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While the properties of standard (single-component) superfluids are well understood, principal differences
arise in a special type of multicomponent systems—the so-called Borromean supercounterfluids—in which (i)
supertransport is possible only in the counterflow regime and (ii) there are three or more counterflowing compo-
nents. Borromean supercounterfluids’s correlation and topological properties distinguish them from their single-
and two-component counterparts. The component-symmetric case characterized by a distinctively different
universality class of the supercounterfluid-to-normal phase transition is especially interesting. Using the recently
introduced concept of compact-gauge invariance as the guiding principle, we develop the finite-temperature
description of Borromean supercounterfluids in terms of an asymptotically exact long-wave effective action. We
formulate and study Borromean XY and loop statistical models, capturing the universal long-range properties
and allowing us to perform efficient worm algorithm simulations. Numeric results demonstrate perfect agreement
with analytic predictions. Particularly instructive is the two-dimensional case, where the Borromean nature of
the system is strongly manifested while allowing for an asymptotically exact analytic description.
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I. INTRODUCTION

The phenomenon of counterflow superfluidity (a.k.a.
supercounterfluidity)—taking place in a multicomponent sys-
tem under the conditions when the net flow of atoms is either
arrested by Mott physics [1] or becomes normal due to the
finite-temperature proliferation of multicomponent (compos-
ite) vortices [2]—has been of substantial interest for two
decades [1-18] (for an introduction, see Ref. [19]). The first
experimental implementation of a supercounterfluid state in
a six-site chain of two-component ultracold bosons was re-
ported recently [20].

The vast majority of previous theoretical work deals with
the two-component case. Nevertheless, the general multicom-
ponent case was not only known to exist in principle [19] but
was also implemented numerically (for the three-component
Bose-Hubbard model) and dubbed “Borromean” in Ref. [21].
Furthermore, it was also established [22,23] that a special
(frustrating) type of intercomponent Josephson coupling mod-
ifies a three-component supercounterfluid into a very peculiar
state—termed a Borromean metal at a finite temperature 7'
[24]—with a specific topological-like intercompoment order-
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ing implying, in particular, broken time-reversal symmetry
(BTRS). Recent experiments [25,26] reported observation of
this state of matter in an iron-based material Ba;_,K Fe,As,,
where the spontaneous magnetic fields arise due to persis-
tent local counterflow currents. Another crucial aspect of
such systems—the existence of elementary (a.k.a. fractional
[27]) and composite vortices (i.e., a bound state of several
fractional vortices)—was also observed in Ba;_,K ,Fe,As,
[28]. This state of matter comes with a large number of
other unconventional properties that are currently under
investigation.

Despite impressive theoretical and experimental progress,
a crucial question about Borromean counterfluids has not been
addressed until very recently: What is the effective long-wave
description of the system? In many respects, a two-component
(N = 2) supercounterfluid maps onto a single-component
superfluid. The Borromean case (N > 3) is very different.
Think, for simplicity, about the Borromean ground state. Since
the net matter flow is arrested, the number of independent
phonon modes has to be equal to N — 1, suggesting that the
number of independent order parameters—defining the num-
ber of pairs of canonically conjugate fields in the Hamiltonian
formalism—is also N — 1. On the other hand, the number of
elementary vortices, or, equivalently, elementary counterflow
persistent-current states equals N, as if there were N inde-
pendent order parameters. In the most instructive case, when
the system features permutation symmetry for all the N > 3
components, these N elementary vortices are distinctively

Published by the American Physical Society
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different and absolutely equivalent to each other in terms of
their properties, including the energies.

In a recent work by some of us [24], progress has been
made in understanding the guiding principle, allowing the
construction of an effective hydrodynamic description of Bor-
romean ground states by introducing the notion of special
gauge redundancy of the theory [see Eq. (1) below], the
so-called compact-gauge invariance. As opposed to standard
local U(1) symmetry, it does not require the presence of an
additional gauge field. Instead, it is a symmetry property of the
effective long-wave Hamiltonian of the N-component system.
By Noether’s theorem, the compact-gauge symmetry guaran-
tees the invariance of the net local density of the matter, thus
enforcing the counterflow character of the system’s dynamics.

In this paper, we show that the principle of compact-
gauge invariance, formulated initially in the context of
zero-temperature hydrodynamics, proves equally (if not more)
crucial at a finite 7. It readily allows us to formulate a
finite-temperature description of Borromean supercounterflu-
ids in terms of an asymptotically exact long-wave effective
action. Guided by this principle, we construct generalized
XY and loop (a.k.a. J current) statistical models capturing
the universal long-range properties of Borromean supercoun-
terfluids. Analytic theory based on the effective long-range
action demonstrates perfect agreement with the numerically
exact results for a minimal loop model simulated by worm
algorithm. Much of our analytic and numeric attention is
paid to the two-dimensional (2D) case, where the Borromean
nature of the system is strongly manifested in long-range off-
diagonal correlations as well as in the equilibrium statistics
of counterflow supercurrent states and where the Berezinskii—
Kosterlitz—Thouless—type (BKT-type) criticality is driven by
well-isolated topological defects thus allowing for an asymp-
totically exact analytic description.

The rest of the paper is organized as follows: In Sec. II, we
use the principle of compact-gauge invariance to formulate an
effective description of an N-component counterflow super-
fluid. In Sec. II B, we introduce the Borromean XY model,
the minimal model capturing the corresponding universal-
ity class. In Sec. IIC, we establish the relationship between
the XY -type and loop (also known as J current) Borromean
models and representations. Here, the principle of compact-
gauge invariance allows us to directly introduce Borromean
loop models and, in particular, formulate the minimal one
illustrated in Fig. 2. All our numeric data are obtained by
worm-algorithm simulations of this minimal loop model.

In Sec. III, we analyze topological structures—vortices
and persistent currents—in Borromean models. In Sec. IV,
we study the response to the phase twist. We show (see
Fig. 3) how the dependence of phase twist response on the
aspect ratio can be used to probe the equilibrium statis-
tics of supercurrent states. In Sec. V, we study off-diagonal
correlations—both analytically and numerically. Numeric
data demonstrate perfect agreement with analytic predictions.

In Sec. VI, we develop the theory of BKT-type transi-
tion in a Borromean system, corroborating our results with
numeric simulations. Here, we find that while renormaliza-
tion of the superfluid stiffness by vortex-antivortex pairs has
a Borromen character—reflecting Borromean properties of
the underlying vortex plasma, the equations describing the

renormalization flow can be formally cast into the standard
Kosterlitz-Thouless form by absorbing the Borromean factor
into the effective vortex pair concentration.

In Sec. VII, we discuss the results obtained and future
research directions.

II. EFFECTIVE DESCRIPTION

A. Long-wave action

The form of effective long-wave action for the finite-
temperature N-component Borromean supercounterfluid can
be readily established by utilizing formal correspondence
with the N-component superfluid, where one degree of free-
dom is implicitly removed by compact-gauge redundancy
[24]. The effective long-wave finite-temperature action for
the N-component superfluid is a generalization of the single-
component action. Here the effective degrees of freedom
are N fields of superfluid phases 6,, « = 1,2,...,N. The
[U(D)]V invariance of the theory requires that the action den-
sity be a function of gradients V6,. At the same time, the
long-wave regime means that we can confine ourselves with
only leading—i.e., quadratic—Taylor expansion of the action
density in powers of V6,. The key constraint distinguishing
Borromean supercounterfluid from the N-component super-
fluid with a drag between components (caused by mixed
gradient terms) is the requirement of invariance of the action
with respect to the compact-gauge transformation

Va: Gu(r) = O(r)+ o(r), (1)

where @(r) is an arbitrary field of phase defined modulo 27
and allowed to have topological defects [point vortices in 2D
and vortex lines in three dimensions (3D)].

The microscopic origin of the requirement (1) can be rather
different. If the system has the counterflow ground state so
that the individual phases 6, cannot be unambiguously defined
from the very outset, then Eq. (1) is merely a formal mathe-
matical framework allowing one to treat on equal grounds all
the N components—as opposed to selecting one of them as
the “phase reference frame” and dealing with relative phases;
see Eq. (7) below. If the ground state of the system is the
N-component superfluid and the supercounterfluid regime is
enforced by the proliferation of composite vortices (having
the same winding number £25 for each of 6,), so that the
phases 6, have at least some clear microscopic meaning. It
now directly reflects the proliferation of composite vortices,
meaning that they cost no energy at the macroscopic level.

Independently of its microscopic origin, Eq. (1) implies
that the density of the long-wave action has the form

1
A= EZAaﬁ(vea — V6p)2. 2)

a<p

The partition function describing the long-wave off-diagonal
correlations in the system thus has the form

N
Z:/e’AHOHHDO{,, A[{G}]:/Addr. 3)
a=l1

Here {8} = (61, 05, ..., Oy).
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In what follows, we will be dealing with the component
symmetric case

A
A== > (Vo, — Vo). 4)

a<p

The symmetry between components guarantees that the phase
transition from the counterfluid to normal fluid happens for
all the components simultaneously. For future convenience of
tracing correspondence with the single-component case, we
write the action as

2(zv Z(ve — Vo), (5)

where
Ay = AN —1). (6)

We see that, in many respects, the parameter A will play a
role very similar to that of the superfluid stiffness of a single-
component system.

Even in the component-symmetric case (5), democratically
treating all the components at the expense of gauge-
redundancy is not always convenient. The redundancy can be
removed by working with gauge-invariant quantities—relative
phases of (N — 1) components with respect to the phase of the
Nth one:!

¢a=9(x_9N»

In terms of these relative phases, we get (the integration over
Oy factors out and is omitted in what follows since it corre-

sponds to nothing but gauge redundancy)
N-1

a=1,23,...,(N=1). )

Z:/Q—A[{w]np%, A[{qj}]:/jlddr, (8)
A N—1 "
~ 2, _ 2
T 1)2(%) 2(N 5 2 (Ve — Ve

a<B<N

C))

It is good to observe that we could arrive at the very same
parametrization by utilizing gauge redundancy—working in
the gauge where 8y = 0 and thus ¢, = 6,.

For our future purposes, it is convenient to identically
rewrite the expression for A as

Z( ba)’ — sl)

In such a parametrization, the model has a form similar
to that of an (N — 1)-component superfluid with specially
fine-tuned drag couplings to guarantee that the (N — 1)-
component composite vortex having the same winding
number in each of the phases would have the same energy
as the elementary vortex having the winding number in the
phase of only one of the N — 1 components. We should
realize, however, that such fine-tuning is akin to accidental
degeneracy rather than symmetry: It cannot be achieved at

> Vo Vs (10)

a<f<N

'Note that Eq. (7) is consistent with the requirement that any re-
definition of phases should respect the 27 periodicity of the original
phases.

the level of certain fixed parameters of the system because
changing the temperature would detune the system from this
special regime. The only option is to move along a special
line p = p(T) in the (p, T) phase diagram of the system,
with parameter p allowing to re-adjust the drag to achieve the
correspondence with the N-component Borromean system.

In the Borromean supercounterfluid, the fields of relative
phases play a key role in defining the concept of genuine
(in 3D) or algebraic (in 2D) off-diagonal long-range order.
The simplest off-diagonal correlator—to be referred to as the
composite density matrix—is defined as

p(r) = (ei¢a(r)7i¢0((0)>. (11)

B. Borromean XY model

The long-wave effective action is perfect for analytic treat-
ments. For efficient numeric simulations, one would prefer to
deal with minimal discrete models that capture the same long-
wave behavior while being particularly suited for advanced
algorithms. In the single-component case, the XY model and
its J-current counterparts are the models of choice.

Let us now generalize the lattice XY model to the lattice
model of a Borromean counterfluid. The guiding principle
is compact-gauge invariance as with the long-wave effective
action (2). Hence, we formulate the following expression for
the Hamiltonian of the Borromean XY model:

H=-— Z Z Jup COS (90(51 — Ous, — Ops, + 9/332)~ (12)

a<p (s152)

The key ingredient here is the compactness of the individual
phase fields 6, € [0, 27]; « is the component index on the
site s of the hypercubic lattice in d dimensions. The symbol
(...) restricts summation over the pairs of sites to the pairs of
nearest neighbors.

The lattice analog of the compact-gauge transformation (1)
is

Vs, Va: By — Ous + @5, (13)

where ¢; is an arbitrary real number. Hamiltonian (12) is
invariant with respect to his transformation.

In what follows, we will be interested only in the case when
all the couplings are the same [Jop = J;/(N — 1) > O[:

2(N Z ZCOS as; asz

a#f‘ (s152)

9/331 + 9/332 ) .

(14)

In the direct analogy with Eq. (7), the gauge freedom

can be removed by working with relative phases (note that

while changing variable notations, one should retain the 27
periodicity of the original phases):

Pous = Ons — Ons, a=1,2,3,...,

In this representation the Hamiltonian (14) becomes

(N —1). (15)

JIs
H=- (N_I)ZZCOS((Z&‘”‘ ¢asz)_2(N__ 1)

o (s152)

X X_: Z Cos (¢(xs1 - ¢om2

aFp (s152)

- ¢ﬂ‘v| + ¢ﬂ‘vz ) (16)
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The lattice composite density matrix—Tlattice counterpart
of (11)—is

Posy = (P 10). (17)

C. Borromean loop models or representations

In the theory of superfluidity, of particular importance are
loop (also known as J current) models [19]. The loop models
emerge (or can be viewed as) dual representations of certain
lattice models written initially in terms of the phases 6,;.
Equivalently, a loop model can, in principle, be converted into
an equivalent 6 model.

Loop models or representations provide an alternative per-
spective on the nature and mechanism of superfluid ordering
and serve as the basis for most efficient numeric simulations
with the worm algorithm [29-31]. All these aspects are es-
sential in the Borromean case as well. Furthermore, there is
one additional circumstance rendering loop representations
particularly relevant. In the 6 representation, the visuality of
component symmetry comes at a considerable price of gauge
redundancy. As we see in what follows, loop representation is
free of gauge redundancy while being explicitly component-
symmetric. The counterfluid regime is enforced by the most
visual constraint requiring that (for each bond) the net bond
current be zero.

A standard way of arriving at loop representation is by
doing high-temperature expansion of the partition function of
a certain XY -type model. We follow this route with an obser-
vation that an explicit formulation of the model in terms of
the Hamiltonian is unnecessary. All we need are some general
properties of XY -type models (be those supercounterfluids or
N-component superfluids) implying the following structure of
the partition function:

Z=/[1‘[Q({Ve}b>]1"[d0aj. (1)
b aj

Here, the subscript b runs over all the bonds of the lattice, and
the symbol { V8}, denotes the set of all lattice gradients of the
lattice fields 6, ; associated with this bond:

(vey, = (vo”, ve, ..., vey), (19)

VOL = Ons, — Ous, (20)
withs; = s(lb )and s, = sgb) labeling two lattice sites connected
by the bond b. The choice of which of the two is s; and
s2, respectively, is a matter of convention; it plays no role in
further discussion because the factor Q is supposed to be an
even function of V.

In direct correspondence with the continuous-space case,
the dependence on the gradients guarantees global U(1)Y
symmetry of the theory—defining feature of the N-component
superfluid system. The lattice-specific property coming from
the compactness of the site variables, 6,; € [0, 27], is the
necessity for the factor Q to be a 2 -periodic function of each
0y ; and thus of each VO

Because of this periodicity, we can expand Q({V#6};) into
the Fourier series (for the sake of clarity, we suppress the

e +ing, n e —inf
@ < @
) 81

FIG. 1. Bond current notation. The current of a given color and
finite integer strength n > 0 goes from the site s; to the site s,. (Color
subscripts are suppressed for clarity.)

sub- and superscripts b)

N
Q({V6}) =) Faexp (iznavea). 1)

a=1
Here,

n=(ny,ny,...,nN) (22)

is an N-component integer vector labeling Fourier coefficients
F.

Now we improve notation that will be important for the
next step. From now on, all our integers n, will be non-
negative. In contrast, the possibility of having two different
signs for any nonzero n, will be accounted for by a binary
subscript that is conveniently represented graphically as an
arrow (of the “color” «) attached to the bond and pointing
from the vertex s; associated with the exponential e~"«%1 to
the vertex s, associated with the exponential e*%s  Corre-
spondingly, we will be saying that there is an integer J current
going from the vertex s; to the vertex s,; for an illustration,
see Fig. 1. In the n = 0 case, we will be saying that the bond
current is absent and, correspondingly, will not be introducing
any graphical elements. In the context of this notation, we
introduce the variable j® standing for the current of the
component « on the bond b (as well as its absence), in ac-
cordance with the convention of Fig. 1.

We then introduce the notion of the divergence of the bond
currents (of a given color «) at the site s, denoting it with the
symbol V - j,s, which corresponds to the algebraic—outgoing
minus incoming—sum of all the bond currents of the given
color associated with the given site. The importance of the
notion becomes immediately clear once the Fourier expansion
(21) is substituted into (18), allowing one to explicitly perform
the integrals over all angles. The integration over 6, produces
exact zero unless V - jy, in which case the integration pro-
duces the factor (277)"; this global factor plays no statistical
role and will be omitted in what follows.

This way we arrive at the loop (also known as J current)
representation of the partition function:

V=0

z="> TIFdim- (23)
Uy o

Here, the sum is over all the configurations of bond currents

satisfying the zero-divergence condition at each site and for

each component:

Vs,Va: V- ju =0. (24)

The factor F({j},) is the Fourier coefficient of Eq. (21)
parametrized in accordance with convention of Fig. 1.
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So far, our analysis did not distinguish between the N-
component superfluid and the supercounterfluid. To make sure
we are dealing with the latter rather than the former, we need
to impose the condition of the compact-gauge invariance on
the bond factors Q({V8},) in the partition function (18).

In terms of the Fourier expansion (21), compact-gauge
transformation on one of the two sites associated with the
bond b leads to

N
F({j}y) > F({j}y) exp (irﬂ Zjé’”) (25)

a=1

Hence, the compact-gauge invariance implies the condition

N
v b: Z ji® =o. (26)
a=1

This condition—requiring that the algebraic sum of all the
currents on each bond be always zero—is very visual.

Now we can formulate the minimal loop Borromean
model. The minimal number of components is three. The
minimal number of nonzero bond currents necessary to satisfy
the constraint (26) is two. The minimal nonzero magnitude of
the bond current is one. Each empty bond contributes the triv-
ial factor of F = 1 to the partition function (23). Each bond
with two counter-currents contributes a factor F = P, where
P € (0,1) is a certain constant—the only control parameter
of the model. This brings us to the configuration space shown
in Fig. 2. It is clearly seen that having at least three different
components is crucial for the configurational space to be prin-
cipally different from that of the minimal single-component
model. In the case of only two counterflowing components,
the zero-current constraint, requiring that the magnitudes of
the two bond currents be precisely equal, enforcing mapping
between the two- and single-component configuration spaces.

D. Numeric protocol

All our numeric data are obtained by simulating the multi-
component two-dimensional loop model illustrated in Fig. 2.
We use the standard worm algorithm for classical loop models
[31], which gives us a natural access to the composite density
matrix (17) via the statistics of the two worms, s; and s, (see
bottom panel in Fig. 2). The worm algorithm also provides
us with simple access to the superfluid stiffness A via the
statistics of loop windings; see Sec. IV B for the details. To
sample a system of linear size L ~ 10> with small statistical
error bars (see numeric results throughout the paper), we
perform ~10'* Monte Carlo steps upon thermalization.

III. VORTICES AND PERSISTENT CURRENTS

A. Extremal solutions and topological charges

Up to the compact-gauge freedom, the extremal configura-
tions of the fields—nullifying the first variational derivatives
of the action A[{#}]—satisfy the set of equations

Ya: AGMP =0, 27

.

59

{
N

FIG. 2. Minimal Borromean loop model: Typical bond configu-
rations for the 2D three-component system of the linear size L = 8
with periodic boundary conditions. (top) Bond configuration with
closed loops, contributing to the partition function (23) with the
constraint (26). (bottom) Worm diagram with head and tail (white
circles), contributing to the composite density matrix (17). Each
bond is either empty [contributing the trivial factor of F =1 to the
partition function (23)] or contains two counter currents, in which
case it contributes the factor F = P, where P € (0, 1) is a certain
constant—the only control parameter of the model. At each site,
apart from the two worms s; and s,, the algebraic sum of currents
of each component is zero. Having at least three components is
crucial for the configurational space to principally differ from the
minimal single-component model. With only two counterflowing
components, the zero-current constraint enforces exact equivalence
with the single-component configurational space.

The same statement can be made in the gauge-invariant form
in terms of the relative phases and the action A[{¢}]:

Ya: AplP =0. (28)

Because of the compactness of the fields of the phase,
Egs. (27) and (28) can have topologically nontrivial solutions,
provided the system is multiply connected or contains a topo-
logical defect (vortex). In the latter case, Eqs. (27) and (28)
take place away from the vortex core. In the former case,
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topologically nontrivial solutions correspond to persistent cur-
rents. In both cases, any topologically nontrivial extremal
solutions can be parametrized as

0P U(r) = Mo @iop(r), (29)

where M, are certain integer numbers and the field @ (r)
satisfies the Laplace equation

Agotop =0 (30)

and the condition
%dl‘Vgomp =2. (1)
c

with respect to a certain contour C.
The integer vector

M:(MlaM27"'7MN) (32)

characterizes the topological charge of the vortex or persistent
current. By the compact-gauge invariance, vector M is defined
modulo vector 1 consisting of unities:

T=,1,...,1. (33)

Because of the linearity of Egs. (28)—(31), we can extend the
notions of the topological charge and corresponding extremal
solutions to a group of more than one vortex, provided the
group is localized in space. We are interested in distances
much larger than the linear size of the group. At such dis-
tances, the group of vortices is indistinguishable from a single
vortex of the charge equal to the sum of all the individual
charges modulo 1. We thus can speak of the modular arith-
metic of topological charges.

For the sake of unambiguously labeling all the topological
charges, we can also introduce gauge-invariant relative topo-
logical charges

My=M,—My, a=1,23...(N—=1), (34

combining them into the (N — 1)-component integer vector
M.

B. Energetics and statistics

The extremal character of the vortex or persistent-current
solutions, in combination with the bilinearity of the action,
allows one to decompose the fields 6, into the statistically
independent topological, 0P and regular, (%, parts:

Oy = 0P + 0O, (35)

A=Ay + AL}, (36)

Agp(M) = A[{0P}] = E(M% / (Veoop)’dlr,  (37)
where

(M) = ]ﬁ ;(Ma — M) (38)

The idea behind including the prefactor (N — 1)~! into
(38) is that we want to normalize (M) in such a way that
it equals unity for elementary vortices or persistent-current
states having topological charge M| = 1. Correspondingly,

Ay (6) plays the role of superfluid stiffness characterizing
energetics of elementary vortices.

Sometimes it is also useful to work with a gauge-invariant
expression for the factor X in terms of gauge-invariant charges
M, (34):

N—-1
. _ 2 -
M) =S(M) = ) :Mg—m > Mo Mg  (39)

a=1 a<f<N

While having the same values for corresponding values of
their arguments, the functions X and X differ by their func-
tional form and therefore are denoted with different symbols.

C. Isolated vortex. Nelson-Kosterlitz relation

From Eq. (37) we see that the leading term for the “energy”
of an isolated vortex is given by (per unit length of a straight
vortex line in 3D)

Eyor = m E(M) A In (L/1p), (40)

where L is a typical linear system size and [y is the character-
istic microscopic cutoff. Here and in what follows, the term
“energy” in the context of vortices and supercurrent states
is used as a shorthand for “free energy measured in units of
temperature.”

For an elementary vortex, ¥ = 1, the expression is for-
mally the same as in a single-component case, which, as we
already mentioned, is merely the idea behind our definition
of Ay, Eq. (6). For a given (nonzero) topological charge, el-
ementary vortices have the minimal possible energy and thus
are energetically protected from decay or splitting into other
vortices.

Because of entropic contributions in 2D, at a certain critical
value of Ay, given by the counterpart of the universal Nelson-
Kosterlitz relation

2
BKT
APKD = = 41
i
the vortex proliferation transition takes place, and the state

becomes normal.

D. Energy of a vortex cluster

Here, we confine ourselves to a 2D case (or, equivalently, a
3D system of straight parallel vortex lines), where generaliza-
tion of the results of Sec. III C is particularly straightforward.
The bilinearity of the effective action guarantees that the
decomposition (35) into g» responsible for all the topo-
logical charges while satisfying Eq. (27) and the regular part
09 works: The distributions of defects and 6{”) prove to be
independent. Furthermore, the linearity of Eq. (27) implies
a very simple structure of the solution—the superposition of
solutions for individual vortices considered in Sec. III C:

08P (r) =Y Majpuh(x). (42)
J

Here j labels the individual vortices, M,; is the topological
charge associated with component « in the jth vortex, and

Ag) =0, ﬁ dl- Vo) =2r, (43)

J
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for any contour C; such that the jth vortex is inside while
all other vortices are outside it. Substituting (42) into Ay, =
A[{#“P)}] and performing spatial integration results in the ex-
pression for the energy of the vortex cluster. The energy comes
as a sum of pairwise contributions because of the bilinearity
of the functional A.

Ignoring the overall charge term given by Eq. (40), the
interaction energy between two vortices, i and j, of charges
M,;, M ; in the same component is given by

Epgiraa = —2m AgMyiMy j In R;; + const, 44)

where R;; is the distance between the two vortices. For two
vortices with charges M,;, Mg; in different components, the
same quantity is given by

A

Epsiratp = 271N lMMMﬁj In R;; + const. 45)

While intracomponent interactions are repulsive the in-
tercomponent interactions are attractive, although with a
strength weaker by a factor 1/(N — 1). Similar to the single-
component case, the interaction has the form of a 2D Coulomb
force, and the system can be thought of as a 2D plasma. This
will, however, be a multicomponent plasma (i.e., with several
“colors” of electric charges), which behaves very differently
from the standard single-component one.

E. Equilibrium statistics of supercurrent states

In certain cases, the supercurrent states can provide a no-
ticeable or significant contribution to equilibrium statistics in
a system in the form of a torus or annulus or in a simulation
box with periodic boundary conditions.

For simplicity, and with our future computational purposes
in mind, here we consider the case of a rectangular system
with periodic boundary conditions. In the rectangular geom-
etry, supercurrent states along different Cartesian directions
are statistically independent of the regular fields 6{”) and each
other. Therefore, it is sufficient to consider the statistics of
supercurrent states along the x axis. Here we have Vo, =
2m /L., with L, the size of the system in the x direction, and
from Eq. (37) we find the (non-normalized) statistical weight
of the supercurrent with the charge M (we use gauge-invariant
nomenclature to avoid double counting of the same states,
which will be particularly important below):

wy = e*Zﬂzi(M)AvV/Lf’ (46)

where V is the system volume. In a 3D system, the factor V/Lf
is macroscopic, so it makes sense to talk of the equilibrium
supercurrents only if the transverse system sizes Ly and L, are
very moderate and/or the size L, is anomalously large.

In 2D, we have

o2 E (M)A (Ly/Ly)

wyy = d=2). @7)

In particular, at the BKT-like transition point, using (41), we
find

wl(\};KT) — o4 E(M)(Ly/L) (48)

For a square system,

Wy

<e ¥ « 1 (square system), (49)

Wi=0

and contributions from supercurrent states are tiny. However,
working with aspect ratios L, /L, >> 1, we can get the regime
when wy &~ 1, which will allow us to probe the function
3(M) via Eq. (48) and thereby observe quantitative predic-
tions of our theory.

IV. RESPONSE TO THE PHASE TWIST
AND LOOP WINDINGS

The value of the superfluid stiffness Aj, including its
dependence on the system size, which is very important
for tracing the critical behavior in the vicinity of the BKT
transition—can be extracted from the system’s response to the
infinitesimal phase twist. In the loop or worldline representa-
tion, the response to the phase twist is directly related to the
variance of the loop winding numbers, as was first observed
by Pollock and Ceperley for path integral representation of
bosons [32]. Below we derive the Pollock-Ceperley relation
for Borromean supercounterfluids. Meanwhile, we recall that
the response to the twist phase is particularly informative in
two dimensions [33] (see also Refs. [19,34]), where—using
system’s aspect ratio as a control parameter—we employ it
for detailed probing (the Borromean features of) the statistics
of supercurrent states.

A. Response to the phase twist

For our purposes, it is sufficient to consider rectangular
geometry with periodic boundary conditions and the phase
twist ¢y applied only to one component and in one Cartesian
direction. For definiteness, we select the x direction and Nth
component. The phase twist is a topological property, and the

natural way to introduce it is by adding an extra term to QISOP)

X

L.’

in which case, integrating out the statistically independent
fluctuations of the regular fields 6’ and summing over the
statistically independent supercurrent states along other Carte-

sian directions, we get the ¢y-dependent part of the partition
function (up to an irrelevant factor):

912;013) — 91(\;01)) + @0

Zo ) ug6), &=, (50)
M

where wy;(§) is obtained from wg of Eq. (46) by replacing
XM) > (M, &), where
=
EM,E)=SM) + —— ) (M, — &)~ 1
(M, §) = £( >+N_1;( £ 6D

In the theory of superfluidity [more generally, in any theory
featuring topologically or genuinely broken global U(1) sym-
metry], an important role is played by the response function

L?9’*InZ
Vg

L}z 52)
VZ 3¢5 |,—0

A)(;ﬂ) —

0o=0

The phase-twist response A is closely but not always triv-
ially related to the superfluid stiffness A;. The same is true
for the Borromean case. Doubly differentiating the partition
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Lo /Ly

FIG. 3. Phase twist response A% /A, vs aspect ratio L,/L,
in two-dimensional N-component supercounterfluids at Ay = 2/x.
Solid lines correspond to the effective theory, Eqs. (53) and (54).
Dots represent numeric results obtained for minimal N-component
loop models (see Fig. 2 for N = 3) based on relation (59) with P val-
ues chosen so that A; = 2/ numerically for a square system. We set
L, = 49, sufficient to render the finite-size effects negligibly small.
Note the absence of any fitting parameters. The condition Ay = 2/7
is merely one of the reasonable choices of otherwise arbitrary values
of models’ parameter P. Observe pronounced differences between
the non-Borromean N = 2 case (equivalent to the single-component
regime) and Borromean cases (N > 3).

function Z with respect to the phase twist £ at then setting
& = 0, we obtain

2
4m2A2v [ (2
AW =p, — 5T M, | ). 53
@ = A, <N—1>2L%<<a§_f . (53)

where the averaging is over all configurations of the
supercurrents:
((..)) = M (54)
25 Wit

From the analysis of Sec. III E, we understand that the sec-
ond term in the right-hand side (r.h.s.) of Eq. (53) can be
safely neglected unless we deliberately want to deal with an
elongated system to probe the statistics of supercurrent states
via the dependence of A'?) on the aspect ratio L2/V. This
circumstance is quite important because for the loop models,
A'¥) proves to be a very natural observable—the variance of
the loop winding numbers, see Eq. (59) of the next section.

Figure 3 shows the response A in 2D supercounter-
fluids at Ay = 2/m. The plot is instructive in two different
ways. First, it demonstrates an impressive agreement—in the
absence of any fitting parameters—between numeric data
obtained for the minimal loop models, the N-component
analogs of the model shown in Fig. 2, and the effective theory,
Egs. (53) and (54). Second, it reveals a pronounced difference
between the non-Borromean case N = 2 (equivalent to the
single-component case) and the Borromean N > 3 cases.

B. Pollock-Ceperley relation

The system’s response to the phase twist applied to the ath
component is readily measured by the worm algorithm. In a

lattice system, the twist has the effect of adding an extra term
to the phase differences in Eq. (20) for the oth component
between any two neighboring sites in the x direction:

VO = gy, — Ousy, = VO + o/Ls. (55)

where we assume that x;, > x;,; if the opposite is true, we
flip the sign of ¢y/L,. For each such bond the factor Q gets
modified to

N
iy " nsV6; | exp (i"z‘”"). (56)

p=1 *

(Vo)) —> Y Faexp

For any given loop configuration {;} the contribution to the
partition function will thus be modified by the factor e/#oWer,
where Wy, = L' Y, j¢ and b, denotes all bonds in the
x direction. The quantity W, , is the total loop winding of
the ath component in the x direction and is easily extractable
during simulations with the worm algorithm. By defining Zy,
to be the total weight of all configurations with winding W,
at zero twist we see that the partition function can be written
as

Z = Zzwwe"woww. (57)
Wox
We see that
1 0%z 1
YY) == ZWaijx: Wazx’ (58)
Z 3¢5 |, ZWZ Mo = W)

where W, is the loop winding of the ath component. This
leads to the Pollock-Ceperley relation

2
AW =S, =N W) 6

where we also take into account that for better statistics
one should average loop winding variances over all the
components.

V. FLUCTUATIONS OF THE PHASE FIELDS
IN A BORROMEAN SUPERCOUNTERFLUID

A. Single-component case

We see that the Borromean case can be reduced to a certain
superposition of independent single-component cases. There-
fore, we start with reviewing the single-component case (see,
e.g., Ref. [19]). Here the fluctuations of the field of the phase,
@(r), are described by the partition

7 — f e 9Dy, Alp] = / Adr, (60)
Ay
A= =) (Vo). (61)

The field ¢ varies significantly only over large enough
distances. Mathematically, this fact can be expressed by intro-
ducing a UV cutoff k, for the Fourier harmonics of ¢ (system
volume is set equal to unity):

p(r) =Y pe™". (62)

k<k,
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Apart from the constraint

Pk = ¢y (63)

necessary for ¢ to be real, all the Fourier harmonics fluctuate
independently:

z« [z (64)
k

Zi = / e MKl gy (65)

The tilde sign on the product means that, under the constraint
(63), the subscript k simultaneously stands for a given wave
vector and its counterpart of the opposite direction so that
each factor in the product is statistically independent. This is
also the reason why there is no factor of 1/2 in the exponent
in (65).

Due to the bilinearity of (61), the correlation functions
of the field ¢ are expressed by Wick’s theorem in terms of
sums of products of the pair correlator (here, we also take into
account the translation invariance of the problem)

G(r) = (p(r)p(r' + 1)) = (p(0)p(r)). (66)

Taking the Fourier transform and utilizing (65), one obtains

2 : ik-r
erl B

k<k,

G(r) = = (lgx|*) = (67)

Ak?

The simplest off-diagonal correlator demonstration char-
acteristic long-range behavior is the single-particle density
matrix:

p(r) o (¥ - oo (68)

The average (68) is readily evaluated by the formula
(') = e~ @2, (69)

valid for any Gaussian quantity Q by Wick’s theorem. Substi-
tuting [¢(r) — ¢(0)] for Q in Eq. (69), one finds (for r — o0)

(r) — ni_ex [ / (1 —cosk - 1)G d'k

o k. €XP . KA 7 ar)
Here, the summation over momenta is replaced with integra-
tion. The prefactor n;, depends on the choice of the cutoff
momentum k, in such a way that the product of 7, and the
exponential are k, independent.

In 3D, ny, — ng at k, — 0, where ny is a finite constant—
the condensate density. Correspondingly, the integral in the
exponent (70) becomes arbitrarily small as k, — 0, so that
one can expand the exponential and arrive at Bogoliubov’s
formula for the Fourier transform of p(r):

} (70)

ok = 2 )*ngd(k) + —=, k— 0(d =23). (71)

Ak2’

In the real space, this implies

o(r) — n0<1 + ), r— oo (d=23). (72)

4 Agr

In 2D, the integral in (70) behaves like (27 Ay)~! In(k,r),
atr > 1/k,. As a result, the main contribution to the integral
comes from the interval between two cutoffs 1/r < k < k,

where the function under the integral is oc1/k?. This leads
to the logarithmic behavior. Hence, in a 2D case, there is a
power-law decay of the single-particle density matrix:

p(r)x 1/, r—o00 (d=2), (73)
with the exponent y given by
1

2w A

From this expression, we see that n;, in Eq. (70) should
vanish as n;, o kI when k, is decreased to ensure the physical
answer remains cutoff-independent.

B. Borromean case

Our analysis will be based on the distribution (8)—(10). The
correlator of our interest is the composite density matrix

p(r) (eitl)a(l‘)*i%(o)) — e*’C(r)’ (75)

Kr) = (9o (0)¢a(0) — ¢o(r)g (0)). (76)

By symmetry between different components, correlator
does not depend on «. This allows us to write it in the fol-
lowing convenient form:

N-1
K(r) = <Z[¢a(0)¢a(0) ¢a(r)¢a(0)]> (77

which is invariant with respect to the unitary transformation
of the fields,

b =Y Untpy. (78)

Therefore, the problem reduces to diagonalizing the free-
energy density (10) by certain transformation (78), calculating
independent single-component correlators

Ky (r) = (0,(0)9,(0) — 9u (1), (0)), (79)

and summing them up:

K@) = —— Z/c (r). (80)

Furthermore, we do not need to know the explicit form of
the unitary matrix U,, because the value of the correlator
(79) is controlled only by the corresponding eigenvalue of the
diagonalized free-energy density (10). Finally, finding these
eigenvalues is straightforward because the first term in (10) is
invariant with respect to the unitary transformations, and the
second term is given by the standard all-ones matrix. The all-
ones matrix has only one nonzero (nondegenerate) eigenvalue
that is equal to the rank of the matrix; all other eigenvalues
are identically equal to zero. This brings us to the following
single-component free-energy densities

- NAg
A, = (Vﬁav) , oV FE by,

2(N-1)

v=N—1, (8l

— _(Vg,.)", v.=N-1 (82)

v,

2(N— 1)

013053-9



GOLIC, TIMOSHUK, BABAEV, AND SVISTUNOV

PHYSICAL REVIEW RESEARCH 7, 013053 (2025)

Using the single-component results, we get

d%k
o(r) = ng, exp| — (I —cosk-r)Gxy—— |, (83)
k<k,

2m)?
where
N—1
Gk — ; G(V)
N-—14 ko
o  (N—=1)
G, = NAR VAEV, v,=N-—1, (84)
wy_ N=1) _
G = A Ve =N —1. (85)
With Egs. (84) and (85) we find
2(N —-1)
Gy=—-, 86
K= NAR (86)

and comparing it to Gx of Eq. (67), we conclude that
counterflow analogs of Eqs. (71)—-(74) are obtained by the
replacements

N

Ay > ——— A, 87
2(N—1)
meaning that
N -1
= . 88
Y= INA (88)

The largest possible value of y takes place at the BKT point.
According to Eq. (41), this value is given by
(BKT) _N-1

y o UN) = N (89)
Consistent with the isomorphism between the two-component
supercounterfluid  and  single-component  superfluid,
y®&D(2) = 1/4. The inequality y®BXD(N)> 1/4 thus
can be viewed as a Borromean feature.

As we explained in Sec. II D, we simulate the composite
density matrix of the minimal loop model by the worm al-
gorithm. An optimal way of clearly revealing the power-law
behavior of ps;, (17)—allowing us to practically eliminate
the finite-size systematic errors while substantially reduc-
ing statistical noise—is to work with the following averaged
quantity:

Pavg(L/2) = Coom(L/2) Y pe 057, (90)
S152
o _ {1 if 7,5, € [0.4L, 0.5L] o1

0 otherwise,

where ry,;, is the distance between the sites s; and s, and Cyorm
is the normalization constant:

clp2)y=)» oL, (92)

5152
§182

As a function of system size L, the averaged composite density
matrix scales as

Pavg(L/2) o< 1/L7, 93)

As=2/7

1 L L L P R |
o' 102
L

0.1 &

FIG. 4. Averaged composite density matrix p,y(L/2) vs the sys-
tem size L for different numbers of components in ordered phase
close to the transition point. Numeric data are fitted as pay(L/2) =
Ar77, with y = y®XD(N); see Eq. (89). Note excellent agreement
between the numeric data and basic theory that does not take into
account the renormalization flow of superfluid stiffness Ay = A (L)
at the BKT point.

precisely in the same way as the off-diagonal correlator
p(L/2). Using p(L/2) directly however is not optimal since
we would then only use the simulated data for a thin line
of separations exactly at the distance L/2. By contrast many
more separations (which we anyways sample in our simu-
lations) enter into the calculation for p.ye(L/2), making it a
much better choice of observable.

The scaling of pays(L/2), also demonstrating the validity
of relation (89), is seen in Fig. 4.

VI. BORROMEAN BKT-TYPE TRANSITION
A. Basic relations

Our goal here is to generalize the Kosterlitz-Thouless
renormalization-group (RG) theory. In doing so, we follow the
top-down approach described, e.g., in Ref. [19]. The central
role will be played by the relation between the parameter A
and the response to the phase twist discussed in Sec. [V A. As
opposed to the main goal of that section—tracing the statis-
tical effect of supercurrent states—here we are not interested
in this effect and deal exclusively with the topological sector
(M) = 0. What we want to trace here is how A “flows”
with the system size, the effect being due to the contributions
from the vortex-antivortex pairs of the size ~L. In the absence
of contribution from the supercurrent states, Eqs. (52) and (53)
yield

L? 9°F
A== — , F=—InZ 94)
V ag;

9o=0

We recall that here ¢ is the phase twist applied to a certain
component «. To trace the dependence of A on the system
size, we need to explore the ¢y-dependent contributions of the
vortex pairs of the size ~L to the free energy F'.

In the Borromean system, vortex-antivortex pairs in any
component couple to the persistent current created by
the phase twist. Therefore, the renormalization of A by
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vortex-antivortex pairs has a pronounced Borromean nature.
In this sense, the fact that the flow equations for A (L), which
we derive below, have precisely the same mathematical form
as in a single-component case should not be considered trivial.
Furthermore, direct access to the concentration of vortex-
antivortex pairs would allow one to reveal the Borromean
aspect of the RG flow explicitly.

From Eq. (44) we see that a vortex-antivortex pair of the
same component in the absence of phase twists has the energy
(up to irrelevant constant term)

Epir(R) =2 AgInR, (95)

where R is the separation vector between the vortices. In the
presence of a phase twist ¢y in component « in the x direction,
this energy gets modified to

2TA,
TR0 G xR),  (96)

EC) (R, ¢0) = Epir(R) —

27[As(p0
— X (ZxR). 97
Nt ex R 0D

Note that vortices in other components 8 # « do couple to the
phase twist in component ¢, with an important reminder that
such vortices exist only at N > 3 so that we are dealing with a
Borromean effect. In terms of the sign and relative strength
of these couplings, there is a close analogy with Eqgs. (44)
and (45). In the context of the N = 2 case, it is instructive
to observe that here both (96) and (97) still apply, but describe
the same setup—in two different gauges.

EP*I(R, ¢9) = Epuir(R) +

pair

B. Renormalization-group flow

Within the (asymptotically exact) top-down approach, we
are interested only in the large scales of distances, ~L, and
correspondingly, large pairs, R ~ L. The gas of such pairs
is asymptotically dilute, and we can express the free energy
using only the partition function for isolated vortex-antivortex
pairs. The free energy of a system of size L can therefore be
written as

L\? .
F(L)= (—) F(L)-V / dRe ErinRo90)
l ISIRISL

(B#a)

4 / d*Re Fpuir - Ro90), (98)
,;, ISIRISL

where F (/) is the free energy of a system of the size / < L and
we assume that the value of A; in the pair energies (96) and
(97) equals A(1).

Applying relation (94) to Eq. (98) we get

N L
ML) = Ay(L) — 4T AL f dR Re~ w9,

1

99)

The origin of the factor N/(N — 1) is quite instructive:

N 1+ 1

N-1  N-1
The first term on the r.h.s. comes from the first integral in (98).
It is responsible for the renormalization of a superflow created
by the phase twist in component « by the vortex-antivortex
pairs of the same component. Therefore, this term corresponds
to the single-component physics. The second term originates

(100)

from the second integral in (98). As we already mentioned,
the N = 2 case is special. Here, the second integral simply
double-counts the vortex pairs in the same way as the first
one. Therefore, we should exclude the second term (or, equiv-
alently, divide the expression by the factor of two), thereby
getting the result identical to that for the single-component su-
perfluid. Hence, the second term is a signature of Borromean
physics. It has the largest value at N =3 and vanishes as
N — 00, in which limit the renormalization of the superfluid
stiffness for each component o takes place independently
of the other components, effectively reproducing the single-
component regime.

Apart from the Borromean factor N/(N — 1), relation (99)
proves to be the same as in a single-component superfluid,
cf. Ref. [19]. This immediately allows us to reuse the single-
component results. Indeed, recalling that the constant factor
in front of the integral on the r.h.s. of (99) plays only a minor
role being absorbed into the definition of nondimensionalized
density of vortex pairs [19], we conclude that the resulting RG
equations can be cast into the same form:

dw
dindly - ¢ (101)
48 e (102)
din(l/ly)

where [ is a certain ultraviolet length cutoff and

w(L) = A (L) — 2. (103)

Finally, g(!) is the rescaled (nondimensionalized) density of
the vortex pairs of the size /, which differs from the standard
single-component definition (see Ref. [19]) by the Borromean
factor:

N
g(L) — ——8(L). (104)

N -1
Since RG equations (101) and (102) have the same mathe-
matical form as in the single-component case, we can simply
quote the single-component solutions (see, e.g., Ref. [19]).
For the flow of superfluid stiffness in the vicinity of the BKT
point, we have

JC
L) = C > 0), 105
w(k) tanh [/CIn(1/ly)] ©=0 (105)
_ VIC|
W)= — NETO) € <0)., (106
1
w(l) = n (/i) (C=0), (107)

where C is an analytic function of control parameter(s) of
the theory, with C = 0 corresponding to the BKT point. The
function g(/) is then given by

g(L) = w*(L) - C. (108)

Along similar lines (cf. Ref. [19]), we produce the ex-
pression for the reduced density matrix p(r) starting with the
differential version of Eqgs. (73) and (74),

dinp(r) N-—1
din(r/ly)  wNAr)

(109)
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which takes into account the slow flow of A, with the scale
of distance. Expressing A (r) in terms of w(r) in accordance
with (103) and expanding up to the leading correction in terms
of the small parameter w < 1, we get

dlnp(r) Yo
— = Zw(r), 110
d1n (r/lo) Yo + > w(r) (110)
_ _N-1 a1
Y0 = VBKT = N

Finally, using explicit expressions (105)—(107) for w, we per-
form the integration and get

B 1 \/_ r /2
o(r) = %[% smh( Cln E)i| (C>0), ((112)

B 1 . O\ /2
o(r) = m[\/?_' sm( |C|In E)i| (C <0), (113)

B r v0/2

where B is a certain P-independent constant.

In conclusion of this section, it is worth observing that
solution (108) does not allow us to see the Borromean nature
of the RG flow unless we have direct access to the concentra-
tion of vortex pairs and can separate g(/) into two factors: the

pure concentration of vortex pairs and the Borromean factor
N/(N — 1), see Eq. (104).

(C = 0), (114)

C. Numeric data vs effective long-wave description

It is very instructive to compare the results of numeric sim-
ulations of the 2D minimal Borromean (N = 3) loop model
with the predictions of the effective long-wave theory.

Given that RG theory is controlled only in the close vicinity
of the BKT point, it is sufficient to treat C as a linear function
of the parameter P:

C = Co(P — Pgkr), (115)

where Cj is a certain positive constant and Pggr is the crit-
ical value of P. For the same reason, we can treat [, as a
P-independent constant. Also, taking into account that the L
dependence is logarithmically slow while the controlled long-
wave description requires |C| < 1, for our practical purposes,
it would be safe to Taylor expand Egs. (105)—(107) up to the
first subleading term:

(L)~;[1+£12<£>}
il T3 L)

From the RG theory we can also find a similar expres-
sion for pae(L/2) by Taylor expanding Eqgs. (112)—(114). As
opposed to w(L) the result depends on N; for N =3 we
have

(116)

B

pane(L/2) ~ T

[In (L/lo)]l/f’[l + < In? <£>} (117)
36 lo

Note that the relative value of the subleading term in (117) is

an order of magnitude smaller than in (116).

The four parameters, Pgxr, Cpy, lp, and B, were ob-
tained by jointly fitting numeric data for w(L) and
Pavg(L/2) with the functions (116) and (117), respectively, in
close proximity to the phase transition: P € [0.470, 0.475].

0.2 - PgxT ~ 0.4716
0.15 -
=2
3 P =0.475
P =0.474
01— P=0473 —— P =047
| —— P =0.472 P = 0.469
—— P =0.471 —— P =0.468
L] , R |
10! 102

L

FIG. 5. Reduced winding number w(L) vs the system size L in a
2D three-component system in the vicinity of the BKT transition.
The lines correspond to Eq. (116) with free parameters obtained
by the joint fitting procedure, as explained in the text. The vertical
dashed line cuts off the low-L data points excluded from the fitting
protocol’s objective function. All the data for P < 0.47 are also
excluded from the objective function.

We found that Pgxr = 0.4716 £ 0.0003, Cp = 2.61 £0.15,
Inlp = —3.11+£0.11, B = 0.717 £ 0.003. Additional fitting,
performed for P-dependent functions B and [y, showed that
even in this case best estimations for these parameters are
P-independent constants.

Figure 5 demonstrated perfect agreement between numeric
data and asymptotic analytic predictions (105)—(116). Also
instructive, the agreement starts at rather large system sizes
L ~ 30. This is not particularly surprising given that the
Kosterlitz-Thouless renormalization flow requires the system
to accommodate a pair of well-separated vortices.

The conditions of applicability of RG equations (101) and
(102) are w < 1 and g <« 1 [19]. The data of Fig. 5 demon-
strate consistency with the former requirement; from Fig. 6
we see that the latter inequality is also satisfied. Still, in
Fig. 5, one can notice that the L > 200 data for P < 0.47 starts
to develop tiny deviations from Eq. (116). This is likely to

0.04 Pkt =~ 0.4716

0.03

0.01

| ' ' PR R R ST R |
10t 102
L

FIG. 6. Rescaled density of the vortex pairs g(L) vs the system
size L in a 2D three-component system in the vicinity of the BKT
transition. Numeric data and analytical curves correspond to those
shown in Fig. 5 under the transformation g(L) = w*(L) — C; see
Eq. (108).
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FIG. 7. Composite density matrix p,e(L/2) vs the system size
L in a 2D three-component system. Symbols with error bars show
the numeric data. Results for P = 0.471 are approximated using
(117) with free parameters obtained from the joint fitting procedure
described in the text. Results for P = 0.6 and P = 0.85 are fitted
as Pavg(L/2) = Ar~7, with the exponent y defined in (88). In the
disordered phase, correlations decay exponentially at large enough
distances, as demonstrated by the data for P = 0.375 and P = 0.425.
At P = 0.45, the exponential decay takes place at distances much
larger than the size of our simulation box.

manifest the subleading correction to the RG flow, which is of
substantial fundamental interest, as discussed in Sec. VII. The
quantitative theory of this correction goes beyond the scope of
the present paper.

In contrast with w(L), the critical flow for payg(L/2) is
perfectly fitted by Eq. (117) starting with significantly smaller
distances; see the P = 0.471 line in Fig. 7. This is because the
effect of renormalization of A (L) on pue(L/2) is relatively
weak, as is evident from Eq. (117) and as could also be
expected based on the data shown in Fig. 4, where the fitting
curves simply neglect the flow of A with L.

VII. DISCUSSION

Borromean supercounterfluids feature correlation and
topological properties distinguishing them from their single-
and two-component counterparts. Especially interesting is the
component-symmetric case characterized by a distinctively
different universality class of the supercounterfluid-to-normal
phase transition. A natural way of describing universal long-
wave properties of Borromean supercounterfluids is in terms
of compact-gauge-invariant effective action democratically
treating all the N components of the system.

Compact-gauge-invariant theory substantially differs from
its usual local U(1) counterpart. In the latter case, slight varia-
tions in phase fields can be “undone” by the gauge field at no
energy cost, while singular configurations—vortices—are ro-
bust with respect to gauge transformation. The compact-gauge
invariance—an intrinsic property of Borromean systems that
does not involve gauge fields—allows us to gauge in and out
special vortex configurations in which all N components have
the same phase winding.

Using compact-gauge invariance as the guiding principle,
we formulated long-wave effective action. Also, based on the
principle of compact-gauge invariance, we formulated two

classes of models of Borromean counterfluids and established
an explicit relationship (duality) between them. The first class
is represented by the Borromean generalization of the XY
model, Eq. (12). The second class consists of the loop models,
of which particularly simple and elegant is the minimal model
illustrated in Fig. 2. Loop representation is free of gauge re-
dundancy while being explicitly component-symmetric. Even
more importantly, loop models are perfectly suited for the
simulations with worm algorithm; all our numeric data were
obtained this way.

We investigated the system’s off-diagonal correlations and
response to the phase twist finding, which both reflect the
Borromean nature of the system. Our analytic predictions are
in perfect agreement with the numeric data.

In the 2D case, we also studied Berezinski-Kosterlitz-
Thoules—type (BKT-type) critical behavior. Here, the renor-
malization of superfluid stiffness A; by vortex-antivortex
pairs has a pronounced Borromean character due to the
interaction between the vortices of different components.
Remarkably, the resulting flow equations (101) and (102)
have the same mathematical form as in a single-component
case, provided the Borromean factor N/(N — 1) originat-
ing from the intercomponent vortex interaction is absorbed
into the renormalized density of vortex-antivortex pairs, see
Eq. (104).

There are still exciting and fundamental questions to ad-
dress in future studies. One intriguing way of observing
the effect of modular arithmetic of topological charges—a
signature Borromean feature—is by resolving subleading cor-
rection to the renormalization of the superfluid stiffness of
the 2D three-component system in the vicinity of the BKT
transition; desirably on the normal side, where the subleading
effects get stronger while allowing for a controllably accu-
rate description within a broad range of system sizes. The
subleading correction comes from the topologically neutral
minimal nonbinary vortex clusters. The unique property of the
three-component supercounterfluid is that the minimal nonbi-
nary topologically neutral vortex cluster consists of only three
vortices. In all other cases of BKT-type transitions, the min-
imal nonbinary topologically neutral vortex cluster consists
of four vortices, thus implying a different type of subleading
correction to the flow.

The efficiency of the loop models comes at a price. They
do not provide direct access to the statistics of vortices and
thus do not allow us to see the factor N/(N — 1) enhancing
the strength of the renormalization flow at the BKT point.
To observe the N/(N — 1)-enhancement, one has to simulate
Borromean XY model (12).

A big open question is how the Borromean nature mani-
fests itself in the 3D criticality. In a superfluid system with
global symmetries, including paired superfluid, the general
expectation is that the transition to a symmetric state is contin-
uous [35]. However, indications of first-order transitions from
counterflow superfluid to a normal state were reported [36],
which suggests that compact-gauge invariance is significant
for critical behavior in three dimensions and requires further
investigation.

Finally, a separate direction of further study can be
on Borromean systems that break only discrete symme-
tries. A case of particular interest—because of its relevance
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to the experimental system [25]—is the explicit break-
ing of symmetry down to Z, time-reversal symmetry,
which confines counterflow currents down to finite length
scales.
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