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Imagery collected by drones can be rapidly analysed using computer vision tech-

and identification of individual animals. While computer vision techniques can

Handling Editor: Willem Bonnaffe pends on careful mission planning that considers downstream computational
requirements—a critical factor frequently overlooked in current studies.

2. We present a comprehensive summary of research in the growing Al-driven
animal ecology (ADAE) field, which integrates data collection with automated
computational analysis focused on aerial imagery for collective animal behaviour
studies. We systematically analyse current methodologies, technical challenges
and emerging solutions in this field, from drone mission planning to behavioural
inference. We illustrate computer vision pipelines that infer behaviour from drone
imagery and present the computer vision tasks used for each step. We map spe-
cific computational tasks to their ecological applications, providing a framework
for future research design.

3. Our analysis reveals Al-driven animal ecology studies for collective animal behav-
iour using drone imagery focus on detection and classification computer vision
tasks. While convolutional neural networks (CNNs) remain dominant for detec-
tion and classification tasks, newer architectures like transformer-based models
and specialized video analysis networks (e.g. X3D, 13D, SlowFast) designed for
temporal pattern recognition are gaining traction for pose estimation and behav-

iour inference. However, reported model accuracy varies widely by computer
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1 | INTRODUCTION

Traditionally, studies of animal behaviour rely on data collected
by experts making careful observations of individuals in the wild
(Altmann, 1974). Behaviour data may include fine-grained individ-
ual behaviour observations, collective behaviour observations, so-
cial interactions or individual and group movement data (Bateson &
Martin, 2021). Social behaviour and context are vital for understand-
ing the decisions of group-living animals in the context of their social
and environmental conditions. Social context may include the be-
haviours exhibited by other animals nearby and the demographic cat-
egories of the animals, including species, age and sex. Environmental
context includes habitat characteristics, weather and time of day.
Social behaviours involve interactions among group members and
often reflect social relationships, such as kinship or group hierar-
chies. Fine-scale movements, such as individual positions, velocity
and turning angles, provide additional description and context to
social and individual behaviours (Hughey et al., 2018). Posture, or
pose, can determine individual behaviour (Koger et al., 2023). Adding
the temporal element to animal presence produces movement data
(Koger et al., 2023; Ozog'any et al., 2023). Movement throughout
the landscape is studied within the context of its social factors and
habitat (Aben et al., 2018; Davies et al., 2016).

Ethograms are lists of behavioural elements experts use to con-
duct field observations of collective group behaviours and individual
actions using scan or focal sampling, respectively (Altmann, 1974).
Focal sampling has the advantage of gathering detailed behaviour
information of one observed individual but lacks the social context
of the other individuals' concurrent behaviours. Scan sampling pe-
riodically samples the behaviour of each individual in the group,
capturing social context, but it may miss fine-scale details or rare be-
haviours captured by focal sampling. Activity budgets are calculated
as the percentage of time estimated to be spent on each behaviour in
the ethogram. They are tools for comparing overall behavioural pat-
terns as a function of species, demographic makeup, habitation, time
of day, etc. Ecologists use ethograms as a foundation for behaviour

vision task, species, habitats and evaluation metrics, complicating meaningful
comparisons between studies.

4. Based on current trends, we conclude semi-autonomous drone missions will be
increasingly used to study collective animal behaviour. While manual drone op-
eration remains prevalent, autonomous drone manoeuvrers, powered by edge Al,
can scale and standardise collective animal behavioural studies while reducing
the risk of disturbance and improving data quality. We propose guidelines for Al-
driven animal ecology drone studies adaptable to various computer vision tasks,
species and habitats. This approach aims to collect high-quality behaviour data

while minimising disruption to the ecosystem.

Al-driven animal ecology, animals, collective animal behaviour, computer vision, drone, edge Al

studies, and as the species is studied more closely, more behaviours
can be added to the ethogram (Kholiavchenko, Kline, Kukushkin,
et al., 2024).

Analysing animal behaviour within the social and environmental
context in which it occurs is crucial to understanding the complex
dynamics of group-living organisms (Hughey et al., 2018). Animal
behaviour data serves as a key indicator of individual, species and
population-level health. As such, it is essential for conservation ef-
forts, as behaviour indicates individual, population and ecosystem
health (Besson et al., 2022). Understanding the complex dynamics of
animal behaviour is critical to determining whether animals change
behaviour in response to changing environmental conditions, es-
pecially in response to acute disturbances from climate change
(Besson et al., 2022). Gathering data on the individual and collective
behaviour of group-living animals is challenging, as it requires fine-
scale observations of multiple animals simultaneously with minimal
interruptions (Hughey et al., 2018). Analysing the behaviour data of
group-living species is also challenging because it simultaneously
tracks three levels of a complex system. This system includes (1) in-
dividual behaviours, (2) interactions among individuals and (3) the
behaviour of the group as a whole, which is an emergent property
of individual behaviours and interactions, illustrated in Figure 1. We
provide a glossary of terms related to studying collective animal
behaviour with drones and computer vision to facilitate interdis-
ciplinary research (Table 1). This review focuses on techniques for
studying the behaviour of group-living animals. Still, these principles
may also be applied to studying solitary species and individuals using

drones and computer vision.

2 | WHY USE DRONES AND COMPUTER
VISION TO STUDY COLLECTIVE ANIMAL
BEHAVIOUR?

Researchers are developing new ways to observe collective animal

behaviour in the wild by combining drone-based video acquisition
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Level 1: Individual behaviors

Level 2: Interactions among individuals

r—————_1

FIGURE 1 Levels of group-living animal behaviours: (1) individual behaviours, (2) interactions among individuals and (3) the group as a
whole, which is an emergent behaviour of individual behaviours and interactions.

TABLE 1 Glossary of terms related to studying collective animal behaviour with drones and computer vision.

Term

Collective animal behaviour

Drone

Artificial intelligence (Al)

Machine learning (ML)

Inference request

Latency

Edge computing

Edge Al

Fog device

Al-driven animal ecology
(ADAE)
Surface-of-Interest (SI)

Computer vision

Computer vision pipeline

Definition
The coordinated behaviour of animal groups emerge from individual actions and interactions between
individuals

An unmanned aerial system (UAS) capable of autonomous or remote-controlled flight. A UAS includes sensors,
such as IMU and camera, ground-control-station, such as remote controller or laptop, and flight components,
including rotor blades, batteries and motors

The field of computer science focused on creating systems that can perform tasks typically requiring human
intelligence, including learning, reasoning and problem-solving

A subset of Al that enables systems to learn and improve from experience without explicit programming, using
statistical techniques to find patterns in data

The process of querying a trained model to generate predictions or outputs based on input data. For example, a
computer vision model analysing an image to return a class prediction

The time interval between collecting and analysing the image

A distributed computing paradigm that brings computation closer to data sources, reducing latency and
bandwidth usage (Cao et al., 2020)

The deployment of Al algorithms directly on edge devices for real-time processing and decision-making without
cloud dependency (Singh & Gill, 2023)

Devices used to augment compute resources on the edge. Examples: GPU laptop, RaspberryPi (Cao et al., 2020)

The application of Al techniques to study animal populations, behaviour and ecosystems using automated,
adaptive data collection and analysis (Kline, O'Quinn, et al., 2024).

The part of the animal that contains data required to answer the ecological question, see Figure 6 (Rolland,
Grgntved, Laporte-Devylder, et al., 2024)

A field of Al that enables computers to understand and process visual information from the world, mimicking
human visual perception.

The sequence of processing steps that transform raw visual data into meaningful information, including pre-
processing, feature extraction and analysis
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with computer vision techniques (Pedrazzi et al., 2025). Drone data,
analysed using computer vision, allow ecologists to collect new types
of aerial vision data and extract insights in multilevel animal societies
promptly (Maeda & Yamamoto, 2023). Drone videos can be analysed to
extract continuous, simultaneous time series of the behavioural states
of multiple individuals (Kline, Zhong, Kholiavchenko, et al., 2025;
Maeda & Yamamoto, 2023; Smith & Pinter-Wollman, 2021). This
task is impossible with traditional manual data collection methods,
such as scan and focal sampling (Altmann, 1974). Drones are increas-
ingly used for research as they can quickly obtain detailed behaviour
data of group-living animals (Besson et al., 2022; Corcoran, Winsen,
et al., 2021), such as the studies illustrated in Figure 2. Camera sen-
sors are becoming smaller and smaller, allowing for more possibilities
in terms of drone payloads. These technological advances have ena-
bled ambitious animal machine vision-based studies, including species
identification (Corcoran, Winsen, et al., 2021; Delplanque et al., 2022;
Petso, Jamisola, Mpoeleng, Bennitt, & Mmereki, 2021; Petso,
Jamisola, Mpoeleng, & Mmereki, 2021), behaviour (Kholiavchenko,
Kline, Ramirez, et al., 2024; Koger et al., 2023) and population counts
(Brack et al., 2018; Brown et al., 2022). Between 2015 and 2020,
drone imagery was used in 19 automated animal detection studies
alone (Corcoran, Winsen, et al., 2021) (Table 2).

Drones can collect videos and images with sufficient granular-
ity to infer fine-grained behaviour and social interactions (Koger
et al., 2023). Drones may adjust their trajectories to follow animals as
they move through their habitat, providing richer spatiotemporal con-
text to behaviour compared to static methods such as camera traps
or acoustic sensors (Kline, Berger-Wolf, et al., 2024; Luo et al., 2024).
Drones extend the sensing capacity of experts compared to ground-
based observations (Smith & Pinter-Wollman, 2021). A study of whale
behaviour found that drones provided three times more observational
capacity than boat-based observations, including novel foraging tac-
tics (Torres et al., 2018). Drones are especially promising for animal
behaviour studies that require tracking wildlife over vast, remote
regions that are difficult for experts to access (Hughey et al., 2018;
Kholiavchenko, Kline, Ramirez, et al., 2024; Ozog'any et al., 2023;
Schad & Fischer, 2023). Drone platforms are quickly becoming the pre-
ferred platform for aerial population counts (Eikelboom et al., 2019;
Elmore et al., 2023; Lamprey, Pope, et al., 2020).

Analysing aerial videos of animal behaviour combines the advan-
tages of both focal and scan sampling by capturing the fine-scale
behaviour of each individual in the group concurrently, providing
the social context (Aben et al., 2018; King & Jensen, 2023; Ozog'any
et al., 2023; Russo et al., 2023). Drone footage can be analysed to de-
termine habitat conditions, including vegetation and weather (Koger
et al., 2023; Schad & Fischer, 2023), providing insight into the influ-
ences of habitat and landscape on behaviour (Russo et al., 2023). Aerial
imagery obtained from satellites provides sufficient granularity to
conduct population counts for some large species (Duporge, Isupova,
etal., 2021; Guirado et al., 2019; LaRue et al., 2015; Wang et al., 2019).
However, animal monitoring with satellite imagery is limited due to the
timing of satellite overpasses and varying weather conditions, limiting
their applicability for collective animal behaviour studies.

Computer vision streamlines data analysis, facilitating researchers'
ability to extract biological insight from aerial datasets (Kholiavchenko,
Kline, Kukushkin, et al., 2024; Kline, O'Quinn, et al., 2024; Tuia
et al,, 2022; Valletta et al., 2017). Unlike manual surveys, drone im-
agery analysed with computer vision may be less biased for detection
tasks (Corcoran, Denman, et al., 2021). Computer vision models are
often used in sequence to analyse data and extract ecological insights,
(Kholiavchenko, Kline, Ramirez, et al., 2024; Koger et al., 2023; McNutt
et al., 2024; Price et al., 2018; Shukla et al., 2024). These sequences
of computer vision tasks are called pipelines, illustrated in Figure 3.
However, these pipelines are often developed for post-processing and
do not support real-time analysis in the field. Further, pipelines that
infer complex ecological traits require images with prescribed pixel
resolution, angles, timing and data quality factors determined at run-
time. Images with low resolution or occlusions require expert analysis
to decipher insights or must be discarded altogether.

Autonomous drones are a potential solution to overcoming the
drawbacks of manual missions for collective behaviour studies (Kline
et al., 2023; Luo et al., 2024; Rolland et al., 2025). Most behavioural
studies using drones rely on manual missions, which are difficult to
standardize and scale to enable reproducible experiments. Autonomous
drones can respond to their environment in real-time, using computer
vision and edge Al. Edge Al is an emerging area of research in distrib-
uted computing, where autonomous systems are designed to process
sensor data and make real-time decisions directly on far-edge devices,
such as drones, without relying on cloud connectivity. Studies applying
Al in real-time to enable adaptive data collection are known as Al-driven
animal ecology (ADAE) studies (Kline, O'Quinn, et al., 2024). Adaptive
sampling allows ecologists to optimize data collection over time, which
is particularly important effectively for monitoring dynamic systems,
such as group-living animals (Yang et al., 2020). Applying an ADAE ap-
proach to automate drone missions allows for fast reactions to dynamic
environments and more reliable operations in the field. Autonomous
missions can be programmed with flight parameters to optimize data
collection for downstream computer vision analysis. Further, safety
parameters can be pre-programmed into flight plans to minimize the
risk of disturbing the animals. Drone flight parameters influencing an-
imal behaviour include approach distance, altitude, velocity and flight
frequency (Pinel-Ramos et al., 2024). Autonomous drones, powered by
Edge Al, can scale and standardize collective animal behavioural studies
while reducing the risk of disturbance and improving data quality.

3 | COMPUTER VISION TO INFER COLLECTIVE
ANIMAL BEHAVIOUR FROM DRONE IMAGERY

3.1 | Computer vision pipelines

Automating the analysis of vast volumes of drone footage using Al
techniques, specifically computer vision tasks, allows for the timely
analysis of collective animal behaviour (Gonzalez etal.,2016). Pipelines
of computer tasks assist in automating image analysis by cleaning and
processing the data with limited manual intervention. Inferring animal
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FIGURE 2 Computer vision tasks from drone imagery for collective animal behaviour studies: (a) Tracking and individual identification
of Przewalski's horses with swarm (Ozog'any et al., 2023), (b) Tracking Gelada baboon movement through landscape (Koger et al., 2023),
(c) Individual identification of mugger crocodiles (Desai et al., 2022), (d) behaviour of giraffes and zebras from video (Kholiavchenko, Kline,

Ramirez, et al., 2024).

behaviour from drone imagery requires numerous computer vision
pre-processing tasks (Hughey et al., 2018; Tuia et al., 2022; Valletta
etal., 2017). We illustrate how computer vision tasks create pipelines
to extract ecological insights in Figure 3. We summarize our review
of studies performing one or more computer visions tasks required to
infer behaviour from drone imagery in Table 2.

3.1.1 | Translating biological questions to computer
vision tasks

Translating biological questions to computer vision tasks is challeng-
ing due to the different terminology used by ecological and com-
puter science communities (Rolnick et al., 2024; Tuia et al., 2022). To
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TABLE 2 Summary of animal ecology studies using computer vision and drones.

CV task
D,C

D,C

D,C

D,C

D,C
D,C
D,C

D,C,P

D,C
D,C
D,C

D,C
D,C

D,C

D,C

D,C
D,C
D,C

D,C

D,C, TP
D,C
D,C

IID

IID

11D

Model(s)

CNN, OBIA, Supervised and
unsupervised pixel-based image
classification, Detection moving
wild animals (DWA) algorithm,
Support vector machine, Spectral
thresholding

RetinaNet

Libra-R-CNN

HerdNet

YOLO
YOLO
YOLO

CNN, MorphoMetrix

CNN
CNN

R-CNN, R-FCN, SSD, RetinaNet,
YOLO

Faster R-CNN, RetinaNet
YOLO

Tensorflow, YOLO

Tensorflow, YOLO

Deep CNN
R-CNN
Faster-R-CNN

Faster-R-CNN

ANN, CNN

CNN
Faster-R-CNN
YOLO

Photogrammetry

Hotspotter

ALFRE-ID

CNN (YOLO, Inception-v3)

Accuracy

32%-100%

90%-95%

73% MAP

85% F1

70.45% mAP
95% F1
77%-99% mAP

98%

75%-94%
87%-98%
54%-96% AP

63%-68% MAP
95%

28%-94% (D), 96% (C)

28%-94% (D), 96% (C)

80%-88% Recall
15%-57% Recall
83% Recall

83% mAP

85% F1

75%-94% Rec.

80%

92%, 85% F1

Match ground-truth long-

term monitoring (p>0.1)
95%-100%
82% Top-1

90%

Species

Various

Elephant, zebra, giraffe

Topis, buffalo, elephant,
kob, warthog, waterbuck

Elephant, buffalo, topi,
Uganda kob, waterbuck,
warthog, giant forest hog,
hippopotamus, crocodile,
cow, sheep, goat

Northwestern Serbian deer
Antarctic shags

White-tailed deer, domestic
cow and horse

Humpback, minke, blue
whales

Seals, sea birds, sea turtle
Albatross, penguin

Birds

Waterbird species

Crane

Elephant, giraffe,
rhinoceros, wildebeest,
zebra

Elephant, giraffe, white
rhinoceros, wildebeest,
zebra

Dugong
Various

Rhinoceros

Rhinoceros

Cow, horse, deer, goat

Seal, sea turtle, gannet
Caribou
Swamp deer

Bottlenose dolphin

Zebra, giraffe, jaguar,
lionfish

Saimaa Ringed Seals, whale
shark

Crocodile

RTP

Study

Corcoran, Winsen,
et al. (2021)

Eikelboom
et al. (2019)

Delplanque
et al. (2022)

Delplanque,
Lamprey,
et al. (2023)

Ran¢i¢ et al. (2023)
Cusick et al. (2024)

Krishnan
et al. (2023)

Gray et al. (2019)

Dujon et al. (2021)
Hayes et al. (2021)
Hong et al. (2019)

Kabra et al. (2022)

Chen, Jacob,
et al. (2023)

Petso, Jamisola,
Mpoeleng, Bennitt,
and Mmereki (2021)

Petso, Jamisola,
Mpoeleng, Bennitt,
and Mmereki (2021)

Maire et al. (2015)
Bondi et al. (2018)

Chalmers
etal. (2021)

Chalmers
et al. (2019)

McCraine
et al. (2024)

Dujon et al. (2021)
Lenzi et al. (2023)
Tripathi et al. (2025)
Vivier et al. (2024)

Crall et al. (2013)
Nepovinnykh

et al. (2024)
Desai et al. (2022)
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TABLE 2 (Continued)

CV task Model(s) Accuracy

D,C, T Faster-R-CNN 72%-100% Recall

D,CT YOLO (D,C), BoT-SORT (T) 85% (YOLO), 48%
BoT-SORT

D,CT YOLO (D, C), KF (T) 93% (YOLO), 61% (KF)
mAP

D,CT YOLO (D, C) 93% (YOLO), 61% (KF)
mAP

D,C, T YOLO (D, C), Deep-SORT (T) 95% mAP (YOLO), 79%
MOTP Deep-SORT

D, T, Re-ID YOLO (D), BoT-SORT (T) 62% mAP, 54% HOTA

D,CT CNN, KF 83%-97% TP

P YOLO-NAS-Pose 81 mAP

P Stacked DenseNet 0.35 PMA

P DeeplLabCut 5.21 pixel ATE

B X3D 62% (micro), 87% (macro)
Top-1

B X3D-L, 13D, SlowFast 66%, 65%, 66% Overall
mAP

B YOLO-Behaviour 70%-91%

B D-CNN 81%

Species

Zebra, impala, buffalo,
waterbuck, gelada

Turtle

Przewalski's gazelle

Tibetan antelope

Przewalski's gazelle

Blackbuck antelopes

Antelope, Wasp

Elephant
Mice, flies, zebra
Mice, flies

Zebra, giraffe

Zebra, giraffe

Sparrow, jays, pigeon,
zebra, giraffes

Zebra

2235

Study
Koger et al. (2023)

Noguchi
et al. (2025)

Luo, Li, et al. (2023)

Luo, Zhao,
et al. (2023)

Zhang et al. (2024)

Naik et al. (2024)

Rathore, Sharma,
et al. (2023)

McNutt et al. (2024)
Graving et al. (2019)
Mathis et al. (2018)

Kholiavchenko,
Kline, Ramirez,
et al. (2024)

Kholiavchenko,
Kukushkin, Brookes,
et al. (2024)

Hang Chan
et al. (2024)

Price et al. (2023)

Note: Computer Vision (CV) Tasks: D: detection, C: classification, T: tracking, P: posture/pose, B: Behaviour, IID: individual identification.
Performance: Performance reported in terms of accuracy unless otherwise stated.

Abbreviations: AP, average precision; ATE, average test error; HOTA, higher-order tracking accuracy; KF, Kalman filter; MAP, mean average precision;
MOTP, multiple object tracking precision; PMA, posterior mean accuracy; Rec, Recall; RTP, real-time processing; TP, true positive.

assist in alleviating this challenge, we illustrate each computer task
and its dependencies and provide examples of biological questions
that may be answered at each stage in Figure 3 (Tuia et al., 2022; Xu,
Zhang, et al., 2024). We focus on computer vision tasks commonly
used when executing drone missions and analysing aerial imagery
for behaviour studies. Table 3 provides definitions for the computer
vision tasks. We refer readers to (Weinstein, 2018) and (Valletta
et al., 2017) for detailed reviews on computer vision for animal ecol-
ogy and machine learning for animal behaviour, respectively. Xu,
Wang, et al. (2024) provides an overview of machine learning tech-
niques applied to remotely sensed data, including aerial and satellite
images, for detecting and monitoring animal populations.

Computer vision tasks, including detection, localization, individ-
ual identification and posture, are illustrated in Figure 4, reproduced
from Tuia et al. (2022). Most computer vision tasks, except track-
ing, may be performed on individual images. Before computer vision
tasks can be performed, individual frames from the video stream
must be extracted for analysis. The frame's sampling rate depends
on the drone's camera parameters and the latency requirements
established, as discussed in Section 4.1. Detection and localization
tasks are performed to determine if an animal is in the frame and, if
so, where it is located, shown in Figure 3a2. Detection results are

often recorded as bounding boxes, which draw a rectangular outline
around the region of pixels where the object appears in the frame,
illustrated in Figure 5.

Next, classification is performed to determine the animal's
species, shown in Figure 3a3. Depending on the study, additional
classification tasks may be performed to determine the animal's de-
mographic class, such as age and sex. Detection and classification
tasks are often performed using convolution neural networks (CNNs)
to reduce manual annotation efforts (Bowley et al., 2018; Chalmers
et al.,, 2021; Delplanque, Foucher, et al., 2023; Han et al., 2019;
Kellenberger et al., 2018; Torney et al., 2019). The YOLO CNN mod-
els are the most popular neural network architecture for detection
and classification tasks (Kholiavchenko, Kline, Ramirez, et al., 2024;
Kline et al., 2023; Redmon et al., 2016; Xu, Wang, et al., 2024). If
multiple frames of the same animal are available, it can be tracked,
adding a temporal element to its location, as shown in Figure 3a4. As
shown in Figure 3aé, posture or pose is determined by the relative
location of the key points on the animal's body. Finally, behaviour
can be automatically inferred from tracked video clips or the ani-
mal's posture, as shown in Figure 3a5. If the animal has distinctive
morphological markings, it may be individually identified using a tool
such as WildBook (ConservationXLabs) (Figure 3a7).
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(@ Computer vision tasks for animal behavior
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FIGURE 3 (a) Computer vision tasks for animal behaviour may be included in the execution or analysis phase of drone missions. (b) Al-
driven animal ecology (ADAE) drone mission phases: Planning, execution and analysis, detailed in Section 4.
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TABLE 3 Computer vision tasks for collective animal behaviour studies.

Computer vision task Definition
Detection
Location
Classification
Tracking
Behaviour

Individual identification

I detection and localization

individual identification
[ posture estimation

environmental reconstruction

Identifying the presence of objects (e.g. animals) in an image or video frame

Determining the precise spatial position of detected objects, often using bounding boxes or coordinates
Categorizing detected objects into predefined classes (e.g. species identification)

Following the movement of objects across consecutive video frames while maintaining their identity
Recognizing and categorizing specific actions or patterns of movement exhibited by animals

Distinguishing individual animals within a species based on unique visual characteristics

FIGURE 4 Setting a common vocabulary for computer science and ecology: Mapping computer vision tasks to ecological questions (Tuia

etal., 2022).
3.1.2 | Annotation for computer vision tasks

Annotated data is a requirement for training and fine-tuning com-
puter vision models to complete tasks to infer behaviour automati-
cally. Data annotation completed manually by experts is the gold
standard for dataset creation, though it represents one of the most
significant bottlenecks in deploying computer vision pipelines for
wildlife monitoring (Samiappan et al., 2024). The time investment
for annotation varies considerably by task complexity, with simple
detection tasks requiring less effort than complex behavioural an-
notations with temporal tracking. Multiple annotators working in a
team can accelerate data labelling, but cross-validation protocols are
essential to ensure consistency between annotators and maintain
annotation quality (Samiappan et al., 2024). Inter-annotator agree-
ment metrics should be established early in the annotation process
to identify and resolve discrepancies in labelling criteria. Fine- tun-
ing existing models on custom datasets is typically faster and less

computationally expensive than training from scratch, making it the
preferred approach when suitable pre-trained models are available
(Kline, Stevens, Maalouf, et al., 2025).

Several specialized tools have been developed to streamline
the annotation process for wildlife data. The Aerial Wildlife Image
Repository (AWIR) (Samiappan et al., 2024) provides a centralized
repository for curating wildlife drone datasets, offering standardized
annotation guidelines to ensure consistency and quality while ad-
dressing common challenges such as ambiguity, occlusions and an-
notation bias. The kabr-tools package (Kline, Zhong, Kholiavchenko,
et al., 2025) provides scripts for calculating time budget analysis from
drone videos. It includes instructions for using the Computer Vision
Annotation Tool (CVAT) (CVAT.ai Corporation, 2023) to generate an-
notations of animals from drone footage. This tool was developed to
create the Kenyan Animal Behaviour Recognition (KABR) dataset and
has since been used to develop the BaboonLand (Duporge et al., 2024)
and Multi-Environment, Multi-Species, Low-Altitude Drone (MMLA)
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FIGURE 5 Detection and localization techniques applied to aerial elephant drone imagery (Xu, Wang, et al., 2024).

(Kline, Stevens, Maalouf, et al., 2025) datasets. SmarterLabelMe (Price
& Ahmad, 2023) offers a novel annotation method to reduce temporal
drift between frames, a significant challenge in drone datasets where
both the camera and animals move simultaneously. This tool has been
successfully used to generate large volumes of annotated behavioural
data from video (Price et al., 2023). Conservation Al provides an online
service to automatically process drone footage for animal detection
and species classification using Al (Fergus et al., 2024).

Different computer vision tasks require distinct annotation
approaches, as illustrated in Figure 5. For population-level esti-
mates captured from high-altitude flights, point-level annotations
are common (May et al., 2024), as they are faster to complete and
sufficient for counting tasks where precise bounding boxes are
not required. Species classification and behaviour recognition typ-
ically rely on bounding box annotations (Hang Chan et al., 2024;
Kholiavchenko, Kline, Ramirez, et al., 2024), which provide spatial
context while maintaining reasonable annotation speed. For video
datasets intended for movement and behaviour studies, temporal
tracking annotations that maintain individual identity across frames
are essential, though these represent the most time-intensive an-
notation category (Kholiavchenko, Kline, Ramirez, et al., 2024; Naik
et al., 2024).

3.2 | Computer vision tasks

The current research landscape in Al-driven animal ecology, summa-
rized in Table 2, demonstrates a pronounced emphasis on detection
and classification tasks. Detection and classification collectively con-
stitute approximately 75% of all documented studies, with combined
detection/classification approaches representing the predominant

methodological framework. Convolutional Neural Networks (CNNs)
maintain architectural dominance across the field, manifesting
through diverse implementations including YOLO variants (Cusick
et al., 2024; Krishnan et al., 2023; Ran¢i¢ et al., 2023), Faster R-
CNN configurations (Chalmers et al., 2019, 2021; Lenzi et al., 2023),
RetinaNet architectures (Eikelboom et al., 2019; Kabra et al., 2022)
and specialized CNN implementations (Dujon et al., 2021; Gray
et al., 2019; Hayes et al., 2021), representing approximately 90% of
all surveyed studies. Conversely, transformer-based architectures,
such as X3D models (Kholiavchenko, Kline, Kukushkin, et al., 2024),
remain substantially under-represented, appearing exclusively in
behaviour analysis applications and constituting fewer than 5% of
total studies, indicating limited adoption of contemporary deep
learning paradigms despite their demonstrated efficacy in broader
computer vision contexts. Tracking methodologies account for ap-
proximately 15% of research efforts (Koger et al., 2023; Luo, Li,
et al., 2023; Noguchi et al., 2025), while specialized applications in-
cluding individual identification (Crall et al., 2013; Desai et al., 2022;
Nepovinnykh et al., 2024), pose estimation (Graving et al., 2019;
Mathis et al., 2018; McNutt et al., 2024) and behaviour analysis
(Hang Chan et al., 2024; Kholiavchenko, Kline, Ramirez, et al., 2024;
Price et al., 2023) each represent less than 10% of documented
studies. Performance metrics exhibit considerable variability across
taxonomic groups and computational tasks, with detection and clas-
sification studies typically achieving accuracies ranging from 70%
to 95%, while more sophisticated behavioural inference tasks dem-
onstrate more modest performance ranges of 62%-87%. Critically,
real-time processing capabilities are implemented in merely 15%
of surveyed studies, underscoring a substantial disparity between
laboratory-based analytical capabilities and practical field deploy-
ment requirements for autonomous ecological monitoring systems
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(Bondi et al., 2018; Chalmers et al., 2019; Luo, Li, et al., 2023; Luo,
Zhao, et al., 2023; Tripathi et al., 2025).

3.2.1 | Detection and localization

Detection, shown in Figure 3a2, is the first step in a computer vi-
sion image-processing pipeline and involves annotating the image
to indicate the presence of animals (Brown et al., 2022; Xu, Wang,
et al., 2024). Localization is often combined with detection using
bounding boxes to indicate the presence and location of the ani-
mals in the frame in one step, as shown in fig. 5 from Xu, Wang,
et al. (2024). Detection and localization of animals from drone
videos have been used to study both wildlife (Lamprey, Ochanda,
et al., 2020), and livestock (Andrew et al., 2017; Barbedo et al., 2020;
Brown et al., 2022; Han et al., 2019). For animals that tend to group
closely, distinguishing individuals is challenging (May et al., 2024).
Density maps have been proposed to individually localize animals
that tend to group closely, such as penguins (Qian et al., 2023), sea
lions and elephants (Padubidri et al., 2021). Using density maps for
localization performs well on aerial drone imagery, mainly when the
animals are small, or the photos are low resolution.

An excellent review of detection studies from drone imagery is
provided in (Corcoran, Winsen, et al., 2021). This thorough review
includes 19 studies published between 2015 and 2021 that use com-
puter vision methods to detect animals from drone imagery auto-
matically. Various drone platforms were used: 10 from multi-rotor
drone platforms, 5 from fixed-wing platforms and 1 from a blimp.
The probability of detection ranged from 30% to 100%. Nine studies
used RGB sensors, four used infrared and three used a combination
of both. Flight height above the ground ranged from 20 to 300m,
with an average of approximately 70 m and ground resolution varies
from 0.01 to 13.7 cm/pixels. Various habitats were reported, includ-
ing grasslands, wildlife enclosures, beaches, lakes and rivers, with
canopy coverage ranging from none to moderate.

Terrestrial mammals constitute the largest category of animals
studied using automated drone detection, with spatial resolutions
ranging from 26 to 530 cm. Birds and marine mammals constitute
the second-largest categories, with spatial resolutions of 31-137 and
80-2000cm, respectively. Fish, reptiles and insects have also been de-
tected using remote aerial imaging, although these categories occur
with much less frequency (Xu, Wang, et al., 2024). The maximum spa-
tial resolution of multi-rotor drones is 1 cm; for satellites, itis 30-50 cm
(Xu, Wang, et al., 2024). Detection tasks using machine learning mod-
els are performed at different levels of detail depending on the chosen
annotation method and granularity of the image data. These machine
learning models perform best on drone image datasets that contain
consistent backgrounds in open, flat habitats with limited occlusion
from vegetation (Corcoran, Winsen, et al., 2021). A strong contrast be-
tween the animals of interest and the background for RGB drone data-
sets yields the best detection results (Corcoran, Winsen, et al., 2021).
For cryptic species living in closed habitats with vegetation, drones
equipped with thermal cameras are more effective for detection tasks
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than RGB cameras (B'arbulo Barrios et al., 2024; Corcoran et al., 2019;
Kays et al., 2019; Longmore et al., 2017; Ulhaq et al., 2021).

3.2.2 | Species and demographic classification

Classification typically refers to species-level labelling and categorizing
demographic features, such as age and sex, as shown in Figure 3a3.
Species classification is commonly performed using Al models trained
to categorize species based on their distinguishing morphologies, such
as BioClip (Stevens et al., 2024). Classification is essential for calcu-
lating accurate population estimates from images containing multiple
species, such as those collected with aerial surveys (Ulhaqg et al., 2021).
Aerialimagery datasets from satellites and drones may replace manned
aerial population counts since unmanned surveys are less expensive
and risky and may produce more accurate population counts, as dem-
onstrated in (Eikelboom et al., 2019; Lamprey, Pope, et al., 2020; Wu
et al., 2023). For marine animals, computer vision models have been
used to classify several species of whales (Gray et al., 2019), seals, sea
birds and sea turtles from drone images (Dujon et al., 2021). The aer-
ial imagery of whales was further analysed to determine the size and
length of whales (Gray et al., 2019). Photogrammetry measurements
using drones have been used to measure the body length of bottle-
nose dolphins to identify the juveniles and assess the age-structure
of critically endangered populations (Vivier et al., 2024). Drone im-
agery annotated using Al models to perform classification tasks has
been effective in estimating populations of large bird colonies, which
are difficult-to-count manually (Chen, Jacob, et al.,, 2023; Hayes
et al,, 2021; Hong et al., 2019; Kabra et al., 2022). Species can also
be categorized based on their distinctive behaviour and movement
patterns instead of their distinguishing morphology. Petso, Jamisola,
Mpoeleng, Bennitt, and Mmereki (2021) proposed a technique to
automatically classify species based on the characteristic behaviours
exhibited by the herd using point pattern analysis. This technique of
categorizing species based on their movement is accurate even at high
altitudes, where convolutional neural network (CNN) object detectors
such as YOLO (Redmon et al., 2016) frequently fail due to the small
number of pixels per individual animal. Other work has demonstrated
the feasibility of detecting and classifying animal species using CNNs
based on their hyperspectral imagery. CNNs perform well at detec-
tion and classification tasks even when the animals are obscured by
vegetation (McCraine et al., 2024). Demographic information may be
automatically inferred from the drone imagery, such as determining
juveniles based on their smaller stature or distinguishing marks (Dujon
et al., 2021). Sexual dimorphism of a species and young appearing dif-
ferent than mature adults may cause CNN classifiers to mislabel indi-
viduals (Dujon et al., 2021). In this case, creating separate categories
for different demographic classes is often helpful to improve the classi-
fier's accuracy. Demographic labelling may be included in classification
tasks, such as labelling animals as adults or juveniles, such as (Lenzi
et al., 2023), distinguishing adult and calf caribou from drone imagery.
In addition to improving classification accuracy, demographic informa-
tion provides valuable behavioural context for group-living animals.
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Demographic data allows biologists to determine patterns in individual
behaviours as a function of various factors such as sex, age and rela-

tionship to other individuals in the group (Ozog'any et al., 2023).

3.2.3 | Tracking and movement

Tracking follows an animal moving through concurrent video frames
or images, adding a temporal element to the localization annotation
to create tracks. If sufficient temporal data is available, behaviour
may be inferred by tracking individuals' movements across the land-
scape. Tracking data may infer basic behavioural states from the ani-
mal's velocity, such as walking versus standing. However, this level
of temporal granularity is usually not collected for population count
drone missions, which capture the presence of animals at a single
point in time. Tracking data provides valuable insight into the social
structure of group-living animals (Ozog'any et al., 2023), including
how individuals and groups make decisions and interact with the
landscape, as shown in Figure 2a. Drones have been successfully
used to conduct tracking studies of group-living animals, including
gelada monkeys, Grevy's zebras (Koger et al., 2023), Przewalski's
horses (Ozog'any et al.,, 2023) and antelope (Rathore, Vadavalli,
et al., 2023). MOTHe (multi-object tracking in heterogeneous en-
vironments) for animal video recording has been successfully used
to track both blackbuck antelope and wasps using CNNs for detec-
tion and Kalman filter for tracking (Rathore, Sharma, et al., 2023).
Tracking becomes very challenging if features in the environment
occlude the animals. For example, a study tracking sea turtles at the
surface with the BoT-SORT model had a 100% success rate, but only
46% of underwater turtles could be tracked (Noguchi et al., 2025).
Recently, approaches using computer vision to track group-
living animals through the landscape autonomously have been pro-
posed. Kline et al. (2023) proposes an autonomous tracking system
using YOLO for a track-by-detection approach for herds of zebras.
Similarly, region-of-interest (ROIl)-to- centroid tracking technol-
ogy used to reduce the processing cost of motion interpolation for
identifying and tracking injured antelope (Luo, Zhao, et al., 2023).
An autonomous drone navigation model using YOLO, paired with
a long and short-term memory (LSTM) Kalman filter (KF) has been
deployed to track ante- lope (Luo, Li, et al., 2023). This approach
has been expanded multi-object tracking of individuals using Deep-
SORT (Zhang et al., 2024), which achieved a 79% multiple object

tracking precision (MOTP) performance.

3.2.4 | Inferring pose, actions and behaviour

Behaviour may be inferred directly from video-based behav-
iour tracking or still image-based posture and pose categori-
zation (Saad Saoud et al.,, 2024). Behaviour can be classified
automatically from video using machine learning techniques,
including YOLO-Behaviour (Hang Chan et al.,, 2024), X3D, 13D
or SlowFast (Kholiavchenko, Kline, Kukushkin, et al., 2024)

models. KABR proposes a computer vision pipeline to automati-
cally infer behaviour from drone videos of zebras and giraffes,
as shown in Figure 2d. Computer vision pipelines such as KABR
(Kholiavchenko, Kline, Ramirez, et al., 2024) and Smart-LabelMe
(Price et al., 2023) decrease the amount of manual effort required
to train automatic behaviour recognition models leveraging com-
puter vision techniques to clean the video data. Pipelines have
been proposed to automatically infer behaviour from camera trap
videos, such as (Brookes et al., 2023), which automatically detects
and classifies the behaviour of great apes. Alternatively, behaviour
may also be inferred from the animal's posture/pose using tools
like DeepEthogram (Bohnslav et al., 2021), DeepLabCut (Mathis
et al., 2018) and DeepPoseKit (Graving et al., 2019). Once the spe-
cies is known, the key points on the animal's body can be mapped

to determine its posture, which can be used to infer behaviour.

3.2.5 | Individual identification

Once the animal species is known, its unique markings or morphol-
ogy may be used to visually identify the individual animal captured in
the drone image using tools such as WildBook (ConservationXLabs).
Wild-Book offers platforms for individually identifying over 50 spe-
cies, including zebras, giraffes, sharks and whales. Nepovinnykh
et al. (2024) proposes a computer vision pipeline for re-identification
for species-agnostic patterned animals with small datasets using deep
local feature aggregation. Drone imagery of individual animals must
have sufficient pixels for individual estimation tasks. For tools such as
HotSpotter, which identifies individual animals based on their unique
patterns, at least 700 pixels is typically required to perform individual
identification tasks successfully (Crall et al., 2013; Kline et al., 2023).
Autonomous drones have been used to identify cattle based on their
unique markings individually (Andrew et al., 2017, 2018). Mugger
crocodiles have been individually identified from drone imagery using
a CNN trained to detect their unique dorsal scute patterns visible on
their backs (Desai et al., 2022), as shown in Figure 2c. Individual iden-
tification provides rich insight into the dynamics of group-living ani-

mals (Ozog'any et al., 2023) when combined with behaviour.

3.3 | Hardware and latency requirements for
computer vision models

Computer vision models have minimum hardware requirements for
compute, memory and storage. These requirements are particularly im-
portant to consider if computer vision tasks must be performed in real-
time, such as the studies described in Chalmers et al. (2021) and Bondi
et al. (2018). Animal ecology studies which process computer vision
tasks in the field in real-time are indicated with a v in the RTP column of
Table 2. Edge devices, such as Raspberry Pis, Jetson Nanos or laptops,
may augment a drone's computer hardware. Sufficiently robust edge
devices are vital to meet an autonomous navigation system's latency

requirements, which rely on computer vision models' output speed.
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Latency refers to the time interval between collecting and analysing the
image. Each instance of a computer vision model analysing an image is
called an inference request. Computing capability may be provided by a
central processing unit (CPU), a graphic processing unit (GPU) or both.
Compute is measured by the number of cores, and CPU may also be
measured by clock speed (GHz). Storage is where the data is kept long-
term, whereas random access memory (RAM) stores data temporarily
that the CPU needs to access quickly. For example, Ultralytics recom-
mends a system with a CUDA-compatible GPU, at least 8 GB of RAM
and at least 50 GB of free disk space for dataset storage and model
training for YOLO models (Jocher et al., 2023). Ultralytics also provides
specific YOLO models optimized for inference on edge devices, like
NVIDIA Jetson (Jocher et al., 2023). Table 4 summarizes compute and
memory specifications for popular edge devices.

The latency requirements for a particular study depend on how
quickly the animals move in the frame and what the inference re-
quest is used for in the system. In this step, the data arrival rate is
dictated by the behaviour of the species of interest and its interac-
tions with the drone hardware. If the system uses an inference re-
quest to inform a navigation decision, such as YOLO for autonomous
vision-based tracking (Kline et al., 2023), the latency requirements
should be sufficient to keep the animal in view.

Latency requirements depend on the average speed of the spe-
cies of interest or how fast the drone must move to keep the animals
in view. For example, the required latency may change throughout
the mission if the animals increase or decrease in velocity, such as
when they go from running to grazing. Some computer vision model
inference requests may not be a component of the control system
component but still provide the practitioners with helpful informa-
tion. For example, Meier et al. (2024) calculates the approximate
distance between a drone and an animal in real-time. This gives the
ecologist information about wildlife but is not a component of the
navigation policy. The latency requirements for such studies should

be less strict than those for model components of the control system.

4 | BEST PRACTICES FOR DRONE
MISSION PLANNING, EXECUTION AND
ANALYSIS

Our review shows that most drone-based animal ecology behav-
iour studies leverage Al as a critical component, indicating that such
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studies will continue to take an Al-driven approach. We recommend
that experts carefully consider the possible computer vision pipe-
lines required to analyse the data when designing and deploying
drone-based Al-driven animal ecology (ADAE) studies. An ADAE
study using drones comprises three phases: planning, execution and
analysis, illustrated in Figure 3b. Aerial imagery may be gathered
manually and analysed with computer vision post hoc. However, we
recommend implementing Al into the deployment phase, if possible,
to support autonomous missions, as illustrated in Figure 3. Recent ad-
vancements in edge Al system design make it possible to supportin-
ference requests in the field for real-time analytics and autonomous
flight, such as those implemented in (Bondi et al., 2018; Chalmers
et al., 2021). Edge computing brings computation and storage closer
to the data source, near the network's edge, instead of relying on a
centralized cloud data centre. Processing data locally on edge, for
example, drones, or fog devices, for example, laptops, reduces la-
tency and enables real-time decision-making. ADAE studies control
remote sensing systems at runtime, filtering images, adjusting angles
and changing camera or drone positions to improve data quality (Luo
et al., 2024). Al-driven animal ecology workflows are unlike tradi-
tional field ecological studies because they require computational
resources provisioned at the edge. Like traditional studies, Al-driven
animal ecology studies can fail if the data collected is inadequate to
evaluate the hypothesis. However, Al-driven animal ecology stud-
ies only succeed if the edge platform can quickly adapt runtime to
capture high-quality visual data. Drones are innately adaptive if they
are piloted well. Edge Al can reduce the burden on pilots, allowing
ADAE studies to employ multiple drones and capture data from vast
areas (Bala et al., 2023; Boubin et al., 2022; Kholiavchenko, Kline,
Ramirez, et al., 2024; Luo et al., 2024). Edge Al can reduce reliance
on a manual approach, promote reproducible data collection meth-
odologies and improve data quality.

With edge Al supporting real-time inference in the field, ADAE
studies can use computer vision models to build adaptivity and
autonomy into the data collection process. Taking an Al-driven
approach to animal ecology studies aid in overcoming challenges as-
sociated with computer vision performance, potential disturbance
to the animals and navigation, as discussed in Section 5. Drones
must capture imagery with sufficient resolution to complete each
computer vision task. These minimum resolution requirements may
be integrated into the control software to increase the percentage
yield of usable data, such as ensuring a minimum distance from the

TABLE 4 Summary of common edge devices: Jetson Nano (NVIDIA, 2025), RaspberryPi (RaspberryPi) and a generic GPU-enabled laptop

(Buzzi, 2024).

Device GPU CPU Memory Storage Price (USD)
Jetson Nano NVIDIA Maxwell architecture Quad-core ARM Cortex-A57 4 GB 64-bit LPDDR4, 16 GB $ 99
with 128 NVIDIA CUDA® MPCore processor 1600MHz 25.6 GB/s
cores
RaspberryPi 5 VideoCore VII GPU Broadcom BCM2712 2.4 GHz LPDDR4X-4267 2 GB, 4 GB, $140
quad-core 64-bit Arm SDRAM 8 GB
Cortex-A76 CPU
Laptop GPU 8 GB Intel® Core™ Processor 32GB 1TB $2000
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animals of interest (Meier et al., 2024). Safety features may be pro-
grammed into the autonomous control system to minimize the possi-
bility of spooking the animals. This can used to automate the altitude
guidelines recommended for a specific species (Afridi et al., 2024;
Bennittetal., 2019; Bevan et al., 2018; Duporge, Spiegel, et al., 2021;
Hodgson & Koh, 2016; Mulero-P'azm'any et al., 2017; Schad &
Fischer, 2023; Weston et al., 2020). Automating flight components
reduces the pilot's cognitive burden and increases the reproducibil-

ity of drone datasets.

4.1 | Planning

The planning phase consists of establishing the study objective and
study parameters. ADAE studies ideally are interdisciplinary col-
laborations with experts in animal ecology, computer vision, robot-
ics and edge systems. When working with interdisciplinary teams,
it is crucial to establish shared vocabulary and objectives (Rolnick
et al., 2024). The planning checklist contains three main compo-
nents: (1) the ADAE research question, (2) the aerial system charac-

teristics and (3) legal and ethical considerations.

4.1.1 | Al-driven animal ecology research questions

Two main components of Al-driven animal ecology studies are (1)
the ecological research question and (2) the computer vision model
used to answer the research question. At a high level, the ecologi-
cal research question will include the species studied, the habitat
and the surface-of-interest (Sl) (Rolland, Grgntved, Laporte-Devylder,
et al., 2024). The Sl refers to the part of the animal that contains data
required to answer the ecological question. For example, an ADAE
study seeking to identify whales individually would define the Sl as
the fluke (Rolland, Grgntved, Laporte-Devylder, et al., 2024). In con-
trast, a survey of zebra behaviour would want to capture the side-
view of the animals (Kholiavchenko, Kline, Ramirez, et al., 2024),
illustrated in Figure 6.

The computer vision models capture and analyse the Sl to an-
swer the ecological research question. At the planning step, it is de-
cided which components of the computer vision pipeline will be run
in real-time during data collection and which will be used to analyse
the data post hoc. Once the list of computer vision tasks in the Al
pipeline is determined, practitioners must select which models will
perform each task. Details on the performance of specific models
for these tasks are discussed in Section 3. Practitioners should es-
tablish latency and hardware requirements for the computer vision
models, which will inform the characteristics of the aerial system.
Latency requirements refer to the average time the system takes
to complete an inference request, that is, to run a computer vision
model to make a prediction. Hardware requirements include the
compute and memory required to run and store an Al model. See

Section 3 for details.

4.1.2 | Aerial system characteristics

Aerial system characteristics include the type and quantity of drones
used, the compute sources available, the network characteristics and
the navigation technique. The type of drone influences its battery
life and mission range, while the navigation technique determines
the level of autonomy. The drone model should fit the parameters
established by the ADAE study research question, which considers
ecological factors and computer vision tasks. For example, studies
seeking to count a herd of animals over a large area are well-suited to
fixed-wing drones, as they can quickly cover extensive landscapes. In
addition, detection tasks may be performed on lower-resolution data
collected at higher altitudes. In contrast, behavioural studies requir-
ing high-resolution oblique imagery are better suited to multi-rotor
drones. Their hovering capabilities make them ideal for monitoring
animals, as they can easily transition between different static moni-
toring positions. Additionally, their mobility in three-dimensional
space is less constrained by flight characteristics than that of fixed-
wing drones, allowing for more flexible path planning and deploy-
ment. Depending on the computer vision tasks and models chosen
to run in real-time, additional compute resources may be needed
in the field to meet latency requirements. Compute resources are
commonly additional laptops or RaspberryPis (Jolles, 2021). Devices
used to augment compute resources in the system are called fog
devices (Cao et al., 2020). The network communication bandwidth
between the drones and fog resources should also be considered,
as this impacts the system's ability to meet its latency requirements
(Kline, O'Quinn, et al., 2024).

Finally, the navigation technique may be manual, automatic, semi-
autonomous, or fully autonomous, as summarized in Table 5. Manual
missions rely on human pilots to direct the drone. Semi-autonomous
systems utilize real-time inference from computer vision models to
guide the drone while requiring human oversight to ensure safety
and allow for manual control. Fully autonomous missions coordinate
the mission from start to end under human supervision. Automatic
geo-fencing may assist human pilots in deploying multiple drones si-
multaneously, that is, swarm missions, to prevent collisions. For most
missions, varying degrees of semi-autonomy with human oversight

are preferred to comply with safety regulations.

4.1.3 | Legal and ethical considerations

Potential impacts to both humans and animals should be carefully
considered when planning ADAE missions. The noise produced by
drones may disturb animals, so the navigation process should be de-
signed to minimize the possibility of disturbance (Afridi et al., 2025;
Bennitt et al., 2019; Schad & Fischer, 2023). Gruber (2023) provides
a framework for the ethical assessments of studying animal behav-
iour concerning disturbance and invasiveness, including drones.
Drones flying at lower altitudes may induce vigilance behaviour

(Bennitt et al., 2019). Fast flight speed is associated with increased
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FIGURE 6 Examples of surfaces-of-interest (Sl) shown in red for different species and ADAE missions. From top-left: Behaviour for
Grevy's zebra (Kholiavchenko, Kline, Ramirez, et al., 2024); Individual identification of elephants (Rolland, Grgntved, Laporte-Devylder,
et al., 2024); Demographic classification of whales (Laporte-Devylder, 2024).

noise levels, which may trigger animal responses, while slower
speeds and gradual approaches may produce less intense responses
(Bennitt et al., 2019; Mesquita et al., 2022). The approach dis-
tance, horizontal and vertical, also influences behaviour responses
(Hodgson & Koh, 2016; Mulero-P'azm'any et al., 2017). The flight
frequency influences the degree to which the animals may become
habituated to the drone's presence (Pinel-Ramos et al., 2024). The
background anthropogenic noise in the environment also impacts
species' tolerance to the presence of drones and may influence the
habituation process (Schad & Fischer, 2023). It is vital to obtain the
proper operational permits before conducting drone operations
in order to comply with regulations and manage risk appropriately

(Maalouf et al., 2025). Drone safety entails minimizing ground risk
and air risk. Ground risk includes the potential for a drone to fall and
cause fatalities. Air risk includes the possibility of colliding with a
manned aircraft. Ongoing work, such as developing risk assessment
frameworks like the Specific Operations Risk Assessment (SORA)
methodology, aims to quantify and mitigate these hazards (Joint
Authorities for Rulemaking on Unmanned Systems (JARUS), 2024).
Regulations around autonomous missions may not be established, so
amanual pilot should oversee the mission to ensure safety and main-
tain airspace situational awareness. Maintaining reliable airspace
situational awareness remains challenging, particularly in Beyond
Visual Line of Sight (BVLOS) and autonomous missions (Maalouf
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et al., 2025). This challenge is due to the inherent constraints of cur-
rent detection technologies and the complexities of integrating di-
verse cooperative and non-cooperative data sources. These issues
require further systematic testing to enable accurate intruder detec-
tion and early conflict resolution (Maalouf et al., 2024). Regulations
vary by region and country and may be restricted or banned in wild-
life conservation parks. Common rules mandate that flights remain
within Visual Line of Sight (VLOS), typically within 500m from the
pilot and up to 400 feet Above Ground Level (AGL). Operators must
hold appropriate certification, avoid overflying crowds and densely
populated areas, and obtain special permits for any deviations from
these guidelines. As a general rule, drone missions are not permitted
near airports. Practitioners should also consider the ethical consid-
erations of using drones to study animal behaviour and the poten-
tial impact on both people and animals, both positive and negative.
Working with animals may require the Institutional Animal Care and
Use Committee (IACUC) permit to conduct research in the United
States or an equivalent institution in other countries. The social im-
pact of drone studies should also be considered. Surveillance tech-
nologies such as drones may inadvertently capture humans, causing
privacy concerns. Engaging with populations that drone studies may
impact is an important component of conducting socially responsi-
ble science (Sandbrook et al., 2021).

4.2 | Mission execution

421 | Computer vision tasks

The first execution phase includes collecting imagery data with
drones of the animals of interest or focal species and extracting the
collected frames for analysis, shown in Figure 3al. Next, detection

and localization tasks are performed, shown in Figure 3a2. Detection

and localization answer the following questions: Is there an animal in
this frame? If so, where is the animal located in the frame? If an ani-
mal is detected, classification may be performed on the image region
containing the animal, Figure 3a3 to determine species, sex or other
demographic category. Once classification is complete, additional
tasks may be performed, including tracking, posture, behaviour and
individual identification (Figure 3a4-7). These computer vision tasks
may inform runtime adaptations as long as the upstream dependen-
cies are also performed and the latency requirements for the naviga-
tion policy are met. Runtime adaptations include relocating drones,
adjusting the sampling duration and updating the edge resource
management to respond to workload demands.

4.2.2 | Navigation
Drone studies typically utilize one of four navigation methods: man-
ual, automatic, autonomous or hybrid, summarized in Table 5. Manual
piloted missions offer flexibility, allowing pilots to adjust trajectories
in real-time based on environmental conditions or animal behaviour
(Ryan et al., 2022; Stein & Georgiadis, 2006). However, this approach
raises concerns about reproducibility, places a heavy burden on pi-
lots and limits the scope to small areas and short durations. The data
collected manually is insufficient for long-term wildlife behaviour
studies and is costly and time-consuming (Kholiavchenko, Kline,
Ramirez, et al., 2024; Kline, Berger-Wolf, et al., 2024). Additionally,
these missions require extensively skilled operators in the fields
of animal behaviour, environmental analysis and piloting Ryan
et al. (2022). Consequently, relying on a limited operator workforce
is not a sustainable solution for large-scale data collection.
Automatic flight, which uses path-planning tools that allow a
drone to follow a set of specified GPS waypoints, can reduce the

burden on the pilot and generate suitable drone behaviours for

TABLE 5 Comparison of drone navigation methods for animal behaviour studies.

Method Advantages Disadvantages Best use cases
Manual e Flexibility in real-time e Poor reproducibility e Situations requiring immediate human
adjustments e Heavy burden on pilots judgement
e Adaptable to environmental e Limited to small areas e Complex, short-duration missions
conditions e Limited duration
e Responsive to animal behaviour e Requires extensively skilled operators
Automatic e Reduced pilot burden o Inflexible once launched e Population counts
e Follows pre-planned GPS e Unable to adapt to dynamic features e Environmental mapping
waypoints e Predefined flight path limitations e Static feature surveys
e Efficient for systematic surveys
Autonomous e On-board decision-making e Complexity of implementation o ADAE studies
e Dynamic trajectory planning e Requires sophisticated Al systems e Wildlife monitoring
e Leverages Al capabilities e Dynamic feature tracking
e Addresses operator shortage
Hybrid e Combines autonomous e More complex system architecture e Complex missions requiring both

capabilities

Maintains human oversight
Balances automation with
manual control

Requires both Al systems and skilled
operators

automation and human judgement
e Situations where reliability and
adaptability are crucial
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con- ducting ADAE studies. This methodology efficiently performs
population counts or environmental mapping (Hodgson et al., 2018;
Wood et al., 2021). However, this approach is unsuitable for adaptive
tracking of dynamic features, such as animals in an environment: the
flight path is defined before taking off. Autonomous drone solutions
represent a promising approach for ADAE studies, offering stan-
dardized data collection for Al-powered wildlife monitoring while
addressing the shortage of skilled operators. These drones leverage
on board decision-making capabilities and computer vision models
to dynamically adjust their flight paths in response to environmen-
tal conditions (Faessler et al., 2016; Rolland, Grgntved, Christensen,
etal., 2024).

Missions conducted using commercially available UAS typically
use a hybrid approach, a combination of manual and automatic capa-
bilities. Manual missions may still use real-time computer vision mod-
els to inform the pilot's decisions, such as distance estimates (Meier
et al., 2024). Manual missions are straightforward to execute with
commercially available drones but require specialized expertise in
a particular species and habitat to collect data (Hughey et al., 2018;
Kholiavchenko, Kline, Ramirez, et al., 2024; Ozog'any et al., 2023).
For an automatic mission, the drone executes pre-programmed logic
that does not require direct human intervention. Common examples
of automatic manoeuvres available on commercial UAS include au-
tomatic launch, automatic return-to-home, flying to predetermined
waypoints and automatic tracking of people or vehicles (Hadidi
et al., 2021). Autonomous or semi-autonomous methods use com-
puter vision models as an input into the control system, such as the
tracking-by-detection methods (Kline et al., 2023; Luo et al., 2024),
illustrated in Figure 7a.

4.3 | Data analysis and management
4.3.1 | Short-term data management

Managing the storage, transfer and analysis of the large video files
produced by drone missions in remote field sites is inherently chal-
lenging. During the Kenyan Animal Behaviour Recognition (KABR)
project, which captured behaviour 4K video data of zebras and
giraffes, each flight generated 20.5 GB of footage. The team flew
roughly six missions per day for 3weeks, yielding approximately 1 TB
of total data, mainly video, plus telemetry files, photos and field notes
(Kholiavchenko, Kline, Ramirez, et al., 2024; Kline, Kholiavchenko,
et al., 2024).

A practical workflow for managing such extensive data in
resource-constrained field environments begins by downsampling
the live video feed to 1080p (Kline, Zhong, Irizarry, et al., 2025). A
ground-control laptop equipped with a modest GPU (at least 4 GB
VRAM) and 16-32 GB RAM can then display telemetry and exe-
cute lightweight CNN models in real time to support autonomous
operations. The native 4K or 5K footage is simultaneously written
to the drone's SD card for later, fine-grained analysis. To prevent
1/0 bottlenecks during data offloading, the laptop should reserve

2245

ample free disk space for temporary files. Inmediately after each
flight, or, at minimum, at day's end, the SD card and accompanying
telemetry logs should be duplicated to an external solid-state drive
(recommended minimum of 1 TB). This onsite redundancy markedly
reduces the risk of data loss while preserving the full-resolution ar-
chive for subsequent processing. Once a stable connection is avail-
able, the data is synchronized to cloud storage (25 megabits per
second of sustained bandwidth for uncompressed 4K video, much
less for stills or compressed clips). This staged stream-low, store-high,
sync-when-able strategy minimizes bandwidth bottlenecks, pre-
serves data fidelity and ensures that downstream pipelines, whether
local, cloud or HPC, receive a complete, versioned archive of data
collected in the field.

4.3.2 | Post hoc data analysis

Once the drone mission is complete, the imagery data will be ana-
lysed to answer the ADAE study's research question. Computer
vision models that require more compute, memory or processing
time than is practical to support in the field or are not required
for navigation should be implemented post hoc. In addition to the
imagery data, the telemetry data should be analysed to determine
how future missions may be improved. Telemetry data captures
the drone's status during the mission, including altitude, GPS lo-
cation, battery level, heading and gimbal position. For example,
determining whether sufficient pixels were collected to infer be-
haviour or if the Sl of each individual was collected with adequate
granularity (Rolland, Grgntved, Laporte-Devylder, et al., 2024).
Kline, Berger-Wolf, et al. (2024) analysed the KABR telemetry
dataset to determine the optimal altitude, speed and bounding box
size to infer behaviour from oblique aerial videos. Integrating this
insight into the autonomous tracking model improved navigation

performance by 18%.

4.3.3 | Long-term data storage and accessibility

Large datasets generated by ADAE studies require systematic or-
ganization and post-processing protocols to ensure efficient analy-
sis workflows, building upon established Imageomics best practices
(Balk et al., 2024). Kline, Zhong, Kholiavchenko, et al. (2025) pro-
vides guidelines for managing large video datasets throughout the
annotation process, including systematic metadata embedding in
filenames following the format YYYYMMDD-species-location-
videoidXX.mp4 to facilitate dataset organization and automated
processing workflows. For sharing datasets with the broader re-
search community, preferred hosting solutions for machine learning-
ready ecological datasets include Harvard Dataverse, Kaggle,
Hugging Face and OpenML platforms. Following open-source
dataset best practices, data contributors should provide compre-
hensive documentation, including dataset cards, version control
mechanisms, standardized train/validation/test splits and clear
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licensing information with a preference for permissive licences that
facilitate reuse while respecting ethical considerations for wildlife
data. Annotation platform optimization requires strategic resolution
management to balance computational efficiency with analytical ac-
curacy (Kline, Zhong, Kholiavchenko, et al., 2025). High-resolution
drone footage (4K-5K) presents processing challenges in annotation
platforms such as CVAT (CVAT.ai Corporation, 2023), including ex-
tended buffering times and memory limitations. Downscaling raw
video files to lower resolution before uploading significantly im-
proves platform responsiveness while preserving sufficient detail
for accurate manual annotation. However, coordinate transforma-
tions must be carefully managed when scaling annotations back to
the original resolution for subsequent processing steps. Large-scale
video datasets often exceed single-system storage capacity, neces-
sitating distributed storage strategies. CVAT instances require a
minimum of 20% free memory to maintain stable operation, often
necessitating separation of raw data storage from annotation pro-
cessing environments. Research-optimized data transfer tools
such as Globus (Foster, 2011) provide robust solutions for moving
large video datasets between storage systems with secure, high-
throughput transfers and data integrity verification. This distributed
storage approach enables resource optimization while aligning with
modular workflow design principles (Balk et al., 2024).

4.4 | Example ADAE drone missions

Real-world ADAE missions (Figure 7; Table 6) succeed only when
planning, execution and analysis are tightly integrated.

e Kenyan Animal Behaviour Project (KABR). The fine-scale behaviour

analysis of zebras and giraffes necessitated fully manual, expert

piloting at low altitude, with no edge compute available during

(a) ADAE Mission Exectution
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i Navigation
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', Video or Computer
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Commands Autonomous

Policy
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1
1
1
1
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\,

flights. The entire 4K RGB stream (~10GB per mission) was off-
loaded daily and later trimmed to focus on individual animals for
automatic behaviour labelling with the X3D model. The full vid-
eos, cropped scenes, telemetry and field notes are retained for
future mission refinement and made publicly available.

e SPOT. Anti-poaching operations demand low latency and low
bandwidth. Every 720p/25 fps thermal frame is processed at ~5
fps by Faster R-CNN, either locally on a K40 GPU or remotely
on AzureBasic/AzureAdvanced GPU VMs, with 100% of incom-
ing video frames analysed in the field. The videos are retained
for further detection model refinement, but are not made publicly
available due to security and privacy concerns.

o WildWing. Autonomous herd-centroid tracking was deployed on
cost-effective hardware, a Parrot Anafi and GPU laptop, downs-
ampling 1080p video at 1 fps during mission execution. Key-
frames are processed on a field laptop to update the navigation
in real time. The full videos, cropped scenes, telemetry and field
notes are retained for future mission refinement, and made pub-
licly available.

e WildLive. Near real-time 4K multi-animal tracking directly on
a Jetson Orin AGX edge device in the field. The full-resolution
frames enter a SAHI sampler, YOLOv-based detect/segment and
finally a sparse optical-flow tracker at 7.5 fps (4K) or 17.8 fps (HD).

These four ADAE missions illustrate how each study's specific Sl
and species requirements determined at the planning stage cascade
through navigation autonomy and edge-compute choices to dic-
tate (1) how much of the video stream is processed in the field and
(2) how much is preserved for reproducibility. Making both layers
explicit helps new ADAE practitioner's budget storage, bandwidth
and annotation resources more realistically. For example, the KABR
project's planning focus on detailed behavioural analysis of spe-

cific species necessitated manual expert piloting during execution

(b) ADAE Mission Data Analysis

S 8

Cloud Storage

=]

Edge Hardware

UAS Ground-Control Station

Data Annotation

11I1=0 O
GPU support for Al-enabled
model training Analysis

7, Mobile
L Device

FIGURE 7 ADAE Drone Mission Deployment and Execution. (a) Unmanned Aerial System (UAS) Field Deployment adapted from
WildWing (Kline, Zhong, Irizarry, et al., 2025). The UAS consists of three components: Drone(s), control software and ground-control station,
typically a laptop equipped with GPU. The control software connects the drone to the autonomous navigation policy and allows users to
monitor the system during deployment. The navigation policy analyses video frames using computer vision models and determines the next
commands to send to the drone. The control software is hosted on the laptop, where the users can also monitor the UAS status. (b) Analysis
tasks performed after the mission is completed include storing data in the cloud, data annotation, model training and Al-enabled analysis.
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TABLE 6 Examples of real-world ADAE drone missions.

Planning

Execution

2247

Analysis

Species/Habitat e Surface-of-
Interest (SI) e Aerial System e Data &

Project Schema Plan

KABR (Kholiavchenko, Kline,
Ramirez, et al., 2024)

Zebra, Giraffe (Kenya) e Lateral flank
behaviour e DJI Air 2S e Data plan:
4K @ 30 fps RGB — 10 GB/mission,
daily off-load schedule, CSV + EXIF
metadata template

SPOT (Bondi et al., 2018) Poachers + Wildlife (Botswana) e
Human/animal thermal signatures e
Matrice + FLIR e Data plan: 720 p/25
fps thermal stream, 7-day on-board

ring buffer, JSON alert schema

WildWing (Kline, Zhong,
Irizarry, et al., 2025)

Grevy's Zebra, Giraffe, Przewalski's
Horse (Ohio) e Herd centroid
Parrot Anafi + GPU laptop e Data
plan: 1080 p RGB, 1 fps key-frame
extraction, flight mission metadata,
projected 20 GB/mission

Zebra, Giraffe, Elephant in Ol Pejeta
(Kenya) e Individual ID + trajectories
e DJI Mavic 3 E/Pro + custom quad,
Jetson Orin AGX e Data plan: 4K/30
fps RGB (3 GB per 3 min); per-frame
bounding box annotations (JSON)

WildLive (Dat et al., 2025)

Manual flight variability, behaviour
annotation complexity

Cross-project challenges

Navigation e CV tasks e Real-
time Pipeline o In-field Storage/
Backup

Manual piloting e Detection —
ID — Behaviour (offline) e No
edge compute e SD card mirror
to rugged hard drive at day-end;
field notebook logs IDs of cards/
devices

Semi-autonomous patrol with
live-stream dashboard for
manual supervision e Real-time:
Faster R-CNN @ 5 fps on K40
GPU (field laptop) or Azure-
Basic NC-6 (Tesla K80) via SFTP
+ Python; AzureAdvanced
TensorFlow-Serving cluster (NC-
6, Kubernetes, 4-thread client,
ProtoBuf) batches frames and
returns lightweight annotations
to minimize bandwidth

Autonomous herd tracking e
Real-time: YOLOv5su detect/-
track — waypoint update e
Frames, telemetry and videos
saved to external hard drive,
auto-sync to field laptop nightly

Operator-assisted flight e Near
real-time: SAHI sampling +
YOLO detect/segment — LK
sparse optical-flow tracking
@ 17.8 fps (HD)/7.5 fps (4K) e
Stores cropped detections +
point trajectories

Night operations, human/animal
classification, autonomous
navigation

Post hoc Al tasks e Curation e
Long-term Storage/Sharing

Two-stage annotation (CVAT) —
X3D/I3D behavioural models o
Cluster post-proc, versioned by
DVC e Dataset (1 TB) stored on
Ohio Supercomputer; Processed
portion of dataset and code +
models public via Zenodo DOI

Post hoc detection model
refinement e Training/test videos e
Limited sharing due to privacy and
security concerns

Automated pipeline — Telemetry
alignment, behaviour classification
e Moderate volume (200 GB total)
e Final dataset and code + models
public via Zenodo DOI

Tracklet smoothing, benchmark vs
SOTA tracking methods e WildLive
Dataset: 22 videos, 19,139 frames,
215,800 boxes + masks (250 GB) e
Versioned with DVC, Final dataset
and code + models to be made
public via Zenodo DOI

Limited labelled data, processing
speed, data storage scaling

Note: These studies reveal that successful ADAE deployment requires careful integration across all three phases, with planning decisions (species,
hardware, surface-of-interest (Sl)) directly constraining execution methods (navigation autonomy, real-time processing) and analysis capabilities (data
storage, processing pipelines). Early planning decisions (data rates, schema, storage budgets) constrain in-field capture and backup strategies, which
in turn shape post hoc analysis pipelines and long-term archiving. DVC = Data Versioning Control, this allows researchers to reproduce experiments
exactly, roll back to previous versions of data and track how data changes over time.

Abbreviations: fps, frames per second; SOTA, state-of-the-art. SAHI, Slicing Aided Hyper Inference.

and computationally intensive post-processing with specialized
behaviour models, while SPOT's anti-poaching mission require-
ments led to semi-autonomous patrol routes with thermal imaging
and minimal data storage optimized for real-time alerts. Similarly,
WildWing's planning goal of standardized herd tracking informed
the choice of autonomous navigation with cost-effective hardware,
enabling automated data pipelines, whereas WildLive's emphasis
on high-resolution individual tracking required powerful on-board
processing during execution and large-scale dataset management

during analysis.

5 1

CHALLENGES AND SOLUTIONS

FOR STUDYING COLLECTIVE ANIMAL
BEHAVIOUR WITH DRONES AND

COMPUTER VISION

51 |

Computer vision challenges and solutions

Drones must capture photos or videos at sufficient granular-
ity to perform each computer vision task in the pipeline for in-

ferring behaviour, as shown in Figure 3. If there are insufficient
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pixels to detect the animals or classify the species, the behaviour
is unlikely to be determined manually or using computer vision
models. Petso, Jamisola, Mpoeleng, Bennitt, and Mmereki (2021)
found that environmental factors such as camouflage, occlusion,
shadows and seasonal vegetation changes reduce wildlife detec-
tion accuracy by obscuring distinguishing features, with additional
variability introduced by sun position and background elements
like clouds and non-target animals. Inconsistent behaviour and
differing backgrounds or habitats adversely affect the perfor-
mance of ML models in performing computer vision tasks (Dujon
et al., 2021). Species classifiers may struggle with populations that
exhibit sexual dimorphism or are young and appear different from
adults (Dujon et al., 2021). Open habitats with little occlusion from
vegetation and consistent background perform best for detecting
large animals from fixed-wing drones and drones equipped with
RGB sensors (Brown et al., 2022). Drones equipped with hyper-
spectral imagery sensors also detect animals partially occluded by
vegetation (Longmore et al., 2017; McCraine et al., 2024). In habi-
tats with more vegetation coverage or occlusion, infrared (ther-
mal) and multi-rotor best detect animals, particularly if the animals
are small (Brown et al., 2022), or occluded by shadows in low-light
conditions (Krishnan et al., 2023). Fine-tuning existing models on
curated wildlife drone datasets improves accuracy and generaliz-
ability across habitats (Kline, Stevens, Maalouf, et al., 2025).

Animal behavioural studies using machine learning techniques
often suffer from the long-tailed distribution problem. Rare species or
behaviours may infrequently occur in the dataset, causing a long tail
in which most of the samples used in training are of common cate-
gories (Blair et al., 2024; Kholiavchenko, Kline, Ramirez, et al., 2024;
Kline, Stevens, Maalouf, et al., 2025). Machine learning models
trained on such unbalanced datasets struggle to categorize rare cat-
egories accurately. This challenge is reflected in the accuracy results
from KABR (Kholiavchenko, Kline, Ramirez, et al., 2024), which re-
ported an 87% accuracy per instance in predicting behaviour but
a 61% Top-1 accuracy per class accuracy. MammalNet reported a
Top-1 accuracy of 51% for animal behaviour classification from video
(Chen, Hu, et al., 2023). This issue is addressed in (Zheng et al., 2021),
which offers a solution for improving the accuracy of rare species
classifications from drone videos using a self-supervised pretrain-
ing technique. Synthetic data produced by generative Al may aug-
ment sparse datasets to increase the training sets of rare species
or difficult-to-capture behaviours (Bonetto & Ahmad, 2024). Beyond
data augmentation, generative Al shows promise for extending ob-
servations of ecological patterns and increasing the accessibility of
ecological data, potentially transforming how ecologists approach
data-scarce research questions (Rafiq et al., 2025).

Digital twin approaches are emerging as another powerful tool
for precision biodiversity monitoring, creating virtual represen-
tations of ecosystems that can integrate real-time data from mul-
tiple sources, including drone surveys (Sharef et al., 2022). These
digital twins enable continuous biodiversity projection modelling
and facilitate incremental learning while reducing uncertainties

from the complex factors contributing to biodiversity declines.

Realistic simulation environments also accelerate the development
and validation of autonomous navigation approaches by providing
controlled testing conditions that would be impractical or risky to
replicate in the field (Grushchak, Kline, Pianini, & Farabegoli, 2024).
These virtual environments enable rapid iteration of flight parame-
ters, obstacle avoidance algorithms and animal tracking behaviours
without the ethical concerns of repeated wildlife disturbance or the
logistical constraints of field deployments. By testing and refining
autonomous drone systems in simulation first, researchers can en-
sure safer and more effective field operations while reducing the
time and cost associated with iterative field testing.

5.2 | Infrastructure and navigation challenges and
solutions

Automatic and semi-autonomous navigation policies offer signifi-
cant advantages over manual flights, as discussed in Section 4.2.2.
However, these missions are difficult to implement in the field due
to infrastructure and navigation challenges. Most computer vision
models are initially developed to be run on powerful supercomput-
ers. This limits the deployment of autonomous aerial systems reliant
on computer vision models since running large, powerful models in
the field on edge devices is challenging. Further, designing naviga-
tion approaches with sufficient flexibility to be generalizable across
multiple settings to be effective on different populations, species
and habitats is challenging.

Autonomous drones have proven reliable when deployed in do-
mains such as digital agriculture and search and rescue, but little
guidance exists on drone navigation policies for animal behaviour
studies. Automatic manoeuvres, such as pre-programming a drone
to fly to a set of specified GPS waypoints, may reduce the burden
on manual pilots and aid in experimental replicability. However, au-
tomatic or pre-programmed UAS are often unsuitable for collecting
data on multiple moving targets, such as animals, without disturbing
them. Automatic manoeuvres are not well-suited to complex, dy-
namic scenes required for surreptitiously conducting surveillance
missions on multiple moving targets. The behaviour and movements
of the multiple moving animals are often not known before the mis-
sion begins. As such, pre-programmed routes are ineffective for
long-term tracking required for animal ecology studies.

Drone navigation policies should aim to be non-disruptive and
not induce the animals to alter their behaviour. Autonomous, non-
disruptive drone navigation policies have been proposed for more
general settings, but more research is required to apply these ap-
proaches to animal ecology missions. Previously proposed covert
surveillance of moving objects formulate the problem as adversar-
ial (Kouzeghar et al., 2023; Zhou et al., 2022), which may not be
applicable to animal studies. For example, one drone performing
evasive manoeuvres to follow a moving vehicle undetected (Huang
et al., 2022). Covert surveillance has been explored (Hu et al., 2021),
but the problem is formulated as a single drone following a single
subject, limiting its usefulness in capturing group behaviours. Such

A ‘01 “$TOT X0ITIFOT

fsaq//:sdny woyy paproy

sdpy) SUONIPUO) pue suLd L o1 39S “[§Z0Z/01/20] U0 AIeiqy QWU ASJIA 401 SIWIPEY AYISHIZIMYAS AQ 8Z10LXO1Z-1H0T/1111°01/10p/w00 K[m A

10)/W0d K[ IM'A:

-pue-

ASUAOIT suowWWo)) dAneal) a[qeorjdde oy Aq pauIaAoS are sajo1Ie YO ash Jo sa[nI 10J AI1eIqI] duIUQ AJ[IAY UO (SUONIp



KLINE ET AL.

an approach does not consider the undesirable noise produced from
these evasive manoeuvrers or the group dynamics of multiple mov-
ing targets.

The ability to track moving targets with multiple drones, that
is, swarms, has been explored (Bandarupalli et al., 2023; Parker &
Emmons, 1997). Multiple drones working collectively in a swarm can
collect data from various angles, providing better coverage of the
animals (Naik et al., 2024; Rolland et al., 2025). Multiple views of
the subject(s) increase the likelihood of collecting valuable biolog-
ical behaviour data, such as rare behaviours like fighting or mating.
Commercially available drones are usually limited to 30 minutes of
flight time, which decreases in the presence of wind. Swarms over-
come drone hardware constraints, namely limited power and com-
puting, to extend mission time and throughput. However, swarms
may produce excess noise and may require more edge infrastructure
to support the navigation system's compute requirements.

Drones equipped with on-board GPUs, such as those incorporat-
ing a Jetson Nano as in the WildLive project Dat et al. (2025), enable
low-latency execution of computer vision models directly on the air-
craft, bypassing the need to transmit data to an external edge device
for inference. This capability is essential for time-sensitive ecolog-
ical monitoring tasks or field sites with limited or unreliable com-
munication infrastructure (Kline, O'Quinn, et al., 2024). However,
the inclusion of GPU hardware and high-capacity batteries signifi-
cantly increases payload weight, necessitating the use of larger UAV
platforms that demand specialized operator training and regulatory
clearance. These heavier-class drones also tend to be more costly
and acoustically disruptive, which may constrain their suitability for
monitoring noise-sensitive species or conducting unobtrusive be-
havioural studies.

5.3 | Potential disturbance from drones

Ecologists have increasingly expressed concernsregarding the poten-
tial risks posed by drone disturbances to wildlife (Schaul et al., 2015).
Edge-enabled autonomous navigation equipped with safeguards
could reduce the disturbance. The mere presence of drones can arti-
ficially induce animal behaviours, resulting in biased datasets (Afridi
et al., 2025). Variability in reactions to drones is noted across spe-
cies, demographic classes and habitats, with some studies detailing
these differential responses (Bevan et al., 2018; Brisson-Curadeau
et al., 2025; Schad & Fischer, 2023). Comprehensive research in-
vestigating terrestrial mammals' responses to drones reveals that
animal behaviour is highly dependent on the drone's distance and
altitude relative to the species in question and their habitat (Bennitt
et al., 2019). Studies consistently show that flight altitude, approach
distance, flight speed and drone noise levels significantly affect
wildlife responses (Mesquita et al., 2022). General guidelines sug-
gest maintaining minimum distances of 30-100m depending on
species, with birds typically showing minimal reactions when drones
maintain distances over 40m during take-off (Weston et al., 2020).
Larger mammals like elephants and giraffes become more vigilant at
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50-80m, respectively (Bennitt et al., 2019), while marine mammals
such as bottlenose dolphins display behavioural changes primarily at
lower altitudes with responses intensified by longer hovering times
(Fettermann et al., 2019; Giles et al., 2021).

Flight patterns, engine types and drone size also influence an-
imal responses (Mulero-P'azm'any et al., 2017). Species sensitivity
to drone noise depends on frequency and intensity, characterized
by audiograms, which can help provide a basis for determining opti-
mal drone flight altitudes to minimize disturbance (Duporge, Spiegel,
et al., 2021). These findings highlight the need for species-specific
flight altitude considerations to minimize wildlife disturbances from
drones. However, flying at higher altitudes may also limit the abil-
ity to detect animals and accurately classify their species and be-
haviour (Petso, Jamisola, Mpoeleng, & Mmereki, 2021). For instance,
an analysis of the KABR data found that drone missions conducted
at altitudes between 10 and 30m generated the best data for in-
ferring zebra behaviour Kline, Berger-Wolf, et al. (2024), which is
lower than the altitudes recommended in other reviews of zebra re-
sponses to drones (Bennitt et al., 2019; Petso, Jamisola, Mpoeleng, &
Mmereki, 2021). Therefore, mission planning should carefully weigh
these parameters to strike a balance between achieving the neces-
sary accuracy and minimizing disturbance to wildlife (Hodgson &
Koh, 2016; Schad & Fischer, 2023).

6 | FUTURE TRENDS
6.1 | Edge Al for real-time processing

Traditionally, animal ecology behaviour studies have relied heavily
on offline data processing. However, recent research has begun
exploring the potential for more immediate data analysis with
Edge Al. As shown in Table 2, we identified five studies using real-
time computer vision inference to collect drone data from 2018 to
the present. Edge Al systems perform computations at the edge
near the source of the data, as opposed to sending data to a cen-
tralized cloud server (Singh & Gill, 2023). Edge Al requires massive
amounts of data and computing capacity. Still, recent advance-
ments in sensors, hardware and communication technology like 5G
and 6G networks (Jolles, 2021; Singh & Gill, 2023) have made this
possible on the edge in remote regions. Ongoing improvements in
the performance of edge processors will enable the deployment
of more sophisticated computer vision on edge devices in the fu-
ture. Researchers are exploring using various mobile computing
devices, such as ruggedized laptops, tablets or custom-built port-
able units, to augment in situ processing capabilities. Such devices
can serve as intermediate processing nodes, bridging the gap be-
tween data collection points and cloud infrastructure. Techniques
such as model pruning, quantization and knowledge distillation are
being explored to run complex models on resource-constrained
edge devices (Eccles et al., 2024; Giovannesi et al., 2024; Kline,
O'Quinn, et al., 2024; O'Quinn et al., 2025). These approaches
show promise for deploying advanced algorithms on edge devices
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with limited resources, though their effectiveness in ecologi-
cal field studies needs further research (Jolles, 2021; Whytock
et al., 2023).

6.2 | Computer vision for the edge

Edge computing and computer vision are increasingly applied to
Al-driven animal ecology studies, enabling new data collection
and analysis approaches. This convergence of technologies has
the potential to enable real-time analysis of aerial data gathered
from drones using computer vision. As the volume and complex-
ity of ecological data continue to grow, efficient computing ap-
proaches are needed to handle the unique challenges posed by
aerial monitoring of animals in remote environments. Drones
equipped with on-board GPU are increasingly available, ena-
bling real-time, on-board processing for autonomous navigation
policies (Andrew et al., 2019; Dat et al., 2025; Kline, Berger-Wolf,
et al., 2024; Luo et al., 2024). Currently, applications of drone im-
agery to study animals are dominated by detection studies, con-
sisting 75% of studies (Table 2). A recent review of deep learning
for animal detection in drone imagery identified 200 studies on
this topic (Axford et al., 2024).

As edge computing becomes more widely adopted, we predict
more studies traversing ‘further down the pipeline’ to tracking and
behaviour detection computer vision tasks. Tasks including individ-
ual identification, pose estimation and behavioural analysis consti-
tute less than 10% of documented studies, representing a significant
opportunity for research contributions in this area. Latency-aware
autonomous tracking models (Luo, Li, et al., 2023) and fine-tuned
YOLO models designed for edge deployments such as WildARe-
YOLO (Bakana et al., 2024) and WilDect-YOLO (Roy et al., 2023)
may be tuned for ADAE. At the same time, we anticipate an in-
creasing number of tasks to be done in real-time at the edge, as has
been done for detection and classification tasks (Bondi et al., 2018;
Chalmers et al., 2019, 2021; Meier et al., 2024; Tripathi et al., 2025).
As noted in (2025), numerous Al models exist for terrestrial biodi-
versity monitoring, but technological advancements are needed in
robotics platforms, sensors, power sources and data handling to
fully deploy them in robotics and autonomous systems.

Aerial imagery collected with drones poses new challenges for
the computer science community. Meeting these challenges will re-
quire innovation in both collecting higher-quality datasets with auto-
mation and computer vision models tailored for deployment on the
edge. For example, Lee et al. (2021) proposes an algorithm to quickly
detect animals from drone imagery without training data, and
Zhang (2023) proposes a specialized version of YOLO for detection
from drone imagery. Such datasets will enable more sophisticated
computer vision models to be trained for detection, localization and
classification tasks for animal ecology applications, such as (Chappidi
& Sundaram, 2024; Jiang & Wu, 2024). Kellenberger et al. (2019) pro-
poses a novel active learning strategy to reuse CNNs across differ-
ent domains so models can be used to analyse datasets collected in

distinct habitats at other times. Ma et al. (2022) proposes a technique
for counting herbivores in drone imagery as detecting small targets
by optimizing Faster-R-CNN for these tasks. The development of
such models relies on the availability of high-quality datasets to
train on, such as the Wildlife Aerial Images from Drone (WAID) (Mou
et al., 2023) and the Multi-Environment, Multi-Species, Low-Altitude
Drone (MMLA) datasets (Kline, Stevens, Maalouf, et al., 2025).

6.3 | Autonomous drone swarms

Video datasets with multiple viewpoints can lead to more accu-
rate behavioural studies. Multiple drones can be used to monitor
large groups of animals to capture emergent behaviours, as in the
approach used to study the mating ecology of a lek-breeding ante-
lope (Sridhar et al., 2024). Multiple views of a herd reduce the likeli-
hood of encountering occlusions from vegetation or other animals
and provide more usable pixels for inferring behaviour. Multi-view
datasets make it easier to identify and localize the animals within
the landscape individually. Drone swarms collecting data from an
oblique angle, or non-nadir, may produce higher-quality classifica-
tion results, as this angle provides additional angles of the animal
as shown in Figure 8. In addition to providing multiple views of the
herd, swarms may be deployed to cover larger areas than is possible
to monitor by a single drone alone (Boubin et al., 2022).

However, flying multiple drones is difficult or impossible to
manage manually. Autonomous drone missions are known to be
safer, less expensive and more reliable than manual missions flown
by human pilots (Boubin et al., 2023). Reliability and consistency
are critical when data is analysed through computer vision pipe-
lines. An analysis of the KABR dataset found that behaviour was
best captured during missions flown at low speeds and altitudes
between 10 and 30m (Kline et al., 2023). However, training human
pilots to conduct specialized animal behaviour missions tailored to
specific species, habitats and demographics is difficult and time-
consuming and may produce inconsistent datasets between pilots.
The altitude of missions is known to impact the accuracy of classifi-
cation of individual animals and herds (Petso, Jamisola, Mpoeleng,
Bennitt, & Mmereki, 2021) and behaviour (Kholiavchenko, Kline,
Ramirez, et al., 2024). Automating flights with pre-defined pa-
rameters, such as speed and altitude, to collect optimal data is a
promising solution for scaling up behavioural studies with drones
across large geographical areas repeatedly. Drone swarms may be
deployed to optimize coverage of group-living animals (Grushchak,
Kline, Pianini, Farabegoli, Aguzzi, et al., 2024) or capture the de-
sired Sl (Rolland et al., 2025). Autonomous drones can be pro-
grammed to automatically track a herd of animals using the herd
tracking algorithm proposed in Kline, Berger-Wolf, et al. (2024).
This technique uses the bounding box annotations for each an-
imal produced by YOLO (Redmon et al., 2016) to calculate the
centroid of the herd dynamically. It directs the drone to keep this
centroid in view of the camera, allowing it to automatically follow

most of the herd as it moves through the landscape. Deploying
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FIGURE 8 Drones performing (a) vertical and (b) horizontal monitoring of a pod of Tursiops (Rolland, Grgntved, Laporte-Devylder,

et al., 2024).

this herd tracking technique improved the yield of usable data
for behavioural studies from 66% to 87% (Kline, Zhong, Irizarry,
etal., 2025).

The deployment of autonomous drone swarms has generated
significant interest in the environmental monitoring community
due to their scalability and high error resistance. Swarms are well-
suited for operation in large and harsh environments (Parker, 1994;
Rolland et al., 2025; Schranz et al., 2021). By distributing different
monitoring tasks among various agents, drone swarms can leverage
the capabilities of single-drone missions. For instance, they can con-
duct landscape coverage missions more quickly and enable multi-
perspective monitoring of wildlife (Grgntved et al., 2023; Rolland,
Grgntved, Laporte-Devylder, et al., 2024). Drone swarms have been
successfully deployed using automation to control several drones
concurrently for agriculture applications (Boubin et al., 2022).

Multi-perspective data collection is a growing area of interest
for ADAE studies as well. Drone swarms can extend the duration of
monitoring, allowing for the collection of rare animal behaviours (e.g.
fighting or mating) while also providing better perspective coverage
of different species. While the challenge of tracking moving targets
with multiple drones has been addressed in several studies, few have
applied drone swarms to real-life wildlife monitoring (Bandarupalli
et al, 2023; Parker & Emmons, 1997). Rolland et al. (2025)

demonstrated an early version of a three-agent drone swarm capa-
ble of autonomously collecting multi-perspective data on zebra herds
(Figure 9). Their system accounted for wildlife-specific constraints,
such as minimizing animal disturbance and ensuring sufficient view
quality for behavioural analysis and individual identification, using an
optimization-based centralized controller. While promising, this initial
implementation highlighted areas for further development, such as
enhancing the swarm's responsiveness to dynamic animal movement
and reducing reliance on manual animal detection to achieve full au-
tonomy. However, before swarm applications can be widely adopted
for wildlife monitoring, significant research gaps must be addressed
to make the technology accessible to non-robotic experts. These
include the development of commercially available drone platforms
tailored for field deployment in harsh conditions, and the creation of
user-friendly interfaces that meet end-users' needs for controlling the
swarm (Abdelkader et al., 2021).

7 | CONCLUSIONS

Drones and computer vision have the potential to scale animal
behaviour studies to enable real-time monitoring of ecosystems
over large spatiotemporal scales. Adapting drone navigation and
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FIGURE 9 Example of multi-perspective wildlife drone imagery from Rolland et al. (2025). (a) Drone 1, (b) Drone 2, (c) Drone 3.

computer vision techniques to answer ecological questions pre-
sents challenges that offer opportunities to innovate in robotic
sensing, edge computing and animal ecology. Existing techniques
may be adapted for challenging drone datasets, improving the
state-of-the-art in both computer science and biology (Rolnick
et al., 2024). The deployment of autonomous drones can scale up
the generation of new models to complete detection, localization
and classification tasks on aerial imagery, on edge, in real-time for
optimal monitoring. Autonomous aerial systems equipped with
Edge Al can enhance and standardize large-scale animal behav-
iour studies, minimizing disturbance and boosting data accuracy.
Automating drone swarms to conduct animal behaviour studies
enables real-time monitoring of ecosystems. Real-time monitor-
ing is essential for conservation applications, such as detecting
poachers in protected wildlife zones (Bondi et al., 2018). Fast,
real-time animal detection from imagery requires innovation in
edge computing techniques and models optimized for fast infer-
ence with low computing and memory resources on the edge.
Smart drones, equipped with computation resources on board,
have been used to automatically detect black rhinos and giraffes
at a low cost, with low communication bandwidth in real-time (Hua
et al., 2022). Autonomous drones can be programmed to main-
tain a safety zone between the animals of interest and the drone
to minimize the possibility of artificially inducing behaviour from
the data collection process while automatically tracking the group
simultaneously.

Integrating drones and computer vision is revolutionizing how
researchers study and interpret animal behaviour in the wild, with
recent studies highlighting how biological systems can inform in-
creasingly sophisticated technological approaches. As highlighted
by recent research, Al applications in conservation extend from
species recognition to predictive modelling of biodiversity loss
(Reynolds et al., 2024), while animal-inspired robotics provide inno-
vative solutions for studying elusive species in their natural habitats
without disruption (Afzal et al., 2025). Particularly promising is the
development of adaptive intelligence systems that draw inspiration
from the inherent flexibility of biological intelligence, where animals
continuously adjust their behaviours based on environmental feed-
back (Mathis, 2024). This biomimetic approach to Al development,
combined with advances in robotics and computer vision, offers a

powerful framework for creating more sophisticated and respon-
sive conservation tools. By learning from nature's solutions while
working to protect it, researchers are establishing a reciprocal rela-
tionship between biological and artificial intelligence that could rev-
olutionize our understanding of animal behaviour and enhance our
capacity for effective conservation.
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