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RESEARCH ARTICLE                                                                   
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aGeoDS Lab, Department of Geography, University of Wisconsin, Madison, WI, USA; bDepartment 
of Geography and Regional Research, University of Vienna, Austria; cDepartment of Geography, 
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ABSTRACT 
AI foundation models have demonstrated some capabilities for the 
understanding of geospatial semantics. However, applying such 
pre-trained models directly to geospatial datasets remains chal
lenging due to their limited ability to represent and reason with 
geographical entities, specifically vector-based geometries and 
natural language descriptions of complex spatial relations. To 
address these issues, we investigate the extent to which a well- 
known-text (WKT) representation of geometries and their spatial 
relations (e.g., topological predicates) are preserved during spatial 
reasoning when the geospatial vector data are passed to large lan
guage models (LLMs) including GPT-3.5-turbo, GPT-4, and 
DeepSeek-R1-14B. Our workflow employs three distinct approaches 
to complete the spatial reasoning tasks for comparison, i.e., geom
etry embedding-based, prompt engineering-based, and everyday 
language-based evaluation. Our experiment results demonstrate 
that both the embedding-based and prompt engineering-based 
approaches to geospatial question-answering tasks with GPT mod
els can achieve an accuracy of over 0.6 on average for the identifi
cation of topological spatial relations between two geometries. 
Among the evaluated models, GPT-4 with few-shot prompting 
achieved the highest performance with over 0.66 accuracy on 
topological spatial relation inference. Additionally, GPT-based rea
soner is capable of properly comprehending inverse topological 
spatial relations and including an LLM-generated geometry can 
enhance the effectiveness for geographic entity retrieval. GPT-4 
also exhibits the ability to translate certain vernacular descriptions 
about places into formal topological relations, and adding the 
geometry-type or place-type context in prompts may improve 
inference accuracy, but it varies by instance. The performance of 
these spatial reasoning tasks unveils the strengths and limitations 
of the current LLMs in the processing and comprehension of geo
spatial vector data and offers valuable insights for the refinement 
of LLMs with geographical knowledge towards the development 
of geo-foundation models capable of geospatial reasoning.
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1. Introduction

Our interaction with Artificial Intelligence (AI) based systems is changing radically 
due to progress in generative Foundation Models (FM) and the conversational, natu
ral-language-driven style of interaction with many of these models. While most prior 
AI models were developed with a limited range of downstream tasks in mind, foun
dation models aim to be general-purpose building blocks supporting a broad range 
of applications. Essentially, they are trained on a substantially broader set of data 
and, while giving up accuracy for any specific task during development, are easily 
fine-tuned before or during deployment. Large language models (LLMs) (Radford 
et al. 2019, Brown et al. 2020), such as Generative Pre-trained Transformers (GPT) 
(Radford et al. 2018, Achiam et al. 2023), and text-to-image models (Frolov et al. 
2021), such as DALL-E (Ramesh et al. 2021), are specific types of foundation models. 
Most of these models are generative, i.e., they return novel, synthetic output such as 
natural language answers or imagery instead of providing answers by (information) 
retrieval as was common in prior systems, for example, from the field of expert sys
tems. While foundation models may not inherently prescribe a specific interaction 
style, they can be trained or fine-tuned for various types of interactions by carefully 
crafting the training dataset for the intended purpose. For example, OpenAI’s Codex 
is trained using paired code examples and comments, enabling natural language 
instructions to guide code generation effectively (Chen et al. 2021). Similarly, 
Contrastive language-image pre-training (CLIP) facilitates tasks like image search 
from paired textual descriptions. Reinforcement learning with human feedback 
(RLHF) is another approach that aligns model outputs with user intent, improving 
conversational dialog flow, adherence to prompts, and reducing harmful content. 
The resulting conversational style of interaction is part of their broad appeal but 
also causes new challenges.

Together, these breakthroughs have opened the door towards conversation-style 
artificial GIS analysts (‘GeoMachina’) (Janowicz et al. 2020). For instance, ChatGPT-4 can 
understand instructions for frequent GIS tasks like reading in a dataset (Mooney et al. 
2023), performing simple spatial analysis steps (by generating PySAL code), or even 
suggesting appropriate next steps. Consequently, researchers started exploring the 
capabilities and limits of current AI in representing spatial data (Ji and Gao, 2023), 
generating maps (Zhang and Kong 2023), extracting place semantics (Hu et al. 2023), 
automating GIS operations (Li and Ning, 2023, Zhang et al. 2024), generating code 
(Gramacki et al. 2024), and drawing inferences from such data (Mai et al. 2024). 
Interestingly, the gaps this early research revealed are not unexpected as they have 
been documented as pain points of prior AI systems before (Janowicz et al. 2015). 
Prominently featured among these shortcomings is the representation of and reason
ing with topological spatial relations (Cohn and Renz 2008). Even more, this is true 
across foundation models, that is, LLMs and text-to-image models struggle similarly. 
For instance, ChatGPT (OpenAI 2022) will provide a metric distance (e.g., several kilo
meters) when asked about the border of two neighboring countries. Similarly, DALL-E 
frequently fails to generate images of regions or parts described using terms such as 
bordering, adjacent, contained, or specific types of maps (Zhang and Kong 2023). 
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This is a critical insight as it implies that current work on geo-foundation models 
(Xie et al. 2023), for example, location embeddings (Mai et al. 2022b), may benefit the 
broader AI community across models.

To better understand the limitations of LLMs in handling spatial data and to 
develop foundation models for advancing geospatial artificial intelligence (GeoAI) (Gao 
et al. 2023), this work aims to explore the potential of representing spatial object geo
metries in the WKT format to enable LLMs to perform GIS operations and enhance 
geospatial reasoning. In this work, we present intensive experiments with well-known 
text (WKT) representation of geometries as inputs for LLMs and with natural language 
descriptions of (vague) spatial configurations. However, it is important to note that, 
unlike other types of data, accurate geometries (e.g. points, polylines, and polygons) 
and their spatial relations, as used in GIS, are not usually expressed in natural lan
guage text for such models to consume during training. Without explicitly addressing 
such structural deficiencies, the proposed approach is not suggested to be directly 
applicable in practice.

The research contributions (RC) of our work are as follows:

� RC1: We develop a workflow to assess the ability of LLMs to reason with topo
logical spatial relations, more specifically, a subset of topological relations specified 
according to the Dimensionally Extended 9-Intersection Model (DE-9IM). To do so, 
we will compare two approaches. First, we will encode the geometries and their 
topological relations in an embedding space using LLMs. Second, we will use a 
prompt engineering method to pass WKT format of geometries directly to the 
LLMs.

� RC2: To test the capabilities of LLMs, we firstly utilize the WKT representation of 
two geometries to predict the topological spatial relation between them, and then 
we use one of the geometries and the topological spatial relation to predict the 
second geometry. To do so, we will utilize the pre-trained text embedding models 
and also use prompt engineering to elicit the target geometry.

� RC3: Finally, we study the ability of LLMs to extract the formalized topological spa
tial relations between geographic entities from vernacular descriptions (i.e., every
day language) of the relations between geographic entities, e.g., as found in 
administrative place descriptions from DBpedia/Wikipedia.

The remaining paper is organized as follows. We first review the literature on 
spatial relations, parts of the qualitative spatial reasoning and conceptual neighbor
hoods, large language models, and GeoAI foundation models in Section 2. We then 
introduce the methodology and workflow used in this research in Section 3, fol
lowed by the experiments design and dataset processing in Section 4. After that, 
we present the experiment results about topological spatial relation qualification 
and retrieval tasks using LLMs in Section 5. We further discuss the the confusion 
between the topological predicates with their corresponding conceptual neighbor
hoods in Section 6. Finally, we conclude this paper and offer insights into future 
work in Section 7.
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2. Related work

2.1. Spatial relations

Spatial relations refer to the connection between spatial objects regarding their geo
metric properties (Guo 1998), which specify the location of one object related to 
another one (Carlson and Logan 2001) or more other objects (Majic et al. 2021). On 
the one hand, describing spatial relations in natural language is essential for under
standing our surroundings in spatial cognition and navigating through space (Freksa 
et al. 1998). On the other hand, a reverse parsing process, where exact spatial relations 
are identified from natural language descriptions, is vital to improving the quality of 
information retrieval and human–computer interaction in tasks such as map reading 
(Head 1984), geographic question answering (Gao and Goodchild 2013, Mai et al. 
2020, Scheider et al. 2021), spatial query and reasoning (Wang 2000, Du et al. 2005, 
Guo et al. 2022), disaster management (Wang et al. 2016, Cervone et al. 2016), driving 
and robotics navigation (Wallgr€un et al. 2014, Tellex et al. 2011).

Typically, binary spatial relations use the format of a triplet fsubject, predicate (prep
osition), objectg to describe the relative positions of objects in space. In this format, 
the subject is an entity being described in relation to another entity, the predicate 
(preposition) is the descriptor between the subject and object, and the object is the 
entity that the subject is being related to in terms of position or location. For example, 
‘Santa Barbara is situated northwest of Los Angeles’ would be expressed as fSanta 
Barbara, northwest of, Los Angelesg in the format of spatial relations. Even though 
spatial relations pervade in our daily life conversations, people tend to frequently use 
a limited number of predicates to describe topological, directional, and distance rela
tions (Mark and Egenhofer 1994, Frank 1992). These expressions are qualitative in 
nature, offering approximate descriptions of an infinite range of possible spatial con
figurations. Nevertheless, speakers can convey complex spatial layouts by combining 
these basic predicates with contextual cues. For example, we might describe the locale 
of Santa Barbara as ‘Santa Barbara is connected via U.S. Highway 101 to Los Angeles 
about 100 miles to the southeast.’, or the position of a person as standing ‘in front of 
the building, facing east.’ The ability to combine and modify spatial predicates allows 
us to express a wide range of spatial relationships with a relatively small vocabulary 
but increases the difficulty of representing and understanding the meanings of such 
spatial relation descriptions for computers. The flexibility and ambiguity inherent in 
natural language often obscure the precise geometry of spatial arrangements, creating 
a disconnection between semantic interpretation and physical spatial layout. The 
abundance of web documents containing geographical references offers the oppor
tunity to retrieve spatially-aware information and support qualitative spatial reasoning 
from natural language texts (Jones et al. 2004). To bridge the semantic-physical gap, 
prior work has focused on extracting spatial relations between named geographic 
entities by interpreting linguistic cues in text. These efforts include parsing grammat
ical and spatial semantic structures (Kordjamshidi et al. 2011, Loglisci et al. 2012, 
Skoumas et al. 2016), as well as applying supervised machine learning models trained 
on annotated data with spatial linguistic features (Yuan 2011, Wu et al. 2023a). The 
resulting qualitative spatial relations, enriched by contextual narratives (Wallgr€un et al. 
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2015), provide a foundation for computational models that link natural language 
semantics to the structured representations of physical space.

2.2. Formalism of topological relations and conceptual neighborhoods

In the field of GIS, attempts have been made to formalize the conversion between 
quantitative computational models of spatial relations and qualitative spatial represen
tations from human discourse (Cohn and Hazarika 2001, Chen et al. 2015). In 
Clementini et al. (1994), topological relations are defined as spatial relations that are 
preserved under such transformations as rotation, scaling, and rubber sheeting. For 
topological spatial relations, region connection calculus (RCC) (Randell et al. 1992) and 
point-set topology intersection models (IM), for example, 4-IM based on intersections 
of the boundaries and interiors of two objects (Egenhofer and Franzosa 1991), and 9- 
IM which also considers the exteriors of two objects (Egenhofer and Herring 1991), are 
widely used approaches. RCC-8 (Cui et al. 1993) is a set of eight jointly exhaustive and 
pairwise disjoint relations defined for regions. The basic relations include topological 
predicates: equal (EQ), externally connected (EC), disconnected (DC), partially overlaps 
(PO), tangential (TPP/TPPi) and nontangential (NTPP/NTPPi) relations, which have been 
shown to be cognitively adequate to be well distinguished by humans (Renz and 
Nebel 1998).

Point-set topology intersection models analyze whether intersections between the 
interiors, boundaries, and exteriors of two objects are empty or nonempty point sets. 
The Dimensionally Extended 9-intersection model (DE-9IM) (Clementini et al. 1993) fur
ther considered the dimensionality of each geometry in the intersection matrix so that 
the 9-IM is not a binary operation of intersects. Based on the DE-9IM model, five 
mutually exclusive relations are identified (Clementini and Di Felice 1996), including 
fdisjoint, touches (meets), crosses, overlaps, withing. the Open Geospatial Consortium 
(OGC) later added fintersects, contains, equalsg to the set for the convenience of GIS 
software users and included in the GeoPandas Python package for programmers. The 
recent development of RCC�-9 expands the dimensions of RCC-8 and allows for a uni
fied framework to model topological spatial relations (Clementini and Cohn 2014, 
2024). However, since DE-9IM predicates were selected for better user interaction and 
have been implemented by OGC, this work focuses on DE-9IM. In Mark and Egenhofer 
(1994), human subject testing was conducted to evaluate their model for spatial rela
tions between lines and regions. The participants were presented with pairs of lines or 
regions and were asked to rate the spatial relation between them using a Likert scale 
that ranged from ‘no relation’ to ‘strongly related’. The pairs of lines and regions were 
generated based on the 19 topologically distinct spatial relations defined in the 
authors’ model. The human judgments were then compared to the predicted spatial 
relations generated by their model. The results showed that the model’s predicted 
topological spatial relations matched the human judgments with a high degree of 
accuracy, indicating the effectiveness of the model in capturing human perception of 
topological spatial relations.

In both RCC and IM lineage, the idea of smooth transitions from one topological 
relation to another has been discussed early on. This means that, for example, if two 
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polygon objects are disjoint, they would first require a touch relationship before mov
ing to overlap. In this sense, some relationships are more similar or closer to each 
other than others, and this is known as the conceptual neighborhood of topological 
relations. Figure 1 shows the neighborhood graphs using the RCC-8 (Figure 1(a)) and 
9-IM (Figure 1(b)) nomenclature. Since the DE-9IM example only preserves the connec
tion of a topological relation with its “closest” relation, the inside/contains do not con
nect with equal in the graph. In addition to the conceptual neighborhood, Egenhofer 
and Al-Taha (1992) proposed a formula for calculating the topological distance 
between topological relations using matrix representations, where the smaller distance 
means more similar between the two topological relations. We adopt the topological 
distance for evaluation later in this paper to provide a more nuanced perspective on 
whether LLMs’ differentiation of topological relations aligns with human perception.

2.3. Large language models and GeoAI foundation models

The launch of ChatGPT by OpenAI (2022) marked a significant turning point, drawing 
widespread interest in Large Language Models (LLMs) and conversational AI from the 
public. Language-based foundation models boast an impressive range of parameters, 
from 110 million in BERT (Devlin et al. 2018) to 1.5 billion in GPT-2 (Radford et al. 
2019), and up to 137 billion in LaMDA (Google’s Bard) (Thoppilan et al. 2022) and 175 
billion in GPT-3 (Brown et al. 2020), demonstrating a significant variation in network 
architectures, scale, and purposes. Despite these differences, they share a common 
achievement: they have acquired a sophisticated understanding of language patterns 
and semantics, setting new performance standards in natural language processing 
tasks. Other types of foundation models include vision-based (e.g. vision transformer– 
ViT (Dosovitskiy et al. 2020) and segment anything model–SAM (Kirillov et al. 2023)) 
and vision-language multimodal foundation models (e.g., Flamingo with 80 billion 
parameters (Alayrac et al. 2022) and GPT-4 with over 1 trillion parameters (Achiam 
et al. 2023)). These pre-trained foundation models have been applied directly or trans
ferred to a wide range of cross-domain tasks after fine-tuning or few-shot/zero-shot 
learning, for example, education (Kasneci et al. 2023), healthcare (Yang et al. 2022), 
transportation (Zheng et al. 2023), etc.

These foundation models have been trained on large-scale datasets that also con
tain geographical knowledge such as descriptions of locations and places in textual 

Figure 1. The conceptual neighborhood of topological relations in RCC-8 (Randell et al. 1992) on 
the left (redrawn for comparison) and 9-IM (Egenhofer and Al-Taha, 1992) on the right.
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documents as well as spatial elements in maps, geo-referenced photos, and satellite 
imagery. Recently, researchers and institutions have begun the early exploration of 
integrating foundation models into GeoAI research and education. For example, Mai 
et al. (2024) found that task-agnostic LLMs have the capability to surpass fully super
vised deep learning models designed for specific tasks in understanding geospatial 
semantics, including toponym recognition, health data time-series forecasting, urban 
function, and scene classifications. Hu et al. (2023) fused a few geo-knowledge exam
ples into GPT models to improve the extraction of location descriptions from disaster- 
related social media messages. Manvi et al. (2023) found that geospatial knowledge 
can be effectively extracted from LLMs with auxiliary map data from OpenStreetMap. 
Additionally, spatial-context-aware prompts with pre-trained visual-language models 
can improve the accuracy of urban land use classification and urban function inference 
(Wu et al. 2023b, Huang et al. 2024), In GIS, evaluations have been conducted to 
assess the qualitative spatial reasoning capabilities of LLMs in identifying and reason
ing spatial relations using symbolic representations of spatial objects, such as RCC-8 
(Cohn 2023, Cohn and Blackwell 2024a) and cardinal directions (Cohn and Blackwell, 
2024b). While LLMs perceive the spatial structure through sequences of textual input 
(Yamada et al. 2023) and leverage commonsense reasoning during their inference pro
cess (Cohn and Hernandez-Orallo 2023), they also demonstrate human-like misconcep
tions and distortions about space (Fulman et al. 2024). Several studies (Mai et al. 
2022a, Fernandez and Dube 2023, Tucker 2024) have proposed integrating vector data 
as a backbone for spatial reasoning. GPT-4 has shown the capability to generate coor
dinates for outlines of countries, rivers, lakes, and continents that approximate their 
actual geographic locations (Das 2023). In Ji and Gao (2023), LLM-generated embed
dings can preserve geometry types and some coordinate information in the WKT rep
resentation of geometries. However, performing qualitative spatial reasoning and 
executing spatial tasks from implicit textual descriptions involving coordinates remains 
a significant challenge (Majic et al. 2024). In addition, geospatial analysis workflows 
and operations can be automated when combing LLMs with spatial analysis tools (Li 
and Ning 2023, Zhang et al. 2024). ChatGPT can even achieve a promising grade 
when taking an introduction to GIS examination (Mooney et al. 2023). In the field of 
Cartography, Tao and Xu (2023) explored the use of ChatGPT-4 for creating thematic 
maps and mental maps with appropriate prompts. However, Zhang and Kong (2023) 
pointed out the ethical concerns on AI-generated maps’ inaccuracies, misleading infor
mation, unanticipated features, and reproducibility. In August 2023, NASA and IBM 
released their GeoAI Foundation Model–Prithvi, which was trained on NASA’s Earth 
Observation remote sensing imagery (i.e. the harmonized Landsat and Sentinel-2 satel
lite dataset) (Jakubik et al. 2023) and has been found to have a good performance 
and transferability on flood inundation mapping (Li et al. 2023). Alongside such 
remarkable achievements, there are concerns that need to be addressed together with 
the development and advancement of foundation models for GeoAI and geosciences 
(i.e., Geo-Foundation Models), such as geographical bias, diversity, spatial heterogen
eity, limited human annotations, sustainability, privacy and security risks (Janowicz 
2023, Xie et al. 2023, Rao et al. 2023, Hu et al. 2024).
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3. Methodology

3.1. Preliminaries and workflow

This research focuses on assessing the ability of LLMs to represent textual descriptions 
of geometries and understand topological spatial relations between geometric objects. 
The overall framework of this research is shown in Figure 2. Given a study area, we 
first retrieve spatial objects from both a spatial database and a textual description 
about places from a Web document knowledge database (e.g., DBpedia/Wikipedia). 
When the documents contain vernacular description of topological relations between 
two places, formalized DE-9IM topological spatial relations will be extracted from the 
spatial footprints (geometries) in the format of triplets as ground truth. The obtained 
geometric, attributive, and relational information is used as input for downstream 
tasks (e.g., qualify topological relations, process spatial query, and convert vernacular 
description of relations), where task-specific prompts are designed accordingly. The 
task output from the LLMs is then compared to the ground truth topological relation 
triplets to evaluate their ability to encode and reason about geometries and topo
logical spatial relations. The following subsections will further provide details on each 
evaluation task and the corresponding workflow. The definitions and notations used in 
this paper are listed in Table 1.

3.2. Determining topological spatial relations

In the original work of DE-9IM (Clementini et al. 1993), the five defined topological 
predicates fdisjoint, touches (meets), crosses, overlaps, withing were considered mutu
ally exclusive. However, the statement no longer holds with the introduction of 
‘contains’ and ‘equals’ to the set by the OGC standard. Therefore, to ensure the 
uniqueness of the topological spatial relations between two objects, we interpret 
‘within’ as ‘within (but not equals)’ and ‘contains’ as ‘contains (not equals)’ in this 

Figure 2. Overview of the workflow in this research.
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work. Accordingly, we modify the decision tree in Clementini et al. (1993) to do the 
reasoning about the topological relations between two spatial objects, as illustrated in 
Figure 3. Based on the decision process, the topological spatial relations do not apply 
to every combination of geometry types. The definitions and possible geometry type 
combinations of the seven predicates used in this research are listed in Table 2. 
Several visual examples of the topological spatial relations between two geometries 
can be seen in Figure 10.

Table 1. Notations.
Notation Description

A=B The objectID of spatial objects A or B
gA The geometry of A that can be processed in GIS tools
GeomTypeðAÞ The geometry type of A, (e.g. Point, LineString, and Polygon when gA is a simple feature)
g

�

A The interior of gA
dimðgÞ The dimension of a geometry g. {\tf="OT5c7b8c86_I"{dim}}(g)={\mathopen\sleft 

\{{\matrix{2\hfill  g=;\hfill \cr {\curr 0}\hfill  
g{\rm  contains at least one Point without Linestrings or Polygons}\hfill \cr {\curr 
1}\hfill  g{\rm 
contains at least one Linestrings without Polygons}\hfill \cr {\curr 2}\hfill  
g{\rm  contains at least one Polygon}\hfill \cr } 

WKTðAÞ The WKT format of gA
EncðAÞ The location encoding of gA using an LLM model to encode WKTðAÞ

R The set of predicates to represent the topological spatial relations in this research, i.e. 
fequals, disjoint, crosses, touches, contains, within, overlapsg, as defined by OGC and 
implemented in GeoPandas.

rel A predicate that can be used to represent the topological spatial relation, rel 2 R
RelðA, BÞ The topological spatial relation between the subject A and the object B
½EncðAÞ; EncðBÞ� The concatenation of the embeddings of A and B
Dðrel1, rel2Þ The topological distance between two relations rel1 and rel2 on the conceptual 

neighborhood graph (Egenhofer and Al-Taha, 1992)
SAðrel, BÞ The relevancy score of a retrieved subject A given the reference object B and the desired 

topological spatial relation rel.

Figure 3. The decision tree for the topological spatial relations.
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3.3. Representing geospatial data as text

An embedding is a multi-dimensional numeric vector representation of objects to cap
ture the complex patterns and relationships in the data. While researchers 
have explored different approaches to embed geometries using spatially explicit mod
els (Yan et al. 2017, Mai et al. 2022b, Zhu et al. 2022), this study presents a novel per
spective by hypothesizing that LLMs can effectively encode the WKT format of 
geospatial vector data (points, polylines and polygons) and preserve crucial 
geometric information. We adopt sentence embedding models (Logeswaran and Lee 
2018, Reimers and Gurevych 2019, Neelakantan et al. 2022) to generate neural embed
dings of the input geometry WKT strings, which allows for the comparison and 
retrieval of spatial information through the semantic search (Muennighoff 2022, Hu 
et al. 2015).

3.4. Evaluation tasks

3.4.1. Topological spatial relation qualification
In Wolter and Wallgr€un (2012), spatial relation qualification is defined as the process 
of inferring qualitative spatial relations from quantitative data. The first task aims to 
leverage LLMs to classify the topological spatial relationships between subject entity A 
and object entity B into one of seven predefined topological predicates (in Section 
3.2), combined with their geometry types. The input and output of Task 1 are 
described as follows:

Input: The input for this task is the WKT representations of geometries A and B, 
denoted as WKT(A) and WKT(B). Example inputs:

� WKTðAÞ: POINT (-89.3551 43.123)
� WKTðBÞ: POLYGON ((-89.3552 43.124, -89.355 43.124, -89.355 43.122, -89.3552 

43.122, -89.3552 43.124))

Output: The output is a tuple that describes the topological spatial 
relationship between the two geometries, in the format of 

Table 2. The named topological spatial predicates with the 9-intersection Boolean code (T: true; 
F: false; �: free value) and corresponding applicable geometry type combinations of a predicate.
Predicate with 9-intersection code Geometry Type Combination

equals: T�F��FFF� Point/Point, LineString/LineString, Polygon/Polygon
within: T�F��F��� Point/LineString, Point/Polygon,

LineString/LineString, LineString/Polygon,
Polygon/Polygon.

contains: T�����FF� LineString/Point, LineString/LineString,
Polygon/Point, Polygon/LineString, Polygon/Polygon.

overlaps: T�T���T�� LineString/LineString, Polygon/Polygon
touches: FT������� or F���T���� Point/LineString, Point/Polygon,

LineString/Point, LineString/LineString, LineString/Polygon,
Polygon/Point, Polygon/LineString, Polygon/Polygon.

crosses: T�T������ LineString/LineString, LineString/Polygon, Polygon/LineString
disjoint: FF�FF���� Applicable to ALL
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ðGeomTypeðAÞ, predicate, GeomTypeðBÞÞ: Given the example inputs, the expected out
put of a correct classification would be:

� (Point, within, Polygon)

Use Case: Task 1 can be relevant to linking the geometries that occur in the same 
spatial context. For example, suppose one document already provides location, geom
etry and attribute information on housing resources and public transportation facili
ties. In that case, the LLM may directly use geographic information and other contexts 
to suggest affordable and accessible housing by public transportation facilities.

The workflow of task 1 is shown in Figure 4. Given an input triplet that describes 
the topological spatial relation between subject A and object B, that is, (subject, predi
cate, object), we first retrieve the WKT strings, and Geometry types of A and B. We 
then adopt two approaches (embedding-based and prompt-based) to perform the 
task, utilizing an appropriate LLM, to function as either a text encoder or a reasoner. 
For encoding, a pre-trained sentence embedding model generates the embeddings of 
the geometries of A and B. The embeddings are concatenated as the input for a ran
dom forest classifier (Breiman 2001). For reasoning, a more powerful generative model, 
such as GPT-4 and DeepSeek-R1, are employed to perform the task defined in the 
prompt. Four prompt engineering techniques are adopted to potentially guide the 
LLMs towards producing a more valid and accurate output of the topological spatial 
relation, including standard zero-shot learning, standard few-shot learning (Radford 
et al. 2019), few-shot chain-of-thought (CoT) prompting (Wei et al. 2022), and zero- 
shot COT prompting (Kojima et al. 2022). In few-shot CoT, we follow the decision tree 
in Figure 3 to generate the intermediate steps to determine the topological spatial 
relations as examples. While the identification of topological spatial relations might 
appear straightforward to the human brain, it involves multi-step reasoning. The DE- 
9IM framework (Clementini et al. 1993) decomposes the problem into intersections of 
the boundaries, interiors, and exteriors of two geographic entities, with dimensional 
requirements that map to topological predicates intuitive to users. We hypothesized 

Figure 4. The workflow for the topological spatial relation qualification task.
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that few-shot prompting and explicit reasoning steps, guided by CoT, could improve 
the model’s performance on this qualification task. The example inputs and outputs of 
the topological spatial relation qualification task using the above-mentioned different 
prompt engineering techniques are illustrated in Figure 5.

The metrics for evaluating the topological spatial relation qualification task are as 
follows.

1. Validity
a. Valid format of the output: LLMs should follow the instructions to use the 

given format of the output in (Geometry Type A, Predicate, Geometry 
Type B).

b. Valid geometry types: LLMs should preserve the Geometry Type A and 
Geometry Type B from the given WKT format of geometries.

c. Valid combinations of geometry types for the topological predicates as shown 
in Table 2.

2. Accuracy

For valid outputs, we can compute the accuracy when the output topological spa
tial predicate matches the ground truth.

3. Topological distance in the conceptual neighborhood graph

In this work, we use the shortest path distance between two topological predicates 
in the conceptual neighborhood graph (Figure 1), where the distance of each edge 
equals 1. Since Figure 1 was originally proposed for region-to-region (Polygon/ 

Figure 5. Topological spatial relation qualification example inputs and outputs with different 
prompt techniques.
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Polygon) relations in 9IM, we mapped their topological predicates to the seven DE- 
9IM predicates that we use. For other geometry type combinations, we refer to Mark 
and Egenhofer (1994) and Reis et al. (2008) to extract the conceptual neighborhood 
graphs. With the topological distance measurement, we can further analyze which 
pairs of predicates can easily confuse LLMs and whether such confusion is directed, by 
comparing the false-negative and false-positive results.

3.4.2. Spatial query processing
In Sack and Urrutia (1999), a generic spatial query is defined as the retrieval of sub
jects from a set of candidate geometric entities that are in a specific relation rel with 
the query object B on the basis of geometric information only. Our second task aims 
to evaluate whether LLMs can jointly encode a topological relation and one geometry 
to capture the feasible geometries that meet the query requirement. The input and 
output of the Task 2 are as follows:

Input: The input for this task is the WKT representations of geometry B, denoted as 
WKTðBÞ; and a given predicate of topological spatial relations rel. Example input:

� Predicate: within
� WKTðBÞ: POLYGON ((-89.3552 43.124, -89.355 43.124, -89.355 43.122, -89.3552 

43.122, -89.3552 43.124))

Output: The output is the identifier of a subject entity A whose topological spatial 
relationship with B is described by the predicate.

Use Case: Task 2 is valuable for retrieving textual reports that involve locations, 
spatial layouts, and geospatial semantics. This analysis relies on accurate queries using 
spatial predicates. For instance, it would be beneficial to analyze the selection of a 
nearby competitor’s site report when considering opening a business in the same 
neighborhood.

The evaluation workflow of Task 2 is shown in Figure 6. Given a query specifying 
the topological spatial relation rel with the query object B (WKTðBÞ), we first retrieve 
the subjects from the study area spatial database as ground truth. We format the 
query as the input to an LLM using two approaches. First, this query can be directly 
formulated as a sentence, such as “Retrieve a geometry within POLYGON ((-89.3552 
43.124, -89.355 43.124, -89.355 43.122, -89.3552 43.122, -89.3552 43.124).” 
Alternatively, synthetic geometries can be created using a generative model to expand 
the query, connecting the query with the search space. The (expanded) query text is 
inputted into the sentence embedding model to generate the embeddings. The geo
metries in WKT format for spatial entities are also processed by the same embedding 
model, to generate the embeddings ðEncðg1Þ, Encðg2Þ, . . . , EncðgnÞÞ: The most relevant 
subject geometries are retrieved based on the cosine similarity of their geometry 
embeddings and the query embeddings. We perform the evaluation as a link predic
tion task in the “filtered” setting (Bordes et al. 2013), which excludes other subjects 
related to B by the topological predicate rel from the database and concentrates on 
the retrieval of the subject in the triplet. This approach addresses the biases intro
duced by the significant difference in the number of spatially related subjects across 
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predicates and the objects. Finally, the retrieved subjects are evaluated by their actual 
topological spatial relation to the reference subject.

In the following, we introduce how to format the direct query and the expanded 
query with LLM-generated geometries in detail:

1. Direct Query

Given the WKT format of the geometry of a known reference object (e.g. 
LINESTRING (-89.4534 43.035, -89.454 43.0351)) and a designated topological spatial 
relation (e.g. ‘crosses’), the query formulation is as follows: ‘Retrieve a geometry that 
crosses the LINESTRING (-89.4534 43.035, -89.454 43.0351).’ If the search focuses on a 
specific geometry type, the query can be articulated as ‘Retrieve a LINESTRING geom
etry that crosses the LINESTRING (-89.4534 43.035, -89.454 43.0351).’

2. Expanded query with LLM-generated geometries

In Carpineto and Romano (2012) and Hu et al. (2015), (geospatial) query expansion 
is used to augment the user’s original query with new features (e.g., geographic or 
thematic characteristics) that share a similar meaning as the expected output of 
semantic search. The method can address the lack of semantic similarity between the 
query and the desired geometry. We extend the Query2Doc model (Wang et al. 2023) 
to the spatial query expansion, where we leverage an LLM to generate a synthetic 
geometry that can possibly be the response to the query. The prompt template for 
the generation of geometric objects or subjects is listed in Figure 7. We adopt the fol
lowing prompting approaches for geometry generation.

� Zero-shot: LLMs generate geometries directly from the given spatial query.
� Zero-shot þ Self-check: LLMs are asked to verify the spatial relations before generat

ing the output.

Figure 6. The workflow for the spatial query processing task.
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� Few-shot: Give a few pairs of example queries and corresponding subjects while 
maintaining spatial relations and object geometry type.

� Few-shot þ Negative examples: Apart from the plausible examples, we also include 
the negative examples that are not the correct responses for the given query. The 
examples are formatted as “Retrieve a Geometry Type which … Good 
Response: … Bad Response: … ”

We further incorporate the LLM-generated geometries into the spatial queries to 
assess the usefulness of the expanded queries.

The evaluation includes two parts: First, LLMs’ ability to generate valid synthetic 
geometries as a basis for the expanded queries. Second, query processing perform
ance through semantic search using both direct queries and expanded queries.

1. Validity of the LLM-generated geometries

a. Valid WKT format of geometries to be successfully parsed by the GIS tool for 
creating geometry instances.

b. Correct topological spatial relation Rel with the query object B.

2. Mean Reciprocal Rank (MRR) and Hits@K of the retrieval performance

We employ two commonly used metrics in geographic information retrieval, Mean 
Reciprocal Rank (MRR) (Yan et al. 2017) and Hits@K, in the ‘filtered’ setting (Bordes 
et al. 2013). A desirable model is characterized by higher MRR and Hits@K values.

3.4.3. Conversion of vernacular relation descriptions
In Chen et al. (2018), a vernacular description of spatial relations between places is an 
alternative to formal spatial relations in metric space, which occurs in everyday com
munication in a flexible format of a preposition, verb, phrase, or even implicit text 
description. The third task aims to evaluate how LLMs can convert the vernacular 
description (i.e. everyday language) of a topological relationship between two 

Figure 7. Prompt template used for geometry generation in the spatial query processing task.
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geographic entities into one of seven predefined topological predicates based on the 
given context. This task is inspired by LLM’s commonsense model of the world and 
naive geographical knowledge about space, and the domain-specific knowledge of 
the formalism in calculus to bridge the gap between the vernacular(narrative) descrip
tions and the formalized topological predicates. For example, ChatGPT is able to pro
vide the rationale behind the statement ‘When an island is in the middle of a lake, the 
island touches the lake if the lake is considered as a separate region (not fully contain
ing the island)’ by identifying the lake in this scenario is a double-border object using 
commonsense knowledge reasoning (rather than precise geometries). It then maps 
this understanding to the ‘touches’ topological relation, applying expertise in the GIS 
domain. The input and output of the Task 3 are as follows:

Input: The input for this task includes a sentence that describes the topological 
relationship between two places in everyday language, along with the contextual 
information of the two places. Example input:

� Sentence: Place A is home to Place B
� Context: Place A is a city. Place B is a university

Output: The output will rephrase the sentence using the formalized topological 
predicates.

� Answer: Place A contains Place B

Use Case: Parsing vernacular descriptions of spatial relations between places into 
formal ones can better support the users interacting in natural language and the use 
of spatial analysis tools that rely on formal topological relations. For example, inter
preting vague terms in travel reports to determine if cross-border human behavior 
exists and interpreting the territorial changes and alignment of contemporary bounda
ries in the historical context.

We adopt the workflow in Figure 8 to evaluate the capability of LLMs in task 3. The 
workflow begins with collecting geographic entities from a Web document knowledge 
database (DBpedia, structured knowledge based on Wikipedia), where named entity 
recognition is used to extract place names and vernacular spatial relation descriptions. 

Figure 8. The workflow for the vernacular relations conversion task.
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These place names, such as ‘UW-Madison’ and ‘Madison, Wisconsin’ are then used 
to retrieve relevant geographic data and corresponding attributes from a spatial 
database to provide context such as geometry type and place type, with their 
topological spatial relations identified through GIS tools. The collected spatial rela
tions between two places are formatted as ‘A fvernacular topological relationg B’ 
(e.g. A is home to B) for evaluation, where A and B are symbolic placeholders rep
resenting two places. The specific locations in geometries are not disclosed, allow
ing for a generalized discussion of topological spatial relations without actual 
geographic context. The context will be provided at the end of the text input to 
support in-context reasoning. The context evaluated in our experiments is in 
Table 3. The prompts are crafted with the template as shown in Figure 9 and fed 
into an LLM (e.g. GPT-4) to convert vernacular descriptions to topological spatial 
relations. We run the model multiple times to identify the possible converted topo
logical predicates and the preference of an LLM. The output topological predicates 
are then compared with the ground truth predicates calculated by the GIS tool for 
evaluation. We also compare the performance when no contextual information is 
provided. This workflow allows us to evaluate the effectiveness of LLMs for analyz
ing informal topological relations between two entities and to assess the impact of 
contextual information on performance.

The evaluation metrics for the vernacular relation conversion task are as follows.

1. Frequency: The count of correctly returned predicates across all experiments.
2. Accuracy: The ratio of the frequency of correctly returned predicates to the total 

number of generated outputs for each conversion pair.
3. Entropy: The information entropy (Shannon 1948) of the returned 

predicates assesses the level of randomness in converting vernacular 
descriptions into topological predicates. Smaller entropy values indicate a higher 
likelihood of certain predicates being preferred over others. The metric is com
puted as:

H ¼ −
X

rel2R

prel log ðprelÞ, 

where prel represents the probability of a specific topological predicate rel appearing 
in the outputs for the given context-conditioned conversion pair.

Table 3. The textual description from DBPedia and topological predicate conversion examples.
Description Context Predicate Example

bordered by No context touches Glendora is bordered by Azusa.
! A is bordered by B.

along Geometry type crosses Luling is along the San Marcos River.
! A is along B. A is Polygon, and B is LineString.

located on Place type crosses Located on Interstate 10, Weimar is a small community.
! A is located on B. A is city, B is highway.

on the shore of Place name overlaps Racine is located on the shore of Lake Michigan.
! A is on the shore of B. A is Racine in Wisconsin, 

B is lake Michigan.
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4. Data and experiments

4.1. Data processing

4.1.1. Extracting topological spatial relations from spatial database
We construct real-world multi-sourced geospatial datasets for our study. The study 
area for Task 1 and Task 2 is the city of Madison, Wisconsin, United States. The fol
lowing datasets are collected.

� OpenStreetMap road network data (including links and intersections) using 
OSMnx.1

� Points of interest (POIs) categorized by SLIPO.2

� Land parcels from Wisconsin Statewide Parcel Map Initiative.3

� Census block groups from U.S. Census Bureau.4

Our evaluation tasks focus on the spatial objects with Point, LineString, and Polygon 
geometry types, assessing their topological spatial relations. All the computations are 
performed by using the GeoPandas package in Python.

Task 1 and Task 2 share the same dataset of triplets. For each combination of 
fgeometry type A, predicate, geometry type Bg, we obtain 200 triplets. Among these, 
160 are allocated for training the random forest classification model, while the remain
ing 40 triplets are reserved for evaluation. Additionally, we set aside 25 extra triplets 
as candidate examples to facilitate few-shot learning. Due to the imbalanced distribu
tion of topological spatial relations within the real-world dataset, we employ multiple 
strategies for sampling a sufficient number of triplets for fair comparisons:

1. For topological spatial relations including ‘within’, ‘contains’, ‘overlaps’, ‘touch’ and 
‘crosses’, we opt to select a subset of spatial objects and conduct spatial joins to 
obtain the required triplets.

Figure 9. Prompt template used in the vernacular relation conversion task.
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2. Regarding the ‘equals’ relationship. we manually created the equivalent spatial 
entities to preserve the topological spatial relations while making direct identifica
tion from geometry coordinate matching challenging.

a. For Point, include only points with identical coordinates.
b. For LineString, interpolate an additional 10% of points along the lines, ensur

ing that the added points did not alter the original shape.
c. For Polygon, loop the origin point and interpolate additional points along the 

boundaries.

3. We restrict the occurrence of ‘disjoint’ to cases where the subject geometry does 
not touch or overlap but lies within a smaller buffer of the objects (i.e. nearby 
entities), to avoid easy identification when two spatial entities are far apart, thus 
enhancing the evaluation on the differentiation of topological predicates.

In Task 2, we further exclude the ‘disjoint’ relations since most real-world geo
graphic entities are disjoint from each other, yielding 40 � 26 ¼ 1040 triplets for 
retrieving the subject or object geographic entities.

4.1.2. Topological spatial relations from DBpedia/Wikipedia
For Task 3, we have gathered a total of 1078 unique triplets based on the recognized 
geographic entities from DBpedia/Wikipedia documents, which we combine with 
everyday descriptions of topological spatial relationships. We then utilize this extracted 
data to evaluate GPT-4’s capabilities in task 3 as described in Section 3.4.3.

Specifically, we downloaded and refined place descriptions within the States of 
Wisconsin, Texas, and California from the knowledge base DBpedia5, which is the 
linked data format of Wikipedia and has been previously used in place name disam
biguation task (Hu et al. 2014). The data extraction and processing steps are structured 
as follows:

1. Named entity recognition: From each administrative region’s abstract 
“dbo:abstract”), we extract all place names that can be found in OpenStreetMap, 
forming the basis for subsequent topological spatial relation identification.

2. Textual spatial relation extraction: For each pair of place names within a DBpedia 
abstract, we use GPT-4 to extract topological spatial relation terms found between 
the entities in the text. When hierarchical place relationships are described, our 
approach only captures direct relations between a subject and each individual 
object, omitting implicit transitive relations among the objects themselves. For 
instance, from the sentence ‘a city A in a County B, State C,’ we extract (A, in, B) 
but skip (A, in, C) and (B, in, C).

3. Manual verification: We manually review all the extracted spatial relation descrip
tions to ensure that they indicate topological relations and that the use of the 
two place names as subjects or objects in the sentence is semantically correct.

4. Description unification: The text descriptions on DBpedia are standardized for con
sistency. For example, phrases like ‘is home to’, ‘home to’ or ‘home of’, are unified 
as ‘is home to’.
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5. Context-conditioned conversion pairs extraction: We identify how vernacular 
descriptions depend on the following context to convert them to formal topo
logical predicates.
a. Invariant to context: If a vernacular description consistently corresponds to 

the same topological predicate, we create a context-conditioned conversion 
pair (description, predicate, N/A).

For descriptions that can be converted to multiple formal topological predicates, 
we associate them with specific contexts for one-on-one conversion.

b. Place types as context: If grouping by description, place type A and place 
type B, results in a unique topological predicate, we create the pair (descrip
tion, predicate, place type A/place type B). Place types are extracted from 
OpenStreetMap data tags.

c. Geometry types as context: If grouping by description, geometry type A and 
geometry type B, results in a unique predicate, we create the pair (description, 
predicate, geometry type A/geometry type B).

d. Place names as context: Each pair of places can have a unique topological 
relationship. We create the pair (description, predicate, place name A/place 
name B), assuming the LLMs have some knowledge about place names.

It is possible that more than one context can assist with one-on-one mapping from 
a vernacular description to a formal topological predicate. We may retain multiple con
texts to compare their effectiveness. For example, the conversion between ‘is bordered 
by’ and ‘touches’ can be identified using place types (is bordered by, town/city, 
touches), geometry types (is bordered by, Polygon/MultiPolygon, touches) and place 
names (is bordered by, Aliso Viejo, California/Laguna Beach, California, touches).

6. Data filtering: Only frequently observed context-conditioned conversion pairs are 
retained for evaluation.
a. In the cases of invariant to context, place type as context, and geometry 

types as context, we retain pairs that occur at least 5 times for evaluation.
b. In the case of place names as context, we first filter (description, predicate) 

that occur at least 5 times, and then sample 5 pairs for each combination.

Among the 1078 records extracted from DBPedia abstracts of places in the states of 
Wisconsin, Texas, and California, 212 explicitly refer to directional and distance spatial 
relations and were thus removed as this research focused on topological relations. The 
analytical results of task 3 using the remaining records will be presented in Section 5.3.

4.2. Experiment models

In this research, we perform evaluation tasks based on the following models:

4.2.1. Embedding models
We encode WKT geometries into embeddings and process spatial queries using ‘text- 
embedding-ada-002’ and ‘text-embedding-3-large’ provided by OpenAI6, with output 
embedding dimensions of 1536 and 3072, respectively.
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4.2.2. Reasoning models
In our evaluation tasks, we employ GPT-3.5-turbo, GPT-4 and DeepSeek-R1-14B as the 
LLM-based reasoning models. While performance varies by task, these models have 
demonstrated potential in commonsense reasoning and in-context learning on certain 
benchmarks. GPT-3.5-turbo and GPT-4 are primarily optimized for few-shot learning, 
whereas DeepSeek-R1-14B emphasizes zero-shot capabilities and may experience a 
decline in performance when few-shot prompting is applied (Guo et al. 2025).

4.2.3. Model settings
1. Random Forest classifier: The number of estimators (trees) in the Task 1 classifier 

is set to 100.
2. Temperature settings for GPT-3.5-turbo and GPT-4: For the topological relation 

qualification task, we set the temperature to 0 to encourage more deterministic 
outputs. However, achieving full reproducibility remains challenging, even with a 
temperature of 0, as discussed by Blackwell et al. (2024). Conversely, generating 
synthetic geometries to support semantic search in Task 2, employs a higher tem
perature of 0.7 for greater creativity.

3. Temperature settings for DeepSeek-R1-14B: The temperature of the topological 
relation qualification task is set to be 0.6 to better exploit the reasoning ability of 
DeepSeek, given its emphasis on deeper, more deliberate thinking.

5. Results

5.1. Topological spatial relation qualification

5.1.1. Validity of the output
Before diving into the effectiveness of using LLMs to qualify spatial relationships, a val
idity check is necessary because of the inherent nondeterministic nature of generative 
AI models. Furthermore, beyond validating the output as a valid format of fGeometry 
type A, predicate, Geometry type Bg, it is essential to focus on grounding the qualita
tive spatial reasoning in the matched geometry types and topological relations.

The validity results of the output are shown in Table 4. The random forest classifier 
using the LLM-generated embeddings consistently produced valid output on the test 
dataset. This highlights that the sentence embedding models can effectively preserve 
geometry types in the WKT format of geometries, aligning with previous research 
which encoded WKT by aggregating the token embeddings from GPT-2 and BERT (Ji 
and Gao 2023). While GPT-4 and GPT-3.5-turbo largely adhere to the instructions in 
the desired format, even with the CoT generation, it is more challenging for 
DeepSeek-R1-14B to strictly output the desired format (but still achieved over 0.9 val
idity accuracy). When tested with few-shot prompting, the DeepSeek-R1-14B largely 
ignored the provided examples and adhered to its typical reasoning patterns. As a 
result, we did not include these results in our evaluation. The highest validity of GPT-4 
model suggests that a language model that is characterized by a larger number of 
parameters, broader training data, and stronger alignment with human instructions, 
may also possess a better understanding of the definitions of the DE-9IM topological 
predicates.
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5.1.2. Classification metrics
Table 5 presents the results of the topological predicate classification task. Both the 
embedding-based random forest and geospatial question-answering with GPT models 
can achieve an accuracy of over 0.6. This suggests that identifying topological spatial 
relationships from the WKT format of geometries with LLMs is promising but remains 
challenging. Failure to recover the topological spatial relations from embeddings sug
gests a potential information loss through text tokenization. Incorrectly classified topo
logical relations often cluster within the conceptual neighborhoods or resemble each 
other (with a small distance), while confusion may also arise from the diverse seman
tics of topological spatial predicates.

For GPT-3.5-turbo and GPT-4, among the four types of prompts (introduced in 
Section 3.4.1), few-shot learning achieved the best performance with pairs of geome
tries and their topological relationships for LLMs to learn in context. GPT-4 with few- 
short promoting achieved 0.66 accuracy. The findings highlight the importance of 
prompt engineering in the use of LLMs and the critical role of understanding spatial 
contexts in improving geospatial query processing accuracy and reliability. However, 
chain-of-thought (CoT) prompts, which have demonstrated improvement in many 

Table 4. The validity accuracy of the outputs (N/A: not available).
Approach LLM Prompt Format Geometry type Predicate

Random Forest text-embedding-ada-002 N/A 1 1 1
text-embedding-3-large N/A 1 1 1

Question Answering GPT-3.5-turbo Zero-shot 0.959 1 0.911
Zero-shot-dim 0.999 1 0.927
Few-shot 1 1 0.901
Zero-shot-CoT 0.944 1 0.944
Few-shot-CoT 0.998 1 0.894

GPT-4 Zero-shot 1 0.996 0.997
Zero-shot-dim 1 0.999 0.999
Few-shot 1 0.999 0.992
Zero-shot-CoT 0.984 0.990 0.968
Few-shot-CoT 1 0.999 0.999

DeepSeek-R1-14B Zero-shot 0.936 0.996 0.913
Zero-shot-dim 0.919 0.998 0.913

Table 5. The topological predicate classification metrics using topological distance.

Approach LLM Prompt Accuracy
Distance in conceptual 

neighborhood

Random Forest text-embedding-ada-002 N/A 0.633 1.449
text-embedding-3-large N/A 0.632 1.419

Question Answering GPT-3.5-turbo Zero-shot 0.423 1.331
Zero-shot-dim 0.408 1.360
Few-shot 0.479 1.595
Zero-shot-CoT 0.443 1.370
Few-shot-CoT 0.465 1.174

GPT-4 Zero-shot 0.632 1.238
Zero-shot-dim 0.635 1.212
Few-shot 0.666 1.272
Zero-shot-CoT 0.610 1.256
Few-shot-CoT 0.627 1.225

DeepSeek-R1-14B Zero-shot 0.534 1.257
Zero-shot-dim 0.557 1.260
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other tasks (Wei et al. 2022), did not yield the expected benefit in our spatial reason
ing evaluation experiments. As mentioned by Yang et al. (2024), CoT reasoning can 
sometimes induce unreliable or counterproductive outputs in spatial reasoning tasks. 
Upon analyzing the generated rationale, we observed that when LLMs are prompted 
with ‘Let’s think step by step’, they attempt to check the topological spatial predicates 
one by one based on their respective definitions from the OGC standard. Few- 
shot-CoT prompts, on the other hand, were explicitly designed with examples 
grounded in scientific definitions and logical decision processes proposed in 
Clementini et al. (1993), aiming to ‘teach’ the models to reason about topological spa
tial relations from analysis on interiors, boundaries, and exteriors. Despite this struc
tured approach, the accuracy declined due to cascading errors in intermediate steps, 
such as failing to determine whether the interiors of two geometries intersect at the 
very beginning. With an explicit reasoning process, DeepSeek-R1-14B outperformed 
GPT-3.5-turbo (20B parameters). Analysis of its thought generation reveals that, rather 
than always iteratively checking candidate answers, the model often employed more 
intuitive reasoning strategies, such as mental mapping (e.g. ‘Let me plot them men
tally’) and self-verification (e.g. ‘In WKT, a LINESTRING is just a sequence of points con
nected by straight lines. If it starts and ends at the same point, it doesn’t 
automatically become a polygon’). Although these reasoning patterns may appear 
convincing when interpreting individual geometries, they often fall short when reason
ing about spatial relations between two geometries. This is mainly due to an overre
liance on superficial, linear interpretations of coordinate information, rather than a 
holistic understanding of topological spatial relationships across the plane.

5.2. Spatial query processing

Based on the superior performance in task 1, the experiments in task 2 only used 
GPT-4 as the geometry generator and text-embedding-3-large as the embedding 
model.

5.2.1. Direct query
We first identified an effective query format for geospatial semantic search (Hu et al. 
2015), which is the foundation for applying query expansion in understanding geospa
tial semantics. As shown in Table 6, specifying the subject geometry type would 
achieved higher performance due to a narrowed mapping space to the same geom
etry type. In the following experiments, we assumed that the user query with the 

Table 6. Spatial query performance comparison results.
Target Query Format MRR Hits@5 Hits@10 Hits@20

Subject Direct query Abstract as ‘geometry’ 0.081 0.131 0.161 0.194
Specify the subject geometry type 0.152 0.212 0.26 0.29

Expanded query Direct query þ one LLM-generated geometry. 0.18 0.238 0.278 0.328
Direct query þ three LLM-generated geometry. 0.169 0.232 0.28 0.32

Object Direct query Original predicate 0.105 0.131 0.17 0.211
Reversed predicate 0.152 0.219 0.256 0.297

Expanded query Original predicate þ one LLM-generated geometry. 0.15 0.215 0.261 0.302
Reversed predicate þ one LLM-generated geometry. 0.179 0.248 0.294 0.333
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geometry type (e.g. retrieving a street from the spatial database implies LineString), 
and further investigated the factors that may impact the effectiveness of query expan
sion using LLMs.

5.2.2. Synthetic geometry generation
An effective LLM-generated geometry is expected to maintain the same topological 
spatial relation with the given object as the subject entity while being close to the 
subject entity in the embedding space. Table 7 compares the validity of the LLM- 
generated geometries produced by different prompting approaches. We find that 1) 
GPT-4 effectively comprehends spatial queries and generates geometries in a valid 
WKT format, and 2) GPT-4 demonstrates a notable level of spatial reasoning regarding 
the reference object, even in the zero-shot setting, as indicated by the high relation- 
preserving accuracy (over 0.72) and the low topological distance in the conceptual 
neighborhood graph (Reis et al. 2008). Figure 10 presents examples of the LLM- 
generated geometries generated by GPT-4. In the following section, we will check the 
usefulness of such synthetic geometries generated by zero-shot prompts in enriching 
spatial query processing.

5.2.3. Expanded query on subject retrieval
As shown in Table 6, retrieving a subject based on the embeddings encoded from the 
expanded spatial queries remains challenging. However, including an LLM-generated 
geometry enhanced the probability of ranking the target subject higher among all 
candidates. Over 23% of the subjects were ranked within the top 5 candidates. But 
adding additional synthetic geometries did not appear to provide further 
improvements.

5.2.4. Performance comparison on object retrieval
While the above experiment primarily focuses on retrieving the subject in a triplet, we 
proceed to evaluate the performance of object retrieval. For a given triplet, we tested 
the queries formulated with either the original predicate describing the spatial 

Table 7. Validity of LLM-generated geometries using different prompts.
Prompt Valid_WKT Geometry Type Predicate Topological Distance

Zero-shot 0.999 1 0.763 1.142
Zero-shot-Check 0.998 1 0.755 1.075
Few-shot 0.996 1 0.728 1.177
Few-shot-Negative 0.997 1 0.754 1.212

Figure 10. Synthetic geometries generated by GPT-4 for LineString/LineString relations.
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relationship from the subject to the object (e.g. ‘Retrieve a Point which A contains’), or 
the reversed predicate referring to the subject (e.g. ‘Retrieve a Point which is within 
A’). The results of object retrieval are also summarized in Table 6.

Among the object-retrieval query formats, the queries with the original predicate 
that maintained the subject-to-object directionality yielded worse performance. When 
we manually reversed the topological spatial relation and treated the object as the 
subject, the performance matched its counterpart for subject retrieval in Table 6, high
lighting the importance of structuring spatial queries to align with everyday language 
patterns commonly used for spatial reference.

5.3. Vernacular topological relation conversion

In Task 3, we collected textual descriptions of topological spatial relations between 
two places and attempted to identify mapping patterns between these descriptions 
and the corresponding context-conditioned topological spatial relations. These map
pings were then used as input to GPT-4 (giving its superior performance in previous 
tasks) to evaluate their ability to convert textual descriptions into formal topological 
spatial relations.

5.3.1. Conversion pairs invariant to context
Table 8 lists the six descriptions that consistently map to the same topological rela
tionship in our dataset. However, the results show varying levels of conversion accur
acy from vernacular descriptions to preferred formal topological predicates. While the 
ground truth topological relationships were likely to be implied from ‘share border 
with’ and ‘is the location of’, ‘is an enclave of’ was interpreted as within instead of 
touches or disjoint. Even though GPT-4 could infer an overlaps relation from ‘has part 
of the population in’ in all 10 experiments, the model might be unsure about its 
answer and would provide multiple topological predicate alternatives. Despite the sub
tle difference between ‘midway’ and ‘halfway’, a higher entropy of ‘halfway’ indicates 
greater randomness in the conversion.

5.3.2. Conversion pairs conditioned on place types or geometry types
The comparisons between scenarios with and without place-type/geometry-type con
text are illustrated in Tables 9 and 10, respectively. Our initial hypothesis was that 
including contextual information in the prompt would reduce ambiguity, resulting in a 
higher frequency of correct predicate predictions, improved accuracy, and lower 
entropy using LLMs. However, these improvements were highly instance-dependent 
and not consistently observed across all the conversion pairs evaluated in our 

Table 8. Result of topological relation conversion pairs invariant to context.
Description Predicate Frequency Accuracy Entropy

share border with touches 10 1.000 0.000
has part of the population in overlaps 10 0.588 0.435
is the location of contains 9 0.818 0.244
is midway between C and disjoint 6 0.600 0.560
is halfway between C and disjoint 6 0.500 0.817
is an enclave of touches 1 0.100 0.167
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experiments, indicating GPT-4’s limitation in considering all possible interpretations of 
the given vernacular description. This limitation was also evident in pairs with 0 accur
acy, where the model consistently outputted the same incorrect answer. In other 
instances, GPT-4 still struggled to determine the appropriate topological predicates for 
certain vernacular descriptions.

5.3.3. Conversion pairs with place names
The accuracy and entropy of the topological relation conversions with place names 
were also compared to the metrics obtained without the context. As shown in 
Table 11, mentioning place names did not necessarily improve the accuracy of the 
conversion or guide the LLM to a preferred answer. GPT-4’s explanation indicates that 
(1) It focuses on the topological relationships between general geographic locations or 
boundaries rather than leveraging specific knowledge about each place; (2) The 
approach tends to exclude predicates possibly with inaccurate and abstract geome
tries. For instance, in analysis ‘A is along B’ when A is Brazos Bend, Texas, and B is 
Brazos River, the reasoning begins with ‘This suggests a specific geographical relation
ship between a place (A) and a river (B). The term “along” typically indicates that A is 
situated in a linear arrangement adjacent to B, but not necessarily crossing it or being 
contained within it.’

Table 9. Result of topological relation conversions using place type as context.

Description Predicate Spatial Context Frequency Accuracy
Accuracy 

without Context Entropy
Entropy 

without Context

is home to contains city/amenity 10 1 1 0 0
borders touches city/municipality 10 1 1 0 0
is located in within town/county 10 1 1 0 0
is located in within city/state 10 1 1 0 0
is bordered by touches town/city 10 1 1 0 0
is adjacent to touches city/municipality 10 1 0.909 0 0.157
borders touches city/city 10 1 1 0 0
is in within village/county 10 0.909 0.909 0.157 0.157
is located in within village/county 10 0.909 1 0.157 0
is partly in overlaps city/county 10 0.833 1 0.232 0
is bounded by touches city/city 7 0.7 0.333 0.314 0.327
connect C and crosses industrial/city 8 0.4 0.474 0.52 0.355
extend into overlaps city/county 5 0.357 0.421 0.561 0.491
is surrounded by touches city/city 2 0.167 0 0.232 0
is between C and touches town/town 0 0 0.3 0.211 0.773
is surrounded by touches town/city 0 0 0 0 0
is within touches city/municipality 0 0 0 0 0

Table 10. Result of topological relation conversions using geometry type as context.

Description Predicate Spatial Context Frequency Accuracy

Accuracy 
without 
Context Entropy

Entropy 
without 
Context

is in within Polygon/MultiPolygon 10 1 0.909 0 0.157
is neighboring touches Polygon/Polygon 10 1 1 0 0
is bordered by touches Polygon/MultiPolygon 10 1 1 0 0
is the county seat of within Polygon/Polygon 10 1 1 0 0
extend into overlaps Polygon/Polygon 8 0.714 0.421 0.307 0.491
connect C and crosses LineString/MultiPolygon 9 0.412 0.474 0.348 0.355
is surrounded by touches Polygon/MultiPolygon 0 0 0 0 0
is on crosses Polygon/LineString 0 0 0 0 0.327
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6. Discussion

In this section, we would like to further discuss whether the confusion between the 
topological predicates aligns with the corresponding conceptual neighborhood of 
topological spatial relations (Egenhofer and Al-Taha 1992, Egenhofer and Mark 1995, 
Formica et al. 2018), the confusion in geometry generation, and the confusion in ver
nacular description conversion.

6.1. Confusion between topological predicates in topological spatial relation 
qualification

When using GPT-4 (zero-shot learning) for topological spatial relation qualification, the 
confusion matrices for all the geometry type combinations are drawn in Figure 11. We 
compare the topological predicate pairs that may confuse GPT models with the classic 
conceptual neighborhood graphs in Figure 1. The observations are twofold: (1) The 
most frequently confused topological spatial relation for a given predicate depends on 
the geometry types involved. For example, consider the predicate ‘overlaps.’ In a 
Linestring/Linestring relationship, it is rarely classified correctly and is often confused 
with ‘crosses’, ‘equals’ or ‘touches’. However, in a Polygon/Polygon relationship, 
‘overlaps’ is more likely to be correctly identified, though it may occasionally be con
fused with ‘contains’ or ‘disjoint’. Another illustrative example involves the predicate 
‘touches.’ A Point ‘touches’ a Linestring or Polygon, or a Linestring ‘touches’ a Polygon 
is frequently mistaken as ‘within’ while such confusion is less between two geometries 
of the same dimension, such as two Polygons or two Linestrings. These examples sug
gest the varied degree to which an LLM understands formal geometry boundaries 
associated with geometry types, particularly their dimensions, which is crucial in iden
tifying formal topological spatial relations. However, the constraint of formal defini
tions may contradict common conceptual interpretations, such as excluding a polygon 
from containing its boundary, leading to fewer occurrences in GPT-4’s response. (2) 
For the same geometry type combination, distinguishing certain pairs of topological 

Table 11. Accuracy and Entropy changes for conversion pairs with place names.

Accuracy
Topological relation conversion pairs (Order by the absolute values in change,�

with entropy reduction).

Improves 1) is bounded by ! touches� 2) is surrounded by ! touches
3) is suburb of ! touches 4) is on ! crosses
5) is part of ! within� 6) is between C and ! touches�

7) is partly in ! touches 8) is suburb of ! disjoint
9) is between C and ! disjoint�. 10) is near ! touches.

Unchanged Remains 1:
1) includes ! contains 2) borders ! touches
3) is bordered by ! touches 4) is neighboring ! touches
5) is located in ! within 6) is the county seat of ! within
Remains 0: 8) is in ! overlaps�

7) is bordered by ! disjoint 10) is within ! touches.
9) on the shore of ! overlaps.

Declines 1) is mostly in ! overlaps 2) is near ! disjoint
3) is along ! crosses� 4) is partly in ! overlaps
5) is situated on ! overlaps 6) is adjacent to ! touches
7) extend into ! overlaps 8) is in ! within
9) is home to ! contains. 10) connect C and ! crosses�.
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spatial relations is more challenging than others. These pairs mostly fall within the 
conceptual neighborhood, though exceptions exist. Take ‘Linestring/Linestring’ as an 
example. GPT-4 can identify ‘crosses’, ‘disjoint’, and ‘equals’ more accurately. However, 
it struggles with predicates like ‘contains’ and ‘overlaps,’ frequently confusing them 
with ‘crosses’ or ‘touches’. The four topological spatial relations all require that the 
two geometries share elements like points or line segments and might be inter
changeable in daily use. This challenge highlights that the ambiguous semantics of 
these predicates can encompass scenarios broader than their strict formal definitions. 
Overall, the issues observed in Task 1 actually reflect an alignment with everyday spa
tial reasoning. While formal definitions are precise and dimension-contingent, everyday 
language and intuitive reasoning often blur the distinctions.

6.2. Confusion between topological predicates in geometry generation

The confusion pattern changes when leveraging an LLM to generate geometries given 
a spatial query and the required geometry type, as shown in Figure 12. The findings 
can be summarized as follows: (1) Directionality in describing the topological relation 
between two geometry types matters. For example, generating a Polygon that 
‘crosses’ a LineString proves challenging for GPT-4, while the reversed query— 

Figure 11. Confusion matrices between topological predicates in relation qualification.
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generating a LineString that ‘crosses’ a Polygon—is handled more effectively. Similarly, 
the model is more successful in generating a Polygon that ‘contains’ a Point, 
LineString, or another Polygon but struggles to produce a Point, LineString, or 
Polygon that is ‘within’ a Polygon. This asymmetry can be attributed to the model’s 
approach of extracting coordinates from the query geometry to construct the second 
geometry. This reliance limits the model’s ability to conceptualize spatial relationships 
beyond the provided coordinates. (2) The geometry type of the reference object 
affects the results. Figure 13 provides examples of LineString/LineString topological 
spatial relations where the generated topological spatial relations were different from 
the predicate in the spatial query. As observed from these examples, even if the spa
tial queries specify the reference object geometry type as LineString, the model some
times applies definitions for Polygons when a line forms a closed shape. In this case, 
when we manually changed the reference object geometry type into Polygon and 
recompute its topological relations with the LLM-generated geometry, 223 out of 391 
queries (across all prompts) with closed geometries were found to exhibit the desired 
topological relationship. This observation suggests GPT-4’s perception based on the 
provided coordinates over the geometry type specified in the text, inspiring us to fur
ther explore the cognition potential of the LLMs.

Figure 12. Confusion matrices between spatial predicates in geometry generation.
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6.3. Confusion between topological spatial relations in conversion

While GPT-4 can accurately convert several vernacular descriptions to corresponding 
formal predicates, there are instances where its performance falls short. This can be 
attributed to the mismatch between crispy geometry and the vague human percep
tion of place boundaries. We can further divide it into three categories. (1) The 
abstraction of spatial entities’ shapes in the spatial dataset may differ from those used 
in descriptions. For example, when converting ‘is along’ for Brazos Bend, Texas, and 
Brazos River, Texas, GPT-4 returned ‘touches’ when considering Brazos Bend as a 
region (Polygon) and ‘within’ when considering Brazos Bend as a Point. (2) The com
puted topological spatial relations can be sensitive to the marked shape points, while 
human perception can tolerate such systematic errors, yielding the description of the 
relations in the conceptual neighborhood of the ground truth. A typical example is 
when the ground truth label of ‘is suburb of’ is ‘disjoint’, but the two cities look like 
they ‘touch’ each other on the map. (3) Official geographic boundaries might differ 
from people’s perception of a place (Gao et al. 2017). In our dataset, ‘is within’ and ‘is 
an enclave of’ can map to ‘touches’. But the LLM would constantly output ‘within’. For 
instance, the City of Shullsburg, Wisconsin, and the Town of Shullsburg, Wisconsin, 
illustrate this discrepancy7. Although the City of Shullsburg is enclosed by the Town of 
Shullsburg, the city boundary is separated from the town boundary, creating a hole in 
the town boundary. In summary, even though GPT-4’s responses can be partly inter
preted from the conceptual neighborhood of topological spatial relations, challenges 
remain due to the vagueness of real-world geographic entity boundaries and human 
perception of shapes and places.

7. Conclusion and future work

This study focuses on the evaluation of the ability of LLMs including GPT-3.5, GPT-4 
and DeepSeek-R1-14B to process, represent, and reason with topological spatial rela
tions. Consequently, we designed a workflow to assess the efficacy of LLMs in address
ing three typical problems on topological spatial relations. The core idea involves 
converting geometric objects into textual strings (WKT), which can then be decoded 
and utilized for spatial reasoning. The first task, topological spatial relation 

Figure 13. Invalid synthetic geometries generated by GPT-4 for LineString/LineString relations with 
close-shape objects.
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qualification, focuses on determining if such textual representation can retain the 
necessary geometric information for deriving named topological predicates. The 
second task explores the feasibility of conducting geospatial queries through semantic 
search, where LLMs can generate a geometry to augment the query and also generate 
embeddings. The third task presents an everyday scenario where an LLM serves as a 
translator to convert vernacular descriptions of spatial relations into formalized topo
logical predicates based on their capability to understand linguistic patterns.

From the multi-source geospatial datasets, we extract triplets to represent topo
logical spatial relations in real-world spatial configurations. Using the triplets as input, 
we have compared the performance on the three evaluation tasks with ground truth 
data. In Task 1, both the random forest and GPT-based reasoning models can identify 
most relations correctly (over 0.6 accuracy on average), while some relations can be 
confounding. For GPT-3.5-turbo and GPT-4, few-shot prompt engineering is essential 
to improve the performance while CoT prompting strategy had a negative impact on 
our topological spatial relation inference task. The thought generation process and the 
self-verification allow DeepSeek-R1-14B to perform spatial reasoning more intuitively 
and outperformed GPT-3.5-turbo in accuracy. Further comparison with the conceptual 
neighborhood allows for a more quantitative understanding of the errors. Even though 
task 2 further verifies the challenge of replacing spatial queries with semantic search. 
However, improvements can be observed when we customize the query and augment 
it with LLM-generated geometries. The LLM-generated geometries are not only valid 
WKT but also have high accuracy (up to 0.76) in preserving topological spatial rela
tions (or within their conceptual neighbors). In task 3, the improvement of LLMs to 
reduce ambiguity in spatial queries is relatively limited. However, in most cases, the 
generated outputs fall into the conceptual neighborhood of the ground-truth topo
logical predicate. Moreover, given various contexts, the changes in the preferred 
response show the ability of the LLM to reason about it using commonsense know
ledge and the typical spatial configurations. Interestingly, adding the geometry-type 
context in prompts has derived more performance improvement compared to the 
cases with adding the place-type context, but the performance of adding context or 
without context varies by instance.

In conclusion, through the three tasks and intensive experiments, we systematically 
approach the overarching question of LLM’s ability in understanding geometry infor
mation and their topological spatial relations, moving from the broader challenge to 
more targeted strategies involving spatial context, tailored prompting techniques, and 
specialized domain knowledge in GIScience.

However, it is essential to acknowledge the limitations of our work. First, our focus 
was primarily on in-context learning, and we did not explore fine-tuning approaches, 
which could potentially yield further performance improvements. Retrieval-Augmented 
Generation (RAG) (Lewis et al. 2020) presents a promising approach for enhancing the 
qualitative spatial reasoning capabilities LLMs by integrating external spatial databases, 
GIS tools and domain-specific knowledge from GIScience. Unlike in-context learning, 
which allows for intuitive qualitative spatial reasoning, the effective implementation of 
RAG relies on the precise generation of formalism-based spatial queries from natural 
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language input along with reliable high-resolution datasets. Improving the translation 
from natural language to into symbolic form and logic also opens the door to neuro
symbolic approaches (Sheth et al. 2023), in which LLMs serve as translators that con
vert user text input into symbolic representations, which are then processed by 
symbolic engines with strong capabilities in explanation, verification, and formal rea
soning. Realizing this potential requires addressing the challenges identified in this 
work, such as ambiguities in linguistic spatial descriptions, conceptual neighborhood 
relationships in topological reasoning, and the correct use of available GIS functions 
and analytical workflows. Additionally, our dataset is currently limited to the city and 
state levels, and further investigation into multi-scale spatial relations is still needed to 
fully capture the complexity of spatial interactions across different geographical scales 
and heterogeneous datasets. Moreover, the scope of this work is limited to topological 
relations in natural languages. While we can handcraft datasets with ground truth 
labels of formalized predicates for evaluation, the mathematical computation makes 
LLMs less competent than spatial databases. Directional and distance relations intro
duce more vagueness in language use due to factors such as shape and scale, espe
cially when two places cannot be viewed as points. In future work, we plan to explore 
other spatial relations using datasets such as the Geograph project8, which provides 
rich expressions of various spatial relations associated with geometries, text descrip
tions and photos (M Hall et al. 2011). This will enable us to evaluate LLMs’ or multi- 
modal foundation models’ capabilities (e.g. vision-language geo-foundation models) in 
geospatial reasoning from a more comprehensive perspective (Mai et al. 2024). Lastly, 
we rephrased our own text instead of directly using paragraphs from DBpedia to allow 
for flexibility in introducing different context information. However, this approach may 
result in some loss of authenticity in language use, such as anaphora, which is preva
lent in original text documents and worth exploring in future research.

In summary, this research demonstrates the promise and limitations of using state- 
of-the-art LLMs to analyze topological spatial relations, while offering insights for 
future research of advancing LLMs with geographical knowledge, aiming to develop 
GeoAI foundation models capable of qualitative spatial reasoning and other spatial 
intelligence tasks.

Notes

1. http://osmnx.readthedocs.io/.
2. http://slipo.eu/.
3. https://www.sco.wisc.edu/parcels/data/.
4. https://www2.census.gov/geo/tiger/TIGER2020PL/LAYER/BG/.
5. https://www.dbpedia.org/.
6. https://openai.com/blog/new-embedding-models-and-api-updates.
7. https://en.wikipedia.org/wiki/Shullsburg_(town),_Wisconsin.
8. http://www.geograph.org.uk.
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