gray and labeled
“beam”. Second, after the electron passes the plane at z = 14 µm, we observe further power.
This is power that has been coupled into the waveguide, and we label this “mode”. We should
note that we are plotting instantaneous power, so we expect oscillations at twice the frequency of
the associated electromagnetic wave (since power can be related to the square of the field). In
the inset of Fig. 5(b), we plot the spectrum of the power displayed in Fig. 5(b). We see a clear
and prominent peak at a frequency of 397 THz = 2 × 198.5 THz. This peak corresponds to the
expected, velocity-matched coupling point of 199.5 THz that we found in Section 3. See the
black dot in Fig. 4. (We should note that the 1-THz frequency deviation may be explained by the
phase velocity used in the PIC simulations; this phase velocity was rounded at the third significant
digit.) Finally, we should note that the peak at 397 THz shows a full-width-at-half-maximum
(FWHM) bandwidth of 26.6 THz.

Fig. 5. PIC simulation results for the SWG waveguide with a fast electron, ve = 0.63c.
(a) Instantaneous, z-directed power density (Sz) visualized in the yz-plane (side view). Sz is
normalized, and as considered previously, the electron is moving above the waveguide with
a 50-nm impact parameter. Since Sz>0 (red), the mode is traveling forwards, in the same
direction as the electron. (b) Instantaneous power versus time passing through the plane at
z = 14 µm. The dashed black line shows the average power in the time window t = 76 fs to
133 fs. The inset shows the Fourier transform of this power and exhibits a notable peak at
≈397 THz, twice the frequency of the mode.

The results of our simulations at ve = 0.29c (Ee = 23 keV) are shown in Fig. 6. Figure 6 is
arranged just like Fig. 5, and in Fig. 6(a), we plot the z-component of the Poynting vector at
t = 140 fs (corresponding to the time when the electron has traveled 12.2 µm over the waveguide).
(A movie associated with Fig. 6(a) is provided as supplementary material in Visualization 2.)
The electron is clearly exciting radiation in the waveguide, and notably, this radiation is flowing
backwards; since Sz is negative (blue), the power flow is in the negative z-direction. In Fig. 6(b)
we include the z-directed power passing the plane at z = 2.9 µm. Looking at the power carried in
the waveguide (again labeled “mode” in the figure), we notice that this power appears as soon as
the electron passes this plane and until t ≈ 349 fs. (We should note that the electron leaves the

https://doi.org/10.6084/m9.figshare.26352367
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simulation at t = 207 fs; 349 fs is equal to 207 fs plus the time it takes for the backwards traveling
mode to move from the end of the simulation domain at 18 µm to the detection plane at 2.9 µm.)
We should again emphasize that this power is negative, so it corresponds to power flowing
backwards. In other words, the electron-waveguide system is operating like a backward-wave
oscillator [30]. We should stress that this is in exact agreement with our analysis from the
preceding section, in Fig. 4. This velocity-matching point corresponds to the n = −1 harmonic
and the red point in Fig. 4, where the group velocity is negative.

Fig. 6. PIC simulation results for the SWG waveguide with a slow electron, ve = 0.29c.
(a) Instantaneous, z-directed power density (Sz), visualized in the yz-plane (side view). Sz is
normalized, and the electron is 50 nm above the waveguide. Since Sz<0 (blue), the mode is
traveling backwards, in the opposite direction as the electron. (b) Instantaneous power versus
time passing through the plane at z = 2.9 µm. The dashed black line shows the average
power in the time window t = 45 fs to 358 fs. The inset shows the Fourier transform of this
power and exhibits a notable peak at ≈398 THz, twice the frequency of the mode.

In the inset of Fig. 6(b) we plot the spectrum of the instantaneous power flow. The spectrum
shows a clear peak at 398 THz = 2 × 199 THz. The peak at 398 THz corresponds to double the
frequency of the expected fundamental TM-like mode, that is 199 THz (with 0.5-THz deviation).
Additionally, we should note that the FWHM bandwidth of the peak at 398 THz is only 4.1 THz,
significantly smaller than that exhibited for the fast-electron coupling, shown in Fig. 5(b). This
is to be expected if we consider the dispersion diagram plotted in Fig. 3(c). The fast electron
couples to a forwards-traveling mode (see black dot in Fig. 3(c)); so, the the beam line crosses the
mode dispersion at a shallow angle, that is, these two lines are close to parallel at their crossing.
This leads to a large region of near velocity matching. On the other hand, the slow electron
couples to a backwards-traveling mode (see red dot in Fig. 3(c)), so the beam line crosses the
mode dispersion at a very steep angle; these two lines are close to orthogonal at their crossing.
This leads to a small velocity-matching region and a narrow coupling bandwidth.

Thus far we have discussed qualitative agreement between our time-domain simulations and our
frequency-domain simulations from Section 3. We can compare these simulations quantitatively
by examining the total energy coupled from the electron into the waveguide. Specifically, if we
integrate over the power given in Fig. 5(b) and Fig. 6(b), we find that the fast electron (ve = 0.63c)
couples 94 meV and the slow electron (ve = 0.29c) couples 2.5 meV into the waveguide over
an interaction length of 14 µm and 15.1 µm, respectively. (The interaction length for the fast
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electron and forward wave corresponds to the distance from z = 0 to the detection plane at
z = 14 µm, and the interaction length for the slow electron and backward wave is the distance
from the detection plane at z = 2.9 µm to the end of the simulation domain at z = 18 µm.)
Recalling that |gQu |

2 should equal the number of photons produced in the waveguide per exciting
electron, we can convert these energies into |gQu | predictions. Additionally, by noting that |gQu |
scales with the square root of the interaction length, we can scale our |gQu | predictions to a
45-µm interaction length, for comparison with the results from Section 3. Putting this all together,
we find that our time-domain simulations predict |gQu,td | = 0.34 ×

√︁
45 µm/14 µm ≈ 0.61 and

|gQu,td | = 0.06 ×
√︁

45 µm/15.1 µm ≈ 0.10 for the fast electron and slow electron, respectively.
(The subscript “td” indicates a time-domain prediction.) We can directly compare these coupling
coefficient values to the predictions from our frequency-domain calculations in Section 3. Our
single-mode, frequency-domain calculations predicted: |gQu | = 0.46 for the fast electron, and
|gQu | = 0.23 for the slow electron.

The time- and frequency-domain simulations show similar values but with a slight disagreement.
One possible resolution to this disagreement could be a group velocity factor. Recent work has
suggested that the definition for gQu should be multiplied by a factor of

√︁
1/|1 − vg/ve | to account

for group velocity effects [17,21]. The group velocity of the forward and backward propagating
waves are vg = 0.36c and vg = −0.36c, respectively. Incorporating the group-velocity factor,
our frequency-domain predictions become |gQu | = 0.70 and |gQu | = 0.15 for the forward and
backward wave, respectively. (The forward and backward wave time-domain predictions were
|gQu,td | = 0.61 and |gQu,td | = 0.10, respectively.) The group-velocity factor does indeed improve
the agreement between the time- and frequency-domain predictions; however, some discrepancy
still remains. This discrepancy will be further explored in future work.

5. Conclusion

In this work, we explored periodic, silicon waveguides for enhanced electron-photon interactions
at low electron energies. First, we reviewed the basic coupling of free-electrons to electromagnetic
modes in an adjacent waveguide. Next, we introduced subwavelength grating (SWG) waveguides
as a means to velocity match slow, low-energy electrons with co-propagating electromagnetic
modes, and we showed that such waveguides can support large coupling coefficients and unique
opportunities for dispersion engineering. Finally, we validated our SWG waveguide designs via
time-domain, particle-in-cell simulations. These simulations revealed that SWG waveguides, and
periodic waveguides in general, can enable unique behaviors like backward-wave oscillations.
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