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Abstract
1.	 Drones are increasingly popular for collecting behaviour data of group-living 

animals, offering inexpensive and minimally disruptive observation methods. 
Imagery collected by drones can be rapidly analysed using computer vision tech-
niques to extract information, including behaviour classification, habitat analysis 
and identification of individual animals. While computer vision techniques can 
rapidly analyse drone-collected data, the success of these analyses often de-
pends on careful mission planning that considers downstream computational 
requirements—a critical factor frequently overlooked in current studies.

2.	 We present a comprehensive summary of research in the growing AI-driven 
animal ecology (ADAE) field, which integrates data collection with automated 
computational analysis focused on aerial imagery for collective animal behaviour 
studies. We systematically analyse current methodologies, technical challenges 
and emerging solutions in this field, from drone mission planning to behavioural 
inference. We illustrate computer vision pipelines that infer behaviour from drone 
imagery and present the computer vision tasks used for each step. We map spe-
cific computational tasks to their ecological applications, providing a framework 
for future research design.

3.	 Our analysis reveals AI-driven animal ecology studies for collective animal behav-
iour using drone imagery focus on detection and classification computer vision 
tasks. While convolutional neural networks (CNNs) remain dominant for detec-
tion and classification tasks, newer architectures like transformer-based models 
and specialized video analysis networks (e.g. X3D, I3D, SlowFast) designed for 
temporal pattern recognition are gaining traction for pose estimation and behav-
iour inference. However, reported model accuracy varies widely by computer 
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1  |  INTRODUC TION

Traditionally, studies of animal behaviour rely on data collected 
by experts making careful observations of individuals in the wild 
(Altmann,  1974). Behaviour data may include fine-grained individ-
ual behaviour observations, collective behaviour observations, so-
cial interactions or individual and group movement data (Bateson & 
Martin, 2021). Social behaviour and context are vital for understand-
ing the decisions of group-living animals in the context of their social 
and environmental conditions. Social context may include the be-
haviours exhibited by other animals nearby and the demographic cat-
egories of the animals, including species, age and sex. Environmental 
context includes habitat characteristics, weather and time of day. 
Social behaviours involve interactions among group members and 
often reflect social relationships, such as kinship or group hierar-
chies. Fine-scale movements, such as individual positions, velocity 
and turning angles, provide additional description and context to 
social and individual behaviours (Hughey et  al.,  2018). Posture, or 
pose, can determine individual behaviour (Koger et al., 2023). Adding 
the temporal element to animal presence produces movement data 
(Koger et  al.,  2023; Ozog'any et  al.,  2023). Movement throughout 
the landscape is studied within the context of its social factors and 
habitat (Aben et al., 2018; Davies et al., 2016).

Ethograms are lists of behavioural elements experts use to con-
duct field observations of collective group behaviours and individual 
actions using scan or focal sampling, respectively (Altmann, 1974). 
Focal sampling has the advantage of gathering detailed behaviour 
information of one observed individual but lacks the social context 
of the other individuals' concurrent behaviours. Scan sampling pe-
riodically samples the behaviour of each individual in the group, 
capturing social context, but it may miss fine-scale details or rare be-
haviours captured by focal sampling. Activity budgets are calculated 
as the percentage of time estimated to be spent on each behaviour in 
the ethogram. They are tools for comparing overall behavioural pat-
terns as a function of species, demographic makeup, habitation, time 
of day, etc. Ecologists use ethograms as a foundation for behaviour 

studies, and as the species is studied more closely, more behaviours 
can be added to the ethogram (Kholiavchenko, Kline, Kukushkin, 
et al., 2024).

Analysing animal behaviour within the social and environmental 
context in which it occurs is crucial to understanding the complex 
dynamics of group-living organisms (Hughey et  al.,  2018). Animal 
behaviour data serves as a key indicator of individual, species and 
population-level health. As such, it is essential for conservation ef-
forts, as behaviour indicates individual, population and ecosystem 
health (Besson et al., 2022). Understanding the complex dynamics of 
animal behaviour is critical to determining whether animals change 
behaviour in response to changing environmental conditions, es-
pecially in response to acute disturbances from climate change 
(Besson et al., 2022). Gathering data on the individual and collective 
behaviour of group-living animals is challenging, as it requires fine-
scale observations of multiple animals simultaneously with minimal 
interruptions (Hughey et al., 2018). Analysing the behaviour data of 
group-living species is also challenging because it simultaneously 
tracks three levels of a complex system. This system includes (1) in-
dividual behaviours, (2) interactions among individuals and (3) the 
behaviour of the group as a whole, which is an emergent property 
of individual behaviours and interactions, illustrated in Figure 1. We 
provide a glossary of terms related to studying collective animal 
behaviour with drones and computer vision to facilitate interdis-
ciplinary research (Table 1). This review focuses on techniques for 
studying the behaviour of group-living animals. Still, these principles 
may also be applied to studying solitary species and individuals using 
drones and computer vision.

2  |  WHY USE DRONES AND COMPUTER 
VISION TO STUDY COLLEC TIVE ANIMAL 
BEHAVIOUR?

Researchers are developing new ways to observe collective animal 
behaviour in the wild by combining drone-based video acquisition 

vision task, species, habitats and evaluation metrics, complicating meaningful 
comparisons between studies.

4.	 Based on current trends, we conclude semi-autonomous drone missions will be 
increasingly used to study collective animal behaviour. While manual drone op-
eration remains prevalent, autonomous drone manoeuvrers, powered by edge AI, 
can scale and standardise collective animal behavioural studies while reducing 
the risk of disturbance and improving data quality. We propose guidelines for AI-
driven animal ecology drone studies adaptable to various computer vision tasks, 
species and habitats. This approach aims to collect high-quality behaviour data 
while minimising disruption to the ecosystem.

K E Y W O R D S
AI-driven animal ecology, animals, collective animal behaviour, computer vision, drone, edge AI
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F I G U R E  1  Levels of group-living animal behaviours: (1) individual behaviours, (2) interactions among individuals and (3) the group as a 
whole, which is an emergent behaviour of individual behaviours and interactions.

Level 1: Individual behaviors

Level 2: Interactions among individuals

Level 3: Group behavior

TA B L E  1  Glossary of terms related to studying collective animal behaviour with drones and computer vision.

Term Definition

Collective animal behaviour The coordinated behaviour of animal groups emerge from individual actions and interactions between 
individuals

Drone An unmanned aerial system (UAS) capable of autonomous or remote-controlled flight. A UAS includes sensors, 
such as IMU and camera, ground-control-station, such as remote controller or laptop, and flight components, 
including rotor blades, batteries and motors

Artificial intelligence (AI) The field of computer science focused on creating systems that can perform tasks typically requiring human 
intelligence, including learning, reasoning and problem-solving

Machine learning (ML) A subset of AI that enables systems to learn and improve from experience without explicit programming, using 
statistical techniques to find patterns in data

Inference request The process of querying a trained model to generate predictions or outputs based on input data. For example, a 
computer vision model analysing an image to return a class prediction

Latency The time interval between collecting and analysing the image

Edge computing A distributed computing paradigm that brings computation closer to data sources, reducing latency and 
bandwidth usage (Cao et al., 2020)

Edge AI The deployment of AI algorithms directly on edge devices for real-time processing and decision-making without 
cloud dependency (Singh & Gill, 2023)

Fog device Devices used to augment compute resources on the edge. Examples: GPU laptop, RaspberryPi (Cao et al., 2020)

AI-driven animal ecology 
(ADAE)

The application of AI techniques to study animal populations, behaviour and ecosystems using automated, 
adaptive data collection and analysis (Kline, O'Quinn, et al., 2024).

Surface-of-Interest (SI) The part of the animal that contains data required to answer the ecological question, see Figure 6 (Rolland, 
Grøntved, Laporte-Devylder, et al., 2024)

Computer vision A field of AI that enables computers to understand and process visual information from the world, mimicking 
human visual perception.

Computer vision pipeline The sequence of processing steps that transform raw visual data into meaningful information, including pre-
processing, feature extraction and analysis
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2232  |    KLINE et al.

with computer vision techniques (Pedrazzi et al., 2025). Drone data, 
analysed using computer vision, allow ecologists to collect new types 
of aerial vision data and extract insights in multilevel animal societies 
promptly (Maeda & Yamamoto, 2023). Drone videos can be analysed to 
extract continuous, simultaneous time series of the behavioural states 
of multiple individuals (Kline, Zhong, Kholiavchenko, et  al.,  2025; 
Maeda & Yamamoto,  2023; Smith & Pinter-Wollman,  2021). This 
task is impossible with traditional manual data collection methods, 
such as scan and focal sampling (Altmann, 1974). Drones are increas-
ingly used for research as they can quickly obtain detailed behaviour 
data of group-living animals (Besson et al., 2022; Corcoran, Winsen, 
et al., 2021), such as the studies illustrated in Figure 2. Camera sen-
sors are becoming smaller and smaller, allowing for more possibilities 
in terms of drone payloads. These technological advances have ena-
bled ambitious animal machine vision-based studies, including species 
identification (Corcoran, Winsen, et al., 2021; Delplanque et al., 2022; 
Petso, Jamisola, Mpoeleng, Bennitt, & Mmereki,  2021; Petso, 
Jamisola, Mpoeleng, & Mmereki,  2021), behaviour (Kholiavchenko, 
Kline, Ramirez, et al., 2024; Koger et al., 2023) and population counts 
(Brack et  al.,  2018; Brown et  al.,  2022). Between 2015 and 2020, 
drone imagery was used in 19 automated animal detection studies 
alone (Corcoran, Winsen, et al., 2021) (Table 2).

Drones can collect videos and images with sufficient granular-
ity to infer fine-grained behaviour and social interactions (Koger 
et al., 2023). Drones may adjust their trajectories to follow animals as 
they move through their habitat, providing richer spatiotemporal con-
text to behaviour compared to static methods such as camera traps 
or acoustic sensors (Kline, Berger-Wolf, et al., 2024; Luo et al., 2024). 
Drones extend the sensing capacity of experts compared to ground-
based observations (Smith & Pinter-Wollman, 2021). A study of whale 
behaviour found that drones provided three times more observational 
capacity than boat-based observations, including novel foraging tac-
tics (Torres et al., 2018). Drones are especially promising for animal 
behaviour studies that require tracking wildlife over vast, remote 
regions that are difficult for experts to access (Hughey et al., 2018; 
Kholiavchenko, Kline, Ramirez, et  al.,  2024; Ozog'any et  al.,  2023; 
Schad & Fischer, 2023). Drone platforms are quickly becoming the pre-
ferred platform for aerial population counts (Eikelboom et al., 2019; 
Elmore et al., 2023; Lamprey, Pope, et al., 2020).

Analysing aerial videos of animal behaviour combines the advan-
tages of both focal and scan sampling by capturing the fine-scale 
behaviour of each individual in the group concurrently, providing 
the social context (Aben et al., 2018; King & Jensen, 2023; Ozog'any 
et al., 2023; Russo et al., 2023). Drone footage can be analysed to de-
termine habitat conditions, including vegetation and weather (Koger 
et al., 2023; Schad & Fischer, 2023), providing insight into the influ-
ences of habitat and landscape on behaviour (Russo et al., 2023). Aerial 
imagery obtained from satellites provides sufficient granularity to 
conduct population counts for some large species (Duporge, Isupova, 
et al., 2021; Guirado et al., 2019; LaRue et al., 2015; Wang et al., 2019). 
However, animal monitoring with satellite imagery is limited due to the 
timing of satellite overpasses and varying weather conditions, limiting 
their applicability for collective animal behaviour studies.

Computer vision streamlines data analysis, facilitating researchers' 
ability to extract biological insight from aerial datasets (Kholiavchenko, 
Kline, Kukushkin, et  al.,  2024; Kline, O'Quinn, et  al.,  2024; Tuia 
et al., 2022; Valletta et al., 2017). Unlike manual surveys, drone im-
agery analysed with computer vision may be less biased for detection 
tasks (Corcoran, Denman, et al., 2021). Computer vision models are 
often used in sequence to analyse data and extract ecological insights, 
(Kholiavchenko, Kline, Ramirez, et al., 2024; Koger et al., 2023; McNutt 
et al., 2024; Price et al., 2018; Shukla et al., 2024). These sequences 
of computer vision tasks are called pipelines, illustrated in Figure  3. 
However, these pipelines are often developed for post-processing and 
do not support real-time analysis in the field. Further, pipelines that 
infer complex ecological traits require images with prescribed pixel 
resolution, angles, timing and data quality factors determined at run-
time. Images with low resolution or occlusions require expert analysis 
to decipher insights or must be discarded altogether.

Autonomous drones are a potential solution to overcoming the 
drawbacks of manual missions for collective behaviour studies (Kline 
et al., 2023; Luo et al., 2024; Rolland et al., 2025). Most behavioural 
studies using drones rely on manual missions, which are difficult to 
standardize and scale to enable reproducible experiments. Autonomous 
drones can respond to their environment in real-time, using computer 
vision and edge AI. Edge AI is an emerging area of research in distrib-
uted computing, where autonomous systems are designed to process 
sensor data and make real-time decisions directly on far-edge devices, 
such as drones, without relying on cloud connectivity. Studies applying 
AI in real-time to enable adaptive data collection are known as AI-driven 
animal ecology (ADAE) studies (Kline, O'Quinn, et al., 2024). Adaptive 
sampling allows ecologists to optimize data collection over time, which 
is particularly important effectively for monitoring dynamic systems, 
such as group-living animals (Yang et al., 2020). Applying an ADAE ap-
proach to automate drone missions allows for fast reactions to dynamic 
environments and more reliable operations in the field. Autonomous 
missions can be programmed with flight parameters to optimize data 
collection for downstream computer vision analysis. Further, safety 
parameters can be pre-programmed into flight plans to minimize the 
risk of disturbing the animals. Drone flight parameters influencing an-
imal behaviour include approach distance, altitude, velocity and flight 
frequency (Pinel-Ramos et al., 2024). Autonomous drones, powered by 
Edge AI, can scale and standardize collective animal behavioural studies 
while reducing the risk of disturbance and improving data quality.

3 | COMPUTER VISION TO INFER COLLECTIVE 
ANIMAL BEHAVIOUR FROM DRONE IMAGERY

3.1  |  Computer vision pipelines

Automating the analysis of vast volumes of drone footage using AI 
techniques, specifically computer vision tasks, allows for the timely 
analysis of collective animal behaviour (Gonzalez et al., 2016). Pipelines 
of computer tasks assist in automating image analysis by cleaning and 
processing the data with limited manual intervention. Inferring animal 
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    |  2233KLINE et al.

behaviour from drone imagery requires numerous computer vision 
pre-processing tasks (Hughey et al., 2018; Tuia et al., 2022; Valletta 
et al., 2017). We illustrate how computer vision tasks create pipelines 
to extract ecological insights in Figure 3. We summarize our review 
of studies performing one or more computer visions tasks required to 
infer behaviour from drone imagery in Table 2.

3.1.1  |  Translating biological questions to computer 
vision tasks

Translating biological questions to computer vision tasks is challeng-
ing due to the different terminology used by ecological and com-
puter science communities (Rolnick et al., 2024; Tuia et al., 2022). To 

F I G U R E  2  Computer vision tasks from drone imagery for collective animal behaviour studies: (a) Tracking and individual identification 
of Przewalski's horses with swarm (Ozog'any et al., 2023), (b) Tracking Gelada baboon movement through landscape (Koger et al., 2023), 
(c) Individual identification of mugger crocodiles (Desai et al., 2022), (d) behaviour of giraffes and zebras from video (Kholiavchenko, Kline, 
Ramirez, et al., 2024).
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TA B L E  2  Summary of animal ecology studies using computer vision and drones.

CV task Model(s) Accuracy Species RTP Study

D, C CNN, OBIA, Supervised and 
unsupervised pixel-based image 
classification, Detection moving 
wild animals (DWA) algorithm, 
Support vector machine, Spectral 
thresholding

32%–100% Various Corcoran, Winsen, 
et al. (2021)

D, C RetinaNet 90%–95% Elephant, zebra, giraffe Eikelboom 
et al. (2019)

D, C Libra-R-CNN 73% MAP Topis, buffalo, elephant, 
kob, warthog, waterbuck

Delplanque 
et al. (2022)

D, C HerdNet 85% F1 Elephant, buffalo, topi, 
Uganda kob, waterbuck, 
warthog, giant forest hog, 
hippopotamus, crocodile, 
cow, sheep, goat

Delplanque, 
Lamprey, 
et al. (2023)

D, C YOLO 70.45% mAP Northwestern Serbian deer Rančić et al. (2023)

D, C YOLO 95% F1 Antarctic shags Cusick et al. (2024)

D, C YOLO 77%–99% mAP White-tailed deer, domestic 
cow and horse

Krishnan 
et al. (2023)

D, C, P CNN, MorphoMetrix 98% Humpback, minke, blue 
whales

Gray et al. (2019)

D, C CNN 75%–94% Seals, sea birds, sea turtle Dujon et al. (2021)

D, C CNN 87%–98% Albatross, penguin Hayes et al. (2021)

D, C R-CNN, R-FCN, SSD, RetinaNet, 
YOLO

54%–96% AP Birds Hong et al. (2019)

D, C Faster R-CNN, RetinaNet 63%–68% MAP Waterbird species Kabra et al. (2022)

D, C YOLO 95% Crane Chen, Jacob, 
et al. (2023)

D, C Tensorflow, YOLO 28%–94% (D), 96% (C) Elephant, giraffe, 
rhinoceros, wildebeest, 
zebra

Petso, Jamisola, 
Mpoeleng, Bennitt, 
and Mmereki (2021)

D, C Tensorflow, YOLO 28%–94% (D), 96% (C) Elephant, giraffe, white 
rhinoceros, wildebeest, 
zebra

Petso, Jamisola, 
Mpoeleng, Bennitt, 
and Mmereki (2021)

D, C Deep CNN 80%–88% Recall Dugong Maire et al. (2015)

D, C R-CNN 15%–57% Recall Various ✓ Bondi et al. (2018)

D, C Faster-R-CNN 83% Recall Rhinoceros Chalmers 
et al. (2021)

D, C Faster-R-CNN 83% mAP Rhinoceros ✓ Chalmers 
et al. (2019)

C ANN, CNN 85% F1 Cow, horse, deer, goat McCraine 
et al. (2024)

D, C, T, P CNN 75%–94% Rec. Seal, sea turtle, gannet Dujon et al. (2021)

D, C Faster-R-CNN 80% Caribou Lenzi et al. (2023)

D, C YOLO 92%, 85% F1 Swamp deer ✓ Tripathi et al. (2025)

C Photogrammetry Match ground-truth long-
term monitoring (p > 0.1)

Bottlenose dolphin Vivier et al. (2024)

IID Hotspotter 95%–100% Zebra, giraffe, jaguar, 
lionfish

Crall et al. (2013)

IID ALFRE-ID 82% Top-1 Saimaa Ringed Seals, whale 
shark

Nepovinnykh 
et al. (2024)

IID CNN (YOLO, Inception-v3) 90% Crocodile Desai et al. (2022)
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    |  2235KLINE et al.

assist in alleviating this challenge, we illustrate each computer task 
and its dependencies and provide examples of biological questions 
that may be answered at each stage in Figure 3 (Tuia et al., 2022; Xu, 
Zhang, et al., 2024). We focus on computer vision tasks commonly 
used when executing drone missions and analysing aerial imagery 
for behaviour studies. Table 3 provides definitions for the computer 
vision tasks. We refer readers to (Weinstein,  2018) and (Valletta 
et al., 2017) for detailed reviews on computer vision for animal ecol-
ogy and machine learning for animal behaviour, respectively. Xu, 
Wang, et al. (2024) provides an overview of machine learning tech-
niques applied to remotely sensed data, including aerial and satellite 
images, for detecting and monitoring animal populations.

Computer vision tasks, including detection, localization, individ-
ual identification and posture, are illustrated in Figure 4, reproduced 
from Tuia et  al.  (2022). Most computer vision tasks, except track-
ing, may be performed on individual images. Before computer vision 
tasks can be performed, individual frames from the video stream 
must be extracted for analysis. The frame's sampling rate depends 
on the drone's camera parameters and the latency requirements 
established, as discussed in Section 4.1. Detection and localization 
tasks are performed to determine if an animal is in the frame and, if 
so, where it is located, shown in Figure 3a2. Detection results are 

often recorded as bounding boxes, which draw a rectangular outline 
around the region of pixels where the object appears in the frame, 
illustrated in Figure 5.

Next, classification is performed to determine the animal's 
species, shown in Figure  3a3. Depending on the study, additional 
classification tasks may be performed to determine the animal's de-
mographic class, such as age and sex. Detection and classification 
tasks are often performed using convolution neural networks (CNNs) 
to reduce manual annotation efforts (Bowley et al., 2018; Chalmers 
et  al.,  2021; Delplanque, Foucher, et  al.,  2023; Han et  al.,  2019; 
Kellenberger et al., 2018; Torney et al., 2019). The YOLO CNN mod-
els are the most popular neural network architecture for detection 
and classification tasks (Kholiavchenko, Kline, Ramirez, et al., 2024; 
Kline et  al., 2023; Redmon et  al., 2016; Xu, Wang, et  al., 2024). If 
multiple frames of the same animal are available, it can be tracked, 
adding a temporal element to its location, as shown in Figure 3a4. As 
shown in Figure 3a6, posture or pose is determined by the relative 
location of the key points on the animal's body. Finally, behaviour 
can be automatically inferred from tracked video clips or the ani-
mal's posture, as shown in Figure 3a5. If the animal has distinctive 
morphological markings, it may be individually identified using a tool 
such as WildBook (ConservationXLabs) (Figure 3a7).

CV task Model(s) Accuracy Species RTP Study

D, C, T Faster-R-CNN 72%–100% Recall Zebra, impala, buffalo, 
waterbuck, gelada

Koger et al. (2023)

D, C, T YOLO (D,C), BoT-SORT (T) 85% (YOLO), 48% 
BoT-SORT

Turtle Noguchi 
et al. (2025)

D, C, T YOLO (D, C), KF (T) 93% (YOLO), 61% (KF) 
mAP

Przewalski's gazelle ✓ Luo, Li, et al. (2023)

D, C, T YOLO (D, C) 93% (YOLO), 61% (KF) 
mAP

Tibetan antelope ✓ Luo, Zhao, 
et al. (2023)

D, C, T YOLO (D, C), Deep-SORT (T) 95% mAP (YOLO), 79% 
MOTP Deep-SORT

Przewalski's gazelle Zhang et al. (2024)

D, T, Re-ID YOLO (D), BoT-SORT (T) 62% mAP, 54% HOTA Blackbuck antelopes Naik et al. (2024)

D, C, T CNN, KF 83%–97% TP Antelope, Wasp Rathore, Sharma, 
et al. (2023)

P YOLO-NAS-Pose 81 mAP Elephant McNutt et al. (2024)

P Stacked DenseNet 0.35 PMA Mice, flies, zebra Graving et al. (2019)

P DeepLabCut 5.21 pixel ATE Mice, flies Mathis et al. (2018)

B X3D 62% (micro), 87% (macro) 
Top-1

Zebra, giraffe Kholiavchenko, 
Kline, Ramirez, 
et al. (2024)

B X3D-L, I3D, SlowFast 66%, 65%, 66% Overall 
mAP

Zebra, giraffe Kholiavchenko, 
Kukushkin, Brookes, 
et al. (2024)

B YOLO-Behaviour 70%–91% Sparrow, jays, pigeon, 
zebra, giraffes

Hang Chan 
et al. (2024)

B D-CNN 81% Zebra Price et al. (2023)

Note: Computer Vision (CV) Tasks: D: detection, C: classification, T: tracking, P: posture/pose, B: Behaviour, IID: individual identification. 
Performance: Performance reported in terms of accuracy unless otherwise stated.
Abbreviations: AP, average precision; ATE, average test error; HOTA, higher-order tracking accuracy; KF, Kalman filter; MAP, mean average precision; 
MOTP, multiple object tracking precision; PMA, posterior mean accuracy; Rec, Recall; RTP, real-time processing; TP, true positive.

TA B L E  2  (Continued)
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F I G U R E  3  (a) Computer vision tasks for animal behaviour may be included in the execution or analysis phase of drone missions. (b) AI-
driven animal ecology (ADAE) drone mission phases: Planning, execution and analysis, detailed in Section 4.
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    |  2237KLINE et al.

3.1.2  |  Annotation for computer vision tasks

Annotated data is a requirement for training and fine-tuning com-
puter vision models to complete tasks to infer behaviour automati-
cally. Data annotation completed manually by experts is the gold 
standard for dataset creation, though it represents one of the most 
significant bottlenecks in deploying computer vision pipelines for 
wildlife monitoring (Samiappan et  al.,  2024). The time investment 
for annotation varies considerably by task complexity, with simple 
detection tasks requiring less effort than complex behavioural an-
notations with temporal tracking. Multiple annotators working in a 
team can accelerate data labelling, but cross-validation protocols are 
essential to ensure consistency between annotators and maintain 
annotation quality (Samiappan et al., 2024). Inter-annotator agree-
ment metrics should be established early in the annotation process 
to identify and resolve discrepancies in labelling criteria. Fine- tun-
ing existing models on custom datasets is typically faster and less 

computationally expensive than training from scratch, making it the 
preferred approach when suitable pre-trained models are available 
(Kline, Stevens, Maalouf, et al., 2025).

Several specialized tools have been developed to streamline 
the annotation process for wildlife data. The Aerial Wildlife Image 
Repository (AWIR) (Samiappan et  al.,  2024) provides a centralized 
repository for curating wildlife drone datasets, offering standardized 
annotation guidelines to ensure consistency and quality while ad-
dressing common challenges such as ambiguity, occlusions and an-
notation bias. The kabr-tools package (Kline, Zhong, Kholiavchenko, 
et al., 2025) provides scripts for calculating time budget analysis from 
drone videos. It includes instructions for using the Computer Vision 
Annotation Tool (CVAT) (CVAT.ai Corporation, 2023) to generate an-
notations of animals from drone footage. This tool was developed to 
create the Kenyan Animal Behaviour Recognition (KABR) dataset and 
has since been used to develop the BaboonLand (Duporge et al., 2024) 
and Multi-Environment, Multi-Species, Low-Altitude Drone (MMLA) 

TA B L E  3  Computer vision tasks for collective animal behaviour studies.

Computer vision task Definition

Detection Identifying the presence of objects (e.g. animals) in an image or video frame

Location Determining the precise spatial position of detected objects, often using bounding boxes or coordinates

Classification Categorizing detected objects into predefined classes (e.g. species identification)

Tracking Following the movement of objects across consecutive video frames while maintaining their identity

Behaviour Recognizing and categorizing specific actions or patterns of movement exhibited by animals

Individual identification Distinguishing individual animals within a species based on unique visual characteristics

F I G U R E  4  Setting a common vocabulary for computer science and ecology: Mapping computer vision tasks to ecological questions (Tuia 
et al., 2022).
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(Kline, Stevens, Maalouf, et al., 2025) datasets. SmarterLabelMe (Price 
& Ahmad, 2023) offers a novel annotation method to reduce temporal 
drift between frames, a significant challenge in drone datasets where 
both the camera and animals move simultaneously. This tool has been 
successfully used to generate large volumes of annotated behavioural 
data from video (Price et al., 2023). Conservation AI provides an online 
service to automatically process drone footage for animal detection 
and species classification using AI (Fergus et al., 2024).

Different computer vision tasks require distinct annotation 
approaches, as illustrated in Figure  5. For population-level esti-
mates captured from high-altitude flights, point-level annotations 
are common (May et al., 2024), as they are faster to complete and 
sufficient for counting tasks where precise bounding boxes are 
not required. Species classification and behaviour recognition typ-
ically rely on bounding box annotations (Hang Chan et  al.,  2024; 
Kholiavchenko, Kline, Ramirez, et  al.,  2024), which provide spatial 
context while maintaining reasonable annotation speed. For video 
datasets intended for movement and behaviour studies, temporal 
tracking annotations that maintain individual identity across frames 
are essential, though these represent the most time-intensive an-
notation category (Kholiavchenko, Kline, Ramirez, et al., 2024; Naik 
et al., 2024).

3.2  |  Computer vision tasks

The current research landscape in AI-driven animal ecology, summa-
rized in Table 2, demonstrates a pronounced emphasis on detection 
and classification tasks. Detection and classification collectively con-
stitute approximately 75% of all documented studies, with combined 
detection/classification approaches representing the predominant 

methodological framework. Convolutional Neural Networks (CNNs) 
maintain architectural dominance across the field, manifesting 
through diverse implementations including YOLO variants (Cusick 
et  al.,  2024; Krishnan et  al.,  2023; Rančić et  al.,  2023), Faster R-
CNN configurations (Chalmers et al., 2019, 2021; Lenzi et al., 2023), 
RetinaNet architectures (Eikelboom et al., 2019; Kabra et al., 2022) 
and specialized CNN implementations (Dujon et  al.,  2021; Gray 
et al., 2019; Hayes et al., 2021), representing approximately 90% of 
all surveyed studies. Conversely, transformer-based architectures, 
such as X3D models (Kholiavchenko, Kline, Kukushkin, et al., 2024), 
remain substantially under-represented, appearing exclusively in 
behaviour analysis applications and constituting fewer than 5% of 
total studies, indicating limited adoption of contemporary deep 
learning paradigms despite their demonstrated efficacy in broader 
computer vision contexts. Tracking methodologies account for ap-
proximately 15% of research efforts (Koger et  al.,  2023; Luo, Li, 
et al., 2023; Noguchi et al., 2025), while specialized applications in-
cluding individual identification (Crall et al., 2013; Desai et al., 2022; 
Nepovinnykh et  al.,  2024), pose estimation (Graving et  al.,  2019; 
Mathis et  al.,  2018; McNutt et  al.,  2024) and behaviour analysis 
(Hang Chan et al., 2024; Kholiavchenko, Kline, Ramirez, et al., 2024; 
Price et  al.,  2023) each represent less than 10% of documented 
studies. Performance metrics exhibit considerable variability across 
taxonomic groups and computational tasks, with detection and clas-
sification studies typically achieving accuracies ranging from 70% 
to 95%, while more sophisticated behavioural inference tasks dem-
onstrate more modest performance ranges of 62%–87%. Critically, 
real-time processing capabilities are implemented in merely 15% 
of surveyed studies, underscoring a substantial disparity between 
laboratory-based analytical capabilities and practical field deploy-
ment requirements for autonomous ecological monitoring systems 

F I G U R E  5  Detection and localization techniques applied to aerial elephant drone imagery (Xu, Wang, et al., 2024).
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(Bondi et al., 2018; Chalmers et al., 2019; Luo, Li, et al., 2023; Luo, 
Zhao, et al., 2023; Tripathi et al., 2025).

3.2.1  |  Detection and localization

Detection, shown in Figure 3a2, is the first step in a computer vi-
sion image-processing pipeline and involves annotating the image 
to indicate the presence of animals (Brown et al., 2022; Xu, Wang, 
et  al.,  2024). Localization is often combined with detection using 
bounding boxes to indicate the presence and location of the ani-
mals in the frame in one step, as shown in fig.  5 from Xu, Wang, 
et  al.  (2024). Detection and localization of animals from drone 
videos have been used to study both wildlife (Lamprey, Ochanda, 
et al., 2020), and livestock (Andrew et al., 2017; Barbedo et al., 2020; 
Brown et al., 2022; Han et al., 2019). For animals that tend to group 
closely, distinguishing individuals is challenging (May et  al.,  2024). 
Density maps have been proposed to individually localize animals 
that tend to group closely, such as penguins (Qian et al., 2023), sea 
lions and elephants (Padubidri et al., 2021). Using density maps for 
localization performs well on aerial drone imagery, mainly when the 
animals are small, or the photos are low resolution.

An excellent review of detection studies from drone imagery is 
provided in (Corcoran, Winsen, et al., 2021). This thorough review 
includes 19 studies published between 2015 and 2021 that use com-
puter vision methods to detect animals from drone imagery auto-
matically. Various drone platforms were used: 10 from multi-rotor 
drone platforms, 5 from fixed-wing platforms and 1 from a blimp. 
The probability of detection ranged from 30% to 100%. Nine studies 
used RGB sensors, four used infrared and three used a combination 
of both. Flight height above the ground ranged from 20 to 300 m, 
with an average of approximately 70 m and ground resolution varies 
from 0.01 to 13.7 cm/pixels. Various habitats were reported, includ-
ing grasslands, wildlife enclosures, beaches, lakes and rivers, with 
canopy coverage ranging from none to moderate.

Terrestrial mammals constitute the largest category of animals 
studied using automated drone detection, with spatial resolutions 
ranging from 26 to 530 cm. Birds and marine mammals constitute 
the second-largest categories, with spatial resolutions of 31–137 and 
80–2000 cm, respectively. Fish, reptiles and insects have also been de-
tected using remote aerial imaging, although these categories occur 
with much less frequency (Xu, Wang, et al., 2024). The maximum spa-
tial resolution of multi-rotor drones is 1 cm; for satellites, it is 30–50 cm 
(Xu, Wang, et al., 2024). Detection tasks using machine learning mod-
els are performed at different levels of detail depending on the chosen 
annotation method and granularity of the image data. These machine 
learning models perform best on drone image datasets that contain 
consistent backgrounds in open, flat habitats with limited occlusion 
from vegetation (Corcoran, Winsen, et al., 2021). A strong contrast be-
tween the animals of interest and the background for RGB drone data-
sets yields the best detection results (Corcoran, Winsen, et al., 2021). 
For cryptic species living in closed habitats with vegetation, drones 
equipped with thermal cameras are more effective for detection tasks 

than RGB cameras (B'arbulo Barrios et al., 2024; Corcoran et al., 2019; 
Kays et al., 2019; Longmore et al., 2017; Ulhaq et al., 2021).

3.2.2  |  Species and demographic classification

Classification typically refers to species-level labelling and categorizing 
demographic features, such as age and sex, as shown in Figure 3a3. 
Species classification is commonly performed using AI models trained 
to categorize species based on their distinguishing morphologies, such 
as BioClip (Stevens et al., 2024). Classification is essential for calcu-
lating accurate population estimates from images containing multiple 
species, such as those collected with aerial surveys (Ulhaq et al., 2021). 
Aerial imagery datasets from satellites and drones may replace manned 
aerial population counts since unmanned surveys are less expensive 
and risky and may produce more accurate population counts, as dem-
onstrated in (Eikelboom et al., 2019; Lamprey, Pope, et al., 2020; Wu 
et al., 2023). For marine animals, computer vision models have been 
used to classify several species of whales (Gray et al., 2019), seals, sea 
birds and sea turtles from drone images (Dujon et al., 2021). The aer-
ial imagery of whales was further analysed to determine the size and 
length of whales (Gray et al., 2019). Photogrammetry measurements 
using drones have been used to measure the body length of bottle-
nose dolphins to identify the juveniles and assess the age-structure 
of critically endangered populations (Vivier et  al.,  2024). Drone im-
agery annotated using AI models to perform classification tasks has 
been effective in estimating populations of large bird colonies, which 
are difficult-to-count manually (Chen, Jacob, et  al.,  2023; Hayes 
et al., 2021; Hong et al., 2019; Kabra et al., 2022). Species can also 
be categorized based on their distinctive behaviour and movement 
patterns instead of their distinguishing morphology. Petso, Jamisola, 
Mpoeleng, Bennitt, and Mmereki  (2021) proposed a technique to 
automatically classify species based on the characteristic behaviours 
exhibited by the herd using point pattern analysis. This technique of 
categorizing species based on their movement is accurate even at high 
altitudes, where convolutional neural network (CNN) object detectors 
such as YOLO (Redmon et al., 2016) frequently fail due to the small 
number of pixels per individual animal. Other work has demonstrated 
the feasibility of detecting and classifying animal species using CNNs 
based on their hyperspectral imagery. CNNs perform well at detec-
tion and classification tasks even when the animals are obscured by 
vegetation (McCraine et al., 2024). Demographic information may be 
automatically inferred from the drone imagery, such as determining 
juveniles based on their smaller stature or distinguishing marks (Dujon 
et al., 2021). Sexual dimorphism of a species and young appearing dif-
ferent than mature adults may cause CNN classifiers to mislabel indi-
viduals (Dujon et al., 2021). In this case, creating separate categories 
for different demographic classes is often helpful to improve the classi-
fier's accuracy. Demographic labelling may be included in classification 
tasks, such as labelling animals as adults or juveniles, such as (Lenzi 
et al., 2023), distinguishing adult and calf caribou from drone imagery. 
In addition to improving classification accuracy, demographic informa-
tion provides valuable behavioural context for group-living animals. 
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Demographic data allows biologists to determine patterns in individual 
behaviours as a function of various factors such as sex, age and rela-
tionship to other individuals in the group (Ozog'any et al., 2023).

3.2.3  |  Tracking and movement

Tracking follows an animal moving through concurrent video frames 
or images, adding a temporal element to the localization annotation 
to create tracks. If sufficient temporal data is available, behaviour 
may be inferred by tracking individuals' movements across the land-
scape. Tracking data may infer basic behavioural states from the ani-
mal's velocity, such as walking versus standing. However, this level 
of temporal granularity is usually not collected for population count 
drone missions, which capture the presence of animals at a single 
point in time. Tracking data provides valuable insight into the social 
structure of group-living animals (Ozog'any et  al.,  2023), including 
how individuals and groups make decisions and interact with the 
landscape, as shown in Figure  2a. Drones have been successfully 
used to conduct tracking studies of group-living animals, including 
gelada monkeys, Grevy's zebras (Koger et  al.,  2023), Przewalski's 
horses (Ozog'any et  al.,  2023) and antelope (Rathore, Vadavalli, 
et  al.,  2023). MOTHe (multi-object tracking in heterogeneous en-
vironments) for animal video recording has been successfully used 
to track both blackbuck antelope and wasps using CNNs for detec-
tion and Kalman filter for tracking (Rathore, Sharma, et  al., 2023). 
Tracking becomes very challenging if features in the environment 
occlude the animals. For example, a study tracking sea turtles at the 
surface with the BoT-SORT model had a 100% success rate, but only 
46% of underwater turtles could be tracked (Noguchi et al., 2025).

Recently, approaches using computer vision to track group-
living animals through the landscape autonomously have been pro-
posed. Kline et al. (2023) proposes an autonomous tracking system 
using YOLO for a track-by-detection approach for herds of zebras. 
Similarly, region-of-interest (ROI)-to- centroid tracking technol-
ogy used to reduce the processing cost of motion interpolation for 
identifying and tracking injured antelope (Luo, Zhao, et  al.,  2023). 
An autonomous drone navigation model using YOLO, paired with 
a long and short-term memory (LSTM) Kalman filter (KF) has been 
deployed to track ante- lope (Luo, Li, et  al.,  2023). This approach 
has been expanded multi-object tracking of individuals using Deep-
SORT (Zhang et  al.,  2024), which achieved a 79% multiple object 
tracking precision (MOTP) performance.

3.2.4  |  Inferring pose, actions and behaviour

Behaviour may be inferred directly from video-based behav-
iour tracking or still image-based posture and pose categori-
zation (Saad Saoud et  al.,  2024). Behaviour can be classified 
automatically from video using machine learning techniques, 
including YOLO-Behaviour (Hang Chan et  al.,  2024), X3D, I3D 
or SlowFast (Kholiavchenko, Kline, Kukushkin, et  al.,  2024) 

models. KABR proposes a computer vision pipeline to automati-
cally infer behaviour from drone videos of zebras and giraffes, 
as shown in Figure  2d. Computer vision pipelines such as KABR 
(Kholiavchenko, Kline, Ramirez, et  al.,  2024) and Smart-LabelMe 
(Price et al., 2023) decrease the amount of manual effort required 
to train automatic behaviour recognition models leveraging com-
puter vision techniques to clean the video data. Pipelines have 
been proposed to automatically infer behaviour from camera trap 
videos, such as (Brookes et al., 2023), which automatically detects 
and classifies the behaviour of great apes. Alternatively, behaviour 
may also be inferred from the animal's posture/pose using tools 
like DeepEthogram (Bohnslav et  al.,  2021), DeepLabCut (Mathis 
et al., 2018) and DeepPoseKit (Graving et al., 2019). Once the spe-
cies is known, the key points on the animal's body can be mapped 
to determine its posture, which can be used to infer behaviour.

3.2.5  |  Individual identification

Once the animal species is known, its unique markings or morphol-
ogy may be used to visually identify the individual animal captured in 
the drone image using tools such as WildBook (ConservationXLabs). 
Wild-Book offers platforms for individually identifying over 50 spe-
cies, including zebras, giraffes, sharks and whales. Nepovinnykh 
et al. (2024) proposes a computer vision pipeline for re-identification 
for species-agnostic patterned animals with small datasets using deep 
local feature aggregation. Drone imagery of individual animals must 
have sufficient pixels for individual estimation tasks. For tools such as 
HotSpotter, which identifies individual animals based on their unique 
patterns, at least 700 pixels is typically required to perform individual 
identification tasks successfully (Crall et al., 2013; Kline et al., 2023). 
Autonomous drones have been used to identify cattle based on their 
unique markings individually (Andrew et  al.,  2017, 2018). Mugger 
crocodiles have been individually identified from drone imagery using 
a CNN trained to detect their unique dorsal scute patterns visible on 
their backs (Desai et al., 2022), as shown in Figure 2c. Individual iden-
tification provides rich insight into the dynamics of group-living ani-
mals (Ozog'any et al., 2023) when combined with behaviour.

3.3  |  Hardware and latency requirements for 
computer vision models

Computer vision models have minimum hardware requirements for 
compute, memory and storage. These requirements are particularly im-
portant to consider if computer vision tasks must be performed in real- 
time, such as the studies described in Chalmers et al. (2021) and Bondi 
et  al.  (2018). Animal ecology studies which process computer vision 
tasks in the field in real-time are indicated with a ✓ in the RTP column of 
Table 2. Edge devices, such as Raspberry Pis, Jetson Nanos or laptops, 
may augment a drone's computer hardware. Sufficiently robust edge 
devices are vital to meet an autonomous navigation system's latency 
requirements, which rely on computer vision models' output speed. 
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Latency refers to the time interval between collecting and analysing the 
image. Each instance of a computer vision model analysing an image is 
called an inference request. Computing capability may be provided by a 
central processing unit (CPU), a graphic processing unit (GPU) or both. 
Compute is measured by the number of cores, and CPU may also be 
measured by clock speed (GHz). Storage is where the data is kept long-
term, whereas random access memory (RAM) stores data temporarily 
that the CPU needs to access quickly. For example, Ultralytics recom-
mends a system with a CUDA-compatible GPU, at least 8 GB of RAM 
and at least 50 GB of free disk space for dataset storage and model 
training for YOLO models (Jocher et al., 2023). Ultralytics also provides 
specific YOLO models optimized for inference on edge devices, like 
NVIDIA Jetson (Jocher et al., 2023). Table 4 summarizes compute and 
memory specifications for popular edge devices.

The latency requirements for a particular study depend on how 
quickly the animals move in the frame and what the inference re-
quest is used for in the system. In this step, the data arrival rate is 
dictated by the behaviour of the species of interest and its interac-
tions with the drone hardware. If the system uses an inference re-
quest to inform a navigation decision, such as YOLO for autonomous 
vision-based tracking (Kline et al., 2023), the latency requirements 
should be sufficient to keep the animal in view.

Latency requirements depend on the average speed of the spe-
cies of interest or how fast the drone must move to keep the animals 
in view. For example, the required latency may change throughout 
the mission if the animals increase or decrease in velocity, such as 
when they go from running to grazing. Some computer vision model 
inference requests may not be a component of the control system 
component but still provide the practitioners with helpful informa-
tion. For example, Meier et  al.  (2024) calculates the approximate 
distance between a drone and an animal in real-time. This gives the 
ecologist information about wildlife but is not a component of the 
navigation policy. The latency requirements for such studies should 
be less strict than those for model components of the control system.

4  |  BEST PR AC TICES FOR DRONE 
MISSION PL ANNING , E XECUTION AND 
ANALYSIS

Our review shows that most drone-based animal ecology behav-
iour studies leverage AI as a critical component, indicating that such 

studies will continue to take an AI-driven approach. We recommend 
that experts carefully consider the possible computer vision pipe-
lines required to analyse the data when designing and deploying 
drone-based AI-driven animal ecology (ADAE) studies. An ADAE 
study using drones comprises three phases: planning, execution and 
analysis, illustrated in Figure  3b. Aerial imagery may be gathered 
manually and analysed with computer vision post hoc. However, we 
recommend implementing AI into the deployment phase, if possible, 
to support autonomous missions, as illustrated in Figure 3. Recent ad-
vancements in edge AI system design make it possible to support in-
ference requests in the field for real-time analytics and autonomous 
flight, such as those implemented in (Bondi et al., 2018; Chalmers 
et al., 2021). Edge computing brings computation and storage closer 
to the data source, near the network's edge, instead of relying on a 
centralized cloud data centre. Processing data locally on edge, for 
example, drones, or fog devices, for example, laptops, reduces la-
tency and enables real-time decision-making. ADAE studies control 
remote sensing systems at runtime, filtering images, adjusting angles 
and changing camera or drone positions to improve data quality (Luo 
et  al.,  2024). AI-driven animal ecology workflows are unlike tradi-
tional field ecological studies because they require computational 
resources provisioned at the edge. Like traditional studies, AI-driven 
animal ecology studies can fail if the data collected is inadequate to 
evaluate the hypothesis. However, AI-driven animal ecology stud-
ies only succeed if the edge platform can quickly adapt runtime to 
capture high-quality visual data. Drones are innately adaptive if they 
are piloted well. Edge AI can reduce the burden on pilots, allowing 
ADAE studies to employ multiple drones and capture data from vast 
areas (Bala et al., 2023; Boubin et al., 2022; Kholiavchenko, Kline, 
Ramirez, et al., 2024; Luo et al., 2024). Edge AI can reduce reliance 
on a manual approach, promote reproducible data collection meth-
odologies and improve data quality.

With edge AI supporting real-time inference in the field, ADAE 
studies can use computer vision models to build adaptivity and 
autonomy into the data collection process. Taking an AI-driven 
approach to animal ecology studies aid in overcoming challenges as-
sociated with computer vision performance, potential disturbance 
to the animals and navigation, as discussed in Section  5. Drones 
must capture imagery with sufficient resolution to complete each 
computer vision task. These minimum resolution requirements may 
be integrated into the control software to increase the percentage 
yield of usable data, such as ensuring a minimum distance from the 

TA B L E  4  Summary of common edge devices: Jetson Nano (NVIDIA, 2025), RaspberryPi (RaspberryPi) and a generic GPU-enabled laptop 
(Buzzi, 2024).

Device GPU CPU Memory Storage Price (USD)

Jetson Nano NVIDIA Maxwell architecture 
with 128 NVIDIA CUDA® 
cores

Quad-core ARM Cortex-A57 
MPCore processor

4 GB 64-bit LPDDR4, 
1600 MHz 25.6 GB/s

16 GB $ 99

RaspberryPi 5 VideoCore VII GPU Broadcom BCM2712 2.4 GHz 
quad-core 64-bit Arm 
Cortex-A76 CPU

LPDDR4X-4267 
SDRAM

2 GB, 4 GB, 
8 GB

$140

Laptop GPU 8 GB Intel® Core™ Processor 32 GB 1 TB $2000
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animals of interest (Meier et al., 2024). Safety features may be pro-
grammed into the autonomous control system to minimize the possi-
bility of spooking the animals. This can used to automate the altitude 
guidelines recommended for a specific species (Afridi et al., 2024; 
Bennitt et al., 2019; Bevan et al., 2018; Duporge, Spiegel, et al., 2021; 
Hodgson & Koh,  2016; Mulero-P'azm'any et  al.,  2017; Schad & 
Fischer, 2023; Weston et al., 2020). Automating flight components 
reduces the pilot's cognitive burden and increases the reproducibil-
ity of drone datasets.

4.1  |  Planning

The planning phase consists of establishing the study objective and 
study parameters. ADAE studies ideally are interdisciplinary col-
laborations with experts in animal ecology, computer vision, robot-
ics and edge systems. When working with interdisciplinary teams, 
it is crucial to establish shared vocabulary and objectives (Rolnick 
et  al.,  2024). The planning checklist contains three main compo-
nents: (1) the ADAE research question, (2) the aerial system charac-
teristics and (3) legal and ethical considerations.

4.1.1  |  AI-driven animal ecology research questions

Two main components of AI-driven animal ecology studies are (1) 
the ecological research question and (2) the computer vision model 
used to answer the research question. At a high level, the ecologi-
cal research question will include the species studied, the habitat 
and the surface-of-interest (SI) (Rolland, Grøntved, Laporte-Devylder, 
et al., 2024). The SI refers to the part of the animal that contains data 
required to answer the ecological question. For example, an ADAE 
study seeking to identify whales individually would define the SI as 
the fluke (Rolland, Grøntved, Laporte-Devylder, et al., 2024). In con-
trast, a survey of zebra behaviour would want to capture the side-
view of the animals (Kholiavchenko, Kline, Ramirez, et  al.,  2024), 
illustrated in Figure 6.

The computer vision models capture and analyse the SI to an-
swer the ecological research question. At the planning step, it is de-
cided which components of the computer vision pipeline will be run 
in real-time during data collection and which will be used to analyse 
the data post hoc. Once the list of computer vision tasks in the AI 
pipeline is determined, practitioners must select which models will 
perform each task. Details on the performance of specific models 
for these tasks are discussed in Section 3. Practitioners should es-
tablish latency and hardware requirements for the computer vision 
models, which will inform the characteristics of the aerial system. 
Latency requirements refer to the average time the system takes 
to complete an inference request, that is, to run a computer vision 
model to make a prediction. Hardware requirements include the 
compute and memory required to run and store an AI model. See 
Section 3 for details.

4.1.2  |  Aerial system characteristics

Aerial system characteristics include the type and quantity of drones 
used, the compute sources available, the network characteristics and 
the navigation technique. The type of drone influences its battery 
life and mission range, while the navigation technique determines 
the level of autonomy. The drone model should fit the parameters 
established by the ADAE study research question, which considers 
ecological factors and computer vision tasks. For example, studies 
seeking to count a herd of animals over a large area are well-suited to 
fixed-wing drones, as they can quickly cover extensive landscapes. In 
addition, detection tasks may be performed on lower-resolution data 
collected at higher altitudes. In contrast, behavioural studies requir-
ing high-resolution oblique imagery are better suited to multi-rotor 
drones. Their hovering capabilities make them ideal for monitoring 
animals, as they can easily transition between different static moni-
toring positions. Additionally, their mobility in three-dimensional 
space is less constrained by flight characteristics than that of fixed-
wing drones, allowing for more flexible path planning and deploy-
ment. Depending on the computer vision tasks and models chosen 
to run in real-time, additional compute resources may be needed 
in the field to meet latency requirements. Compute resources are 
commonly additional laptops or RaspberryPis (Jolles, 2021). Devices 
used to augment compute resources in the system are called fog 
devices (Cao et al., 2020). The network communication bandwidth 
between the drones and fog resources should also be considered, 
as this impacts the system's ability to meet its latency requirements 
(Kline, O'Quinn, et al., 2024).

Finally, the navigation technique may be manual, automatic, semi-
autonomous, or fully autonomous, as summarized in Table 5. Manual 
missions rely on human pilots to direct the drone. Semi-autonomous 
systems utilize real-time inference from computer vision models to 
guide the drone while requiring human oversight to ensure safety 
and allow for manual control. Fully autonomous missions coordinate 
the mission from start to end under human supervision. Automatic 
geo-fencing may assist human pilots in deploying multiple drones si-
multaneously, that is, swarm missions, to prevent collisions. For most 
missions, varying degrees of semi-autonomy with human oversight 
are preferred to comply with safety regulations.

4.1.3  |  Legal and ethical considerations

Potential impacts to both humans and animals should be carefully 
considered when planning ADAE missions. The noise produced by 
drones may disturb animals, so the navigation process should be de-
signed to minimize the possibility of disturbance (Afridi et al., 2025; 
Bennitt et al., 2019; Schad & Fischer, 2023). Gruber (2023) provides 
a framework for the ethical assessments of studying animal behav-
iour concerning disturbance and invasiveness, including drones. 
Drones flying at lower altitudes may induce vigilance behaviour 
(Bennitt et al., 2019). Fast flight speed is associated with increased 
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noise levels, which may trigger animal responses, while slower 
speeds and gradual approaches may produce less intense responses 
(Bennitt et  al.,  2019; Mesquita et  al.,  2022). The approach dis-
tance, horizontal and vertical, also influences behaviour responses 
(Hodgson & Koh,  2016; Mulero-P'azm'any et  al.,  2017). The flight 
frequency influences the degree to which the animals may become 
habituated to the drone's presence (Pinel-Ramos et al., 2024). The 
background anthropogenic noise in the environment also impacts 
species' tolerance to the presence of drones and may influence the 
habituation process (Schad & Fischer, 2023). It is vital to obtain the 
proper operational permits before conducting drone operations 
in order to comply with regulations and manage risk appropriately 

(Maalouf et al., 2025). Drone safety entails minimizing ground risk 
and air risk. Ground risk includes the potential for a drone to fall and 
cause fatalities. Air risk includes the possibility of colliding with a 
manned aircraft. Ongoing work, such as developing risk assessment 
frameworks like the Specific Operations Risk Assessment (SORA) 
methodology, aims to quantify and mitigate these hazards (Joint 
Authorities for Rulemaking on Unmanned Systems (JARUS), 2024). 
Regulations around autonomous missions may not be established, so 
a manual pilot should oversee the mission to ensure safety and main-
tain airspace situational awareness. Maintaining reliable airspace 
situational awareness remains challenging, particularly in Beyond 
Visual Line of Sight (BVLOS) and autonomous missions (Maalouf 

F I G U R E  6  Examples of surfaces-of-interest (SI) shown in red for different species and ADAE missions. From top-left: Behaviour for 
Grevy's zebra (Kholiavchenko, Kline, Ramirez, et al., 2024); Individual identification of elephants (Rolland, Grøntved, Laporte-Devylder, 
et al., 2024); Demographic classification of whales (Laporte-Devylder, 2024).
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et al., 2025). This challenge is due to the inherent constraints of cur-
rent detection technologies and the complexities of integrating di-
verse cooperative and non-cooperative data sources. These issues 
require further systematic testing to enable accurate intruder detec-
tion and early conflict resolution (Maalouf et al., 2024). Regulations 
vary by region and country and may be restricted or banned in wild-
life conservation parks. Common rules mandate that flights remain 
within Visual Line of Sight (VLOS), typically within 500 m from the 
pilot and up to 400 feet Above Ground Level (AGL). Operators must 
hold appropriate certification, avoid overflying crowds and densely 
populated areas, and obtain special permits for any deviations from 
these guidelines. As a general rule, drone missions are not permitted 
near airports. Practitioners should also consider the ethical consid-
erations of using drones to study animal behaviour and the poten-
tial impact on both people and animals, both positive and negative. 
Working with animals may require the Institutional Animal Care and 
Use Committee (IACUC) permit to conduct research in the United 
States or an equivalent institution in other countries. The social im-
pact of drone studies should also be considered. Surveillance tech-
nologies such as drones may inadvertently capture humans, causing 
privacy concerns. Engaging with populations that drone studies may 
impact is an important component of conducting socially responsi-
ble science (Sandbrook et al., 2021).

4.2  |  Mission execution

4.2.1  |  Computer vision tasks

The first execution phase includes collecting imagery data with 
drones of the animals of interest or focal species and extracting the 
collected frames for analysis, shown in Figure 3a1. Next, detection 
and localization tasks are performed, shown in Figure 3a2. Detection 

and localization answer the following questions: Is there an animal in 
this frame? If so, where is the animal located in the frame? If an ani-
mal is detected, classification may be performed on the image region 
containing the animal, Figure 3a3 to determine species, sex or other 
demographic category. Once classification is complete, additional 
tasks may be performed, including tracking, posture, behaviour and 
individual identification (Figure 3a4–7). These computer vision tasks 
may inform runtime adaptations as long as the upstream dependen-
cies are also performed and the latency requirements for the naviga-
tion policy are met. Runtime adaptations include relocating drones, 
adjusting the sampling duration and updating the edge resource 
management to respond to workload demands.

4.2.2  |  Navigation

Drone studies typically utilize one of four navigation methods: man-
ual, automatic, autonomous or hybrid, summarized in Table 5. Manual 
piloted missions offer flexibility, allowing pilots to adjust trajectories 
in real-time based on environmental conditions or animal behaviour 
(Ryan et al., 2022; Stein & Georgiadis, 2006). However, this approach 
raises concerns about reproducibility, places a heavy burden on pi-
lots and limits the scope to small areas and short durations. The data 
collected manually is insufficient for long-term wildlife behaviour 
studies and is costly and time-consuming (Kholiavchenko, Kline, 
Ramirez, et al., 2024; Kline, Berger-Wolf, et al., 2024). Additionally, 
these missions require extensively skilled operators in the fields 
of animal behaviour, environmental analysis and piloting Ryan 
et al. (2022). Consequently, relying on a limited operator workforce 
is not a sustainable solution for large-scale data collection.

Automatic flight, which uses path-planning tools that allow a 
drone to follow a set of specified GPS waypoints, can reduce the 
burden on the pilot and generate suitable drone behaviours for 

TA B L E  5  Comparison of drone navigation methods for animal behaviour studies.

Method Advantages Disadvantages Best use cases

Manual •	 Flexibility in real-time 
adjustments

•	 Adaptable to environmental 
conditions

•	 Responsive to animal behaviour

•	 Poor reproducibility
•	 Heavy burden on pilots
•	 Limited to small areas
•	 Limited duration
•	 Requires extensively skilled operators

•	 Situations requiring immediate human 
judgement

•	 Complex, short-duration missions

Automatic •	 Reduced pilot burden
•	 Follows pre-planned GPS 

waypoints
•	 Efficient for systematic surveys

•	 Inflexible once launched
•	 Unable to adapt to dynamic features
•	 Predefined flight path limitations

•	 Population counts
•	 Environmental mapping
•	 Static feature surveys

Autonomous •	 On-board decision-making
•	 Dynamic trajectory planning
•	 Leverages AI capabilities
•	 Addresses operator shortage

•	 Complexity of implementation
•	 Requires sophisticated AI systems

•	 ADAE studies
•	 Wildlife monitoring
•	 Dynamic feature tracking

Hybrid •	 Combines autonomous 
capabilities

•	 Maintains human oversight
•	 Balances automation with 

manual control

•	 More complex system architecture
•	 Requires both AI systems and skilled 

operators

•	 Complex missions requiring both 
automation and human judgement

•	 Situations where reliability and 
adaptability are crucial
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con- ducting ADAE studies. This methodology efficiently performs 
population counts or environmental mapping (Hodgson et al., 2018; 
Wood et al., 2021). However, this approach is unsuitable for adaptive 
tracking of dynamic features, such as animals in an environment: the 
flight path is defined before taking off. Autonomous drone solutions 
represent a promising approach for ADAE studies, offering stan-
dardized data collection for AI-powered wildlife monitoring while 
addressing the shortage of skilled operators. These drones leverage 
on board decision-making capabilities and computer vision models 
to dynamically adjust their flight paths in response to environmen-
tal conditions (Faessler et al., 2016; Rolland, Grøntved, Christensen, 
et al., 2024).

Missions conducted using commercially available UAS typically 
use a hybrid approach, a combination of manual and automatic capa-
bilities. Manual missions may still use real-time computer vision mod-
els to inform the pilot's decisions, such as distance estimates (Meier 
et al., 2024). Manual missions are straightforward to execute with 
commercially available drones but require specialized expertise in 
a particular species and habitat to collect data (Hughey et al., 2018; 
Kholiavchenko, Kline, Ramirez, et al., 2024; Ozog'any et al., 2023). 
For an automatic mission, the drone executes pre-programmed logic 
that does not require direct human intervention. Common examples 
of automatic manoeuvres available on commercial UAS include au-
tomatic launch, automatic return-to-home, flying to predetermined 
waypoints and automatic tracking of people or vehicles (Hadidi 
et al., 2021). Autonomous or semi-autonomous methods use com-
puter vision models as an input into the control system, such as the 
tracking-by-detection methods (Kline et al., 2023; Luo et al., 2024), 
illustrated in Figure 7a.

4.3  |  Data analysis and management

4.3.1  |  Short-term data management

Managing the storage, transfer and analysis of the large video files 
produced by drone missions in remote field sites is inherently chal-
lenging. During the Kenyan Animal Behaviour Recognition (KABR) 
project, which captured behaviour 4K video data of zebras and 
giraffes, each flight generated 20.5 GB of footage. The team flew 
roughly six missions per day for 3 weeks, yielding approximately 1 TB 
of total data, mainly video, plus telemetry files, photos and field notes 
(Kholiavchenko, Kline, Ramirez, et  al.,  2024; Kline, Kholiavchenko, 
et al., 2024).

A practical workflow for managing such extensive data in 
resource-constrained field environments begins by downsampling 
the live video feed to 1080p (Kline, Zhong, Irizarry, et al., 2025). A 
ground-control laptop equipped with a modest GPU (at least 4 GB 
VRAM) and 16–32 GB RAM can then display telemetry and exe-
cute lightweight CNN models in real time to support autonomous 
operations. The native 4K or 5K footage is simultaneously written 
to the drone's SD card for later, fine-grained analysis. To prevent 
I/O bottlenecks during data offloading, the laptop should reserve 

ample free disk space for temporary files. Immediately after each 
flight, or, at minimum, at day's end, the SD card and accompanying 
telemetry logs should be duplicated to an external solid-state drive 
(recommended minimum of 1 TB). This onsite redundancy markedly 
reduces the risk of data loss while preserving the full-resolution ar-
chive for subsequent processing. Once a stable connection is avail-
able, the data is synchronized to cloud storage (25 megabits per 
second of sustained bandwidth for uncompressed 4K video, much 
less for stills or compressed clips). This staged stream-low, store-high, 
sync-when-able strategy minimizes bandwidth bottlenecks, pre-
serves data fidelity and ensures that downstream pipelines, whether 
local, cloud or HPC, receive a complete, versioned archive of data 
collected in the field.

4.3.2  |  Post hoc data analysis

Once the drone mission is complete, the imagery data will be ana-
lysed to answer the ADAE study's research question. Computer 
vision models that require more compute, memory or processing 
time than is practical to support in the field or are not required 
for navigation should be implemented post hoc. In addition to the 
imagery data, the telemetry data should be analysed to determine 
how future missions may be improved. Telemetry data captures 
the drone's status during the mission, including altitude, GPS lo-
cation, battery level, heading and gimbal position. For example, 
determining whether sufficient pixels were collected to infer be-
haviour or if the SI of each individual was collected with adequate 
granularity (Rolland, Grøntved, Laporte-Devylder, et  al.,  2024). 
Kline, Berger-Wolf, et  al.  (2024) analysed the KABR telemetry 
dataset to determine the optimal altitude, speed and bounding box 
size to infer behaviour from oblique aerial videos. Integrating this 
insight into the autonomous tracking model improved navigation 
performance by 18%.

4.3.3  |  Long-term data storage and accessibility

Large datasets generated by ADAE studies require systematic or-
ganization and post-processing protocols to ensure efficient analy-
sis workflows, building upon established Imageomics best practices 
(Balk et  al.,  2024). Kline, Zhong, Kholiavchenko, et  al.  (2025) pro-
vides guidelines for managing large video datasets throughout the 
annotation process, including systematic metadata embedding in 
filenames following the format YYYYMMDD-species-location-
videoidXX.mp4 to facilitate dataset organization and automated 
processing workflows. For sharing datasets with the broader re-
search community, preferred hosting solutions for machine learning-
ready ecological datasets include Harvard Dataverse, Kaggle, 
Hugging Face and OpenML platforms. Following open-source 
dataset best practices, data contributors should provide compre-
hensive documentation, including dataset cards, version control 
mechanisms, standardized train/validation/test splits and clear 
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licensing information with a preference for permissive licences that 
facilitate reuse while respecting ethical considerations for wildlife 
data. Annotation platform optimization requires strategic resolution 
management to balance computational efficiency with analytical ac-
curacy (Kline, Zhong, Kholiavchenko, et al., 2025). High-resolution 
drone footage (4K-5K) presents processing challenges in annotation 
platforms such as CVAT (CVAT.ai Corporation, 2023), including ex-
tended buffering times and memory limitations. Downscaling raw 
video files to lower resolution before uploading significantly im-
proves platform responsiveness while preserving sufficient detail 
for accurate manual annotation. However, coordinate transforma-
tions must be carefully managed when scaling annotations back to 
the original resolution for subsequent processing steps. Large-scale 
video datasets often exceed single-system storage capacity, neces-
sitating distributed storage strategies. CVAT instances require a 
minimum of 20% free memory to maintain stable operation, often 
necessitating separation of raw data storage from annotation pro-
cessing environments. Research-optimized data transfer tools 
such as Globus (Foster, 2011) provide robust solutions for moving 
large video datasets between storage systems with secure, high-
throughput transfers and data integrity verification. This distributed 
storage approach enables resource optimization while aligning with 
modular workflow design principles (Balk et al., 2024).

4.4  |  Example ADAE drone missions

Real-world ADAE missions (Figure  7; Table  6) succeed only when 
planning, execution and analysis are tightly integrated.

•	 Kenyan Animal Behaviour Project (KABR). The fine-scale behaviour 
analysis of zebras and giraffes necessitated fully manual, expert 
piloting at low altitude, with no edge compute available during 

flights. The entire 4K RGB stream (∼10 GB per mission) was off-
loaded daily and later trimmed to focus on individual animals for 
automatic behaviour labelling with the X3D model. The full vid-
eos, cropped scenes, telemetry and field notes are retained for 
future mission refinement and made publicly available.

•	 SPOT. Anti-poaching operations demand low latency and low 
bandwidth. Every 720p/25 fps thermal frame is processed at ∼5 
fps by Faster R-CNN, either locally on a K40 GPU or remotely 
on AzureBasic/AzureAdvanced GPU VMs, with 100% of incom-
ing video frames analysed in the field. The videos are retained 
for further detection model refinement, but are not made publicly 
available due to security and privacy concerns.

•	 WildWing. Autonomous herd-centroid tracking was deployed on 
cost-effective hardware, a Parrot Anafi and GPU laptop, downs-
ampling 1080p video at 1 fps during mission execution. Key-
frames are processed on a field laptop to update the navigation 
in real time. The full videos, cropped scenes, telemetry and field 
notes are retained for future mission refinement, and made pub-
licly available.

•	 WildLive. Near real-time 4K multi-animal tracking directly on 
a Jetson Orin AGX edge device in the field. The full-resolution 
frames enter a SAHI sampler, YOLOv-based detect/segment and 
finally a sparse optical-flow tracker at 7.5 fps (4K) or 17.8 fps (HD).

These four ADAE missions illustrate how each study's specific SI 
and species requirements determined at the planning stage cascade 
through navigation autonomy and edge-compute choices to dic-
tate (1) how much of the video stream is processed in the field and 
(2) how much is preserved for reproducibility. Making both layers 
explicit helps new ADAE practitioner's budget storage, bandwidth 
and annotation resources more realistically. For example, the KABR 
project's planning focus on detailed behavioural analysis of spe-
cific species necessitated manual expert piloting during execution 

F I G U R E  7  ADAE Drone Mission Deployment and Execution. (a) Unmanned Aerial System (UAS) Field Deployment adapted from 
WildWing (Kline, Zhong, Irizarry, et al., 2025). The UAS consists of three components: Drone(s), control software and ground-control station, 
typically a laptop equipped with GPU. The control software connects the drone to the autonomous navigation policy and allows users to 
monitor the system during deployment. The navigation policy analyses video frames using computer vision models and determines the next 
commands to send to the drone. The control software is hosted on the laptop, where the users can also monitor the UAS status. (b) Analysis 
tasks performed after the mission is completed include storing data in the cloud, data annotation, model training and AI-enabled analysis.
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and computationally intensive post-processing with specialized 
behaviour models, while SPOT's anti-poaching mission require-
ments led to semi-autonomous patrol routes with thermal imaging 
and minimal data storage optimized for real-time alerts. Similarly, 
WildWing's planning goal of standardized herd tracking informed 
the choice of autonomous navigation with cost-effective hardware, 
enabling automated data pipelines, whereas WildLive's emphasis 
on high-resolution individual tracking required powerful on-board 
processing during execution and large-scale dataset management 
during analysis.

5  |  CHALLENGES AND SOLUTIONS 
FOR STUDYING COLLEC TIVE ANIMAL 
BEHAVIOUR WITH DRONES AND 
COMPUTER VISION

5.1  |  Computer vision challenges and solutions

Drones must capture photos or videos at sufficient granular-
ity to perform each computer vision task in the pipeline for in-
ferring behaviour, as shown in Figure  3. If there are insufficient 

TA B L E  6  Examples of real-world ADAE drone missions.

Project

Planning Execution Analysis

Species/Habitat • Surface-of-
Interest (SI) • Aerial System • Data & 
Schema Plan

Navigation • CV tasks • Real-
time Pipeline • In-field Storage/
Backup

Post hoc AI tasks • Curation • 
Long-term Storage/Sharing

KABR (Kholiavchenko, Kline, 
Ramirez, et al., 2024)

Zebra, Giraffe (Kenya) • Lateral flank 
behaviour • DJI Air 2S • Data plan: 
4K @ 30 fps RGB → 10 GB/mission, 
daily off-load schedule, CSV + EXIF 
metadata template

Manual piloting • Detection → 
ID → Behaviour (offline) • No 
edge compute • SD card mirror 
to rugged hard drive at day-end; 
field notebook logs IDs of cards/
devices

Two-stage annotation (CVAT) → 
X3D/I3D behavioural models • 
Cluster post-proc, versioned by 
DVC • Dataset (1 TB) stored on 
Ohio Supercomputer; Processed 
portion of dataset and code + 
models public via Zenodo DOI

SPOT (Bondi et al., 2018) Poachers + Wildlife (Botswana) • 
Human/animal thermal signatures • 
Matrice + FLIR • Data plan: 720 p/25 
fps thermal stream, 7-day on-board 
ring buffer, JSON alert schema

Semi-autonomous patrol with 
live-stream dashboard for 
manual supervision • Real-time: 
Faster R-CNN @ 5 fps on K40 
GPU (field laptop) or Azure-
Basic NC-6 (Tesla K80) via SFTP 
+ Python; AzureAdvanced 
TensorFlow-Serving cluster (NC-
6, Kubernetes, 4-thread client, 
ProtoBuf) batches frames and 
returns lightweight annotations 
to minimize bandwidth

Post hoc detection model 
refinement • Training/test videos • 
Limited sharing due to privacy and 
security concerns

WildWing (Kline, Zhong, 
Irizarry, et al., 2025)

Grevy's Zebra, Giraffe, Przewalski's 
Horse (Ohio) • Herd centroid • 
Parrot Anafi + GPU laptop • Data 
plan: 1080 p RGB, 1 fps key-frame 
extraction, flight mission metadata, 
projected 20 GB/mission

Autonomous herd tracking • 
Real-time: YOLOv5su detect/-
track → waypoint update • 
Frames, telemetry and videos 
saved to external hard drive, 
auto-sync to field laptop nightly

Automated pipeline → Telemetry 
alignment, behaviour classification 
• Moderate volume (200 GB total) 
• Final dataset and code + models 
public via Zenodo DOI

WildLive (Dat et al., 2025) Zebra, Giraffe, Elephant in Ol Pejeta 
(Kenya) • Individual ID + trajectories 
• DJI Mavic 3 E/Pro + custom quad, 
Jetson Orin AGX • Data plan: 4K/30 
fps RGB (3 GB per 3 min); per-frame 
bounding box annotations (JSON)

Operator-assisted flight • Near 
real-time: SAHI sampling + 
YOLO detect/segment → LK 
sparse optical-flow tracking 
@ 17.8 fps (HD)/7.5 fps (4K) • 
Stores cropped detections + 
point trajectories

Tracklet smoothing, benchmark vs 
SOTA tracking methods • WildLive 
Dataset: 22 videos, 19,139 frames, 
215,800 boxes + masks (250 GB) • 
Versioned with DVC, Final dataset 
and code + models to be made 
public via Zenodo DOI

Cross-project challenges Manual flight variability, behaviour 
annotation complexity

Night operations, human/animal 
classification, autonomous 
navigation

Limited labelled data, processing 
speed, data storage scaling

Note: These studies reveal that successful ADAE deployment requires careful integration across all three phases, with planning decisions (species, 
hardware, surface-of-interest (SI)) directly constraining execution methods (navigation autonomy, real-time processing) and analysis capabilities (data 
storage, processing pipelines). Early planning decisions (data rates, schema, storage budgets) constrain in-field capture and backup strategies, which 
in turn shape post hoc analysis pipelines and long-term archiving. DVC = Data Versioning Control, this allows researchers to reproduce experiments 
exactly, roll back to previous versions of data and track how data changes over time.
Abbreviations: fps, frames per second; SOTA, state-of-the-art. SAHI, Slicing Aided Hyper Inference.
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pixels to detect the animals or classify the species, the behaviour 
is unlikely to be determined manually or using computer vision 
models. Petso, Jamisola, Mpoeleng, Bennitt, and Mmereki (2021) 
found that environmental factors such as camouflage, occlusion, 
shadows and seasonal vegetation changes reduce wildlife detec-
tion accuracy by obscuring distinguishing features, with additional 
variability introduced by sun position and background elements 
like clouds and non-target animals. Inconsistent behaviour and 
differing backgrounds or habitats adversely affect the perfor-
mance of ML models in performing computer vision tasks (Dujon 
et al., 2021). Species classifiers may struggle with populations that 
exhibit sexual dimorphism or are young and appear different from 
adults (Dujon et al., 2021). Open habitats with little occlusion from 
vegetation and consistent background perform best for detecting 
large animals from fixed-wing drones and drones equipped with 
RGB sensors (Brown et  al.,  2022). Drones equipped with hyper-
spectral imagery sensors also detect animals partially occluded by 
vegetation (Longmore et al., 2017; McCraine et al., 2024). In habi-
tats with more vegetation coverage or occlusion, infrared (ther-
mal) and multi-rotor best detect animals, particularly if the animals 
are small (Brown et al., 2022), or occluded by shadows in low-light 
conditions (Krishnan et al., 2023). Fine-tuning existing models on 
curated wildlife drone datasets improves accuracy and generaliz-
ability across habitats (Kline, Stevens, Maalouf, et al., 2025).

Animal behavioural studies using machine learning techniques 
often suffer from the long-tailed distribution problem. Rare species or 
behaviours may infrequently occur in the dataset, causing a long tail 
in which most of the samples used in training are of common cate-
gories (Blair et al., 2024; Kholiavchenko, Kline, Ramirez, et al., 2024; 
Kline, Stevens, Maalouf, et  al.,  2025). Machine learning models 
trained on such unbalanced datasets struggle to categorize rare cat-
egories accurately. This challenge is reflected in the accuracy results 
from KABR (Kholiavchenko, Kline, Ramirez, et al., 2024), which re-
ported an 87% accuracy per instance in predicting behaviour but 
a 61% Top-1 accuracy per class accuracy. MammalNet reported a 
Top-1 accuracy of 51% for animal behaviour classification from video 
(Chen, Hu, et al., 2023). This issue is addressed in (Zheng et al., 2021), 
which offers a solution for improving the accuracy of rare species 
classifications from drone videos using a self-supervised pretrain-
ing technique. Synthetic data produced by generative AI may aug-
ment sparse datasets to increase the training sets of rare species 
or difficult-to-capture behaviours (Bonetto & Ahmad, 2024). Beyond 
data augmentation, generative AI shows promise for extending ob-
servations of ecological patterns and increasing the accessibility of 
ecological data, potentially transforming how ecologists approach 
data-scarce research questions (Rafiq et al., 2025).

Digital twin approaches are emerging as another powerful tool 
for precision biodiversity monitoring, creating virtual represen-
tations of ecosystems that can integrate real-time data from mul-
tiple sources, including drone surveys (Sharef et  al.,  2022). These 
digital twins enable continuous biodiversity projection modelling 
and facilitate incremental learning while reducing uncertainties 
from the complex factors contributing to biodiversity declines. 

Realistic simulation environments also accelerate the development 
and validation of autonomous navigation approaches by providing 
controlled testing conditions that would be impractical or risky to 
replicate in the field (Grushchak, Kline, Pianini, & Farabegoli, 2024). 
These virtual environments enable rapid iteration of flight parame-
ters, obstacle avoidance algorithms and animal tracking behaviours 
without the ethical concerns of repeated wildlife disturbance or the 
logistical constraints of field deployments. By testing and refining 
autonomous drone systems in simulation first, researchers can en-
sure safer and more effective field operations while reducing the 
time and cost associated with iterative field testing.

5.2  |  Infrastructure and navigation challenges and 
solutions

Automatic and semi-autonomous navigation policies offer signifi-
cant advantages over manual flights, as discussed in Section 4.2.2. 
However, these missions are difficult to implement in the field due 
to infrastructure and navigation challenges. Most computer vision 
models are initially developed to be run on powerful supercomput-
ers. This limits the deployment of autonomous aerial systems reliant 
on computer vision models since running large, powerful models in 
the field on edge devices is challenging. Further, designing naviga-
tion approaches with sufficient flexibility to be generalizable across 
multiple settings to be effective on different populations, species 
and habitats is challenging.

Autonomous drones have proven reliable when deployed in do-
mains such as digital agriculture and search and rescue, but little 
guidance exists on drone navigation policies for animal behaviour 
studies. Automatic manoeuvres, such as pre-programming a drone 
to fly to a set of specified GPS waypoints, may reduce the burden 
on manual pilots and aid in experimental replicability. However, au-
tomatic or pre-programmed UAS are often unsuitable for collecting 
data on multiple moving targets, such as animals, without disturbing 
them. Automatic manoeuvres are not well-suited to complex, dy-
namic scenes required for surreptitiously conducting surveillance 
missions on multiple moving targets. The behaviour and movements 
of the multiple moving animals are often not known before the mis-
sion begins. As such, pre-programmed routes are ineffective for 
long-term tracking required for animal ecology studies.

Drone navigation policies should aim to be non-disruptive and 
not induce the animals to alter their behaviour. Autonomous, non-
disruptive drone navigation policies have been proposed for more 
general settings, but more research is required to apply these ap-
proaches to animal ecology missions. Previously proposed covert 
surveillance of moving objects formulate the problem as adversar-
ial (Kouzeghar et  al.,  2023; Zhou et  al.,  2022), which may not be 
applicable to animal studies. For example, one drone performing 
evasive manoeuvres to follow a moving vehicle undetected (Huang 
et al., 2022). Covert surveillance has been explored (Hu et al., 2021), 
but the problem is formulated as a single drone following a single 
subject, limiting its usefulness in capturing group behaviours. Such 
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an approach does not consider the undesirable noise produced from 
these evasive manoeuvrers or the group dynamics of multiple mov-
ing targets.

The ability to track moving targets with multiple drones, that 
is, swarms, has been explored (Bandarupalli et  al., 2023; Parker & 
Emmons, 1997). Multiple drones working collectively in a swarm can 
collect data from various angles, providing better coverage of the 
animals (Naik et  al.,  2024; Rolland et  al.,  2025). Multiple views of 
the subject(s) increase the likelihood of collecting valuable biolog-
ical behaviour data, such as rare behaviours like fighting or mating. 
Commercially available drones are usually limited to 30 minutes of 
flight time, which decreases in the presence of wind. Swarms over-
come drone hardware constraints, namely limited power and com-
puting, to extend mission time and throughput. However, swarms 
may produce excess noise and may require more edge infrastructure 
to support the navigation system's compute requirements.

Drones equipped with on-board GPUs, such as those incorporat-
ing a Jetson Nano as in the WildLive project Dat et al. (2025), enable 
low-latency execution of computer vision models directly on the air-
craft, bypassing the need to transmit data to an external edge device 
for inference. This capability is essential for time-sensitive ecolog-
ical monitoring tasks or field sites with limited or unreliable com-
munication infrastructure (Kline, O'Quinn, et  al.,  2024). However, 
the inclusion of GPU hardware and high-capacity batteries signifi-
cantly increases payload weight, necessitating the use of larger UAV 
platforms that demand specialized operator training and regulatory 
clearance. These heavier-class drones also tend to be more costly 
and acoustically disruptive, which may constrain their suitability for 
monitoring noise-sensitive species or conducting unobtrusive be-
havioural studies.

5.3  |  Potential disturbance from drones

Ecologists have increasingly expressed concerns regarding the poten-
tial risks posed by drone disturbances to wildlife (Schaul et al., 2015). 
Edge-enabled autonomous navigation equipped with safeguards 
could reduce the disturbance. The mere presence of drones can arti-
ficially induce animal behaviours, resulting in biased datasets (Afridi 
et al., 2025). Variability in reactions to drones is noted across spe-
cies, demographic classes and habitats, with some studies detailing 
these differential responses (Bevan et al., 2018; Brisson-Curadeau 
et  al.,  2025; Schad & Fischer,  2023). Comprehensive research in-
vestigating terrestrial mammals' responses to drones reveals that 
animal behaviour is highly dependent on the drone's distance and 
altitude relative to the species in question and their habitat (Bennitt 
et al., 2019). Studies consistently show that flight altitude, approach 
distance, flight speed and drone noise levels significantly affect 
wildlife responses (Mesquita et  al.,  2022). General guidelines sug-
gest maintaining minimum distances of 30–100 m depending on 
species, with birds typically showing minimal reactions when drones 
maintain distances over 40 m during take-off (Weston et al., 2020). 
Larger mammals like elephants and giraffes become more vigilant at 

50–80 m, respectively (Bennitt et al., 2019), while marine mammals 
such as bottlenose dolphins display behavioural changes primarily at 
lower altitudes with responses intensified by longer hovering times 
(Fettermann et al., 2019; Giles et al., 2021).

Flight patterns, engine types and drone size also influence an-
imal responses (Mulero-P'azm'any et  al.,  2017). Species sensitivity 
to drone noise depends on frequency and intensity, characterized 
by audiograms, which can help provide a basis for determining opti-
mal drone flight altitudes to minimize disturbance (Duporge, Spiegel, 
et al., 2021). These findings highlight the need for species-specific 
flight altitude considerations to minimize wildlife disturbances from 
drones. However, flying at higher altitudes may also limit the abil-
ity to detect animals and accurately classify their species and be-
haviour (Petso, Jamisola, Mpoeleng, & Mmereki, 2021). For instance, 
an analysis of the KABR data found that drone missions conducted 
at altitudes between 10 and 30 m generated the best data for in-
ferring zebra behaviour Kline, Berger-Wolf, et  al.  (2024), which is 
lower than the altitudes recommended in other reviews of zebra re-
sponses to drones (Bennitt et al., 2019; Petso, Jamisola, Mpoeleng, & 
Mmereki, 2021). Therefore, mission planning should carefully weigh 
these parameters to strike a balance between achieving the neces-
sary accuracy and minimizing disturbance to wildlife (Hodgson & 
Koh, 2016; Schad & Fischer, 2023).

6  |  FUTURE TRENDS

6.1  |  Edge AI for real-time processing

Traditionally, animal ecology behaviour studies have relied heavily 
on offline data processing. However, recent research has begun 
exploring the potential for more immediate data analysis with 
Edge AI. As shown in Table 2, we identified five studies using real-
time computer vision inference to collect drone data from 2018 to 
the present. Edge AI systems perform computations at the edge 
near the source of the data, as opposed to sending data to a cen-
tralized cloud server (Singh & Gill, 2023). Edge AI requires massive 
amounts of data and computing capacity. Still, recent advance-
ments in sensors, hardware and communication technology like 5G 
and 6G networks (Jolles, 2021; Singh & Gill, 2023) have made this 
possible on the edge in remote regions. Ongoing improvements in 
the performance of edge processors will enable the deployment 
of more sophisticated computer vision on edge devices in the fu-
ture. Researchers are exploring using various mobile computing 
devices, such as ruggedized laptops, tablets or custom-built port-
able units, to augment in situ processing capabilities. Such devices 
can serve as intermediate processing nodes, bridging the gap be-
tween data collection points and cloud infrastructure. Techniques 
such as model pruning, quantization and knowledge distillation are 
being explored to run complex models on resource-constrained 
edge devices (Eccles et  al.,  2024; Giovannesi et  al.,  2024; Kline, 
O'Quinn, et  al.,  2024; O'Quinn et  al.,  2025). These approaches 
show promise for deploying advanced algorithms on edge devices 
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with limited resources, though their effectiveness in ecologi-
cal field studies needs further research (Jolles,  2021; Whytock 
et al., 2023).

6.2  |  Computer vision for the edge

Edge computing and computer vision are increasingly applied to 
AI-driven animal ecology studies, enabling new data collection 
and analysis approaches. This convergence of technologies has 
the potential to enable real-time analysis of aerial data gathered 
from drones using computer vision. As the volume and complex-
ity of ecological data continue to grow, efficient computing ap-
proaches are needed to handle the unique challenges posed by 
aerial monitoring of animals in remote environments. Drones 
equipped with on-board GPU are increasingly available, ena-
bling real-time, on-board processing for autonomous navigation 
policies (Andrew et al., 2019; Dat et al., 2025; Kline, Berger-Wolf, 
et al., 2024; Luo et al., 2024). Currently, applications of drone im-
agery to study animals are dominated by detection studies, con-
sisting 75% of studies (Table 2). A recent review of deep learning 
for animal detection in drone imagery identified 200 studies on 
this topic (Axford et al., 2024).

As edge computing becomes more widely adopted, we predict 
more studies traversing ‘further down the pipeline’ to tracking and 
behaviour detection computer vision tasks. Tasks including individ-
ual identification, pose estimation and behavioural analysis consti-
tute less than 10% of documented studies, representing a significant 
opportunity for research contributions in this area. Latency-aware 
autonomous tracking models (Luo, Li, et  al., 2023) and fine-tuned 
YOLO models designed for edge deployments such as WildARe-
YOLO (Bakana et  al.,  2024) and WilDect-YOLO (Roy et  al.,  2023) 
may be tuned for ADAE. At the same time, we anticipate an in-
creasing number of tasks to be done in real-time at the edge, as has 
been done for detection and classification tasks (Bondi et al., 2018; 
Chalmers et al., 2019, 2021; Meier et al., 2024; Tripathi et al., 2025). 
As noted in (2025), numerous AI models exist for terrestrial biodi-
versity monitoring, but technological advancements are needed in 
robotics platforms, sensors, power sources and data handling to 
fully deploy them in robotics and autonomous systems.

Aerial imagery collected with drones poses new challenges for 
the computer science community. Meeting these challenges will re-
quire innovation in both collecting higher-quality datasets with auto-
mation and computer vision models tailored for deployment on the 
edge. For example, Lee et al. (2021) proposes an algorithm to quickly 
detect animals from drone imagery without training data, and 
Zhang (2023) proposes a specialized version of YOLO for detection 
from drone imagery. Such datasets will enable more sophisticated 
computer vision models to be trained for detection, localization and 
classification tasks for animal ecology applications, such as (Chappidi 
& Sundaram, 2024; Jiang & Wu, 2024). Kellenberger et al. (2019) pro-
poses a novel active learning strategy to reuse CNNs across differ-
ent domains so models can be used to analyse datasets collected in 

distinct habitats at other times. Ma et al. (2022) proposes a technique 
for counting herbivores in drone imagery as detecting small targets 
by optimizing Faster-R-CNN for these tasks. The development of 
such models relies on the availability of high-quality datasets to 
train on, such as the Wildlife Aerial Images from Drone (WAID) (Mou 
et al., 2023) and the Multi-Environment, Multi-Species, Low-Altitude 
Drone (MMLA) datasets (Kline, Stevens, Maalouf, et al., 2025).

6.3  |  Autonomous drone swarms

Video datasets with multiple viewpoints can lead to more accu-
rate behavioural studies. Multiple drones can be used to monitor 
large groups of animals to capture emergent behaviours, as in the 
approach used to study the mating ecology of a lek-breeding ante-
lope (Sridhar et al., 2024). Multiple views of a herd reduce the likeli-
hood of encountering occlusions from vegetation or other animals 
and provide more usable pixels for inferring behaviour. Multi-view 
datasets make it easier to identify and localize the animals within 
the landscape individually. Drone swarms collecting data from an 
oblique angle, or non-nadir, may produce higher-quality classifica-
tion results, as this angle provides additional angles of the animal 
as shown in Figure 8. In addition to providing multiple views of the 
herd, swarms may be deployed to cover larger areas than is possible 
to monitor by a single drone alone (Boubin et al., 2022).

However, flying multiple drones is difficult or impossible to 
manage manually. Autonomous drone missions are known to be 
safer, less expensive and more reliable than manual missions flown 
by human pilots (Boubin et al., 2023). Reliability and consistency 
are critical when data is analysed through computer vision pipe-
lines. An analysis of the KABR dataset found that behaviour was 
best captured during missions flown at low speeds and altitudes 
between 10 and 30 m (Kline et al., 2023). However, training human 
pilots to conduct specialized animal behaviour missions tailored to 
specific species, habitats and demographics is difficult and time-
consuming and may produce inconsistent datasets between pilots. 
The altitude of missions is known to impact the accuracy of classifi-
cation of individual animals and herds (Petso, Jamisola, Mpoeleng, 
Bennitt, & Mmereki, 2021) and behaviour (Kholiavchenko, Kline, 
Ramirez, et  al.,  2024). Automating flights with pre-defined pa-
rameters, such as speed and altitude, to collect optimal data is a 
promising solution for scaling up behavioural studies with drones 
across large geographical areas repeatedly. Drone swarms may be 
deployed to optimize coverage of group-living animals (Grushchak, 
Kline, Pianini, Farabegoli, Aguzzi, et al., 2024) or capture the de-
sired SI (Rolland et  al.,  2025). Autonomous drones can be pro-
grammed to automatically track a herd of animals using the herd 
tracking algorithm proposed in Kline, Berger-Wolf, et  al.  (2024). 
This technique uses the bounding box annotations for each an-
imal produced by YOLO (Redmon et  al.,  2016) to calculate the 
centroid of the herd dynamically. It directs the drone to keep this 
centroid in view of the camera, allowing it to automatically follow 
most of the herd as it moves through the landscape. Deploying 
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this herd tracking technique improved the yield of usable data 
for behavioural studies from 66% to 87% (Kline, Zhong, Irizarry, 
et al., 2025).

The deployment of autonomous drone swarms has generated 
significant interest in the environmental monitoring community 
due to their scalability and high error resistance. Swarms are well-
suited for operation in large and harsh environments (Parker, 1994; 
Rolland et al., 2025; Schranz et al., 2021). By distributing different 
monitoring tasks among various agents, drone swarms can leverage 
the capabilities of single-drone missions. For instance, they can con-
duct landscape coverage missions more quickly and enable multi-
perspective monitoring of wildlife (Grøntved et  al.,  2023; Rolland, 
Grøntved, Laporte-Devylder, et al., 2024). Drone swarms have been 
successfully deployed using automation to control several drones 
concurrently for agriculture applications (Boubin et al., 2022).

Multi-perspective data collection is a growing area of interest 
for ADAE studies as well. Drone swarms can extend the duration of 
monitoring, allowing for the collection of rare animal behaviours (e.g. 
fighting or mating) while also providing better perspective coverage 
of different species. While the challenge of tracking moving targets 
with multiple drones has been addressed in several studies, few have 
applied drone swarms to real-life wildlife monitoring (Bandarupalli 
et  al.,  2023; Parker & Emmons,  1997). Rolland et  al.  (2025) 

demonstrated an early version of a three-agent drone swarm capa-
ble of autonomously collecting multi-perspective data on zebra herds 
(Figure  9). Their system accounted for wildlife-specific constraints, 
such as minimizing animal disturbance and ensuring sufficient view 
quality for behavioural analysis and individual identification, using an 
optimization-based centralized controller. While promising, this initial 
implementation highlighted areas for further development, such as 
enhancing the swarm's responsiveness to dynamic animal movement 
and reducing reliance on manual animal detection to achieve full au-
tonomy. However, before swarm applications can be widely adopted 
for wildlife monitoring, significant research gaps must be addressed 
to make the technology accessible to non-robotic experts. These 
include the development of commercially available drone platforms 
tailored for field deployment in harsh conditions, and the creation of 
user-friendly interfaces that meet end-users' needs for controlling the 
swarm (Abdelkader et al., 2021).

7 | CONCLUSIONS

Drones and computer vision have the potential to scale animal 
behaviour studies to enable real-time monitoring of ecosystems 
over large spatiotemporal scales. Adapting drone navigation and 

F I G U R E  8  Drones performing (a) vertical and (b) horizontal monitoring of a pod of Tursiops (Rolland, Grøntved, Laporte-Devylder, 
et al., 2024).
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computer vision techniques to answer ecological questions pre-
sents challenges that offer opportunities to innovate in robotic 
sensing, edge computing and animal ecology. Existing techniques 
may be adapted for challenging drone datasets, improving the 
state-of-the-art in both computer science and biology (Rolnick 
et al., 2024). The deployment of autonomous drones can scale up 
the generation of new models to complete detection, localization 
and classification tasks on aerial imagery, on edge, in real-time for 
optimal monitoring. Autonomous aerial systems equipped with 
Edge AI can enhance and standardize large-scale animal behav-
iour studies, minimizing disturbance and boosting data accuracy. 
Automating drone swarms to conduct animal behaviour studies 
enables real-time monitoring of ecosystems. Real-time monitor-
ing is essential for conservation applications, such as detecting 
poachers in protected wildlife zones (Bondi et  al.,  2018). Fast, 
real-time animal detection from imagery requires innovation in 
edge computing techniques and models optimized for fast infer-
ence with low computing and memory resources on the edge. 
Smart drones, equipped with computation resources on board, 
have been used to automatically detect black rhinos and giraffes 
at a low cost, with low communication bandwidth in real-time (Hua 
et  al.,  2022). Autonomous drones can be programmed to main-
tain a safety zone between the animals of interest and the drone 
to minimize the possibility of artificially inducing behaviour from 
the data collection process while automatically tracking the group 
simultaneously.

Integrating drones and computer vision is revolutionizing how 
researchers study and interpret animal behaviour in the wild, with 
recent studies highlighting how biological systems can inform in-
creasingly sophisticated technological approaches. As highlighted 
by recent research, AI applications in conservation extend from 
species recognition to predictive modelling of biodiversity loss 
(Reynolds et al., 2024), while animal-inspired robotics provide inno-
vative solutions for studying elusive species in their natural habitats 
without disruption (Afzal et al., 2025). Particularly promising is the 
development of adaptive intelligence systems that draw inspiration 
from the inherent flexibility of biological intelligence, where animals 
continuously adjust their behaviours based on environmental feed-
back (Mathis, 2024). This biomimetic approach to AI development, 
combined with advances in robotics and computer vision, offers a 

powerful framework for creating more sophisticated and respon-
sive conservation tools. By learning from nature's solutions while 
working to protect it, researchers are establishing a reciprocal rela-
tionship between biological and artificial intelligence that could rev-
olutionize our understanding of animal behaviour and enhance our 
capacity for effective conservation.
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