

Neural correlates of social withdrawal and preference for solitude in adolescence

Matthew Risner¹ and Catherine Stamouls ^{1,2,*}

¹Department of Pediatrics, Division of Adolescent and Young Adult Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States

²Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, United States

*Corresponding author: Catherine Stamouls, Boston Children's Hospital, Department of Pediatrics, 300 Longwood Avenue, Boston, MA 02115, United States.

Email: caterina.stamouli@childrens.harvard.edu

Social isolation during development, especially in adolescence, has detrimental but incompletely understood effects on the brain. This study investigated the neural correlates of preference for solitude and social withdrawal in a sample of 2809 youth [median (IQR) age = 12.0 (1.1) years, 1440 (51.26%) females] from the Adolescent Brain Cognitive Development study. Older youth whose parents had mental health issues more frequently preferred solitude and/or were socially withdrawn ($\beta = 0.04$ to 0.14 , CI = [0.002, 0.19], $P < 0.05$), both of which were associated with internalizing and externalizing behaviors, depression, and anxiety ($\beta = 0.25$ to 0.45 , CI = [0.20, 0.49], $P < 0.05$). Youth who preferred solitude and/or were socially withdrawn had lower cortical thickness in regions involved in social function (cuneus, insula, anterior cingulate, and superior temporal gyri) and/or mental health ($\beta = -0.09$ to -0.02 , CI = [-0.14, -0.003], $P < 0.05$), and higher amygdala, entorhinal cortex, parahippocampal gyrus, and basal ganglia volume ($\beta = 2.62$ to 668.10 , CI = [0.13, 668.10], $P < 0.05$). Youth who often preferred solitude had more topologically segregated dorsal attention, temporoparietal, and social networks ($\beta = 0.07$ to 0.10 , CI = [0.02, 0.14], $P \leq 0.03$). Socially withdrawn youth had a less topologically robust and efficient ($\beta = -0.05$ to -0.80 , CI = [-1.34, -0.01], $P < 0.03$) and more fragile cerebellum ($\beta = 0.04$, CI = [0.01, 0.07], $P < 0.05$). These findings suggest that social isolation in adolescence may be a risk factor for widespread alterations in brain regions supporting social function and mental health.

Keywords: adolescent brain; brain structures; preference for solitude; resting-state brain networks; social withdrawal.

Introduction

Adolescence is a period of heightened neural maturation and circuit rewiring, as the brain's neural architecture is progressively optimized in order to support increasingly complex cognitive processing (Steinberg and Morris 2001; Rogol et al. 2002; Siervogel et al. 2004; Susman and Rogol 2004; Wigfield et al. 2006; Ashtari et al. 2007; Lenroot et al. 2007; Yurgelun-Todd 2007; Blakemore 2008, 2012; Luna 2009; Klimstra et al. 2010; Peper et al. 2011; Sturman and Moghaddam 2011; Goddings et al. 2014; Wierenga et al. 2014; Blakemore and Mills 2014a; Mills et al. 2016; Özdemir et al. 2016; Vijayakumar et al. 2018; Andrews et al. 2021; Best and Ban 2021; Pfeifer and Allen 2021). In parallel, the youth social world expands and changes, in part due to social reorientation—a shift in the relative importance of peer relationships compared to those with family (Wang et al. 1995; Maxwell 2002; Giordano 2003; Jaccard et al. 2005; Lerner and Steinberg 2009; Albert et al. 2013; Sawyer et al. 2018). Changes in the youth social environment can be overwhelming, sometimes leading to social isolation (Oh et al. 2008; Rubin et al. 2009; Biggs et al. 2012; Barzava et al. 2019; Porcelli et al. 2019; Wood et al. 2022), which may, in turn, adversely impact brain development and increase risk for mental health and behavioral problems (Costello et al. 2011; Reiss 2013; Bor et al. 2014; Blakemore 2019).

Stressors in the youth's immediate environment increase the risk for social withdrawal, isolation, and loneliness. For example, children whose parents have mental health issues may be at higher risk of behavioral and mental health problems, including

social isolation (Cogan et al. 2005; Manning and Gregoire 2009; Van Loon et al. 2014; Matthews et al. 2015; Bosch et al. 2017; Dam et al. 2018; Reupert et al. 2021). Relationships with peers are similarly influential, and peer rejection, victimization, lacking friends, and low friendship quality also contribute to social withdrawal and loneliness (Cassidy and Asher 1992; Cheng and Furnham 2002; Asher and Paquette 2003; Woodhouse et al. 2012; Vanhalst et al. 2014; Lodder et al. 2017; Schwartz-Mette et al. 2020). These relationships are, however, bidirectional since social withdrawal may worsen the quality and/or depth of friendships (Rubin et al. 2006; Biggs et al. 2012; Coplan et al. 2018; Barzava et al. 2022). Social exclusion at school may also lead to social withdrawal and loneliness (Patton et al. 2006; Ford et al. 2018; Arslan and Gökmen. 2021; Arslan et al. 2023). In contrast, a sense of school connectedness may mitigate the adverse psychological effects of social isolation (Hall-Lande et al. 2007; Foster et al. 2017; Marraccini and Brier 2017; London and Ingram 2018; Preston and Rew 2022). Again, these relationships are complex and bidirectional, since socially withdrawn children often encounter difficulties in school, including poor relationships with teachers, academic struggles, and possibly avoiding school altogether. These challenges further reinforce their social isolation and limit opportunities for meaningful social engagement (Rubin et al. 2009; Coplan et al. 2018; Stenseng et al. 2022).

Social isolation and loneliness have been associated with physical health problems in adolescents and young adults, including increased risk for cancer, obesity, diabetes, asthma,

Received: May 7, 2025. Revised: August 10, 2025. Accepted: August 21, 2025

© The Author(s) 2025. Published by Oxford University Press. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.

migraine, hypertension, and back pain (de L. Almeida et al. 2021; Christiansen et al. 2021; Goosby et al. 2013; Mahon et al. 1993; Mushtaq et al. 2014; von Soest et al. 2020), and longer-term cardiovascular problems, inflammation, and impaired immunoregulation (Caspi et al. 2006; Danese et al. 2009; Hawkley et al. 2010; Hawkley and Cacioppo 2010; Patterson and Veenstra 2010; Goosby et al. 2013; Lacey et al. 2014; Matthews et al. 2024).

Common mental health disorders often emerge in adolescence (Paus et al. 2008; de Girolamo et al. 2012; Blakemore 2019), and social isolation may significantly increase their risk of occurrence. Specifically, it has been linked to anxiety, depression, internalizing problems, and suicidal ideation and self-harm (Cacioppo et al. 2006; Rubin et al. 2009; Costello et al. 2011; Jones et al. 2011; Schinka et al. 2012; Reiss 2013; Bor et al. 2014; Gallagher et al. 2014; Endo et al. 2017; Blakemore 2019; McClelland et al. 2020; Harman et al. 2021). Social isolation has also been associated with cognitive problems and deficits, including worse academic performance and impaired reward processing and language skills (de L. Almeida et al. 2021; Jefferson et al. 2023a; 2023b; Matthews et al. 2023; Rubin et al. 2009; Tomova et al. 2022; Stenseng et al. 2022) and impaired memory (Fuhrmann et al. 2019). Recent studies focusing on social isolation of youth during the COVID-19 pandemic have reported associations between pandemic-related social isolation and deficits in executive function, attention, and memory (Lavigne-Cerván et al. 2021; Houghton et al. 2022; Murtaza et al. 2023).

The neural correlates of social withdrawal and isolation remain poorly understood. This is a significant gap in knowledge given that adolescence is not only a formative period for the establishment of social identity and mental health outcomes but also a vulnerable period for social development (Meeus 1996; Kroger 2004; Fergusson et al. 2005; Kessler et al. 2005; Paus et al. 2008; Blakemore and Mills 2014; Blakemore 2019; Branje et al. 2021; Schlack et al. 2021). Adult studies have shown that loneliness and social withdrawal are associated with lower gray matter volume in the posterior superior temporal gyrus, the amygdala, the hippocampus, and the cerebellum (Kanai et al. 2012; Koolschijn et al. 2013; Düzel et al. 2019; Lind et al. 2020), disrupted white matter integrity in the salience network (Tian et al. 2014), and lower white matter density in the inferior parietal lobule and anterior insula (Nakagawa et al. 2015; Lam et al. 2021). It has also been associated with structural changes in the dorsolateral prefrontal cortex, and impaired community between the amygdala and the orbitofrontal cortex, which may, in turn, lead to emotional dysregulation (Kong et al. 2015; Liu et al. 2016; Goetschius et al. 2020; Zheng et al. 2023). Together, these findings suggest that social isolation adversely impacts the structural integrity of brain regions that play critical roles in social perception, cognitive control, and emotional processing.

Beyond its impact on brain structure, social withdrawal, isolation, and loneliness in young adults have been linked to higher resting-state functional connectivity in the right central operculum, supramarginal gyrus, and circuits involved in sustained attention (Layden et al. 2017), and weaker connections between dorsal attention and salience networks, as well as within and between temporal, limbic, and prefrontal networks (Tian et al. 2017; Feng et al. 2019; McIver et al. 2019). In adolescents, social withdrawal has been associated with stronger connections between the amygdala and regions of the dorsal attention, frontoparietal control, and auditory networks and between the prefrontal and limbic networks (Thomas et al. 2024). Loneliness

has been associated with lower activation of the ventromedial prefrontal cortex (Golde et al. 2019) and higher functional connectivity in visual attention networks (Brilliant et al. 2022).

Despite valuable insights provided by prior studies, the brain correlates of social withdrawal and/or preference for solitude in adolescence remain incompletely understood and have not been systematically characterized. A significant barrier to robust investigations is the heterogeneity of adolescent brain and social development, and the complexity of associations between social behaviors, environmental factors, and the brain. However, the availability of multimodal (including neuroimaging) data from the Adolescent Brain Cognitive Development (ABCD) study, a historically large (~12,000 youth) investigation of adolescent brain development (Casey et al. 2018) provides a unique opportunity to bridge this gap in knowledge.

The present study leveraged the ABCD structural MRI and resting-state functional Magnetic Resonance Imaging (fMRI) data, mental health assessments, and survey data on social behaviors and environmental factors in order to investigate associations between preference for solitude and social withdrawal (both leading to social isolation), the organization of intrinsically coordinated brain networks, and their structural correlates in almost 3,000 adolescents (ages 10 to 13 years), who at this age may be at higher risk of mental health disorders and maladaptive social behaviors (Kessler et al. 2005). The two measures were analyzed separately (secondary analyses also analyzed a composite measure). Although preference for solitude and social withdrawal both involve spending time alone, they are different behaviors and may be differentially motivated (Galanaki 2004; Coplan et al. 2021; Weinstein et al. 2023). Preference for solitude may be intentional and driven by positive factors, such as a need for introspection, creative thinking, and personal growth (Long and Averill 2003; Nguyen et al. 2018). Recent studies have shown that as the adolescent social world evolves, youth try to balance social engagement with the need for independence, and preference for solitude increases with age (Goossens 2014; Borg and Willoughby 2022; Chen et al. 2023). However, despite potential positive effects, frequent preference for solitude may lead to social isolation, with similar negative implications for brain development and mental health as social withdrawal. The latter may result from social stressors, social anxiety, depression, and negative emotions (Rubin et al. 2009; Barzeva et al. 2019; Rubin and Chronis-Tuscano 2021) and is thus driven by negative endogenous and exogenous factors. The study hypothesized that although occasional preference for solitude may have a positive effect on the adolescent brain, frequent preference for solitude and social withdrawal are in part driven by negative factors in the youth social environment and are associated with widespread structural and functional brain changes, especially in underdeveloped regions supporting social function.

Materials and methods

This study was approved by the Boston Children's Hospital Institutional Review Board. It analyzed publicly available and thus anonymized data, and thus, informed consent was not required.

Participants

A sample of $n = 2,809$ youth from the 2-year follow-up cohort in the ABCD study was analyzed. The primary criterion for inclusion was availability of at least one high-quality ($\leq 10\%$ of frames censored for motion) 5-min resting-state fMRI run that had been collected prior to the onset of the COVID-19 pandemic (assumed to

Table 1. Demographic and other individual characteristics (*n* = 2809).

Age (years)	Median (IQR)	12.00 (1.08)
Sex		
Male	1366 (48.63%)	
Female	1440 (51.26%)	
Missing	3 (0.11%)	
Race/Ethnicity		
White Non-Hispanic	1488 (52.97%)	
Black Non-Hispanic	363 (12.92%)	
Asian Non-Hispanic	645 (22.96%)	
Other (including mixed race) Non-Hispanic	61 (2.17%)	
Hispanic	243 (8.66%)	
Missing	9 (0.32%)	
Family Income (\$)		
<25,000	266 (9.47%)	
25,000 to 49,999	331 (11.78%)	
50,000 to 74,999	355 (12.64%)	
75,000 to 99,999	361 (12.85%)	
100,000 to 199,999	883 (31.43%)	
≥200,000	405 (14.42%)	
Missing	208 (7.41%)	
BMI Z-Score	Median (IQR)	-0.31 (1.138)
Missing	17 (0.61%)	
Pubertal Stage		
Prepuberty	515 (18.33%)	
Early puberty	609 (21.68%)	
Mid-puberty	918 (32.68%)	
Late/Postpuberty	622 (22.15%)	
Missing	145 (5.16%)	

be 2020 March 11, when the World Health Organization declared it as such). Youth measured during the pandemic were excluded to eliminate its potential confounding effects on the brain and social behaviors. Although studying the effects of social isolation during the pandemic on the brain is critical, it was outside the scope of the present study. In addition, participants with clinical MRI findings and neuropsychiatric or neurodevelopmental disorders were also excluded, since they may independently affect brain morphology and the organization of neural circuits (Brooks et al. 2021, 2022, 2023). The final analytic sample included 1,366 boys (48.63%) and 1,440 girls (51.26%), with a median age of 12.0 years (interquartile range [IQR] = 1.1 years). Over half of youth were white non-Hispanic (1488 [53.0%]), 1069 (38.1%) were non-Hispanic racial minorities, and 243 (8.7%) were Hispanic. Socioeconomic status was assessed based on annual household income, with a median income \$75,000 to \$99,999. The sample included 515 (18.3%) youth in prepuberty, 609 (21.7%) in early puberty, 918 (32.7%) in mid-puberty, and 622 (22.1%) in late/postpuberty. Detailed demographic and other participant characteristics are provided in Table 1.

Measures of social withdrawal

Two measures directly assessing social withdrawal and preference for solitude were extracted from the Child Behavior Checklist (CBCL), completed by parents: “withdrawn, doesn’t get involved with others” and “would rather be alone than with others.” Both were measured on a Likert scale from not true (0) to very/often true (2). Secondary analyses also explored a composite social withdrawal measure (the sum of the two items [in a scale of 0 to 4]).

Measures of mental health

Data on anxiety, depression, internalizing, and externalizing behaviors (all t-scores), were extracted from the CBCL. Additional information on social anxiety disorder and anhedonia was extracted from the Kiddie Schedule for Affective Disorders and

Schizophrenia (K-SADS), also completed by parents. For each mental health factor from the K-SADS, responses to two yes/no questions about past and present diagnoses or symptoms were combined into a single binary variable based on any positive responses.

Environmental factors

Multiple aspects of the youth social environment were investigated. Parental mental health was based on the Adult Behavior Checklist (ABC) and was measured as a t-score of critical items related to depression, self-harm, substance use, mood swings, and suicidal thoughts. Family dynamics were assessed based on the parent-reported Family Environment Scale. Conflict and cohesion were measured on continuous scales by aggregating responses from multiple survey items designed to assess specific aspects of the family’s organizational structure. In addition, parent responses to one question from the Mexican American Cultural Values Scale were extracted, providing a measure for how strongly they believed that family members should show love and affection to one another. Responses were measured on a Likert scale from not at all (1) to completely (5). Prior work has identified associations between this parental belief and youth prosocial behaviors (Smith and Stamoulis 2023).

Questions on peer relations were: (i) the number of close friends (from the Other Resilience survey); (ii) regular group of friends (binary variable, from the KSAD-S); and (iii) bullying, represented as a binary variable based on questions on whether a child had been bullied in any social setting (from a parent-reported K-SADS question) or had been cyberbullied (from the youth-reported Cyber-bullying instrument). The Discrimination Measure, reported by youth, assessed experiences of perceived discrimination in four domains: race/ethnicity/color, being from another country, sexual orientation, and/or weight. Given small samples with positive responses in each domain, responses were combined into a single binary variable for analysis, indicating any type of discrimination.

Youth responses on whether they got along with their teacher and liked school (from the School Risk and Protective Factors survey) were also examined. Responses were measured on a Likert scale from definitely not true (1) to definitely true (4).

Additional characteristics

Other assessments of youth social behaviors were extracted from the Early Adolescent Temperament Questionnaire (completed by the parents) and included “Is energized by being in large crowds of people,” “Wants to have close relationships with other people,” “Is shy,” and “Feels shy about meeting new people,” all on a 5-point scale [almost always untrue (1) to almost always true (5)]. Another question from the same instrument asked if the child “Likes meeting new people,” and was reverse-coded by the ABCD, with higher values indicating less frequent social engagement. Two questions on past or present symptoms of a fear of social situations were extracted from the KSAD-S and combined into a binary variable with 1 corresponding to a “true” response to either or both questions, and 0 otherwise. Another question from the CBCL asked parents if their child was “self-conscious or easily embarrassed” and was coded on a Likert scale from not true (0) to very/often true (2).

Neuroimaging data analysis

Resting-state fMRI processing and topological property estimation

Structural MRI and resting-state fMRI (rs-fMRI; participants completed up to four 5-min runs) underwent initial preprocessing

by the ABCD study's Data Analysis, Informatics and Resource Center (DAIRC) to correct for bias fields, B0 distortion, grad warp, and motion in the scanner (Hagler et al. 2019). Additional processing was necessary to further suppress motion-related and other artifacts, harmonize the data across scanners (across the 21 ABCD sites, data were collected with a 3T GE, Siemens, or Philips scanner), and downsample the voxel-level time series. The custom Next Generation Neural Data Analysis (NGNDA) pipeline was used for this purpose (Next-Generation Neural Data Analysis (NGNDA) 2020). Following segmentation of each participant's structural MRI (sMRI), coregistration of their fMRI to the sMRI, and normalization to the common MNI152 space, fMRI signals were further processed to improve their quality. This process included removal of initial frames, correction for motion, and denoising using signal decomposition to eliminate signal components likely associated with cardiorespiratory and other artifacts (Brooks et al. 2021). Voxel-level time series were then downsampled using three atlases for parcellating cortical and subcortical structures and the cerebellum, resulting in 1088 parcel signals (Diedrichsen et al. 2009; Schaefer et al. 2018; Tian et al. 2020). Only fMRI runs with $\leq 10\%$ motion-censored frames were retained for further analysis, based on a displacement threshold of 0.3 mm. Each participant's best-quality run, based on the lowest median connectivity (given that the brain at rest is overall weakly coordinated), and typically also the lowest number of frames censored for motion) was first analyzed. For replication purposes, the second-best-quality run was selected from a subsample of participants [$n = 2,160$ ($\sim 77\%$ of the sample)] who had more than one run of adequate quality for analysis. Median (IQR) percent of frames censored for motion was 1.07% (IQR = 4.00%) in the best-quality run and 1.07% (IQR = 3.73%) in the second run. Since two runs were analyzed, associations between resting-state topological properties and measures of social withdrawal that were reproducible across runs are reported in primary analyses and tables. Additional associations based on the best-quality run (and also larger sample) are reported in secondary analyses and supplemental tables.

Resting-state connectivity was calculated as the peak cross-correlation between pairs of fMRI signals, resulting in 1088×1088 full and symmetric matrices. To obtain corresponding adjacency matrices used in the calculation of topological properties, statistical thresholds were estimated from the entire cohort and all available runs, as outlined in Brooks et al. (2021). A conservative threshold, equal to the bootstrapped moderate outlying peak cross-correlation value (median + 1.5*IQR) was then applied to obtain adjacency matrices. Topological properties were estimated at multiple spatial scales: (i) brain regions (network nodes), (ii) large-scale resting-state networks (Yeo et al. 2011) that also included the reward (Haber and Knutson 2010), and social (Blakemore 2008) networks, and (iii) the entire brain connectome. Topological properties at the network and connectome levels included modularity, global clustering, global efficiency, topological robustness, median connectivity (within and between networks), fragility, topological stability, and segregation. The latter was calculated as the ratio of within-network over out-of-network median connectivity. Node properties included degree, local clustering, and eigenvector centrality. Detailed descriptions of each of these properties are provided elsewhere (Rubinov and Sporns 2010; Wu et al. 2011; Pasqualetti et al. 2020; Brooks et al. 2021).

Structural parameters

Morphometric brain properties (estimated from structural MRIs by the ABCD) were analyzed. They were based on a parcellation

using the Desikan-Killiany atlas, which segments the cortex into 68 regions based on anatomical landmarks (Desikan et al. 2006). Subcortical voxels were parcellated into 30 regions using a probabilistic approach (Fischl et al. 2002). Properties of 98 regions were analyzed, including cortical thickness and white matter intensity, and cortical and subcortical volume (Hagler et al. 2019). White matter intensity was examined as a potentially sensitive cortical marker of brain development (Westlye et al. 2009; Lewis et al. 2018; Hagler et al. 2019). To compare structural and functional findings, the 1,088 cortical and subcortical resting-state network nodes were mapped to 98 structures based on their anatomical overlap.

Statistical analysis

All relationships of interest were investigated using linear mixed-effects regression models that included a random intercept and slope for each of the 21 ABCD sites, to account for potential site effects. All models included age, pubertal stage, sex, race-ethnicity, family income, and BMI z-score stratified by sex [which has been previously linked to differences in topological properties in the ABCD cohort (Brooks et al. 2023)]. All analyses accounted for potential bias associated with sampling differences at the 21 sites using the ABCD-provided propensity scores. Given limited statistical power to study social withdrawal in individual race/ethnic groups, race-ethnicity was coded as a binary variable representing white non-Hispanic participants (0) and racial/ethnic minorities (1). Pubertal stage was coded as an ordinal variable in the range 1 (prepuberty) to 4 (late/postpuberty).

Two broad sets of analyses were conducted to investigate (i) associations between social withdrawal and brain structure and circuit organization and (ii) associations between environmental factors and social withdrawal. In the first set of analyses, models that included brain parameters (the dependent variables), social withdrawal, preference for solitude, and the composite measure were the independent variables of interest. These models were also adjusted for internalizing behavior scores, a variable that was consistently significant across analyses. In the second set of analyses, models that examined associations between social isolation and environmental, mental health, and other behavioral factors, social withdrawal, and preference for solitude were the dependent variables. Models that included resting-state brain network parameters were also adjusted for percent of frames censored for motion and scan time of day participants (0 to 23 h) as additional variables (Brooks et al. 2021; Vaisvilaite et al. 2022; Hu et al. 2023). Variations of models were also developed to assess pairwise comparisons between specific response categories of the social withdrawal measures, focusing on two categories at a time or treating these measures as binary variables.

The significance level was set at $\alpha = 0.05$. All parameter P-values were adjusted for the false discovery rate (FDR), using a well-established method (Benjamini and Hochberg 1995). In analyses focusing on topological properties of the entire brain, the FDR correction was done over topological properties (the only available dimension). Networks were assumed to be independent from each other, and P-values were corrected for FDR across 9 properties estimated for each network. In analyses focusing on regional (node) properties, the FDR correction was done over all nodes within a particular network (each large-scale resting-state network typically includes a relatively large number of nodes). In structural models, P-values were adjusted over regional morphometric properties. Associations were considered significant if the model intercept, parameter of interest, and model P-value were all significant. Model cross-validation was performed by randomly dividing the data into training and testing

sets (75:25) 100 times. The coefficient of variation of the root-mean-squared error (CV[RMSE]) between predicted and observed responses was used to assess each model's predictive power. Reported results are based on models with good predictive power, ie $CV[RMSE] \leq 0.20$. All data were analyzed in the Harvard Medical School high-performance cluster using the software MATLAB (release R2023a, Mathworks, Inc).

Results

Across the cohort, 455 (17.9%) youth sometimes or often preferred solitude, and 170 (6.0%) were sometimes or often socially withdrawn. Less than 10% reported past or present anhedonia [264 (9.4%)] and 40 (1.4%) were diagnosed with social anxiety disorder. Median (IQR) t-scores for other mental health measures were 51.0 (2.0) for anxiety, 50.0 (4.0) for depression, 41.0 (16.0) for externalizing behaviors, and 46.0 (14.0) for internalizing behaviors.

Median (IQR) parent mental health score was 51.0 (4.0). Almost 90% of parents said that it was important for the family to show love and affection toward each other. Median family cohesion was 8.0 (2.0), whereas median family conflict was 2.0 (2.0). Median (IQR) family size was 4 (1). Participants had, on average, 5 close friends, and almost 90% had a regular group of kids to hang out with. About 10% reported being discriminated against [302 (10.7%)], and 519 (18.5%) had been bullied. Almost 95% reported having good relationships with teachers, and ~70% said that they liked school a lot [1991 (70.9%)]. Summary statistics for social environmental factors are provided in Table 2.

Almost 70% of parents reported that their child wanted close relationships with other people [1,938 (69.0%)], ~60% of youth were not self-conscious or easily embarrassed [1,717 (61.1%)], and liked to meet new people [1,654 (58.9%)], and almost 30% were energized by large crowds [813 (28.9%)]. About a quarter were shy [552 (26.4%)], fewer were specifically shy about meeting new people [466 (16.6%)], and even fewer were afraid of social situations [150 (5.3%)]. Detailed distributions of responses are provided in Table S1.

Associations between individual and environmental factors and social

Older participants and at more advanced pubertal stages were more frequently socially isolated ($\beta = 0.04$ to 0.07, CI = [0.002, 0.13], $P < 0.05$). Parental mental health issues were positively associated with frequency of youth preferring solitude and social withdrawal ($\beta = 0.14$, CI = [0.10, 0.19], $P < 0.01$, and $\beta = 0.13$, CI = [0.09, 0.17], $P < 0.01$), respectively. In contrast, being energized by large crowds of people was negatively associated with preferring solitude ($\beta = -0.23$, CI = [-0.27, -0.19], $P < 0.01$). When participants who often preferred solitude were excluded [due to their small sample size ($n = 48$)], and only participants who sometimes preferred solitude were compared to those who did not, additional positive associations were identified with being shy ($\beta = 0.45$, CI = [0.34, 0.55], $P < 0.01$) and not liking to meet new people ($\beta = 0.58$, CI = [0.46, 0.70], $P < 0.01$). Social withdrawal was also associated with being shy ($\beta = 0.21$, CI = [0.16, 0.25], $P < 0.01$), not liking to meet new people ($\beta = 0.21$, CI = [0.17, 0.25], $P < 0.01$), and feeling shy about meeting new people ($\beta = 0.19$, CI = [0.15, 0.23], $P < 0.01$).

Associations between social isolation and mental health outcomes

More frequent reference for solitude was associated with higher internalizing behaviors ($\beta = 0.45$, CI = [0.42, 0.49], $P < 0.01$), exter-

Table 2. Distribution of social environmental factors in the cohort.

PARENTAL FACTORS		
Parental mental health (T-score)	Median (IQR)	51 (4)
	Missing	378 (13.46%)
Parental belief that family members should show love and affection to one another	Not at all	15 (0.53%)
	A little	23 (0.82%)
	Somewhat	254 (9.04%)
	Very much	1237 (44.04%)
	Completely	1279 (45.53%)
	Missing	1 (0.04%)
FAMILY ENVIRONMENT		
Family conflict Scale: 0 to 9	Median (IQR)	2 (2)
	Missing	1 (0.04%)
Family cohesion Scale: 0 to 9	Median (IQR)	8 (2)
	Missing	1 (0.04%)
Family size	Median (IQR)	4 (1)
	Missing	36 (1.28%)
PEER RELATIONSHIPS		
Number of close friends	Median (IQR)	5 (5)
	Missing	6 (0.21%)
Has a regular group of kids to hang out with at school/neighborhood	No	276 (9.83%)
	Yes	2427 (86.40%)
	Missing	106 (3.77%)
Faced discrimination in the past 12 months	No	2507 (89.25%)
	Yes	302 (10.75%)
	Missing	0 (0%)
Problems with bullying at school/neighborhood OR cyberbullying	No	2276 (81.03%)
	Yes	519 (18.48%)
	Missing	14 (0.50%)
SCHOOL		
Gets along with their teachers	Strongly disagree	25 (0.89%)
	Disagree	120 (4.27%)
	Agree	1188 (42.29%)
	Strongly agree	1471 (52.37%)
	Missing	5 (0.18%)
Likes school a lot	Strongly disagree	259 (9.22%)
	Disagree	554 (19.72%)
	Agree	1204 (42.86%)
	Strongly agree	787 (28.02%)
	Missing	5 (0.18%)

nalizing behaviors ($\beta = 0.23$, CI = [0.20, 0.27], $P < 0.01$), depression ($\beta = 0.39$, CI = [0.35, 0.42], $P < 0.01$), and anxiety ($\beta = 0.29$, CI = [0.26, 0.33], $P < 0.01$). Similarly, more frequent social withdrawal was associated with higher internalizing behavior ($\beta = 0.41$, CI = [0.37, 0.45], $P < 0.01$), externalizing behaviors ($\beta = 0.25$, CI = [0.21, 0.29], $P < 0.01$), depression ($\beta = 0.45$, CI = [0.42, 0.49], $P < 0.01$), and anxiety ($\beta = 0.35$, CI = [0.31, 0.39], $P < 0.01$).

Associations between social isolation and resting-state brain network properties

Whole-brain topology

In the full cohort, there were no consistent associations across both fMRI runs. However, within-group comparisons based on frequency of preference for solitude identified negative correlations between preference for solitude and connectome efficiency and global clustering ($\beta = -0.03$ to -0.02 , CI = [-0.05, -0.01], $P \leq 0.04$). Statistics of models based only on the best run, and those based on the composite measure, are summarized in Table S2.

Network topology

More frequent preference for solitude was associated with higher segregation (more locally-connected communities) of the right

Table 3. Statistics of mixed-effect models testing associations between preferring solitude, social withdrawal, and topological properties of individual networks. All reported *P*-values have been adjusted for the false discovery rate. Regression coefficients in models comparing pairs of groups were not standardized. *NS: nonsignificant; CI: confidence interval.

Would rather be alone than with others								
Property	Network	Sample comparison	Beta	95th % CI*	P-value	Beta	95th % CI	P-value
			Left hemisphere			Right hemisphere		
Segregation	Dorsal attention Social	Entire sample	NS*			0.066	[0.022, 0.110]	0.034
		Entire sample	NS			0.085	[0.042, 0.128]	0.001
		Somewhat vs Very True	NS			0.008	[0.003, 0.013]	0.037
Global efficiency	Temporoparietal Cerebellum	Entire sample	NS			0.095	[0.051, 0.139]	<0.001
		Somewhat vs	-0.089	[-0.133, -0.045]	<0.001	NS		
		Very True						
Withdrawn, does not get involved with others								
Property	Network	Sample comparison	Beta	95th % CI	P-value	Beta	95th % CI	P-value
			Left hemisphere			Right hemisphere		
Topological robustness	Cerebellum	Somewhat vs Very True	-0.781	[-1.342, -0.220]	0.021	NS		
		Somewhat vs Very True	-0.670	[-1.151, -0.189]	0.021	NS		
Topological stability Fragility	Cerebellum	Somewhat vs Very True	0.039	[0.005, 0.073]	0.047	NS		

dorsal attention, temporoparietal, and social networks ($\beta = 0.07$ to 0.10 , $CI = [0.02, 0.14]$, $P < 0.04$). Within-group comparisons also identified associations between preference for solitude and higher segregation of the right social network ($\beta = 0.01$, $CI = [0.003, 0.01]$, $P = 0.04$) but lower global efficiency of the left cerebellum ($\beta = -0.09$, $CI = [-0.13, -0.05]$, $P < 0.01$). In addition, frequency of social withdrawal was associated with lower topological robustness and stability ($\beta = -0.78$ to -0.67 , $CI = [-1.34, -0.19]$, $P < 0.03$) and higher fragility ($\beta = 0.04$, $CI = [0.01, 0.07]$, $P < 0.05$) of the left cerebellum. Model statistics are summarized in Table 3. Results based on the larger sample with one best-quality run, and those based on the composite score are summarized in Table S3.

Detailed results and model statistics are provided in Table S3. Finally, there were no consistent associations between any social isolation measures and node properties across both fMRI runs.

Associations between social withdrawal and structural brain properties

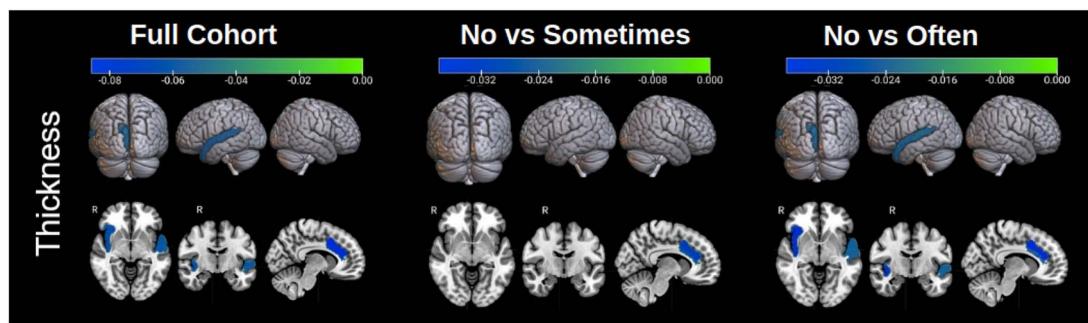
Frequent social withdrawal was associated with higher white matter intensity in the right isthmus of the cingulate gyrus ($\beta = 0.03$, $CI = [0.01, 0.05]$, $P = 0.04$). Frequent preference for solitude was associated with lower thickness of the left superior temporal gyrus, right caudal anterior cingulate gyrus, right insula, and the left cuneus and pars opercularis ($\beta = -0.09$ to -0.05 , $CI = [-0.14, -0.01]$, $P < 0.05$), and lower white matter intensity but higher volume of the right parahippocampal gyrus ($\beta = -0.02$, $CI = [-0.04, -0.002]$, $P < 0.05$, and $\beta = 0.06$, $CI = [0.01, 0.10]$, $P < 0.05$, respectively).

Youth who often preferred solitude versus those who did not had lower thickness of the left cuneus, and left superior temporal gyrus, right caudal anterior cingulate gyrus, and right insula ($\beta = -0.04$ to -0.02 , $CI = [-0.07, -0.003]$, $P < 0.05$), lower volume of the left cuneus and right fusiform gyrus ($\beta = -264.31$ to -109.54 ,

$CI = [-474.51, -11.40]$, $P = 0.04$), and lower white matter intensity of the right parahippocampal gyrus ($\beta = -0.23$, $CI = [-0.42, -0.05]$, $P = 0.04$). Frequent social withdrawal was associated with higher volume of the right pallidum ($\beta = 81.06$, $CI = [12.50, 149.62]$, $P = 0.02$); lower thickness of the right cuneus, right insula, and lingual gyrus ($\beta = -0.06$, $CI = [-0.09, -0.01]$, $P \leq 0.04$); and lower volume of the right cuneus ($\beta = -333.56$, $CI = [-529.69, -137.44]$, $P < 0.01$) and right lingual gyrus ($\beta = -492.48$, $CI = [-848.47, -136.49]$, $P = 0.02$).

Ingroup comparisons, preference for solitude was associated with lower white matter intensity in the right inferior temporal gyrus ($\beta = -0.39$, $CI = [-0.68, -0.10]$, $P = 0.03$), and social withdrawal was associated with higher volume of left caudate nucleus, right pallidum and the putamen ($\beta = 231.75$ to 369.01 , $CI = [2.68, 668.10]$, $P < 0.05$), lower thickness of the right cuneus ($\beta = -0.15$, $CI = [-0.23, -0.06]$, $P < 0.01$) and right lingual gyrus ($\beta = -0.09$, $CI = [-0.17, -0.01]$, $P = 0.04$), and lower volume of the right cuneus ($\beta = -723.26$, $CI = [-1185.41, -261.12]$, $P < 0.01$).

Comparisons of those who somewhat preferred solitude versus those who did not also identified associations between preference for solitude and higher volume of the left amygdala, and right entorhinal and parahippocampal gyri ($\beta = 25.72$ to 61.62 , $CI = [0.13, 106.57]$, $P < 0.05$), and lower thickness of the right pars opercularis and right caudal anterior cingulate gyrus ($\beta = -0.03$, $CI = [-0.06, -0.003]$, $P < 0.05$). Similar comparisons of those who were somewhat socially withdrawn to those who were not identified a negative association between social withdrawal and volume in the right caudal middle frontal gyrus ($\beta = -319.88$, $CI = [-579.79, -59.97]$, $P < 0.05$). Model statistics are summarized in Table 4. Negative associations between preference for solitude and cortical thickness, which were more consistent across group comparisons (especially in the caudal anterior cingulate cortex) are shown in Fig. 1.


Table 4. Statistics of mixed-effect models testing associations between preferring solitude and morphological properties. All reported P-values have been adjusted for the false discovery rate. Regression coefficients in models comparing only 2 response options were not standardized. *NS: nonsignificant; *CI: confidence interval.

Would rather be alone than with others								
Property	Structure	Sample comparison	Beta	95th % CI*	P-value	Beta	95th % CI	P-value
			Left hemisphere			Right hemisphere		
Cortical thickness	Cuneus	Entire sample	-0.054	[-0.096, -0.011]	0.039	NS*		
		Not vs Very True	-0.024	[-0.044, -0.004]	0.043	NS		
		Entire sample	-0.058	[-0.100, -0.016]	0.019	NS		
		Not vs Very True	-0.024	[-0.045, -0.003]	0.0496	NS		
		Entire sample	NS			-0.086	[-0.137, -0.034]	0.003
	Pars opercularis	Not vs Somewhat True	NS			-0.032	[-0.056, -0.008]	0.030
		Not vs Very True	NS			-0.038	[-0.066, -0.010]	0.023
		Entire sample	NS			-0.053	[-0.096, -0.010]	0.047
		Not vs Somewhat True	NS			-0.018	[-0.033, -0.003]	0.050
		Entire sample	NS			-0.062	[-0.104, -0.020]	0.012
Volume	Amygdala	Not vs Very True	NS			-0.035	[-0.056, -0.013]	0.023
		Not vs Somewhat True	25.718	[0.128, 51.308]	0.049	ND		
		Not vs Very True	-109.540	[-207.7, -11.4]	0.043	ND		
		Not vs Somewhat True	NS			61.62	[16.67, 106.57]	0.022
		Entorhinal						
	Fusiform	Not vs Very True	NS			-264.3	[-474.5, -54.1]	0.041
		Entire sample	NS			0.055	[0.011, 0.100]	0.046
		Not vs Somewhat True	NS			53.95	[20.05, 87.84]	0.005
		Supramarginal gyrus						
		Somehow vs Very True	-1044.6	[-1851, -248]	0.031	NS		
Cortical white matter intensity	Parahippocampal gyrus	Entire sample	NS			-0.020	[-0.039, -0.002]	0.0496
		Not vs Very True	NS			-0.234	[-0.420, -0.048]	0.041
		Somewhat vs Very True	NS			-0.389	[-0.682, -0.095]	0.029
		Inferior temporal gyrus						
		Entire sample	NS					

Withdrawn, does not get involved with others								
Property	Structure	Sample comparison	Beta	95th % CI*	P-value	Beta	95th % CI	P-value
			Left hemisphere			Right hemisphere		
Cortical thickness	Cuneus	Not vs Very True	NS			-0.055	[-0.093, -0.017]	0.006
		Somewhat vs Very True	NS			-0.146	[-0.229, -0.063]	0.002
		Insula	Not vs Very True	NS		-0.057	[-0.098, -0.016]	0.021
		Lingual gyrus	Not vs Very True	NS		-0.040	[-0.074, -0.005]	0.038
		Somewhat vs Very True	NS			-0.090	[-0.170, -0.010]	0.043
	Caudal middle frontal gyrus	Not vs Somewhat True	NS			-319.9	[-579.8, -60.0]	0.048
		True						
		Somewhat vs Very True	308.498	[2.68, 614.31]	0.048	NS		
		Cuneus	Not vs Very True	NS		-333.6	[-529.7, -137.4]	0.003
		Somewhat vs Very True	NS			-723.3	[-1185, -261]	0.004
Cortical volume	Lingual gyrus	Not vs Very True	NS			-492.5	[-848.5, -136.5]	0.020
		Not vs Very True	NS			81.06	[12.50, 149.62]	0.021
		Somewhat vs Very True	NS			231.7	[96.85, 366.6]	<0.001
		Very True						
	Putamen	Somewhat vs Very True	NS			369.0	[69.92, 668.10]	0.016
		Very True						
		Somewhat vs Very True	NS					
		Entire sample	NS			0.026	[0.005, 0.047]	0.042
White matter intensity	Isthmus of cingulate cortex							

NS, nonsignificant.

Fig. 1. Associations between preferring solitude and cortical thickness. The left panel shows associations in the entire cohort. In the middle panel, youth who sometimes prefer solitude are compared to those who do not. In the right panel, youth who often prefer solitude are compared to those who sometimes do. Colors represent the regression coefficients associated with cortical thickness.

Mappings between functional and structural correlates of preference for solitude

Segregation of the right dorsal attention network was positively associated with morphometric properties of the right pars opercularis ($\beta = 0.06$, CI = [0.02, 0.11], $P < 0.02$) and the right inferior temporal gyrus ($\beta = -0.06$, CI = [-0.12, 0.01], $P < 0.04$), which both overlap with this network and were negatively associated with preference for solitude. Similarly, segregation of the right social network was positively associated with morphometric properties of the overlapping right insula ($\beta = 0.08$, CI = [0.02, 0.13], $P < 0.03$), and preference for solitude was associated with higher segregation of the network and lower thickness of the region.

Discussion

In a large cohort of almost 3,000 adolescents, we have systematically investigated the neural correlates of preference for solitude and social withdrawal, especially hallmark structural and topological characteristics of large-scale networks that play critical roles in cognitive (including social) function. Social isolation in adolescence, a sensitive period of brain and social development, can lead to neural miswiring, increased risk of cognitive delays and deficits, maladaptive behaviors, and mental health problems across the lifespan. In this study's cohort, about 18% of youth sometimes or often preferred solitude, and 6% were socially withdrawn. Older youth whose parents had mental health issues more frequently preferred solitude and/or were socially withdrawn. These findings are in agreement with prior studies that have shown that parental behaviors and mental health issues are significant risk factors for youth loneliness, social withdrawal, and isolation (Matthews et al. 2015; de L. Almeida et al. 2021) as early as infancy (Mäntymäa et al. 2008).

As their social world expands beyond the family, adolescents may not only seek solitude, as part of their growing independence and autonomy, but also become increasingly exposed to social stressors (such as peer rejection and victimization), which may, in turn, lead to social withdrawal and isolation. In this cohort, almost 90% had a regular group of friends, only ~10% had experienced discrimination (or any form), and ~20% had been bullied. Neither overall discrimination nor bullying was statistically associated with an increased likelihood of social isolation. However, unmeasured (by the ABCD) granular aspects of peer relationships and their quality and other latent factors in the youth environment that change with age could contribute to social isolation. Frequent preference for solitude and social withdrawal were also associated with youth depression, anxiety, and internalizing and externalizing behaviors, in agreement with prior work that has identified

extensive links between social isolation and mental health issues in youth (Rubin et al. 2009; Rubin and Lollis 2015; Orben et al. 2020; Christiansen et al. 2021).

Preference for solitude and social withdrawal had overlapping structural but distinct topological brain correlates. Both were associated with lower thickness of the cuneus and insula. Frequent reference for solitude was also associated with lower thickness of the superior temporal and caudal anterior cingulate gyri and the pars opercularis, and social withdrawal with lower thickness of the lingual gyrus. The cuneus is a structural brain hub (Oldham and Fornito 2019), ie a brain region where multimodal information is integrated, and has been implicated both in emotional processing and social function (Riedel et al. 2018; Eslinger et al. 2021), but also loneliness (Lam et al. 2021; Wong et al. 2022). The insular cortex is another structural hub that supports interoception but is also involved in (social) emotional processing and maladaptive social behaviors (Lamm and Singer 2010; Terasawa et al. 2013; Emmerling et al. 2016; Gogolla 2017). The superior temporal gyrus is considered a "hub" of the social brain and plays a central role in social perception and processing (Blakemore 2008; Pelphrey and Carter 2008; Lahnakoski et al. 2012; Beauchamp 2015). Decreased thickness of the cuneus, insula, and superior temporal gyrus has been associated with not only cognitive deficits but also mental health issues, both in adults and adolescents (van Tol et al. 2014; Pan et al. 2015; Sheffield et al. 2021). The anterior cingulate cortex has distributed connections with frontal and limbic regions and plays a ubiquitous role in cognitive function, including decision-making, cognitive control, and emotion and reward processing and regulation, and is also involved in social cognition (Devinsky et al. 1995; Vogt 2005; Apps et al. 2016). The caudal part of the anterior cingulate cortex is involved in cognitive control, and decreased thickness of this region has been associated with depression and developmental disorders affecting social function, such as autism spectrum disorders (ASDs) (Laidi et al. 2019; Mertse et al. 2022). Finally, the pars opercularis and lingual gyrus are both involved in speech and language processing (Palejwala et al. 2021; Zaccarella and Friederici 2015). Morphological anomalies in these regions have been associated with both linguistic deficits but more broadly impaired social communication and mental health issues, including depression and internalizing symptoms (Jensen et al. 2015; Rosada et al. 2023).

Preference for solitude and social withdrawal was also associated with other structural differences in some of the same areas, including not only lower volume of the cuneus and the lingual gyrus but also higher volume of the entorhinal and parahippocampal gyri, amygdala, and basal ganglia structures, including

the caudate, pallidum, and putamen. These findings are in agreement with those of prior studies that have associated social isolation and loneliness with higher amygdala volume (Xiong et al. 2023), potentially as a result of higher emotional sensitivity, but also distress in social settings (Lam et al. 2021; Vitale and Smith 2022) and mental health issues (Espinoza Oyarce et al. 2020; Suor et al. 2020). Specifically in children and adolescents, it has been associated with anxiety, negative affect, and behavioral issues (Merz et al. 2018; Liu et al. 2024; Pereira Camejo et al. 2024). In addition, higher putamen volume has been associated with disorders affecting social function, such as ASD (Sato et al. 2014), and higher caudate volume with behavioral dysregulation, impulsivity, and risk for developmental disorders such as ASD (Voelbel et al. 2006). Together, these findings suggest that social isolation is associated with extensive morphological alterations in the adolescent brain in regions that support social function and are also implicated in mental health disorders, social dysfunction, and developmental disorders impacting social communication. In addition, cortical thinning and increased structural volume are hallmark characteristics of brain development. It is possible that social isolation may be associated with accelerated neural maturation in selective regions, which, in turn, increases the risk for mental health and behavioral problems. A recent study on adolescents during the COVID-19 pandemic reported accelerated brain maturation partly as a result of social isolation due to lockdowns and social distancing (Corrigan et al. 2024).

More frequent preference for solitude was also associated with higher topological segregation (modularity) of the dorsal attention and temporoparietal networks, and an overlapping distributed network representing the social brain (Blakemore 2008). Increased structural and functional network modularity is also a fundamental characteristic of brain and cognitive development (Baum et al. 2017; Tooley et al. 2022); however, in socially isolated youth, it may reflect aberrantly accelerated neural maturation. Higher modularity has also been associated with mental health issues (Gao et al. 2023). Furthermore, more frequent social withdrawal was associated with topological changes in the cerebellum, including lower robustness and efficiency and higher fragility. A number of studies have shown that the cerebellum, which has extensive cortical and subcortical connections with brain regions supporting social function, plays an important role in social development, perception and prediction, and emotional processing (Van Overwalle et al. 2020; Van Overwalle 2024; Turrini and Avenanti 2024). Abnormal structural changes in the cerebellum have been associated with developmental and mental health disorders, including those directly affecting social function (Fett et al. 2015; Jack and Morris 2014; Phillips et al. 2015; Zhu and Qiu 2022; Olivito et al. 2023; Wang et al. 2023). Together, these findings suggest that social isolation during adolescence may have profound detrimental impacts on large-scale networks and their constituent structures that play ubiquitous roles in cognitive and specifically social functions and are abnormally modulated by mental health disorders.

Despite its strengths, including the large sample that captures the heterogeneity of adolescent brain development, comprehensive assessment of topological properties of resting-state networks, concurrent investigation of morphological and functional brain characteristics, and examination of environmental correlates of youth social isolation, this study also had some limitations. First, assessments of social withdrawal and preference for solitude were based on parent reports. When possible, youth surveys were analyzed, but across surveys measuring the

youth environment and mental health/behavioral assessments, parent reports were, in general, more complete and reliable or the only available reports (ie corresponding youth ones were not available). Second, as is the case with any retrospective investigation, analyses were limited by the experimental decisions made by the ABCD investigators. Thus, more granular assessments of the youth social environment and related behaviors were not available. Nevertheless, the ABCD is the only investigation that extensively samples the youth social world and relationships with parents, family, teachers, and peers. The present study leveraged data on these relationships in order to examine their associations with social isolation.

This study makes a significant scientific contribution and provides novel insights into the detrimental effects of social isolation on the developing adolescent brain and its maturing and thus vulnerable to miswiring neural circuitry. It has identified widespread morphological and topological brain alterations in youth who often prefer to be alone and/or are socially withdrawn, several of which have not been previously related directly to social isolation, but to disorders affecting social communication. It has also associated preference for not only solitude and social withdrawal with parental mental health but also common youth mental health issues. Adolescence is a sensitive period for mental health. Many identified brain alterations were in regions that support social function but have also been implicated in mental health disorders. In addition, lower cortical thickness and higher subcortical volume and increased modularity of several large-scale networks also suggest potential accelerated maturation of the socially isolated brain, which has also been associated with mental health issues. The ABCD follows youth longitudinally, thus future investigations could specifically examine the hypothesis of accelerated neural maturation and track the emergence of mental health issues as a function of age in socially withdrawn youth.

Author contributions

Catherine Stamoulis (Conceptualization, Funding acquisition, Resources, Investigation, Supervision, Project administration, Methodology, Writing—original draft, Writing—review and editing) and Matthew Risner (Data curation, Formal analysis, Investigation, Software, Validation, Visualization, Writing—original draft, Writing—review and editing).

Supplementary material

Supplementary material is available at *Cerebral Cortex* online.

Funding

This study was supported by the National Science Foundation, grant numbers 2207733, 2116707, and 1940096.

Conflict of interest statement: None declared.

Data availability

The data underlying this article are available in National Institute of Mental Health Data Archive (NDA). <https://nda.nih.gov/>. The codes associated with neuroimaging data analysis are available at: <https://github.com/cstamoulis1/Next-Generation-Neural-Data->

Analysis-NGNDA. The codes associated with the statistical analysis are available at: https://github.com/cstamoulis1/Brain_Social_Isolation.

References

Albert D, Chein J, Steinberg L. 2013. The teenage brain: peer influences on adolescent decision making. *Curr Dir Psychol Sci*. 22: 114–120. <https://doi.org/10.1177/0963721412471347>.

Andrews JL, Ahmed SP, Blakemore S-J. 2021. Navigating the social environment in adolescence: the role of social brain development. *Biol Psychiatry*. 89:109–118. <https://doi.org/10.1016/j.biopsych.2020.09.012>.

Apps MA, Rushworth MF, Chang SW. 2016. The anterior cingulate gyrus and social cognition: tracking the motivation of others. *Neuron*. 90:692–707.

Arslan G, Gökm̄en. 2021. School belongingness, well-being, and mental health among adolescents: exploring the role of loneliness. *Aust J Psychol*. 73:70–80. <https://doi.org/10.1080/00049530.2021.1904499>.

Arslan G, Yıldırım M, Tanhan A, Kılıç M. 2023. Social inclusion to promote mental health and well-being of youths in schools. In: *Research for inclusive quality education: leveraging belonging, inclusion, and equity* Boyle C, Allen K-A (eds). Springer Nature, pp 113–122.

Asher SR, Paquette JA. 2003. Loneliness and peer relations in childhood. *Curr Dir Psychol Sci*. 12:75–78. <https://doi.org/10.1111/1467-8721.01233>.

Ashtari M et al. 2007. White matter development during late adolescence in healthy males: a cross-sectional diffusion tensor imaging study. *NeuroImage*. 35:501–510. <https://doi.org/10.1016/j.neuroimage.2006.10.047>.

Barzeva SA, Meeus WHJ, Oldehinkel AJ. 2019. Social withdrawal in adolescence and early adulthood: measurement issues, normative development, and distinct trajectories. *J Abnorm Child Psychol*. 47:865–879. <https://doi.org/10.1007/s10802-018-0497-4>.

Barzeva SA, Richards JS, Veenstra R, Meeus WHJ, Oldehinkel AJ. 2022. Quality over quantity: a transactional model of social withdrawal and friendship development in late adolescence. *Soc Dev*. 31: 126–146. <https://doi.org/10.1111/sode.12530>.

Baum GL et al. 2017. Modular segregation of structural brain networks supports the development of executive function in youth. *Curr Biol*. 27:1561–1572.e8.

Beauchamp MS. 2015. The social mysteries of the superior temporal sulcus. *Trends Cogn Sci*. 19:489–490.

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. *J R Stat Soc Ser B Methodol*. 57:289–300. <https://doi.org/10.1111/j.2517-6161.1995.tb02031.x>.

Best O, Ban S. 2021. Adolescence: physical changes and neurological development. *Br J Nurs*. 30:272–275. <https://doi.org/10.12968/bjon.2021.30.5.272>.

Biggs BK, Vernberg EM, Wu YP. 2012. Social anxiety and adolescents' friendships: the role of social withdrawal. *J Early Adolesc*. 32: 802–823. <https://doi.org/10.1177/0272431611426145>.

Blakemore S-J. 2008. The social brain in adolescence. *Nat Rev Neurosci*. 9:267–277. <https://doi.org/10.1038/nrn2353>.

Blakemore S-J. 2012. Development of the social brain in adolescence. *J R Soc Med*. 105:111–116. <https://doi.org/10.1258/jrsm.2011.110221>.

Blakemore S-J. 2019. Adolescence and mental health. *Lancet*. 393: 2030–2031. [https://doi.org/10.1016/S0140-6736\(19\)31013-X](https://doi.org/10.1016/S0140-6736(19)31013-X).

Blakemore S-J, Mills KL. 2014. Is adolescence a sensitive period for sociocultural processing? *Annu Rev Psychol*. 65(Volume 65, 2014): 187–207. <https://doi.org/10.1146/annurev-psych-010213-115202>.

Bor W, Dean AJ, Najman J, Hayatbakhsh R. 2014. Are child and adolescent mental health problems increasing in the 21st century? A systematic review. *Aust N Z J Psychiatry*. 48:606–616. <https://doi.org/10.1177/0004867414533834>.

Borg ME, Willoughby T. 2022. Affinity for solitude and motivations for spending time alone among early and mid-adolescents. *J Youth Adolesc*. 51:156–168. <https://doi.org/10.1007/s10964-021-01520-1>.

Bosch A, Riebschleger J, van Loon L. 2017. Dutch youth of parents with a mental illness reflect upon their feelings of guilt and shame. *Int J Ment Health Promot*. 19:159–172. <https://doi.org/10.1080/14623730.2017.1315955>.

Branje S, de Moor EL, Spitzer J, Becht AI. 2021. Dynamics of identity development in adolescence: a decade in review. *J Res Adolesc*. 31: 908–927. <https://doi.org/10.1111/jora.12678>.

Brilliant TD et al. 2022. Loneliness inside of the brain: evidence from a large dataset of resting-state fMRI in young adult. *Sci Rep*. 12:7856. <https://doi.org/10.1038/s41598-022-11724-5>.

Brooks SJ, Parks SM, Stamoulis C. 2021. Widespread positive direct and indirect effects of regular physical activity on the developing functional connectome in early adolescence. *Cereb Cortex*. 31: 4840–4852. <https://doi.org/10.1093/cercor/bhab126>.

Brooks SJ, Katz ES, Stamoulis C. 2022. Shorter duration and lower quality sleep have widespread detrimental effects on developing functional brain networks in early adolescence. *Cereb Cortex Commun*. 3:tgab062. <https://doi.org/10.1093/texcom/tgab062>.

Brooks SJ, Smith C, Stamoulis C. 2023. Excess BMI in early adolescence adversely impacts maturing functional circuits supporting high-level cognition and their structural correlates. *Int J Obes*. 47:590–605 <https://doi.org/10.1038/s41366-023-01303-7>.

Cacioppo JT, Hughes ME, Waite LJ, Hawkley LC, Thisted RA. 2006. Loneliness as a specific risk factor for depressive symptoms: cross-sectional and longitudinal analyses. *Psychol Aging*. 21: 140–151. <https://doi.org/10.1037/0882-7974.21.1.140>.

Casey BJ et al. 2018. The adolescent brain cognitive development (ABCD) study: imaging acquisition across 21 sites. *Dev Cogn Neurosci*. 32:43–54. <https://doi.org/10.1016/j.dcn.2018.03.001>.

Caspi A, Harrington H, Moffitt TE, Milne BJ, Poulton R. 2006. Socially isolated children 20 years later: risk of cardiovascular disease. *Arch Pediatr Adolesc Med*. 160:805–811. <https://doi.org/10.1001/archpedi.160.8.805>.

Cassidy J, Asher SR. 1992. Loneliness and peer relations in young children. *Child Dev*. 63:350–365. <https://doi.org/10.1111/j.1467-8624.1992.tb01632.x>.

Chen X et al. 2023. Growth of preference for solitude in urban and rural Chinese adolescents. *Front Psych*. 6:1151534.

Cheng H, Furnham A. 2002. Personality, peer relations, and self-confidence as predictors of happiness and loneliness. *J Adolesc*. 25:327–339. <https://doi.org/10.1006/jado.2002.0475>.

Christiansen J et al. 2021. Associations of loneliness and social isolation with physical and mental health among adolescents and young adults. *Perspect Public Health*. 141:226–236. <https://doi.org/10.1177/17579139211016077>.

Cogan N, Riddell S, Mayes G. 2005. Children living with an affectively ill parent: how do they cope? *Educ Child Psychol*. 22:16–28.

Coplan RJ, Ooi LL, Xiao B, Rose-Krasnor L. 2018. Assessment and implications of social withdrawal in early childhood: a first look at social avoidance. *Soc Dev*. 27:125–139. <https://doi.org/10.1111/sode.12258>.

Coplan RC, Bowker JC, Nelson E. 2021. *The handbook of solitude: psychological perspectives on social isolation, social withdrawal, and being alone*, 2nd edn. Wiley-Blackwell.

Corrigan NM, Rokem A, Kuhl PK. 2024. COVID-19 lockdown effects on adolescent brain structure suggest accelerated maturation that

is more pronounced in females than in males. *Proc Natl Acad Sci USA*. 121:e2403200121.

Costello EJ, Copeland W, Angold A. 2011. Trends in psychopathology across the adolescent years: what changes when children become adolescents, and when adolescents become adults? *J Child Psychol Psychiatry*. 52:1015–1025. <https://doi.org/10.1111/j.1469-7610.2011.02446.x>.

Dam K, Joensen DG, Hall EOC. 2018. Experiences of adults who as children lived with a parent experiencing mental illness in a small-scale society: a qualitative study. *J Psychiatr Ment Health Nurs*. 25:78–87. <https://doi.org/10.1111/jpm.12446>.

Danese A et al. 2009. Adverse childhood experiences and adult risk factors for age-related disease: depression, inflammation, and clustering of metabolic risk markers. *Arch Pediatr Adolesc Med*. 163: 1135–1143. <https://doi.org/10.1001/archpediatrics.2009.214>.

de Girolamo G, Dagani J, Purcell R, Cocchi A, McGorry PD. 2012. Age of onset of mental disorders and use of mental health services: needs, opportunities and obstacles. *Epidemiol Psychiatr Sci*. 21: 47–57. <https://doi.org/10.1017/s2045796011000746>.

de L. Almeida IL, Rego JF, Teixeira ACG, Moreira MR. 2021. Social isolation and its impact on child and adolescent development: a systematic review. *Rev Paul Pediatr*. 40:e2020385. <https://doi.org/10.1590/1984-0462/2022/40/2020385>.

Desikan RS et al. 2006. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. *NeuroImage*. 31:968–980. <https://doi.org/10.1016/j.neuroimage.2006.01.021>.

Devinsky O, Morrell MJ, Vogt BA. 1995. Contributions of anterior cingulate cortex to behaviour. *Brain*. 118:279–306.

Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N. 2009. A probabilistic MR atlas of the human cerebellum. *NeuroImage*. 46: 39–46. <https://doi.org/10.1016/j.neuroimage.2009.01.045>.

Düzel S et al. 2019. Structural brain correlates of loneliness among older adults. *Sci Rep*. 9:13569. <https://doi.org/10.1038/s41598-019-49888-2>.

Emmerling F et al. 2016. The role of the insular cortex in retaliation. *PLoS One*. 11:e0152000.

Endo K et al. 2017. Preference for solitude, social isolation, suicidal ideation, and self-harm in adolescents. *J Adolesc Health*. 61: 187–191. <https://doi.org/10.1016/j.jadohealth.2017.02.018>.

Eslinger PJ et al. 2021. The neuroscience of social feelings: mechanisms of adaptive social functioning. *Neurosci Biobehav Rev*. 128: 592–620.

Espinoza Oyarce DA, Shaw ME, Alateeq K, Cherbuin N. 2020. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci*. 45:406–429.

Feng C, Wang L, Li T, Xu P. 2019. Connectome-based individualized prediction of loneliness. *Soc Cogn Affect Neurosci*. 14:353–365. <https://doi.org/10.1093/scan/nsz020>.

Fergusson DM, Horwood LJ, Ridder EM, Beauvais AL. 2005. Sub-threshold depression in adolescence and mental health outcomes in adulthood. *Arch Gen Psychiatry*. 62:66–72. <https://doi.org/10.1001/archpsyc.62.1.66>.

Fett AK, Shergill SS, Krabbendam L. 2015. Social neuroscience in psychiatry: unravelling the neural mechanisms of social dysfunction. *Psychol Med*. 45:1145–1165.

Fischl B et al. 2002. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. *Neuron*. 33: 341–355. [https://doi.org/10.1016/s0896-6273\(02\)00569-x](https://doi.org/10.1016/s0896-6273(02)00569-x).

Ford T et al. 2018. The relationship between exclusion from school and mental health: a secondary analysis of the British child and adolescent mental health surveys 2004 and 2007. *Psychol Med*. 48: 629–641. <https://doi.org/10.1017/S003329171700215X>.

Foster CE et al. 2017. Connectedness to family, school, peers, and community in socially vulnerable adolescents. *Child Youth Serv Rev*. 81:321–331. <https://doi.org/10.1016/j.childyouth.2017.08.011>.

Fuhrmann D, Casey CS, Speekenbrink M, Blakemore S-J. 2019. Social exclusion affects working memory performance in young adolescent girls. *Dev Cogn Neurosci*. 40:100718. <https://doi.org/10.1016/j.dcn.2019.100718>.

Galanaki E. 2004. Are children able to distinguish among the concepts of aloneness, loneliness, and solitude? *Int J Behav Dev*. 28: 435–443.

Gallagher M, Prinstein MJ, Simon V, Spirito A. 2014. Social anxiety symptoms and suicidal ideation in a clinical sample of early adolescents: examining loneliness and social support as longitudinal mediators. *J Abnorm Child Psychol*. 42:871–883. <https://doi.org/10.1007/s10802-013-9844-7>.

Gao Y et al. 2023. Decreased dorsal attention network homogeneity as a potential neuroimaging biomarker for major depressive disorder. *J Affect Disord*. 1:136–142.

Giordano PC. 2003. Relationships in adolescence. *Annu Rev Sociol*. 29(Volume 29, 2003):257–281. <https://doi.org/10.1146/annurev.soc.29.010202.100047>.

Goddings A-L et al. 2014. The influence of puberty on subcortical brain development. *NeuroImage*. 88:242–251. <https://doi.org/10.1016/j.neuroimage.2013.09.073>.

Goetschius LG et al. 2020. Childhood violence exposure and social deprivation predict adolescent amygdala-orbitofrontal cortex white matter connectivity. *Dev Cogn Neurosci*. 45:100849. <https://doi.org/10.1016/j.dcn.2020.100849>.

Gogolla N. 2017. The insular cortex. *Curr Biol*. 27:R580–R586.

Golde S et al. 2019. Loneliness and adolescents' neural processing of self, friends, and teachers: consequences for the school self-concept. *J Res Adolesc*. 29:938–952. <https://doi.org/10.1111/jora.12433>.

Goosby BJ, Bellatorre A, Walsemann KM, Cheadle JE. 2013. Adolescent loneliness and health in early adulthood. *Sociol Inq*. 83:505–536. <https://doi.org/10.1111/soin.12018>.

Goossens L. 2014. Affinity for aloneness in adolescence and preference for solitude in childhood: Linking two research traditions. In: *The handbook of solitude: psychological perspectives on social isolation, social withdrawal, and being alone* Coplan RJ, Bowker JC (eds). Wiley-Blackwell, pp 150–166.

Haber SN, Knutson B. 2010. The reward circuit: linking primate anatomy and human imaging. *Neuropsychopharmacology*. 35: 4–26.

Hagler DJ et al. 2019. Image processing and analysis methods for the adolescent brain cognitive development study. *NeuroImage*. 202:116091. <https://doi.org/10.1016/j.neuroimage.2019.116091>.

Hall-Lande JA, Eisenberg ME, Christenson SL, Neumark-Sztainer D. 2007. Social isolation, psychological health, and protective factors in adolescence. *Adolescence*. 42:265–286.

Harman G et al. 2021. Prediction of suicidal ideation and attempt in 9 and 10 year-old children using transdiagnostic risk features. *PLoS One*. 16:e0252114. <https://doi.org/10.1371/journal.pone.0252114>.

Hawley LC, Cacioppo JT. 2010. Loneliness matters: a theoretical and empirical review of consequences and mechanisms. *Ann Behav Med*. 40:218–227. <https://doi.org/10.1007/s12160-010-9210-8>.

Hawley LC, Thisted RA, Masi CM, Cacioppo JT. 2010. Loneliness predicts increased blood pressure: 5-year cross-lagged analyses in middle-aged and older adults. *Psychol Aging*. 25:132–141. <https://doi.org/10.1037/a0017805>.

Houghton S et al. 2022. Adolescents' longitudinal trajectories of mental health and loneliness: the impact of COVID-19 school closures. *J Adolesc*. 94:191–205. <https://doi.org/10.1002/jad.12017>.

Hu L, Katz ES, Stamoulis C. 2023. Modulatory effects of fMRI acquisition time of day, week and year on adolescent functional connectomes across spatial scales: implications for inference. *NeuroImage*. 284:120459. <https://doi.org/10.1016/j.neuroimage.2023.120459>.

Jaccard J, Blanton H, Dodge T. 2005. Peer influences on risk behavior: an analysis of the effects of a close friend. *Dev Psychol*. 41:135–147. <https://doi.org/10.1037/0012-1649.41.1.135>.

Jack A, Morris JP. 2014. Neocerebellar contributions to social perception in adolescents with autism spectrum disorder. *Dev Cogn Neurosci*. 10:77–92.

Jefferson R et al. 2023a. Adolescent loneliness across the world and its relation to school climate, national culture and academic performance. *Br J Educ Psychol*. 93:997–1016. <https://doi.org/10.1111/bjep.12616>.

Jefferson R, Barreto M, Verity L, Qualter P. 2023b. Loneliness during the school years: how it affects learning and how schools can help. *J Sch Health*. 93:428–435. <https://doi.org/10.1111/josh.13306>.

Jensen SK et al. 2015. Effect of early adversity and childhood internalizing symptoms on brain structure in young men. *JAMA Pediatr*. 169:938–946.

Jones AC, Schinka KC, van Dulmen MHM, Bossart RM, Swahn MH. 2011. Changes in loneliness during middle childhood predict risk for adolescent suicidality indirectly through mental health problems. *J Clin Child Adolesc Psychol*. 40:818–824. <https://doi.org/10.1080/15374416.2011.614585>.

Kanai R et al. 2012. Brain structure links loneliness to social perception. *Curr Biol*. 22:1975–1979. <https://doi.org/10.1016/j.cub.2012.08.045>.

Kessler RC et al. 2005. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. *Arch Gen Psychiatry*. 62:593–602. <https://doi.org/10.1001/archpsyc.62.6.593>.

Klimstra TA, Hale WW III, Raaijmakers QAW, Branje SJT, Meeus WHJ. 2010. Identity formation in adolescence: change or stability? *J Youth Adolesc*. 39:150–162. <https://doi.org/10.1007/s10964-009-9401-4>.

Kong X et al. 2015. Neuroticism and extraversion mediate the association between loneliness and the dorsolateral prefrontal cortex. *Exp Brain Res*. 233:157–164. <https://doi.org/10.1007/s00221-014-4097-4>.

Koolschijn PCMP, van IJzendoorn MH, Bakermans-Kranenburg MJ, Crone EA. 2013. Hippocampal volume and internalizing behavior problems in adolescence. *Eur Neuropsychopharmacol*. 23:622–628. <https://doi.org/10.1016/j.euroneuro.2012.07.001>.

Kroger J. 2004. *Identity In adolescence: the balance between self and other*. Routledge.

Lacey RE, Kumari M, Bartley M. 2014. Social isolation in childhood and adult inflammation: evidence from the National Child Development Study. *Psychoneuroendocrinology*. 50:85–94. <https://doi.org/10.1016/j.psyneuenv.2014.08.007>.

Lahnakoski JM et al. 2012. *Front Hum Neurosci*. 13:233.

Laidi C, Boisgontier J, de Pierrefeu A. 2019. Decreased cortical thickness in the anterior cingulate cortex in adults with autism. *J Autism Dev Disord*. 49:1402–1409.

Lam JA et al. 2021. Neurobiology of loneliness: a systematic review. *Neuropsychopharmacology*. 46:1873–1887. <https://doi.org/10.1038/s41386-021-01058-7>.

Lamm C, Singer T. 2010. The role of anterior insular cortex in social emotions. *Brain Struct Funct*. 214:579–591.

Lavigne-Cerván R et al. 2021. Consequences of COVID-19 confinement on anxiety, sleep and executive functions of children and adolescents in Spain. *Front Psychol*. 12:565516. <https://doi.org/10.3389/fpsyg.2021.565516>.

Layden EA et al. 2017. Perceived social isolation is associated with altered functional connectivity in neural networks associated with tonic alertness and executive control. *NeuroImage*. 145: 58–73. <https://doi.org/10.1016/j.neuroimage.2016.09.050>.

Lenroot RK et al. 2007. Sexual dimorphism of brain developmental trajectories during childhood and adolescence. *NeuroImage*. 36: 1065–1073. <https://doi.org/10.1016/j.neuroimage.2007.03.053>.

Lerner RM, Steinberg L. 2009. *Handbook of adolescent psychology*, 2: contextual influences on adolescent development. John Wiley and Sons.

Lewis JD, Evans AC, Tohka J, Brain Development Cooperative Group, Pediatric Imaging, Neurocognition, and Genetics Study. 2018. T1 white/gray contrast as a predictor of chronological age, and an index of cognitive performance. *NeuroImage*. 173:341–350. <https://doi.org/10.1016/j.neuroimage.2018.02.050>.

Lind A et al. 2020. Brain volumes in relation to loneliness and social competence in preadolescents born very preterm. *Brain Behav*. 10:e01640. <https://doi.org/10.1002/brb3.1640>.

Liu H et al. 2016. Neuroanatomical correlates of attitudes toward suicide in a large healthy sample: a voxel-based morphometric analysis. *Neuropsychologia*. 80:185–193. <https://doi.org/10.1016/j.neuropsychologia.2015.11.012>.

Liu J et al. 2024. Abnormal amygdala volume moderates parenting and anxiety symptoms in children and adolescents with anxiety disorder. *J Psychiatr Res*. 175:316–322.

Lodder GMA, Scholte RHJ, Goossens L, Verhagen M. 2017. Loneliness in early adolescence: friendship quantity, friendship quality, and dyadic processes. *J Clin Child Adolesc Psychol*. 46:709–720. <https://doi.org/10.1080/15374416.2015.1070352>.

London R, Ingram D. 2018. Social isolation in middle school. *Sch Community J*. 28:107–127.

Long CR, Averill JR. 2003. Solitude: an exploration of benefits of being alone. *J Theory Soc Behav*. 33:21–44.

Luna B. 2009. Developmental changes in cognitive control through adolescence. In: *Advances in child development and behavior*, Vol. 37, pp 233–278. [https://doi.org/10.1016/S0065-2407\(09\)03706-9](https://doi.org/10.1016/S0065-2407(09)03706-9).

Mahon NE, Yarcheski A, Yarcheski TJ. 1993. Health consequences of loneliness in adolescents. *Res Nurs Health*. 16:23–31. <https://doi.org/10.1002/nur.4770160105>.

Manning C, Gregoire A. 2009. Effects of parental mental illness on children. *Psychiatry*. 8:7–9. <https://doi.org/10.1016/j.mpppsy.2008.10.012>.

Mäntymäa M et al. 2008. Infants' social withdrawal and parents' mental health. *Infant Behav Dev*. 31:606–613.

Marraccini ME, Brier ZMF. 2017. School connectedness and suicidal thoughts and behaviors: a systematic meta-analysis. *Sch Psychol Q*. 32:5–21. <https://doi.org/10.1037/spq0000192>.

Matthews T et al. 2015. Social isolation and mental health at primary and secondary school entry: a longitudinal cohort study. *J Am Acad Child Adolesc Psychiatry*. 54:225–232. <https://doi.org/10.1016/j.jaac.2014.12.008>.

Matthews T et al. 2023. The developmental course of loneliness in adolescence: implications for mental health, educational attainment, and psychosocial functioning. *Dev Psychopathol*. 35:537–546. <https://doi.org/10.1017/S0954579421001632>.

Matthews T et al. 2024. Social isolation, loneliness, and inflammation: a multi-cohort investigation in early and mid-adulthood. *Brain Behav Immun*. 115:727–736. <https://doi.org/10.1016/j.bbi.2023.11.022>.

Maxwell KA. 2002. Friends: the role of peer influence across adolescent risk Behaviors. *J Youth Adolesc*. 31:267–277. <https://doi.org/10.1023/A:1015493316865>.

McClelland H, Evans JJ, Nowland R, Ferguson E, O'Connor RC. 2020. Loneliness as a predictor of suicidal ideation and behaviour: a systematic review and meta-analysis of prospective studies. *J Affect Disord.* 274:880–896. <https://doi.org/10.1016/j.jad.2020.05.004>.

McIver TA et al. 2019. Functional connectivity across social inclusion and exclusion is related to peer victimization and depressive symptoms in young adults. *J Affect Disord.* 253:366–375. <https://doi.org/10.1016/j.jad.2019.04.085>.

Meeus W. 1996. Studies on identity development in adolescence: an overview of research and some new data. *J Youth Adolesc.* 25: 569–598. <https://doi.org/10.1007/BF01537355>.

Mertse N et al. 2022. Associations between anterior cingulate thickness, cingulum bundle microstructure, melancholia and depression severity in unipolar depression. *J Affect Disord.* 301:437–444.

Merz EC, Tottenham N, Noble KG. 2018. Socioeconomic status, amygdala volume, and internalizing symptoms in children and adolescents. *J Clin Child Adolesc Psychol.* 47:312–323.

Mills KL et al. 2016. Structural brain development between childhood and adulthood: convergence across four longitudinal samples. *NeuroImage.* 141:273–281. <https://doi.org/10.1016/j.neuroimage.2016.07.044>.

Murtaza G, Sultana R, Abualait T, Fatima M, Bashir S. 2023. Social isolation during the COVID-19 pandemic is associated with the decline in cognitive functioning in young adults. *PeerJ.* 11:e16532. <https://doi.org/10.7717/peerj.16532>.

Mushtaq R, Shoib S, Shah T, Mushtaq S. 2014. Relationship between loneliness, psychiatric disorders and physical health? A review on the psychological aspects of loneliness. *J Clin Diagn Res.* 8:WE01–WE04. <https://doi.org/10.7860/JCDR/2014/10077.4828>.

Nakagawa S et al. 2015. White matter structures associated with loneliness in young adults. *Sci Rep.* 5:17001. <https://doi.org/10.1038/srep17001>.

Next-Generation Neural Data Analysis (NGNDA) (Version 1.0). (2020). [Computer software]. Boston Childrens Hospital/Harvard Medical School. <https://github.com/cstamoulis1/Next-Generation-Neural-Data-Analysis-NGNDA>.

Nguyen TT, Ryan RM, Deci EL. 2018. Solitude as an approach to affective self-regulation. *Personal Soc Psychol Bull.* 44:92–106.

Oh W et al. 2008. Trajectories of social withdrawal from middle childhood to early adolescence. *J Abnorm Child Psychol.* 36:553–566. <https://doi.org/10.1007/s10802-007-9199-z>.

Oldham S, Fornito A. 2019. The development of brain network hubs. *Dev Cogn Neurosci.* 36:100607.

Olivito G et al. 2023. The cerebellum gets social: evidence from an exploratory study of cerebellar, neurodevelopmental, and psychiatric disorders. *Biomedicines.* 11:309. <https://doi.org/10.3390/biomedicines11020309>.

Orben A, Tomova L, Blakemore S-J. 2020. The effects of social deprivation on adolescent development and mental health. *Lancet Child Adolesc Health.* 4:634–640. [https://doi.org/10.1016/S2352-4642\(20\)30186-3](https://doi.org/10.1016/S2352-4642(20)30186-3).

Özdemir A, Utkuap N, Palloş A. 2016. Physical and psychosocial effects of the changes in adolescence period. *International Journal of Caring Sciences.* 9:717–723.

Palejwala AH et al. 2021. Anatomy and white matter connections of the lingual gyrus and cuneus. *World Neurosurg.* 151:e426–e437.

Pan LA, Ramos L, Segreti A, Brent DA, Phillips ML. 2015. Right superior temporal gyrus volume in adolescents with a history of suicide attempt. *Br J Psychiatry.* 206:339–340.

Pasqualetti F, Zhao S, Favaretto C, Zampieri S. 2020. Fragility limits performance in complex networks. *Sci Rep.* 10:1774. <https://doi.org/10.1038/s41598-020-58440-6>.

Patterson AC, Veenstra G. 2010. Loneliness and risk of mortality: a longitudinal investigation in Alameda County, California. *Soc Sci Med.* 71:181–186. <https://doi.org/10.1016/j.socscimed.2010.03.024>.

Patton GC et al. 2006. Promoting social inclusion in schools: a group-randomized trial of effects on student health risk behavior and well-being. *Am J Public Health.* 96:1582–1587. <https://doi.org/10.2105/AJPH.2004.047399>.

Paus T, Keshavan M, Giedd JN. 2008. Why do many psychiatric disorders emerge during adolescence? *Nat Rev Neurosci.* 9:947–957. <https://doi.org/10.1038/nrn2513>.

Pelphrey KA, Carter EJ. 2008. Brain mechanisms for social perception: lessons from autism and typical development. *Ann N Y Acad Sci.* 1145:283–299.

Peper JS, Hulshoff Pol HE, Crone EA, van Honk J. 2011. Sex steroids and brain structure in pubertal boys and girls: a mini-review of neuroimaging studies. *Neuroscience.* 191:28–37. <https://doi.org/10.1016/j.neuroscience.2011.02.014>.

Pereira Camejo M, Escobar Saade L, Liverani MC et al. 2024. Amygdala volumes and associations with socio-emotional competencies in preterm youth: cross-sectional and longitudinal data. *Pediatr Res.* 96:1868–1877.

Pfeifer JH, Allen NB. 2021. Puberty initiates cascading relationships between neurodevelopmental, social, and internalizing processes across adolescence. *Biol Psychiatry.* 89:99–108. <https://doi.org/10.1016/j.biopsych.2020.09.002>.

Phillips JR, Hewedi DH, Eissa AM, Moustafa AA. 2015. The cerebellum and psychiatric disorders. *Front Public Health.* 3:66.

Porcelli S et al. 2019. Social brain, social dysfunction and social withdrawal. *Neurosci Biobehav Rev.* 97:10–33. <https://doi.org/10.1016/j.neubiorev.2018.09.012>.

Preston AJ, Rew L. 2022. Connectedness, self-esteem, and prosocial Behaviors protect adolescent mental health following social isolation: a systematic review. *Ment Health Nurs.* 2022;43:32–41. <https://doi:10.1080/01612840.2021.1948642>.

Reiss F. 2013. Socioeconomic inequalities and mental health problems in children and adolescents: a systematic review. *Soc Sci Med.* 90:24–31. <https://doi.org/10.1016/j.socscimed.2013.04.026>.

Reupert A et al. 2021. Stigma in relation to families living with parental mental illness: an integrative review. *Int J Ment Health Nurs.* 30:6–26. <https://doi.org/10.1111/inm.12820>.

Riedel MC et al. 2018. Dissociable meta-analytic brain networks contribute to coordinated emotional processing. *Hum Brain Mapp.* 39:2514–2531.

Rogol AD, Roemmich JN, Clark PA. 2002. Growth at puberty. *J Adolesc Health.* 31:192–200. [https://doi.org/10.1016/S1054-139X\(02\)00485-8](https://doi.org/10.1016/S1054-139X(02)00485-8).

Rosada C et al. 2023. Childhood trauma and cortical thickness in healthy women, women with post-traumatic stress disorder, and women with borderline personality disorder. *Psychoneuroendocrinology.* 153:106118.

Rubin KH, Chronis-Tuscano A. 2021. Perspectives on social withdrawal in childhood: past, present, and prospects. *Child Dev Perspect.* 15:160–167. <https://doi.org/10.1111/cdep.12417>.

Rubin KH, Lollis SP. 2015. Origins and consequences of social withdrawal. In: *Clinical implications of attachment.* J Belsky, T Nezworski (Eds), Routledge, pp 219–252.

Rubin KH, Wojslawowicz JC, Rose-Krasnor L, Booth-LaForce C, Burgess KB. 2006. The Best friendships of shy/withdrawn children: prevalence, stability, and relationship quality. *J Abnorm Child Psychol.* 34:139–153. <https://doi.org/10.1007/s10802-005-9017-4>.

Rubin KH, Coplan RJ, Bowker JC. 2009. Social withdrawal in childhood. *Annu Rev Psychol.* 60:141–171. <https://doi.org/10.1146/annurev.psych.60.110707.163642>.

Rubinov M, Sporns O. 2010. Complex network measures of brain connectivity: uses and interpretations. *NeuroImage.* 52:1059–1069. <https://doi.org/10.1016/j.neuroimage.2009.10.003>.

Sato W et al. 2014. Increased putamen volume in adults with autism spectrum disorder. *Front Hum Neurosci.* 8:957.

Sawyer SM, Azzopardi PS, Wickremarathne D, Patton GC. 2018. The age of adolescence. *Lancet Child Adolesc Health.* 2:223–228. [https://doi.org/10.1016/S2352-4642\(18\)30022-1](https://doi.org/10.1016/S2352-4642(18)30022-1).

Schaefer A et al. 2018. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. *Cereb Cortex.* 28:3095–3114. <https://doi.org/10.1093/cercor/bhx179>.

Schinka KC, VanDulmen MHM, Bossarte R, Swahn M. 2012. Association between loneliness and suicidality during middle childhood and adolescence: longitudinal effects and the role of demographic characteristics. *J Psychol.* 146:105–118. <https://doi.org/10.1080/00223980.2011.584084>.

Schlack R, Peerenboom N, Neuperdt L, Junker S, Beyer A-K. 2021. The effects of mental health problems in childhood and adolescence in young adults: results of the KiGGS cohort. *J Health Monit.* 6:3–19. <https://doi.org/10.25646/8863>.

Schwartz-Mette RA, Shankman J, Dueweke AR, Borowski S, Rose AJ. 2020. Relations of friendship experiences with depressive symptoms and loneliness in childhood and adolescence: a meta-analytic review. *Psychol Bull.* 146:664–700. <https://doi.org/10.1037/bul0000239>.

Sheffield JM, Huang AS, Rogers BP et al. 2021. Insula sub-regions across the psychosis spectrum: morphology and clinical correlates. *Transl Psychiatry.* 11:346.

Siervogel RM et al. 2004. Puberty and body composition. *Horm Res.* 60: 36–45. <https://doi.org/10.1159/000071224>.

Smith C, Stamouli C. 2023. Effects of multidomain environmental and mental health factors on the development of empathetic behaviors and emotions in adolescence. *PLoS One.* 18:1–31. <https://doi.org/10.1371/journal.pone.0293473>.

von Soest T, Luhmann M, Gerstorf D. 2020. The development of loneliness through adolescence and young adulthood: its nature, correlates, and midlife outcomes. *Dev Psychol.* 56:1919–1934. <https://doi.org/10.1037/dev0001102>.

Steinberg L, Morris AS. 2001. Adolescent development. *Annu Rev Psychol.* 52:83–110. <https://doi.org/10.1146/annurev.psych.52.1.83>.

Stenseng F, Tingstad EB, Wichstrøm L, Skalicka V. 2022. Social withdrawal and academic achievement, intertwined over years? Bidirectional effects from primary to upper secondary school. *Br J Educ Psychol.* 92:1354–1365. <https://doi.org/10.1111/bjep.12504>.

Sturman DA, Moghaddam B. 2011. The neurobiology of adolescence: changes in brain architecture, functional dynamics, and behavioral tendencies. *Neurosci Biobehav Rev.* 35:1704–1712. <https://doi.org/10.1016/j.neubiorev.2011.04.003>.

Suor JH, Jimmy J, Monk CS, Phan KL, Burkhouse KL. 2020. Parsing differences in amygdala volume among individuals with and without social and generalized anxiety disorders across the lifespan. *J Psychiatr Res.* 128:83–89.

Susman EJ, Rogol A. 2004. Puberty and psychological development. In: Lerner RM, Steinberg L (Eds.), *Handbook of adolescent psychology.* John Wiley and Sons, Ltd. pp 15–44.

Terasawa Y, Shibata M, Moriguchi Y, Umeda S. 2013. Anterior insular cortex mediates bodily sensibility and social anxiety. *Soc Cogn Affect Neurosci.* 8:259–266.

Thomas E et al. 2024. Amygdala connectivity is associated with withdrawn/depressed behavior in a large sample of children from the adolescent brain cognitive development (ABCD) study®. *Psychiatry Res Neuroimaging.* 344:111877. <https://doi.org/10.1016/j.pscychresns.2024.111877>.

Tian Y et al. 2014. White matter structure in loneliness: preliminary findings from diffusion tensor imaging. *Neuroreport.* 25:843–847. <https://doi.org/10.1097/WNR.0000000000000197>.

Tian Y et al. 2017. Causal interactions in resting-state networks predict perceived loneliness. *PLoS One.* 12:e0177443. <https://doi.org/10.1371/journal.pone.0177443>.

Tian Y, Margulies DS, Breakspear M, Zalesky A. 2020. Topographic organization of the human subcortex unveiled with functional connectivity gradients. *Nat Neurosci.* 23:1421–1432. <https://doi.org/10.1038/s41593-020-00711-6>.

Tomova L et al. 2022. Acute isolation is associated with increased reward responsiveness in human adolescents. *OSF (preprint),* <https://doi.org/10.31234/osf.io/ndt9k>.

Tooley UA et al. 2022. The age of reason: functional brain network development during childhood. *J Neurosci.* 42:8237–8251.

Turrini S, Avenanti A. 2024. Cerebellum function: the chronometry of social perception. *Curr Biol.* 34:R340–R343.

Vaisvilaite L, Hushagen V, Grønli J, Specht K. 2022. Time-of-day effects in resting-state functional magnetic resonance imaging: changes in effective connectivity and blood oxygenation level dependent signal. *Brain Connect.* 12:515–523. <https://doi.org/10.1089/brain.2021.0129>.

Van Loon LMA, Van de Ven MOM, Van Doesum KTM, Witteman CLM, Hosman CMH. 2014. The relation between parental mental illness and adolescent mental health: the role of family factors. *J Child Fam Stud.* 23:1201–1214. <https://doi.org/10.1007/s10826-013-9781-7>.

van Tol MJ et al. 2014. Local cortical thinning links to resting-state disconnectivity in major depressive disorder. *Psychol Med.* 44: 2053–2065.

Van Overwalle F. 2024. Social and emotional learning in the cerebellum. *Nat Rev Neurosci.* 25:776–791.

Van Overwalle F et al. 2020. Consensus paper: cerebellum and social cognition. *Cerebellum.* 19:833–868.

Vanhalst J, Luyckx K, Goossens L. 2014. Experiencing loneliness in adolescence: a matter of individual characteristics, negative peer experiences, or both? *Soc Dev.* 23:100–118. <https://doi.org/10.1111/sode.12019>.

Vijayakumar N, Op de Macks Z, Shirtcliff EA, Pfeifer JH. 2018. Puberty and the human brain: insights into adolescent development. *Neurosci Biobehav Rev.* 92:417–436. <https://doi.org/10.1016/j.neubiorev.2018.06.004>.

Vitale EM, Smith AS. 2022. Neurobiology of loneliness, isolation, and loss: integrating human and animal perspectives. *Front Behav Neurosci.* 16:846315.

Voelbel GT, Bates ME, Buckman JF, Pandina G, Hendren RL. 2006. Caudate nucleus volume and cognitive performance: are they related in childhood psychopathology? *Biol Psychiatry.* 60:942–950.

Vogt BA. 2005. Pain and emotion interactions in subregions of the cingulate gyrus. *Nat Rev Neurosci.* 6:533–544.

Wang MQ, Fitzhugh EC, Westerfield RC, Eddy JM. 1995. Family and peer influences on smoking behavior among American adolescents: an age trend. *J Adolesc Health.* 16:200–203. [https://doi.org/10.1016/1054-139X\(94\)00097-X](https://doi.org/10.1016/1054-139X(94)00097-X).

Wang L et al. 2023. Functional connectivity between the cerebellar vermis and cerebrum distinguishes early treatment response for major depressive episodes in adolescents. *J Affect Disord.* 339: 256–263.

Weinstein N, Hansen H, Nguyen TV. 2023. Definitions of solitude in everyday life. *Personal Soc Psychol Bull.* 49:1663–1678.

Westlye LT et al. 2009. Increased sensitivity to effects of normal aging and Alzheimer's disease on cortical thickness by adjustment for local variability in gray/white contrast: a multi-sample MRI study. *NeuroImage*. 47:1545–1557. <https://doi.org/10.1016/j.neuroimage.2009.05.084>.

Wierenga L et al. 2014. Typical development of basal ganglia, hippocampus, amygdala and cerebellum from age 7 to 24. *NeuroImage*. 96:67–72. <https://doi.org/10.1016/j.neuroimage.2014.03.072>.

Wigfield A, Byrnes JP, Eccles JS. 2006. Development during early and middle adolescence. In: Alexander PA, Winne PH (Eds). *Handbook of educational psychology*. Lawrence Erlbaum Associates Publishers, New Jersey, pp 87–113.

Wong NML et al. 2022. Meta-analytic evidence for the cognitive control model of loneliness in emotion processing. *Neurosci Biobehav Rev*. 138:104686.

Wood KR, Coplan RJ, Hipson WE, Bowker JC. 2022. Normative beliefs about social withdrawal in adolescence. *J Res Adolesc*. 32:372–381. <https://doi.org/10.1111/jora.12617>.

Woodhouse SS, Dykas MJ, Cassidy J. 2012. Loneliness and peer relations in adolescence. *Soc Dev*. 21:273–293. <https://doi.org/10.1111/j.1467-9507.2011.00611.x>.

Wu J, Barahona M, Tan Y-J, Deng H-Z. 2011. Spectral measure of structural robustness in complex networks. *IEEE Trans Syst Man Cybern Syst Hum*. 41:1244–1252 *IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans*. <https://doi.org/10.1109/TSMCA.2011.2116117>.

Xiong Y, Hong H, Liu C et al. 2023. Social isolation and the brain: effects and mechanisms. *Mol Psychiatry*. 28:191–201.

Yeo BT et al. 2011. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. *J Neurophysiol*. 106: 1125–1165.

Yurgelun-Todd D. 2007. Emotional and cognitive changes during adolescence. *Curr Opin Neurobiol*. 17:251–257. <https://doi.org/10.1016/j.conb.2007.03.009>.

Zaccarella E, Friederici AD. 2015. Merge in the human brain: a sub-region based functional investigation in the left pars opercularis. *Front Psychol*. 6:1818.

Zheng S et al. 2023. Association of loneliness and grey matter volume in the dorsolateral prefrontal cortex: the mediating role of interpersonal self-support traits. *Brain Imaging Behav*. 17:481–493. <https://doi.org/10.1007/s11682-023-00776-4>.

Zhu J, Qiu A. 2022. Interindividual variability in functional connectivity discovers differential development of cognition and transdiagnostic dimensions of psychopathology in youth. *NeuroImage*. 260:119482.