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Abstract— Channel State Information (CSI) is a critical piece
of information for MU-MIMO beamforming. However, CSI
estimation errors are inevitable in practice. The random and
uncertain nature of CSI estimation errors poses significant
challenges to MU-MIMO beamforming. State-of-the-art works
addressing such a CSI uncertainty can be categorized into
model-based and data-driven works, both of which have limi-
tations when providing a performance guarantee to the users.
In contrast, this paper presents Limited Sample-based Beam-
forming (LSBF)—a novel approach to MU-MIMO beamforming
that only uses a limited number of CSI data samples (without
assuming any knowledge of channel distributions). Thanks to
the use of CSI data samples, LSBF enjoys flexibility similar to
data-driven approaches and can provide a theoretical guarantee
to the users—a major strength of model-based approaches.
To achieve both, LSBF employs chance-constrained programming
(CCP) and utilizes the ∞-Wasserstein ambiguity set to bridge
the unknown CSI distribution with limited CSI samples. Through
problem decomposition and a novel bilevel formulation for each
subproblem based on limited CSI data samples, LSBF solves
each subproblem with a binary search and convex approxima-
tion. We show that LSBF significantly improves the network
performance while providing a probabilistic data rate guarantee
to the users.

Index Terms— Channel uncertainty, chance-constrained pro-
gramming, data samples, 5G, MU-MIMO, beamforming.

I. INTRODUCTION

MULTI-USER MIMO (MU-MIMO) beamforming is a
key technology component for 5G/NextG networks,

which requires Channel State Information (CSI) between a
base station (BS) and its connected user equipment (UE)
[2], [3], [4]. Most of the existing works assume CSI can
be accurately estimated [4], [5], [6], [7], [8]. However, since
CSI is obtained through a channel sounding procedure based
on pre-defined signals (e.g., pilots), estimation errors are
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inevitable, due to noise and finite length of training sym-
bols [9], [10]. The estimated CSI is also susceptible to channel
aging, meaning that the estimated CSI used for solution
derivation differs from the actual CSI during transmission,
which may seriously impact the network performance [11],
[12]. Further, such a CSI estimation procedure designed in
either Frequency Division Duplex (FDD) systems [13], [14]
or Time Division Duplex (TDD) systems [15], [16], [17]
inherently introduce errors due to limited feedback or hard-
ware imbalance. Thus, CSI estimation is bound to embed
errors [18], and must be carefully addressed when optimizing
MU-MIMO beamforming.

State-of-the-art approaches to address CSI estimation errors
in MU-MIMO beamforming mainly fall into two categories:
model-based and data-driven (i.e., model-free). Model-based
works can provide a performance guarantee to the UEs, which
include stochastic optimization and worst-case optimization.
In stochastic optimization, CSI errors are assumed to fol-
low some well-known distributions, such as Gaussian [19],
[20], [21], [22], or uniform [20]. However, such assumed
distributions may be far from those in reality due to the
discrepancy between the simplified mathematical functions
and the complicated operating environment. Consequently,
using such a solution may lead to an overly optimistic
or pessimistic performance. In worst-case optimization, CSI
errors are assumed to stay within some worst-case bounds,
such as norm boundaries [23] or ellipsoid uncertain set [24].
However, it is well known that worst-case optimization is very
conservative since it only focuses on extreme (unlikely or
never) scenarios.

Under the data-driven approach (i.e., model-free), CSI data
samples are directly used to derive an MU-MIMO beam-
forming solution. Since no model is assumed, a data-driven
approach can be applied to a wide range of network settings,
with the prevailing examples being learning-based solutions
(see, e.g., [25], [26], [27], [28]). In these works, a neural
network is trained offline based on a large dataset consisting
of past CSI data samples and then is used online to derive a
beamforming solution using real-time collected CSI samples.
However, none of these works can offer any performance
guarantee. Neither it is trivial to collect a large number of
CSI data samples and perform offline training. Further, when
the deployment environment changes, the neural network must
be retrained. Although transfer learning or meta-learning
[29], [30], [31], [32] can adapt to new environments without
a re-training process, they still cannot offer any theoretical
guarantee.
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In this paper, we propose a novel approach to design
MU-MIMO beamforming called Limited Sample-based Beam-
forming (LSBF). LSBF is capable of offering a probabilistic
guarantee to UE data rates through chance-constrained pro-
gramming (CCP) and only requires a limited number of CSI
data samples. Compared to model-based approaches, LSBF
is more adaptive to channel dynamics due to the use of CSI
data samples and can provide better performance. Compared to
data-driven approaches, LSBF offers a performance guarantee
to the UE data rates without training any neural networks or
collecting a large dataset. Therefore, LSBF combines the best
features of model-based and data-driven works without their
pitfalls. Our main contributions are summarized as follows:

• We investigate an MU-MIMO beamforming problem by
only using a limited number of CSI data samples. Our
objective is to provide a probabilistic guarantee to UE
data rates and minimize the BS’s power consumption.
To the best of our knowledge, this is the first work
that offers a probabilistic guarantee to the UE data rates
for MU-MIMO beamforming solely based on a limited
number of CSI data samples without any knowledge of
CSI distributions.

• We decompose the original problem into smaller and
independent subproblems. For each subproblem, we pro-
pose a novel approach to bridge the true but unknown
CSI distribution in the original problem formulation with
the limited CSI data samples through the ∞-Wasserstein
ambiguity set. We show how to replace the true but
unknown distribution in CCP with empirical distribution
(based on limited CSI data samples) and additional
constraints (based on the properties of ∞-Wasserstein
ambiguity set).

• For the new formulation that only involves empirical
distribution based on CSI data samples, we propose to
break up the complex formulation into a bilevel opti-
mization problem, which has a trivial feasibility check
in the upper-level problem and a non-convex lower-
level problem. For the lower-level problem, we employ a
convex approximation to address its nonlinear objective
function and constraints. We show that the entire solution
process has a polynomial time complexity.

• Through extensive simulations, we show that LSBF can
provide a probabilistic performance guarantee to the UE
data rates using limited CSI data samples. In terms of
performance, we show that LSBF offers significant power
conservation in BS’s transmission power compared to
state-of-the-art approaches.

We organize the remainder of this paper as follows.
In Section II, we describe our system model and state the
MU-MIMO beamforming problem. In Section III, we for-
mulate the optimization problem and decompose it into
subproblems. In Section IV, we introduce ∞-Wasserstein
ambiguity set to reformulate the optimization problem using
limited CSI data samples. In Section V, we present the details
of LSBF to derive the MU-MIMO beamforming solution.
In Section VI, we conduct simulation experiments to evaluate
LSBF’s performance. Section VII concludes this paper.

Fig. 1. An illustration of downlink MU-MIMO beamforming in a 5G cell
(a) and RBs to RBG grouping for resource scheduling (b).

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model

Consider a downlink MU-MIMO beamforming problem
where a 5G BS needs to transmit different data streams to
different UEs simultaneously on the same spectrum, as shown
in Fig. 1(a). Without loss of generality, we assume that each
UE has one antenna and receives one unique data stream from
the BS. For MU-MIMO beamforming, we assume that the BS
employs the widely used linear precoding due to its simplicity
and effectiveness [33], [34]. In linear precoding, the BS needs
to design a unique precoding vector for each UE’s data stream,
which will subsequently undergo linear multiplication with the
downlink symbols before over-the-air transmission.

As defined in 3GPP standards [35], the time domain is
divided into Transmission Time Intervals (TTIs), and the
frequency domain is divided into sub-carriers. A block of
12 sub-carriers in one TTI is called a Resource Block (RB)
and 2∼32 contiguous RBs can be grouped into an RB Group
(RBG). The BS uses RBG as the granularity for scheduling
and beamforming, meaning that all RBs in an RBG have the
same set of serving UEs and precoding vectors. For instance,
Fig. 1(b) shows an example of 64 RBs grouped into 8 RBGs
(i.e., 8 RBs per RBG). Each RBG can serve multiple UEs and
each UE can be served on multiple RBGs.

The BS collects CSI on all RBs through a channel training
procedure based on known signals such as pilots. Similar
to existing works (see e.g., [4], [5], [19]), we assume the
CSI of each UE on each RB is available at the BS. Then
the BS will schedule RBGs to the UEs, choose a proper
Modulation and Coding Scheme (MCS) for each UE, calculate
the downlink precoding vectors, and apply precoding vectors
for the upcoming downlink transmission. To keep complexity
under control, one often decouples these steps (see, e.g., [36],
[37]) into independent problems and solves them in sequence.
Following this decoupled approach, we assume that the subset
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of UEs on each RBG and each UE’s MCS are given a priori
when we design the precoding vectors.

B. Channel Uncertainty

As discussed in Section I, the obtained CSI is affected by
many unknown factors, such as channel estimation errors,
limited feedback, and hardware imbalance. In this paper,
we address this CSI uncertainty based on a novel approach
without assuming knowledge of any distribution information.
Specifically, we will rely on a set of limited CSI data samples
collected in recent TTIs to design beamforming in the next
TTI. To show how this can be done, we make the following
assumptions in our exposition:

• In the frequency domain, since an RB is typically narrow-
band (15 kHz to 120 kHz) [38], we assume CSI among
the RBs within the same RBG follows the same distribu-
tion [39].

• In the time domain, since a TTI is on the order of
milliseconds [38], we assume CSI among a small block
of contiguous TTIs (i.e., a window) follows the same
distribution.

Based on the above two assumptions, the CSI for one UE on
all the RBs within the “super” RBG-TTI window block can
be different but follows the same distribution. In other words,
we only assume the channel to be stationary. Note that this
distribution is unknown at the time of deriving an MU-MIMO
beamforming solution.

We employ a sliding window mechanism to collect CSI data
samples and use them to design precoding vectors for the RBs
in the upcoming TTI. Fig. 2 illustrates this idea. Denote S as
the number of RBs in an RBG and we have S = 8 in Fig. 2.
Each window covers N/S+1 TTIs, which have a total number
of N +S RBs. We will use the N CSI data samples collected
in the first N/S TTIs (in green) to design precoding vectors
for the S RBs in the upcoming TTI (in red). Then the sliding
window will move by one TTI, as shown by “Next Window”
in Fig. 2.

In this work, we will show that a small N (i.e., limited
CSI data samples) can offer satisfactory performance. So each
windows only covers several TTIs and the storage of CSI
can be easily done at the BS considering the large volume of
memory at the BS. Note that this sliding window is a general
form of the widely used “block-fading” model [40], where
CSI is assumed to be constant on each block (a group of RBs)
but is completely independent on different blocks. The main
difference here is that the CSI is a random variable on each
RB and we have no knowledge of its distribution.

C. Problem Statement

We assume each UE in the cell has a data rate requirement.
It’s well-known that UE data rates depend on their Signal-
to-Interference-and-Noise Ratios (SINRs), whose calculations
are based on the uncertain CSI from the BS to the UEs.
Consequently, the SINRs are also random variables. Therefore,
it is reasonable to pursue a probabilistic guarantee that each
UE’s data rate requirement is satisfied with at least a target
probability (e.g., over 90%) over all TTIs.

Fig. 2. An illustration of our proposed RBG-TTI window where N CSI data
samples (in green) will be used for beamforming (in red).

In this paper, we are interested in designing MU-MIMO
beamforming solution to provide a probabilistic guarantee to
the UE data rates and minimize the BS’s power consumption.
We choose power minimization as our objective due to its
importance in building a green and sustainable wireless net-
work. From the perspective of network operators, once the
pre-defined data rates for UEs are achieved, there is limited
incentive to further increase data rates. Instead, the focus shifts
towards minimizing radio resources.

There are mainly two challenges in our problem. First, since
we only have a limited number of CSI data samples and a
lack of CSI distribution knowledge, it is unclear and very
challenging how such a guarantee can be achieved. Further,
designing precoding vectors requires matrix operations of
complex matrices, and hence our problem is mathematically
non-trivial.

III. MATHEMATICAL FORMULATION AND ANALYSIS

In this section, we formulate our optimization problem
and show its decomposition into smaller and independent
subproblems to which we will develop solutions later. Table I
lists notations used in this paper.

A. Problem Formulation

Referring to Fig. 1(a), denote M as the number of antennas
at the BS and K = {1, 2, 3, · · · , K} as a set of K UEs
served by the BS in a 5G cell. Referring to Fig. 1(b), denote
G = {1, 2, · · · , G} as the set of G RBGs. For RBG g ∈ G,
denote Kg as the subset of UEs that are selected to receive
data on RBG g. For the precoding vectors, denote wg

i (an
M × 1 complex column vector) as the precoding vector for
UE i on RBG g.

There are two requirements (constraints) for feasible pre-
coding vectors: (i) not to exceed the maximum power budget at
the BS on all RBGs1; and (ii) provide a probabilistic guarantee

1In this work, we do not include per-antenna power constraints, as they
typically impose less stringent restrictions compared to the total power budget
of the BS. This allows us to focus on the probabilistic guarantee to the UE
data rates.
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TABLE I
NOTATIONS

to the UE data rates. To formulate (i), denote P max as the
maximum power budget at the BS for all RBGs. We have∑

g∈G

∑
i∈Kg

||wg
i ||

2
2 ≤ P max , (1)

where || · ||2 is the L2-norm.
As for (ii), denote rreq

i as the data rate requirement of UE i.
Per 5G standards [35], a UE must use the same MCS across
all its allocated RBGs in a TTI. This means that each RBG
that transmits to UE i should contribute the same data rate.
For UE i scheduled on an RBG, supporting a data rate rreq

i

is equivalent to maintaining an SINR threshold (denoted as
ζ req
i , same for all its allocated RBGs), which can be calculated

based on the bandwidth of an RBG and the Shannon Theorem.
Denote Li as the number of RBGs assigned to UE i in a TTI.
To support rreq

i , the minimum SINR threshold of UE i must
satisfy:

rreq
i = Li · B · log2(1 + ζ req

i ) (i ∈ K) , (2)

where B is the transmission bandwidth of one RBG. Based
on (2), we have

ζ req
i = 2

r
req
i

LiB − 1 (i ∈ K) . (3)

Denote ζg
i as the actual SINR at UE i on RBG g with the

given precoding vectors wg
i ’s. Denote hg

i (an M × 1 complex
column vector) as the CSI from the BS to UE i on RBG
g. As discussed in Section II, hg

i is a random variable with
unknown distribution due to channel uncertainty. Then we

have

ζg
i =

|(wg
i )Hhg

i |2∑j ̸=i
j∈Kg |(wg

j )Hhg
i |2 + σ2

i

(i ∈ Kg, g ∈ G) , (4)

where (·)H denotes conjugate transpose. σ2
i is the thermal

noise power at UE i.
In constraints (4), wg

i is a deterministic decision variable,
σ2

i is a deterministic parameter, and hg
i is a random variable.

Therefore, ζg
i is also a random variable. As discussed in

Section II, we aim to provide a probabilistic guarantee to
UE data rates (or equivalent SINR thresholds), which can be
written as chance constraints:

P {ζg
i ≥ ζ req

i } ≥ 1− ϵi (i ∈ Kg, g ∈ G) , (5)

where P{·} denotes the probability function, ϵi is called risk
level and is the upper bound of the SINR threshold violation
probability for UE i. Constraints (5) mean that the actual SINR
ζg
i on RBG g should be greater than or equal to the required

SINR threshold ζ req
i with a probability at least 1− ϵi.

Substituting (4) into (5), we have

P

{
|(wg

i )Hhg
i |2∑j ̸=i

j∈Kg |(wg
j )Hhg

i |2 + σ2
i

≥ ζ req
i

}
≥ 1− ϵi

(i ∈ Kg, g ∈ G) ,

which can be rewritten as

P

 |(wg
i )Hhg

i |2

ζ req
i

≥
j ̸=i∑

j∈Kg

|(wg
j )Hhg

i |
2 + σ2

i

 ≥ 1− ϵi

(i ∈ Kg, g ∈ G) . (6)

For the random CSI hg
i , the BS only has limited data

samples without knowledge of its distribution. Recall in Fig. 2,
we have N CSI data samples per hg

i at the BS. Denote Phg
i

as the probability density function (PDF) of the unknown
distribution of hg

i , i.e., hg
i ∼ Phg

i
. Then we have the N

data samples of hg
i drawn from the unknown distribution Phg

i
.

Based on the above discussion, our MU-MIMO beamforming
problem can be stated as follows:

(P1) min
wg

i

∑
g∈G

∑
i∈Kg

||wg
i ||

2
2

s.t. BS power budget (1) ,

Probabilistic guarantee to UEs’ SINRs (6) ,

Unknown distribution: hg
i ∼ Phg

i
, N hg

i samples ,

wg
i ∈ CM×1 ,

where CM×1 is the set of all complex M ×1 column vectors.
There are two difficulties in P1. First, from the formulation,

it appears that the beamforming vectors on all RBGs are cou-
pled together due to the objective function and constraint (1).
Second, it is unclear how to calculate the probabilistic guar-
antee to UEs’ SINRs in constraints (6), especially with only
limited CSI data samples from unknown distribution Phg

i
.

In the rest of this section, we address the first issue and leave
the second issue to Section IV.
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B. Problem Decomposition

In this section, we decompose P1 into G subproblems,
where each subproblem corresponds to MU-MIMO beam-
forming on an RBG and can be solved independently. Note
that the RBGs in the objective function of P1 can be easily
decoupled and the only constraint that couples beamforming
on RBGs is constraint (1), which ties all the BS transmission
powers among the RBGs with a peak sum value. Mathemat-
ically, it merely provides an upper bound on the objective
function. Consider a new problem, called P2, by ignoring
constraint (1) in P1. We have

(P2) min
wg

i

∑
g∈G

∑
i∈Kg

||wg
i ||

2
2

s.t. Probabilistic guarantee to UEs’ SINRs (6) ,

Unknown distribution: hg
i ∼ Phg

i
, N hg

i samples ,

wg
i ∈ CM×1 .

Comparing the relationship between P1 and P2, we have
the following lemma:

Lemma 1: Suppose P2 has an optimal solution. Then either
this solution is an optimal solution to P1 or P1 is infeasible.

The proof is given in Appendix A. Based on Lemma 1,
we can focus on P2 to derive a solution for P1. After we
obtain an optimal solution to P2, we can simply recover an
optimal solution to P1 by checking constraint (1) or declaring
that P1 is infeasible.

We now show that the objective function and constraints (6)
in P2 can be decomposed among the RBGs. For the objective
function of P2,

∑
i∈Kg ||wg

i ||22 represents the transmission
power on RBG g w.r.t. its scheduled subset of UEs in Kg .
Clearly,

∑
i∈Kg ||wg

i ||22 only depends on RBG g and not other
RBGs. Thus, we can rewrite the objective function of P2 as∑

g∈G

(
min
wg

i

∑
i∈Kg

||wg
i ||

2
2

)
. (7)

This means that we can decompose this objective function into
G terms with the g-th term corresponding to the transmission
power on RBG g.

Let us define an M × M matrix Wg
i = wg

i (wg
i )H , where

Wg
i is positive semidefinite and has rank 1. These properties

can be written as:

Wg
i ⪰ 0, Rank(Wg

i ) = 1 (i ∈ Kg, g ∈ G) , (8)

where ⪰ represents positive semidefinite. It is a common
technique in beamforming research (see, e.g., [19], [23]) to
use the matrix Wg

i instead of vector wg
i , which enhances

problem solvability, allowing commercial solvers like MOSEK
to be employed for deriving the final solution. Using Wg

i , the
objective function of P2 can be rewritten as∑

g∈G

(
min
Wg

i

∑
i∈Kg

Tr(Wg
i )

)
, (9)

where Tr(·) is the trace of a matrix.
Further, we divide constraints (6) into G groups where the

g-th group is the probabilistic SINR guarantee for the UEs on

RBG g and is independent of other G− 1 groups, i.e.,

P

 |(wg
i )Hhg

i |2

ζ req
i

≥
j ̸=i∑

j∈Kg

|(wg
j )Hhg

i |
2 + σ2

i

 ≥ 1− ϵi

(i ∈ Kg) ,

which can be written as

P

 (hg
i )

HWg
i h

g
i

ζ req
i

≥
j ̸=i∑

j∈Kg

(hg
i )

HWjh
g
i + σ2

i

 ≥ 1− ϵi

(i ∈ Kg) .
(10)

By decoupling the objective function and constraints (6) for
the G RBGs, the subproblem for RBG g is given as

(P3) min
Wg

i

∑
i∈Kg

Tr(Wg
i )

s.t. Probabilistic SINR guarantee for Kg (10) ,

Unknown distribution hg
i ∼ Phg

i
, N hg

i samples,

Wg
i ⪰ 0, Rank(Wg

i ) = 1 (i ∈ Kg) .

So we have successfully decomposed P2 into G independent
subproblems P3 that can be solved in parallel. The optimal
solution to P2 is merely a combination of the G optimal
solutions to P3. This means that we can focus our study on
one RBG (i.e., an instance of P3) to design our solution. For
ease of exposition, we will drop the superscript g when there
is no confusion.

IV. BRIDGING DATA SAMPLES AND DISTRIBUTIONS

In this section, we show the relationship between data
samples and distributions, which will be our novelty to address
channel uncertainty. As discussed in Section II, we only have a
limited number of samples of hi at the BS to design precoding
vector wi. Denote the N available data samples of hi as ĥi(n),
n ∈ N , where N = {1, 2, 3, · · · , N} and each ĥi(n) is an
M × 1 complex column vector drawn from Phi

(the true but
unknown distribution of hi).

Based on these N data samples, we can construct an
empirical distribution for hi. Denote Pĥi

as the probability
mass function (PMF) based on the N data samples of hi (i.e.,
ĥi(1), ĥi(2), · · · , ĥi(N)), given as:

P{ĥi = ĥi(n)} =
1
N

(n ∈ N ) . (11)

Then we have “ĥi ∼ Pĥi
”. Clearly, Pĥi

and Phi
are closely

related but different. To quantify how “close” they are, we
employ the ∞-Wasserstein distance [41], [42].

A. ∞-Wasserstein Distance

The origin of Wasserstein distance traces back to the optimal
transport problem that finds the least effort to transfer a given
set of mines to a given set of factories [43]. Wasserstein
distance is also called p-Wasserstein distance where p ∈
[1, +∞]. In this paper, we choose ∞-Wasserstein distance
since it can offer tractable reformulations for our problem.
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Fig. 3. Two moving plans from distribution x to distribution y.

TABLE II
JOINT DISTRIBUTION FOR PLAN 1

TABLE III
JOINT DISTRIBUTION FOR PLAN 2

Suppose we have two random variables ξ1 and ξ2 with their
marginal PDFs (for continuous random variables) or PMFs
(for discrete random variables) Pξ1

and Pξ2
, respectively.

To change Pξ1
to Pξ2

, we need to move each probability
mass block over a certain “distance”. Wasserstein distance
measures the least effort to complete this move. We use a
simple example in Fig. 3 to illustrate this idea.

Example 1: Consider moving a discrete distribution x with
PMF P{x = x1} = P{x = x2} = 0.5 to another discrete
distribution y with PMF P{y = y1} = 0.1, P{y = y2} = 0.4,
and P{y = y3} = 0.5.

There are many ways to move distribution x to distribution
y and we show two of them in Fig. 3(b) and Fig. 3(c). In this
example, we use Euclidean distance to calculate the moving
effort from two points, e.g., distance u11 for moving from
x1 to y1. In the definition of p-Wasserstein distance, the effort
of moving a probability mass 0.1 from x1 to y1 is 0.1 weighted
by the p-th power of distance u11, i.e., (0.1 · up

11), where p ∈
[1, +∞). Then the total effort of moving all probability mass
blocks from x to y is the sum of all the individual effort. For
p ≥ 1, Plan 1 always requires less effort than Plan 2. In fact,
we can show that Plan 1 is the optimal moving plan with the
least effort. p-Wasserstein distance is defined as the p-th root
of the minimum required effort among all possible moving

plans. So Plan 1 will be used to calculate the p-Wasserstein
distance between x and y.

Mathematically, a moving plan, as illustrated in Table II
and Table III (for the two respective plans) can be mapped
to a joint distribution of x and y. Then Wasserstein distance
corresponds to a specific (optimal) joint distribution. Denote
Q1 as the joint distribution of x and y in Plan 1. Under the
definition of p-Wasserstein distance, the effort of moving from
distribution x to distribution y under Plan 1 is calculated as:

(up
11 · 0.1 + up

12 · 0.4 + up
23 · 0.5)

1
p . (12)

As p →∞, (12) becomes:

lim
p→∞

(up
11 · 0.1 + up

12 · 0.4 + up
23 · 0.5)

1
p

= lim
p→∞

(max{up
11 · 0.1, up

12 · 0.4, up
23 · 0.5})

1
p

= lim
p→∞

max{u11 · 0.1
1
p , u12 · 0.4

1
p , u23 · 0.5

1
p }

= max{u11, u12, u23}
= u23 ,

where the first equality holds because the sum of three items
only depends on the dominant term as p →∞; the last equality
holds as we have u23 ≥ u12 ≥ u11 in Fig. 3(b). The physical
meaning of ∞-Wasserstein is the maximum moving distance
over all steps in the optimal plan (joint distribution). This
interpretation makes ∞-Wasserstein highly tractable. ■

We now present the formal definition of ∞-Wasserstein
distance as follows.

Definition 1: The ∞-Wasserstein distance of Pξ1
and Pξ2

is defined as

d∞(Pξ1
, Pξ2

) = inf
Q∈Q

{
supQ ||ξ1 − ξ2||

}
, (13)

where || · || is any norm, “sup(·)” stands for the supremum,2

Q stands for a joint distribution of ξ1 and ξ2, Q stands for
the set of all possible Q’s respectively.

In (13), “supQ ||ξ1 − ξ2||” represents the effort under a
specific moving plan Q (i.e., Plan 1 in Fig. 3(b) or Plan
2 in Fig. 3(c)). The “inf over Q ∈ Q” represents finding
the optimal moving plan with the minimum moving effort.
Though the definition (13) holds for any norm || · ||, it is
common to choose L2-norm due to its attractive computational
properties, as in Example 1. Note that d∞(Pξ1

, Pξ2
) = 0 holds

if and only if Pξ1
= Pξ2

almost surely.3 Otherwise, we have
d∞(Pξ1

, Pξ2
) > 0.

B. ∞-Wasserstein Ambiguity Set

Denote θi as a non-negative number. Denote Pd∞(θi)
as a set of distributions whose ∞-Wasserstein distances from
Pĥi

are upper bounded by θi, i.e.,

Pd∞(θi) =
{

P : d∞(P, Pĥi
) ≤ θi, P ∈ P

}
(i ∈ K) , (14)

2The ∞-Wasserstein distance is also defined in terms of “essential supre-
mum” to avoid some extreme distributions [41], [43]. Since such extreme
distributions are not encountered in our problem, we use the simplified
supermum instead.

3An event is said to happen “almost surely” if it happens with probability 1
(or Lebesgue measure 1).
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where P stands for all possible distributions for an M ×
1 random vector. Pd∞(θi) is called ∞-Wasserstein ambiguity
set [44] and can be viewed as a ball of distributions centered
at Pĥi

with a radius θi. In other words, Pd∞(θi) contains the
distributions that are “close” to the emprical distribution Pĥi

.
Suppose that we choose θi’s properly such that the true (but

unknown) distribution Phi falls in the ball, i.e.,

Phi
∈ Pd∞(θi) (i ∈ K) . (15)

Then the ∞-Wasserstein distance between the true distribution
Phi

and the empirical distribution Pĥi
is upper bounded

by θi. We will present a simple method to choose θi in
Section V-D. For the purpose of designing our beamforming
solution, we can consider θi’s as given constants.

We now show how to reformulate P3 based on Pd∞(θi).
For ease of exposition, let us rewrite constraints (10) as

P{f(Wi,hi) ≤ 0} ≥ 1− ϵi (i ∈ K) , (16)

where f(Wi,hi) is defined as

f(Wi,hi) =
j ̸=i∑
j∈K

hH
i Wjhi + σ2

i −
hH

i Wihi

ζ req
i

= hH
i ·

 j ̸=i∑
j∈K

Wj −
Wi

ζ req
i

 · hi + σ2
i (17)

Note that we have dropped superscript g for simplicity when
there is no confusion.

Combining constraints (15) and (16), we have

inf
Phi

∈Pd∞ (θi)
P{f(Wi,hi) ≤ 0} ≥ 1− ϵi (i ∈ K) . (18)

The “inf” in constraints (18) means that for any distribution
Phi

from Pd∞(θi), the probabilistic SINR threshold guarantee
for the UEs should be valid.

Based on the definition of ∞-Wasserstein ambiguity set,
constraints (18) can be equivalently reformulated into [42]

P{f̂(Wi, ĥi) ≤ 0} ≥ 1− ϵi (i ∈ K) , (19)

where f̂(Wi, ĥi) is defined as

f̂(Wi, ĥi) = max
ci

{f(Wi, ci) : ||ci − ĥi||2 ≤ θi} . (20)

We see that the uncertain CSI hi in (18) disappears. Instead,
the estimated CSI ĥi is included in (19). Here we introduce
an auxiliary variable ci ∈ CM×1. Note that f̂(Wi, ĥi) ≤
0 in constraints (19) means that given ĥi, we should have
f(Wi, ci) ≤ 0 holds for any ci that satisfies ||ci− ĥi||2 ≤ θi.

It’s worth noting that our approach is largely different
from the worst-case optimization. First, we use CSI data
samples, the empirical distribution, and an upper bound of
its distance to the true but unknown distribution. In contrast,
worst-case optimization requires a conservative boundary of
uncertain parameters (min and max CSI estimation errors).
Second, in our model, the uncertain CSI hi can be within
θi distance from “any” CSI data sample ĥi(n) out of the N
available CSI data samples. But in the worst-case optimization,
the uncertain CSI hi must be within predefined boundaries.
Last but not least, our proposed approach offers controllable
occasional SINR threshold violations through (19) and better

performance. In comparison, worst-case optimization does not
allow any threshold violation and is known to be overly
conservative.

Recall that ĥi’s closed-form distribution Pĥi
is given in (11)

based on N CSI data samples. Thus, we plug in this distribu-
tion knowledge (11) into (19) and obtain:∑

n∈N
I
{
f̂
(
Wi, ĥi(n)

)
≤ 0
}
≥ N · (1 − ϵi) (i ∈ K) , (21)

where I(·) is the binary indicator function.
Based on (21), we can rewrite P3 as

(P4) min
Wi

∑
i∈K

Tr(Wi)

s.t. Probabilistic data rate guarantee (21) .

Wi ⪰ 0, Rank(Wi) = 1 (i ∈ K) .

For the rank constraints “Rank(Wi) = 1” in P4, a widely
used technique is to employ semi-definite programming (SDP)
relaxation (see, e.g., [45], [46], [47]). In SDP relaxation,
we first relax the rank constraints “Rank(Wi) = 1” by
dropping them. Then we solve the relaxed problem based on
the approach proposed in Section V. After we obtain a solution
Wi, we check its rank to recover the original wi either through
Eigendecomposition or Gaussian randomization based on Wi

[48]. So the next step is to find a solution for P4 without the
rank constraints.

However, after dropping the rank constraints, we still have
constraints (21). Even though we have replaced the unknown
PDF Phi in (18) with N CSI data samples in (19), it is still
unclear how to handle f̂

(
Wi, ĥi(n)

)
defined in (20) and the

indicator functions.

V. LSBF—LIMITED SAMPLE-BASED BEAMFORMING
SOLUTION

In this section, we present LSBF—A Limited Sample-based
BeamForming solution to P4 (and P1). The design of LSBF
is based on a convex approximation of P4, which hinges on a
bilevel formulation and a novel reformulation technique called
ALSO-X+ [42].

A. Bilevel Formulation
In this section, we present a bilevel formulation of P4 that

consists of an upper-level problem and a lower-level problem.
This bilevel formulation is an exact reformulation of P4 after
dropping its rank constraints. Under this bilevel formulation,
we only need to focus on the lower-level problem since the
upper-level problem is a simple feasibility check. This bilevel
formulation allows us to derive a convex approximation of P4
in Section V-B.

For UE i, denote zi

(
ĥi(n)

)
as a binary indicator w.r.t. ĥi(n)

as follows:

zi

(
ĥi(n)

)
=

{
1, if f̂

(
Wi, ĥi(n)

)
≤ 0 ,

0, otherwise .
(22)

With zi

(
ĥi(n)

)
, we can rewrite (21) as∑

n∈N
zi

(
ĥi(n)

)
≥ N · (1 − ϵi) (i ∈ K) . (23)
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To put constraints (22) into closed-form constraints,
we introduce an auxiliary variable si

(
ĥi(n)

)
w.r.t. ĥi(n) such

that:

si

(
ĥi(n)

)
≥ 0 (i ∈ K, n ∈ N ) , (24a)

f̂
(
Wi, ĥi(n)

)
≤ si

(
ĥi(n)

)
(i ∈ K, n ∈ N ) , (24b)

zi

(
ĥi(n)

)
· si

(
ĥi(n)

)
= 0 (i ∈ K, n ∈ N ) . (24c)

The nonnegative s
(
ĥi(n)

)
can be considered as a slack

function w.r.t. z
(
ĥi(n)

)
. It is easy to see that constraints (22)

can be replaced by constraints (24).
Using an auxiliary variable t, we can rewrite the objective

function of P4 as “min t” and add the following constraints:∑
i∈K

Tr(Wi) ≤ t . (25)

Using this new objective function, adding constraints (25),
replacing constraints (21) by constraints (23) and (24), and
also dropping the rank constraints, we obtain a reformulation
of P4 as follows:

(P4-R) min
Wi,zi

(
ĥi(n)

)
,si

(
ĥi(n)

) t

s.t. Wi ⪰ 0 , Constraints (23),(24),(25) .

P4-R suggests that we can use a binary search to obtain the
smallest t such that all constraints of P4-R are feasible. Then
we can take this smallest t as the optimal objective value and
its corresponding feasible solution as the optimal solution to
P4-R. This is the basic idea of a bilevel formulation of P4-R.

Based on (23) and (24c), we have∑
n∈N

I
{
si

(
ĥi(n)

)
= 0
}
≥ N · (1 − ϵi) (i ∈ K) . (26)

Further, since zi(ĥi(n)) ≥ 0 and si(ĥi(n)) ≥ 0, con-
straints (24c) is equivalent to:∑

i∈K

∑
n∈N

{
zi

(
ĥi(n)

)
· si

(
ĥi(n)

)}
= 0 . (27)

To handle the bilinear constraints (24c), we will drop
them and use the left-hand side of constraints (27) as the
objective function of the lower-level problem, which facilitates
our derivation of a convex approximation in Section V-B.
By removing constraints (24c), we need to bring con-
straints (26) to the problem. We now have a bilevel formulation
of P4-R as follows:

(P5) min
t

t(
W∗

i , z∗i
(
ĥi(n)

)
, s∗i
(
ĥi(n)

))
∈ arg min

Wi,zi

(
ĥi(n)

)
,si

(
ĥi(n)

){∑
i∈K

∑
n∈N

{
zi

(
ĥi(n)

)
· si

(
ĥi(n)

)}
: Wi ⪰ 0 ,

zi

(
ĥi(n)

)
∈ {0, 1}, Constraints (23),(24a),(24b),(25)

}
,

Constraints (26) .

We offer some insights into deriving this bilevel
formulation:

• Lower-level problem: We see the lower-level problem
preserves most of the constraints of P4-R. The biggest
change is that constraints (24c) disappear in P5 while a
new term

∑
i∈K

∑
n∈N

{
zi

(
ĥi(n)

)
· si

(
ĥi(n)

)}
is used

as the objective function of the lower-level problem.
• Upper-level problem: We see t is used as the objective

function and constraints (26) are added to ensure the
feasibility of the final solution. Note that constraints (26)
have been relocated to the upper-level problem from the
lower-level problem.

• It can be shown that P5 is an equivalent reformulation of
P4-R [42]. The proof is based on the fact that an optimal
solution to P4-R can be constructed based on an optimal
solution to P5 with the same W∗

i and the objective
value. So is the converse. Placing constraints (26) into
the upper-level problem leads to a more tractable feasible
region for the lower-level problem without introducing
any relaxation errors.

The main idea of P5 is that for a given t, we can solve
the lower-level problem to obtain an optimal W∗

i , z∗i
(
ĥi(n)

)
and s∗i

(
ĥi(n)

)
. If s∗i

(
ĥi(n)

)
can satisfy the 1− ϵi guarantee,

i.e., constraints (26), then this W∗
i is a feasible solution

with objective function t. Based on this understanding, the
minimum t that can derive a feasible Wi is the optimal
solution to P5, which can be found through a binary search
with a few iterations.

Now the question is: For a given t, how to find a solution
to P5 in the form of Wi, zi

(
ĥi(n)

)
, and si

(
ĥi(n)

)
? Since

the upper-level problem of P5 is a simple feasibility check
with constraints (26), we only need to focus on the lower-
level problem. This lower-level problem is not trivial due to
f̂
(
Wi, ĥi(n)

)
in constraints (24b) and its bilinear objective

function
∑

i∈K
∑

n∈N
{
zi

(
ĥi(n)

)
· si

(
ĥi(n)

)}
.

B. Solution to P5: Convex Approximation

In this section, we present an algorithm to derive a solution
to P5 for a given t. Our approach is based on convex approx-
imation of the lower-level problem in P5 using S-lemma [49]
and a novel technique called “ALSO-X+” [42], [50].

1) Reformulation of f̂
(
Wi, ĥi(n)

)
: Since f̂

(
Wi, ĥi(n)

)
in

constraints (24b) involves a maximization problem (see (20))
which cannot be solved directly, we need to reformulate
f̂
(
Wi, ĥi(n)

)
.

Denote en
i ∈ CM×1 as the difference between ci and data

sample ĥi(n), i.e.,

en
i = ci − ĥi(n) (i ∈ K , n ∈ N ) . (28)

Based on the definition of f̂(Wi, ĥi) in (20) and the definition
of ei in (28), constraints (24b) can be rewritten as:

max
en

i

{
f
(
Wi, en

i + ĥi(n)
)
: ||en

i ||2 ≤ θi

}
≤ si

(
ĥi(n)

)
(i ∈ K , n ∈ N ) ,
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which means that

f
(
Wi, en

i + ĥi(n)
)
≤ si

(
ĥi(n)

)
(i ∈ K , n ∈ N ) (29)

holds for any en
i that satisfies ||en

i ||2 ≤ θi. That is, ||en
i ||2 ≤ θi

implies that constraints (29) hold. We have:

||en
i ||2 ≤ θi =⇒ Constraints (29) . (30)

For ease of exposition, let us define an M × M complex
matrix Qi and a scalar an

i as

Qi =
j ̸=i∑
j∈K

Wj −
Wi

ζ req
i

, (31a)

an
i =

(
ĥi(n)

)H
Qiĥi(n) + σ2

i . (31b)

Since Wi is a Hermitian matrix, Qi is also a Hermitian matrix,
and consequently, an

i is a real number.
Based on the definition of f

(
Wi, en

i + ĥi(n)
)

in (17),
we have

f
(
Wi, en

i + ĥi(n)
)

=
(
en

i + ĥi(n)
)H  j ̸=i∑

j∈K
Wj −

Wi

ζ req
i

(en
i + ĥi(n)

)
+ σ2

i

=
(
en

i + ĥi(n)
)H

Qi

(
en

i + ĥi(n)
)

+ σ2
i

= (en
i )HQien

i + (en
i )HQiĥi(n) +

(
ĥi(n)

)H
Qien

i +(
ĥi(n)

)H
Qiĥi(n) + σ2

i

= (en
i )HQien

i + (en
i )HQiĥi(n) +

(
ĥi(n)

)H
Qien

i + an
i .

Plugging in the above results for f
(
Wi, en

i + ĥi(n)
)

into
constraints (29), we have

(en
i )HQien

i + (en
i )HQiĥi(n) +

(
ĥi(n)

)H
Qien

i + an
i

≤ si

(
ĥi(n)

)
(i ∈ K, n ∈ N ) .

(32)

Further, ||en
i ||2 ≤ θi can be rewritten as

(en
i )HIMen

i − θ2
i ≤ 0 , (33)

where IM is the M -dimension identity matrix. Thus,
by replacing ||en

i ||2 ≤ θi with (33) and replacing con-
straints (29) with constraints (32), statement (30) can be
rewritten as

(en
i )HIMen

i − θ2
i ≤ 0 =⇒ Constraints (32). (34)

To derive a closed-form for (34), we resort to S-lemma [49].
For the sake of completeness, we reiterate S-lemma as follows.

Lemma 2: (S-Lemma) Let V1 and V2 be M × M
Hermitian matrices. Suppose (i) xHV1x ≤ 0 holds for some
x ∈ X and X ⊆ CM×1; and (ii) There exists an x̄ such that
x̄HV1x̄ < 0. Then xHV2x ≤ 0 holds for x ∈ X if and only
if there exists a nonnegative number λ such that V2 ⪯ λV1.

In S-Lemma, “V2 ⪯ λV1” means that λV1 − V2 is a
positive semidefinite matrix. S-Lemma can convert a statement
like (34) into a closed-form constraint with an auxiliary
variable λ. Then this closed-form constraint can be directly

handled by commercial solvers. To apply S-Lemma to state-
ment (34), we first rewrite it as[

en
i

1

]H [IM 0
0 − θ2

i

] [
en

i

1

]
≤ 0 =⇒[

en
i

1

]H
[

Qi Qiĥi(n)(
Qiĥi(n)

)H
an

i − si

(
ĥi(n)

)] [en
i

1

]
≤ 0,

which matches the standard form in S-Lemma with

V1 =
[
IM 0
0 − θ2

i

]
, x =

[
en

i

1

]
, x̄ =

[
0
1

]
,

V2 =

[
Qi Qiĥi(n)(

Qiĥi(n)
)H

an
i − si

(
ĥi(n)

)] .

Therefore, we have (i) xHV1x = (en
i )HIMen

i − θ2
i ≤ 0 for

some x ∈ X and X ⊆ CM×1; and (ii) x̄HV1x̄ = −θ2
i <

0 hold. Based on S-Lemma, statement (34) holds if and only
if[

Qi Qiĥi(n)(
Qiĥi(n)

)H
an

i − si

(
ĥi(n)

)] ⪯ λn
i

[
IM 0
0 −θ2

i

]
, λn

i ≥ 0

(i ∈ K, n ∈ N ) . (35)

Replacing statement (34) with constraints (35), the
lower-level problem of P5 becomes:

min
Wi,zi

(
ĥi(n)

)
,si

(
ĥi(n)

){∑
i∈K

∑
n∈N

{
zi

(
ĥi(n)

)
· si

(
ĥi(n)

)}
:

Wi ⪰ 0 , zi

(
ĥi(n)

)
∈ {0, 1} ,

Constraints (23),(24a),(35),(25)
}

.

2) Bilinear Objective Function: As for the bilinear objec-
tive function

∑
i∈K

∑
n∈N

{
zi

(
ĥi(n)

)
· si

(
ĥi(n)

)}
, we will

employ convex approximation. Our proposed solution is
inspired by ALSO-X+ [42], which has been proven to offer
better performance compared to existing reformulation tech-
niques for problems such as P5 [42], [50]. Fig. 4 shows
the main idea of our convex approximation where we solve
zi

(
ĥi(n)

)
, si

(
ĥi(n)

)
, and Wi in sequence.

As shown in Fig. 4, we start the procedure by setting all
zi

(
ĥi(n)

)
= 1 and solve for si

(
ĥi(n)

)
and Wi (Step 1). This

step is motivated by (23) and the value of ϵi (whose value tends
to be small). So we would anticipate the majority of zi

(
ĥi(n)

)
to be 1. Further, we choose to fix zi

(
ĥi(n)

)
first as they only

appear in constraints (23) and the bilinear objective function.
So their impacts on other constraints are limited.

With zi

(
ĥi(n)

)
= 1, constraints (23) hold trivially. Further,

the lower-level problem in P5 can be simplified to

min
Wi,si

(
ĥi(n)

){∑
i∈K

∑
n∈N

si

(
ĥi(n)

)
: Wi ⪰ 0 ,

Constraints (24a),(35),(25)
}

. (36)

This problem is convex and we can solve its optimal solu-
tion W∗

i and s∗i
(
ĥi(n)

)
. Note that problem (36) is always
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Fig. 4. A solution procedure to the lower-level problem for a given t.

feasible—there is at least a feasible solution with sufficiently
large si

(
ĥi(n)

)
and Wi = 0.4

After we obtain s∗i
(
ĥi(n)

)
, we sort them in non-increasing

order for each UE i (Step 2). Specifically, we sort{
s∗i
(
ĥi(n)

)
, n ∈ N

}
and denote S sort

i as the sorted set. Then
we count the number of positive numbers in S sort

i and have the
following two cases:

• Case (i) The number of positive elements in S sort
i divided

by N is no greater than ϵi for all i ∈ K.
• Case (ii) Otherwise, i.e., at least for some i ∈ K, the

number of positive elements in S sort
i divided by N is

greater than ϵi.
We discuss how LSBF works for each case as follows.

Case (i): This is the simple case as constraints (26) already
hold. To minimize the objective function

∑
n∈N

{
zi

(
ĥi(n)

)
·

si

(
ĥi(n)

)}
, we can adjust zi

(
ĥi(n)

)
from 1 to 0 correspond-

ing to those s∗i
(
ĥi(n)

)
> 0, i.e.,

z∗i
(
ĥi(n)

)
=

{
0, if s∗i

(
ĥi(n)

)
> 0 ,

1, otherwise .
(37)

This adjustment of zi

(
ĥi(n)

)
is solely to achieve a minimum

objective value
∑

n∈N
{
zi

(
ĥi(n)

)
· si

(
ĥi(n)

)}
= 0. Further,

it has no impact on Wi and si

(
ĥi(n)

)
since zi

(
ĥi(n)

)
only appears in constraints (23) and the objective function.
Therefore, this solution is the optimal solution to P5’s lower-
level problem under the current t.

Case (ii): In this case, after Step 1, constraints (26)
do not hold, as there is a fewer number of s∗i

(
ĥi(n)

)
with

s∗i
(
ĥi(n)

)
= 0. So we propose to first adjust zi

(
ĥi(n)

)
and si

(
ĥi(n)

)
so that both constraints (23) and (26) hold

and the objective function
∑

n∈N
{
zi

(
ĥi(n)

)
· si

(
ĥi(n)

)}
is

minimized.
To do this, we propose to fix zi

(
ĥi(n)

)
and si

(
ĥi(n)

)
based

on the sorted set S sort
i . For each UE i ∈ K, we adjust si

(
ĥi(n)

)
with

si

(
ĥi(n)

)
=

{
∞, for the first ⌊N · ϵi⌋ elements in S sort

i ,
0, otherwise .

(38)

4This trivial solution is not a feasible solution to P5 due to constraints (26)
in its upper-level problem.

Then we adjust zi

(
ĥi(n)

)
using (37) and the new values for

si

(
ĥi(n)

)
in (38), as shown in Fig. 4 (Case (ii) Step 3). Note

that such setting of zi

(
ĥi(n)

)
and si

(
ĥi(n)

)
will ensure the

objective function
∑

i∈K
∑

n∈N {zi

(
ĥi(n)

)
· si

(
ĥi(n)

)
} to be

the minimum value 0.
In (38), by setting si

(
ĥi(n)

)
= ∞, the corresponding

constraints in (35) hold trivially. Since these constraints have
no impact when solving Wi, they can be safely removed from
the lower-level problem of P5 when solving for Wi with a
lower computation complexity.

Now we have a convex optimization problem (with 0 as the
optimal objective value) and we can solve its optimal solution
W∗

i . If W∗
i can be found then it is the optimal solution to

P5’s lower-level problem for current t. Otherwise, we declare
that the current t is infeasible.

C. Summary of LSBF

A summary of our proposed solution LSBF is given in
Algorithm 1. It combines all the above steps, including the
binary search for t, solution procedure for a given t, recovering
wg

i from Wg
i , and recovering solution to P1. Note that the

output of LSBF is an MU-MIMO beamforming solution on all
RBGs, so we bring back the superscript g. We see Line 5–12
is the binary search to find the minimum t, which runs
iteratively until a stop criterion is reached. In each iteration,
we set t = (tUB + tLB)/2, apply the procedure in Fig. 4, and
updates the upper bound and lower bound for t. Note that in
Line 8, we choose tUB = min{t,

∑
i∈Kg Wg

i } for a faster
convergence.

Due to the complicated mathematical structure of the bilevel
optimization problem P5 and the convex approximation in
Line 6 involving fixing binary variables, we are not able to
quantify the approximation errors from LSBF theoretically (as
in many existing works using CCP). We will show that LSBF
offers much better performance compared to state-of-the-art
approaches through simulation experiments in Section VI.
Warm Start To reduce the number of iterations in the
binary search, we need a warm-start to initialize tLB and
tUB in Line 4. We initialize tUB as the objective value of
Gaussian Approximation [21] since we find its objective value
is always greater than that from LSBF. In case Gaussian
Approximation fails to find a feasible solution, we will simply
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Algorithm 1 LSBF

1: Input: ζ req
i , P max, ĥi(n), θg

i , ∆
2: Output: wg

i or infeasible
3: parfor g ∈ G (subproblems on RBGs) do
4: Set upper bound tUB and lower bound tLB

5: while tUB − tLB > ∆ do
6: Set t = (tUB + tLB)/2, apply procedure in Fig. 4
7: if feasible Wg

i found then
8: Set tUB = min

{
t,
∑

i∈Kg Wg
i

}
, save Wg

i

9: else
10: Set tLB = t
11: end if
12: end while
13: if rank(Wg

i ) ≈ 1 then
14: Set wg

i as the eigenvector of Wg
i

15: else
16: Gaussian Randomization to obtain wg

i from Wg
i

17: end if
18: end parfor
19: if wg

i ’s meet the power budget of the BS (1) then
20: Return wg

i as the final solution
21: else
22: Return infeasible
23: end if

set tUB = P max due to constraints (1) (BS’s power budget on
all RBGs).

As for the initial lower bound tLB, we need to design an
algorithm for tLB with low complexity. Specifically, we ini-
tialize tLB by ignoring the inter-user interference terms when
calculating the SINRs. This means that the MU-MIMO system
is approximated by |Kg| MISO transmissions where each UE
has a dedicated transmission from the BS. Since we ignore
the interference among UEs, the BS will use less power for
beamforming and the objective value can serve as the initial
tLB. We propose to use Maximum Ratio Transmission (MRT)
in the MISO system to derive tLB but it requires perfect CSI
hi, which is not available in our system model. Therefore,
we simply use the measured (inaccurate) mean of hg

i to derive
the MRT solution. Therefore, tLB is initialized as

tLB =
∑
i∈Kg

ζ req
i σ2

i

|| 1
N ·
∑

n∈N ĥg
i (n)||22

. (39)

Recover wg
i from Wg

i Regarding Lines 13–17, although
we use “if-else” to consider two cases, in all of our tested
cases, we found that we only had the case under “if”, i.e.,
rank(Wg

i ) ≈ 1. This is consistent with the observations in [21]
and can be explained by the fact that commercial SDP solvers
(e.g., MOSEK) typically exploit low-rank structures when
solving SDP for matrix solutions such as Wg

i . Therefore,
we can just drop the rank constraints Wg

i = 1 in LSBF and
use Line 14 directly to recover wg

i .
Complexity Analysis The binary search for t in Algorithm 1
consists of at most ⌈log2(

tUB−tLB

∆ )⌉ iterations. In each iter-
ation, the complexity is dominated by Line 6—apply the
solution procedure in Fig. 4—which consists of at most two

convex optimization problems. Both convex problems can
be solved efficiently with polynomial complexity using off-
the-shelf solvers. So LSBF has polynomial time complexity.
While additional optimizations could reduce its actual run-
ning time, such enhancements are beyond the scope of this
paper.

D. Choosing θg
i

In the above discussion, we assume θg
i is a given constant.

Now we discuss how to choose a suitable θg
i for ∞-

Wasserstein ambiguity set Pd∞(θg
i ) such that Phg

i
∈ Pd∞(θg

i )
holds for i ∈ Kg, g ∈ G. If θg

i is chosen too small (overly
optimistic), then the true (but unknown) distribution Phg

i
may

fall out of Pd∞(θg
i ), and the probabilistic performance guaran-

tee for the UEs in a solution may not hold. If θg
i is chosen too

large (overly conservative), then we will use more transmission
powers of the BS than what’s necessary. Comparing these two
cases, it is clear that the first consequence is more detrimental.
So we can choose a sufficiently large θg

i that can provide a
probabilistic performance guarantee to the UE data rates but
may incur a slightly higher BS power consumption.

We propose to calculate θg
i based on fast heuristics for

each sliding window before executing LSBF. For each sliding
window and a UE i ∈ Kg, g ∈ G, we have N CSI data
samples ĥg

i (n). Then we choose θg
i based on a constant

factor and the estimated variance from the N CSI data
samples, i.e.,

θg
i =

ρ

N
·

√
1

N−1
∑

n∈N

(
||ĥg

i (n)−
∑

n∈N ĥg
i (n)

N
||22
)

(i ∈ Kg, g ∈ G) .

(40)

In (40), ρ is the constant factor we need to choose and the term
inside the square root is the unbiased sample variance [51].
The use of ρ/N is because θg

i is related to the neighboring
region of each CSI data sample. Once ρ is given, θg

i can be
easily calculated based on the N CSI data samples in the
current window.

We propose to choose ρ based on a data-driven approach.
For a specific setting, the actual threshold violation proba-
bilities are non-increasing w.r.t. ρ and the objective values
are non-decreasing w.r.t. ρ (similar to θg

i ). Therefore, we can
perform multiple runs for a range of ρ and calculate the
actual SINR threshold violation probabilities and the achieved
objective value under each ρ. Then we can pick ρ such that
the probabilistic SINR threshold is guaranteed and possibly
with a minor performance increase in the objective value.
Clearly, this approach can be easily applied to general network
settings. In practice, ρ (or θg

i ) can be dynamically tuned
during run-time by keeping track of the actual SINR threshold
violation probabilities at the UEs.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of LSBF.
We will focus on the actual SINR threshold violation prob-
ability and achieved objective value.
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Fig. 5. Topology of a 5G cell with 30 UEs.

A. Simulation Settings

We consider a 5G cell with a 500-meter radius and the
network topology is shown in Fig. 5. There are K = 30 UEs
randomly distributed inside the cell. The number of antennas
M at the BS and the number of UEs per RBG |Kg| will be
specified for each simulation below.

We assume the BS has G = 8 RBGs and each RBG consists
of S = 8 RBs. We consider 5G numerology 0 where the
sub-carrier spacing is 15 KHz [38]. Therefore, each RBG
covers 1 millisecond in the time domain and has a bandwidth
of 12 × 15 KHz × 8 = 1.44 MHz. The BS has a power
budget P max = 46 dBm for all 8 RBGs and the thermal noise
σ2

i is set to −150 dBm/Hz for all UEs. For the required
SINR threshold ζ req

i , we set it according to Shannon Theorem,
(500/di) = log2(1 + ζ req

i ), where 500 is the cell radius and
di is the distance between UE i and the BS (both in meters)
[52]. This simulates the lower data rate for the edge UEs in a
practical 5G cell.

For the wireless channel, we consider the path-loss model
and Rician fading. The path-loss between UE i and the BS
is modeled by PLi = 38 + 30 × log10(di) (in dB) [53].
We employ Rician fading with a 10 dB Rician factor [54],
which is a common model for correlated RBs. In addition
to the channel variation, we also need to include the CSI
estimation errors during the collection of CSI data samples.
Therefore, we employ a truncated Gaussian distribution to
simulate the CSI estimation errors [17], [19]. Specifically,
we use 0 as the mean and 0.1 as the variance for the original
Gaussian distribution and then truncate it at three times its
standard deviation. Note that the channel model described
here is used only for generating parameters in our numerical
studies. LSBF only relies on the CSI data samples and is
blindfolded with respect to any knowledge of distribution
information.

We use MOSEK 9.2.38 on MATLAB R2017b to run all
algorithms and each solution includes beamforming vectors
wg

i on all RBGs (the output of LSBF) For benchmarking,
we run results from the following two approaches:

• State-of-the-art Gaussian Approximation [19], where the
uncertain CSI is assumed to follow Gaussian distribution
with estimated mean and covariance. This approach pro-
vides probabilistic SINR threshold guarantee to the UEs.

• Mean Approximation where the means of ĥg
i (n) is used

as the perfect CSI. This approach gives us a deterministic
formulation with constants CSI. Then a classical solution
with perfect CSI (e.g., [4]) can be employed.

For each setting below, we perform 50 runs and all results
shown represent the average. In each run, we randomly
pick |Kg| UEs from the 30 UEs for each RBG. Since we
have 8 RBGs, there can be at most 8|Kg| active UEs at the
same time. Given that one UE can be served by multiple
RBGs, the number of active UEs may be lower than 8|Kg|.

B. A Case Study

In this subsection, we use a case study to evaluate LSBF and
understand its behavior. Although LSBF can handle different
values of ϵi for the UEs, we use the same value for all UEs
(i.e., ϵi = ϵ, i ∈ K). This allows us to evaluate LSBF under
varying risk levels for all UEs, ranging from 0.1 to 0.5. The
stop criterion in LSBF is set to ∆ = 0.03, i.e., iteration will
stop when tUB − tLB ≤ ∆.

1) Choose N and θg
i : We first validate the approach of

choosing θg
i under a given N presented in Section V-D

and also answer one interesting question regarding N in
LSBF: How many CSI data samples do we need? Intuitively,
we would like to choose a smaller N to reduce the computation
complexity while achieving a satisfactory MU-MIMO beam-
forming performance. Thus, we propose to run the simulation
for a series of N and find the minimum N such that the
probabilistic SINR guarantee of the UEs is met and the BS
transmission power is minimized. For each N , we employ
different θg

i and show how to choose a proper θg
i using the

approach in Section V-D. Recall that our method to choose
θg

i is based on the unbiased sample variance of the collected
N CSI data samples and a long-term parameter ρ, as given
in (40). Therefore, we need to run LSBF under different
combinations of N and ρ. Specifically, we set ϵi = 0.1 for
all i ∈ K and run LSBF under 24 ≤ N ≤ 88 and 1 ≤ ρ ≤ 5.
The actual violation probabilities and the achieved objectives
are given in Fig. 6.

As shown in Fig. 6(a), the actual threshold violation proba-
bilities are decreasing w.r.t. ρ, which shows that the actual
but unknown distribution is more likely to be included in
∞-Wasserstein ambiguity set Pd∞(θi). As for the achieved
objectives shown in Fig. 6(b), they only increase slightly w.r.t.
ρ. Further, there is a notable gap in the objectives achieved by
N = 24 and N = 40. Taking both Fig. 6(a) and Fig. 6(b) into
account, we conclude that it is prudent to choose N = 40 and
ρ = 4 when calculating θg

i in (40). This setting is what we
have shown in Fig. 2 where a sliding window covers 6 TTIs
and we use 40 CSI data samples from the first 5 TTIs to design
beamforming vectors for the 6th TTI.

2) Performance: We now present the performance of LSBF.
For a fair comparison, all three algorithms’ actual violation
probability and achieved objective value will be evaluated
under the same target risk level ϵ. This is because the the-
oretical guarantee of UE data rates can only be claimed using
the target risk level ϵ.

Fig. 7 shows the actual violation probabilities and the
achieved objective values. As shown in Fig. 7(a), the violation
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Fig. 6. Performance of LSBF as a function of ρ when ϵ = 0.1.

probabilities from LSBF are below the risk level ϵ at each
point, which affirms the probabilistic performance guarantee
for the UEs. Further, the violation probabilities from Gaussian
Approximation are much smaller than that from LSBF, which
demonstrates the conservativeness of this approach. Finally,
we see that the violation probabilities from Mean Approxi-
mation are around 60%, which exceeds the target risk level
ϵ. The violation probability under Mean Approximation is
constant because it does not consider any threshold violations,
i.e., independent of ϵ.

Fig. 7(b) shows the achieved objective values (BS’s power
consumption on all RBGs) w.r.t. ϵ. In this figure, we find that
the objective values of both LSBF and Gaussian Approxima-
tion decrease w.r.t. ϵ. This is because a larger ϵ leads to a
higher tolerance of SINR threshold violations and hence the
BS can save more power to meet the loose SINR threshold
requirement. Second, compared to the maximum power budget
(46 dBm), LSBF can save 59% transmission power even
with ϵ = 0.1, which is significant. Third, LSBF performs
better than Gaussian Approximation with 53% power saving
when ϵ = 0.1. which demonstrates that LSBF offers a tighter
approximation than Gaussian Approximation.

Finally, the (unknown) optimal objective value should
appear between LSBF and the lower bound from the Mean
Approximation (which is overly aggressive and cannot meet
target violation probabilities). So our results in Fig. 7(b)
suggest that the achieved objectives by LSBF are very close
to the (unknown) optimal objective values.

Fig. 7. Performance of LSBF as a function of risk level ϵ.

C. Varying Parameters

In this section, we evaluate the performance of LSBF under
varying number of BS antennas M and number of UEs per
RBG |Kg|. To focus on the impact of varying parameters,
we fix the risk level ϵ = 0.1 (i.e., 90% probabilistic guarantee
of UE data rates) and all other settings are the same with
Section VI-B.

1) Varying Number of BS Antennas M : We fix the number
of UEs per RBG |Kg| = 2 and change the number of transmit
antennas at the BS from M = 4 to M = 16. Since Gaussian
Approximation fails to find a feasible solution in many runs
when M = 4 due to its conservativeness, we only include
this benchmark when M = 8 ∼ 16. The threshold violation
probabilities and the achieved objectives are shown in Fig. 8.

As shown in Fig. 8(a), the actual threshold violation proba-
bilities from LSBF are all smaller than ϵ = 0.1, which means
that it provides a probabilistic guarantee with a varying number
of transmit antennas at the BS. As for the objective values
shown in Fig. 8(b), LSBF saves 47% power consumption
on average compared to that from Gaussian Approximation.
Further, the objective values monotonically decrease w.r.t. M
due to diversity gain from an increasing number of BS transmit
antennas.

2) Varying Number of UEs per RBG |Kg|: We fix the
number of antennas M = 16 and vary the number of UEs per
RBG |Kg| from 1 to 4. The threshold violation probability and
objective values are shown in Fig. 9. Similar to the case of
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Fig. 8. Performance of LSBF under varying M when ϵ = 0.1.

varying M , we only include Gaussian Approximation when
|Kg| is between 1 and 3.

As shown in Fig. 9(a), the actual threshold violation prob-
abilities from LSBF are all smaller than ϵ = 0.1, which
means that it provides probabilistic performance guarantee
with varying UEs per RBG. As for the objective values shown
in Fig. 9(a), they are monotonically increasing w.r.t. |Kg|. This
is expected since the BS consumes more transmit power to
serve more UEs on a fixed RBG. All other conclusions are
the same with the case of varying M .

VII. CONCLUSION

We presented a novel approach called Limited
Sample-based Beamforming (LSBF) for MU-MIMO
beamforming that only requires a limited number of
CSI data samples (without any distribution knowledge).
LSBF combines the flexibility of data-driven approaches and
the ability to provide performance guarantees from model-
based approaches. Our goal is to design an MU-MIMO
beamforming solution that provides a probabilistic guarantee
to UE data rates and minimizes the BS’s power consumption.
We formulated a chance-constrained problem (CCP) and
decomposed it into independent subproblems across RBGs.
For each subproblem, we introduced the ∞-Wasserstein
ambiguity set to incorporate the limited CSI data samples and
substitute the true but unknown CSI distribution. Through
the development of a novel bilevel formulation and convex
approximation of its lower-level problem, we demonstrated

Fig. 9. Performance of LSBF under varying |Kg | when ϵ = 0.1.

that LSBF can effectively derive an MU-MIMO beamforming
solution with polynomial time complexity. Simulation
experiments confirmed that LSBF can achieve better
performance comparing to the state-of-the-art approaches
while meeting the probabilistic data rate requirements of the
UEs.

APPENDIX A
PROOF OF LEMMA 1

The proof is based on the facts that the feasible region of
P1 (if exists) falls into that of P2 and that both P1 and P2
share the same minimization objective function.

Suppose P2 has an optimal solution π∗
2. Then we check

whether or not π∗
2 satisfies constraint (1), which leads to two

cases.
Case (i): If constraint (1) is satisfied, then π∗

2 is also feasible
to P1. Since the feasible region of P2 contains that of P1 and
P1 and P2 have the same objective (minimize BS transmission
power), π∗

2 must be an optimal solution to P1.
Case (ii): If constraint (1) is not satisfied, we now show that
P1 is infeasible. We prove this statement by contradiction.
Suppose P1 is feasible and has an optimal solution π∗

1. Then
its objective value must be smaller than or equal to P max

due to constraint (1). On the other hand, Case (ii) assumes
constraint (1) is not satisfied by π∗

2, i.e., π∗
2’s objective value

is greater than P max. But this contradicts to the fact that π∗
2 is

the optimal solution to P2 since π∗
1 has a lower objective than
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π∗
2 (both P1 and P2 share the same minimization objective

function). Therefore, P1 must be infeasible.
Combining both cases, the proof is complete. ■
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