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Abstract

Experimental measurements often show significant variations in gas adsorption on aluminosilicate
zeolites, thereby inducing considerable uncertainty in gas separation and storage performance.
These variations are largely attributed to the distribution of aluminum (Al) atoms within a zeolite
framework. It is challenging to experimentally control the distribution of Al atoms during zeolite
synthesis. The vast number of plausible Al-substituted configurations also makes it difficult to
estimate the overall range of adsorption. To resolve this, we deploy a new representation of
crystallographic frameworks using single repeating units (SRU). An SRU consists of the smallest
network of tetrahedral atoms that can be repeated as single building block to represent an entire
zeolite framework. SRUs enable a selective enumeration of unique Al-substituted configurations,
thereby leading to an efficient computational framework for quantifying the variations in equilibrium
gas adsorption on Al-substituted zeolites without exhaustive search. We apply this technique to
analyze CO4 adsorption on chabazite (CHA) zeolite. Using molecular simulations of gas adsorption
on the unique Al-substituted configurations, we observe as much as 12% variation in CO4 adsorption
due to differences in the locations of Al atoms within the zeolite framework. Interestingly, our
results indicate that variability in COs adsorption in Al-substituted zeolites is significant only at
moderate Si/Al ratios, primarily due to the non-uniform distribution of Al. At very high or very
low Si/Al ratios, this variability appears to be negligible. Surprisingly, we also observe that the
adsorption does not always increase with the number of Al sites, and there exists an inflection point
beyond which additional Al substitution leads to a decrease in adsorption. This trade-off indicates
an optimal Si/Al ratio that maximizes the equilibrium adsorption of CO2 on Al-substituted CHA
zeolites at some moderate values. We are able to systematically identify the optimal Si/Al ratio
and the corresponding locations of Al sites in CHA framework that maximizes CO4y adsorption.
On further investigation using the Al-Al radial distribution function (RDF), we find the locations
of Al sites that lead to high COs adsorption. This demonstrates that the SRU-based selective
enumeration combined with RDF-based structural screening is an enabling method towards the

rational design of zeolites with optimal distribution of Al sites to achieve desired properties.

Keywords: Zeolites, Carbon capture, CO2 adsorption, Nanoporous Adsorbent, Aluminosilicates
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1 Introduction

Zeolites are aluminosilicate materials with a wide range of applications in gas separation, catalysis,
ion exchange, and other fields.'® More than 250 zeolites have been naturally found or chemically
synthesized, and millions of hypothetical structures have been analyzed using computer-based techniques.
Like most aluminosilicates, zeolite frameworks are formed by aluminum (Al) and silicon (Si) atoms
through forming Si-O-Al, Si-O-Si, and Al-O-Al oxide linkages. These linkages lead to a network of
tetrahedral atoms (T-sites) to give rise to a three dimensional porous structure. The distribution and
spatial arrangement of Al atoms within a zeolite framework particularly affect the adsorption of various
gases within the framework. Experimental measurements have indicated considerable differences in
equilibrium gas adsorption due to Al distribution within a zeolite framework. Up to two-fold differences
in adsorption capacities of n-alkanes have been observed, for example, over Bronsted acid zeolites with

the same Si/Al ratio.” Conventional wisdom is that Al substitutions generally increase gas adsorption.

910 on small-pore zeolite frameworks, such

However, this may not be true for all cases. Recent studies
as Gismondine (GIS) and Merlinoite (MER), have revealed the existence of optimal Si/Al ratio beyond
which adsorption decreases with additional Al substitution. Data have been also reported ! where
CO4 adsorption increases with increasing Al substitution until a plateau or peak is reached, beyond
which no significant increase in adsorption is observed.

The mechanisms underlying adsorption on Al substituted zeolites are complex and require further
investigation. For fixed pore size and basicity, the electric field strength generated by cations through
Al substitution influences the gas adsorption in microporous crystalline materials. > The siting and
the orientation of Al atoms at important T-sites as well as the proximity of Al atoms to each other
influence the force field within the lattice and determine the overall adsorption capacity. When Al
atoms are strategically located at specific T-sites, they can synergistically enhance adsorption, leading
to higher adsorption and selectivity for certain gases. Dispersion interactions also play an important
role. For example, dispersion interactions account for about 50% of the overall adsorption enthalpy
of CO2 molecules in FAU zeolite with a Si/Al ratio of 2.55:1.13 Guest COy molecules predominantly
adsorb on site II and tilt toward the zeolite wall due to stabilizing dispersion interactions, with minor
heterogeneity in adsorption sites arising from differences in the number of Al atoms and the geometry
affecting their spatial arrangement. Other factors, such as the cation type, size and charge, and the
Si/Al ratio also affect the equilibrium and kinetic properties of gas adsorption on zeolites. !4 16

It is important to accurately estimate the gas adsorption properties of zeolites to be able to design
feasible chemical processes with desired separation and/or catalytic performance.'” 23 To this end,
the following questions remain unanswered: How do the location and configuration of Al substitutions
affect the adsorption capacity of a zeolite? What is the optimal Si/Al ratio that maximize gas
adsorption, and how can we systematically identify this ratio?

The absence of literature regarding variation in adsorption on Al-substituted zeolites is primarily

due to the challenges associated with comprehensive experimental and computational measurements
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and observations. There are recent successes in experimentally biasing the arrangement of Al and
acid sites, 24272729 hut experimental synthesis of samples with precise control over each Al-siting
and distribution is still difficult. Computational methods, on the other hand, typically rely on
time-consuming and resource-intensive molecular simulations3°. These calculations may range in the
order of days to weeks to obtain a single adsorption estimate on a single zeolite. While AI/ML-based

d 3132 high-throughput screening of Al-substituted zeolites remains

predictive models are being develope
computationally demanding, given the large number of possible framework structures. The complexity

further increases when dopants, such as Al or other metals, are used to replace Si in zeolite frameworks. 33

Recent studies have demonstrated significant advancements in the development of quantitative structure-property
34-37

relationships, driven by the emergence of advanced machine learning architectures such as Transformers.

These data-dependent approaches often lack a systematic understanding grounded in first principles.

Moving forward, it is essential to establish effective screening rules while maintaining a deeper understanding

of the underlying system. 3

The most challenging issue in studying the variability in adsorption of Al-substituted zeolites
is probably the vast number of possible Al-substituted configurations. To illustrate, consider the
CHA zeolite framework, which has 36 T-sites in each unit cell. For a Si/Al ratio of 5.0, it would

require substituting 6 of the 36 the sites with Al. Without considering additional constraints, such

36
6

to check. As the number of Al atoms in the CHA framework increases, the number of possible

Al-substituted configurations increases. For the Si/Al ratio of 1.0, which has 18 Al atoms and 18

substitutions can be achieved in ( ) ways, leading to over 1.94 million possible structure configurations

Si atoms in a unit cell, this increases to over 9 million configurations. Even after limiting to only
feasible structures via the Lowenstein’s rule, which forbids Al-O-Al pairs in zeolites, the total number
of plausible zeolite configurations is overwhelming. The enumeration of Al-substituted structures
adds additional complexity to already time-intensive molecular simulations. No systematic approach
currently exists to address this highly combinatorially complex problem, which seems to be daunting
to address even for a fixed Si/Al ratio. To the best of our knowledge, a systematic study investigating
the effect of Al-siting on gas adsorption has also not been performed yet.

In this work, we overcome these combinatorial challenges in assessing the unique Al-substituted
structures through exploiting a new graph-theoretic representation of zeolite frameworks using Single
Repeating Units (SRU). Through SRUs, we can place Al atoms in unique sites while complying with
the Lowenstein’s rule, thereby allowing us to systematically enumerate only the unique Al-substituted
configurations for a given Si/Al ratio, while representing most of the variations in Al sites. This is
a key contribution of this work, as it significantly reduces the number of configurations needed for
analysis and leads to a very efficient computational framework, which is described in detail in Section
2, for quantifying the variability observed in equilibrium gas adsorption, storage, and other properties
of Al-substituted zeolites.

The paper is structured as follows: Section 2 outlines the methodology, including the SRU-based



enumeration and generation of unique Al-substituted zeolite structure configurations, and molecular
simulation to obtain gas adsorption. In Section 3.1, we quantify the variation in CO, adsorption
on Al-substituted SOD and CHA zeolite frameworks for different Si/Al ratios, and systematically
analyze the effects of proximity and location of distributed Al sites on CO9 adsorption. In Section
3.2, we propose a new approach, based on the similarity in the radial distribution function (RDF) and
the COy adsorption, for high-throughput screening of optimal locations of Al sites in the lattice of
Al-substituted CHA zeolite framework that maximize the CO5 adsorption. We provide our concluding

remarks in Section 4.

SRU generation algorithm

i 1 : ®
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Figure 1: An overview of the workflow of the proposed computational framework, describing the
enumeration and analysis of uniquely Al-substituted zeolite configurations. An efficient subset selection
of unique distributions of Al for a given Si/Al ratio is enabled by the SRU (single repeating unit)-based
representation of zeolite frameworks. An SRU is the smallest network of T-sites that can be repeated
to generate an entire zeolite framework. It is used to generate the uniquely Al-substituted structures.
GCMC simulations are then performed on select Al-distributed structures to quantify the adsorption

capacities.
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2 Methods

Figure 1 provides an overview of the workflow of the computational framework for the enumeration
and analysis of uniquely Al-substituted zeolite configurations. It begins by taking the crystallographic
information file (CIF) of the zeolite of interest. CIF is a standard way for describing a crystal
framework. With the CIF available, the first major step is to obtain the SRU representation of the
zeolite structure. An SRU is the single smallest network of T-sites with defined connectivity that can
be repeated to represent an entire zeolite framework.3® We have several efficient techniques/algorithms
to identify the smallest set of T-nodes and their connectivity matrix that defines the SRU of a
zeolite framework (see Section 2.1 on SRU identification). We then use the SRU representation to
generate structures with the desired number of Al-substitutions, while maintaining a user-specified,
fixed Si/Al ratio. As a check, the algorithm generates the post-substitution connectivity matrices
and determines their feasibility according to the Lowenstein’s rule. Once the algorithm determines
the feasible Al-substituted connectivity matrices, we use them to create the lattices and the unit
cells needed to generate the individual CIF files for Al-substituted zeolite frameworks (see Section
2.2 on generation of unique Al-substituted structures). We provide the new CIF files as inputs to a
molecular simulation platform to predict the equilibrium adsorption of guest molecules, such as COs,
on different Al-substituted zeolite configurations for the same Si/Al ratio. We analyze the simulation
data and quantify the variations in gas adsorption due to variations in Al-substitution within a zeolite
framework. We repeat the above procedure by parametrically changing the number of Al atoms within
a zeolite framework. Overall, the SRU-based selective enumeration of Al-substituted structures enable
a rational design of aluminosilicate zeolites with optimal Si/Al ratio to achieve desired gas adsorption

and storage properties.

2.1 SRU Identification

The SRU representation of zeolite frameworks was first proposed in 2021.3%4% An SRU consists of a
structure that has fewer T-nodes than the unit cell and a connectivity matrix that governs the rules of
connectivity between SRUs for re-generating the lattice. This graph-theoretic representation via the
connectivity matrix is unique with the benefit of enumerating structural rules based on connectivity.

The graph-theoretic SRU representation enables the systematic enumeration of Al-substituted
zeolite structures following Lowenstein’s rule. For example, the CHA SRU has only 12 T-atoms
and thus only 66 structures can be enumerated with a Si/Al ratio of 5.00 using the expression (122).
Using the SRU representation, a much larger number of structures can be efficiently generated and
evaluated, enabling a better understanding of the impact of Si/Al substitution on zeolite properties
and accelerating the discovery of new materials for various applications.

The benefit of the SRU representation lies in its reduced representation compared to the traditional
unit cell representation. To demonstrate this, we consider the CHA unit cell as a reference, which

requires 3 CHA-SRU units to represent. If we want to replicate all 1.9 million possibilities that the
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unit cell offered, we can choose SRUs to get the desired Si/Al ratio in the unit cell and then identify
different combinations of these SRUs. Once we generate these possibilities, we need to filter through
all the 1.9 million structures based on Lowenstein’s rule. Table 1 shows the calculations based on
the smaller structure (12-member unit similar to SRU without the graph representation), without
exploiting the benefits of the graph-theoretic representation. This table shows the possibilities for the
reconstruction of unit cell enumeration where each column shows the possible number of structures
for the selected Al substitution. In the table, we calculate the total number of ways of selecting which

smaller units to use and unique placements of the same which lead to a total of 1.9 million, equal to
(s)

)
Table 1: Possibilities for reconstruction of unit cell enumeration with graph-theory not utilized for
CHA with Si/Al ratio of 5.00

# subs. in SRU | 0 1 o | 3| 4| 5 6
Possibilities (102) (112 (122) (132) (142) (152) (162) Select Orientations | Total
2 1 (162) (102) (102) 2'71' 2,772
! ! 1 (D) T 57,024
' ! ! ) | By | 196020
2 ! (00 | | 21380
' 2 A | & | 5200
Lttt D) . 1,045,440
3 D) 3 287,496

Total 1,947,792

In Table 2, we demonstrate the reduced number of structures generated using the methodology
proposed in this paper. The select column in this table refers to the possible selections of the selected
substitutions and details on how these numbers are obtained are discussed partially in a previous
work.3? Note that the difference here is the number of possibilities for each level of substitution and
details of how the number of possible structures is reduced will be covered in the methodology using the
node-index method. There is one order of magnitude reduction in the total number of structures that
need to be considered. However, given that the number is still significantly high on the computational
requirements, we make the assumption on the periodicity of the lattice. We assume that the lattice
is periodic over the SRU size. In the case of the unit cell, the periodicity is repeated over the unit
cell, and thus this assumption is in line with assuming periodicity in the smallest representative unit
considered. There are some consequences to this assumption that some high Si/Al ratio structures
may not be covered however that is the case for any baseline structure that can be arbitrarily chosen
and some structures will still be excluded. Figure 2 provides a visual demonstration of the reduction

in possible structures due to the use of SRU in contrast to the unit cell.



Table 2: Possibilities for the reconstruction of unit cell from SRU with the benefit of graph-theoretic

representation for CHA with Si/Al ratio of 5.00

# subs. in SRU | 0 | 1 2 3 4 5 |6
Possibilities 111242 (52|30 |12 |2 Select Orientations | Total
2 1 2 = 6
1)1 1 12%12 N 864
1 1 1 30%42 o 7,560
2 1 30%12%12 S 12,960
1 2 52*%52 il 8,112
111 52*42%12 e 157,248
3 42%42%42 2 74,088
Total 260,838
| Tk
| tin )f‘} |
‘ \“_':'f;“' '.'.QTL' A

Different permutations
of 3 SRUs with Al

substitutions (total =6
subs.) leads to 260,838

structures

Figure 2: Strategic reduction in total possible Al-substituted structure by using SRU and permutations

and combinations. The total Al substitutions in the unit cell still remain 6.

A critical point to note is that both the SRU and traditional unit cell representations have inherent
limitations in terms of capturing long-range lattice-scale effects. Attempting to construct exhaustive
unit-cell-based configurations over multiple repeated units (e.g., 9-unit cells) leads to an astronomical
number of possibilities—on the order of 102 for Si/Al = 5.00 using the unit cell as the representation—
making direct simulation impractical. Our SRU method addresses this bottleneck by focusing on a

manageable yet chemically relevant subset of configurations, leveraging topological symmetry and
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representative structural motifs. This approach allows for efficient exploration of configurational
diversity without sacrificing the physical fidelity of adsorption predictions. The magnitude of the
reduced enumerations are reported in the supporting information.

As shown in Figure 3, we have applied the SRU representation to several zeolite frameworks, and
the resulting SRU structures are smaller than the unit cell, offering a 2-4 fold reduction in the number
of T-atoms required in most zeolites. Figure 3 shows some examples of the SRU representation in
contrast to the original lattice while the unit cell is shown in gray. Note that the SRU structure has
each T-node numbered. The numbering of the nodes in the SRU is based on the connectivity rules
defined by the connectivity matrix. Figure 4 demonstrates an example SRU connectivity matrix for
the SOD framework. The size of the matrix is governed by the total number of T-nodes in the SRU
structure, and the connectivity matrix and the structure together make up the SRU representation.

Following the connectivity rules, the entire lattice can be regenerated.

Zeolite | Framework SRU
AN
£ AR ':/\__1
soD NIV

i

L S
' /7 & S
- L

CHA

AST ignin

ATN

Figure 3: Examples of the SRU for a few zeolites. The unit cell has been highlighted in the framework

and the SRU structure is shown in red with the numbering based on the connectivity matrix.
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Figure 4: The connectivity matrix for SOD. The SRU structure has 6 nodes leading to a connectivity
matrix of size 6x6. Note that the sum of all elements in a row and column is equal to 4 due to the

tetrahedral nature of the T-nodes.

2.2 Rational Generation of Al-substituted Zeolite Structures

With a more clear understanding of the SRU, we now focus on how this representation allows us to
generate Al-substituted frameworks. The concept was briefly covered in our previous work however,
we only discussed the number of enumerations and did not establish the complete unit cell generation
of these enumerated structures.3? To elaborate, we introduce the concept of a node index based on
the neighboring 4 atoms in the lattice. We assign the node index a value of 4 for a Si atom connected
to all four Si atoms. The node index value is reduced by 2 for every neighbor that is substituted as Al
until the node index goes down to -4. For a central Al atom connected to 4 Si atoms, we define the
node index as -6. Note that in this entire definition of the node index, there is no value assigned for
an Al-Al connectivity. This lies within the scope of our problem due to Lowenstein’s rule that forbids
Al-O-Al linkage.

The node index is a theoretical concept that can be defined for each node in a structure. However,

this concept can be mathematically programmed for matrices which allows for the systematic enumeration

of structures. In a mathematical framework, the node index can be defined as the sum of all the row
(or column since the matrix is symmetric) elements. With a pure Si framework, the node index for all
the nodes is 4 based on the tetrahedral nature. For example, say we substitute site 1 with Al instead
of Si. Mathematically, this means we multiply all elements in the row and column by -1 and update
the diagonal element at (1,1) with a value of -2. Now when we recompute the node index for the
entire matrix by summing the rows or columns we get the same value as we would get from a visual
inspection of the structure. Additional substitutions can then be performed on nodes only where the
node index has a value of 4. The benefit of the representation and the node index lies in the fact that
the computation can be mathematically programmed thus making the process systematic.

To understand the framework in detail, let us first define the problem statement as: given the SRU
matrix for a zeolite, determine feasible Al substitution locations while obeying Lowenstein’s rule of no

Al-O-Al linkage. We explain the solution procedure to obtain all feasible Al substitution locations via
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two functions described in algorithms 1 and 2.

Algorithm 1 presents a function for adding a single Al atom to a given structure represented by
a matrix M of dimension m x m. The algorithm returns a set of all feasible matrices that result
from the substitution of a single Al atom. The function ADDONEAL starts by initializing an empty
set SSL that will store the feasible matrices. Then, the diagonal elements of M are extracted into a
vector de. The variable s is set to the highest index where de equals —2, which corresponds to the
last Al substituted position site in the lattice. If no such site exists, s is set to 0, indicating that no
Al substitution exists in the given matrix and all positions should be considered for Al substitution.

Further, a loop over the indices i ranging from s to m is performed. At each iteration, a copy of M
is created and stored in the variable G. Then, the i*" row and column of G are updated to represent
the addition of the Al atom at the empty site i. The update is only performed if the corresponding
node index in the lattice is equal to 4, which ensures that the Al atom can be added without violating
any constraints on the node index as defined previously. Finally, the updated matrix G is added to the
set SSL. After the loop, the function returns the set SSL containing all feasible matrices resulting
from the addition of the Al atom. Note that the function does not modify the input matrix M, as it

creates copies of it for each update.

Algorithm 1 Function for adding a single Al to given structure

1: function ADDONEAL(M™*™) > Add single Al to M, return set of all feasible matrices
2: SSL + {}
de < diag(M)
s < highest index where de == —2 , else 0
for i € [s,...,m| do
G+—M
update it" row, col of G if Node Index ==
SSL.insert(G)
end for
10: return SSL > Set of single Al added matrices

11: end function

We now take a look at the most important function where we determine the addition of all possible
Al that is described in Algorithm 2. Algorithm 2 takes a connectivity matrix C' and a positive integer
n as input, and generates a set of matrices A with Al substituted nodes, such that the number of Al
substitutions is at most n.

The algorithm starts by initializing a copy of the input matrix C in Z as a temporary variable.
The function GENMATRICES is then called with Z, n, and an empty set £ as input. If £ is empty, the
function checks if the number of nodes with value —2 (i.e., nodes that have not yet been substituted
with Al) in Z is equal to n. If so, Z is added to the set A of matrices with Al substituted nodes.
Otherwise, the function ADDONEAL is called to generate a set SSL of all possible matrices that can
be obtained by adding a single Al to Z. For each matrix I in SSL, the function GENMATRICES is
called recursively with I, n, and SSL as input. This ensures that all possible combinations of Al

substitutions are explored until the desired number of Al substitutions is reached.

10
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If £ is not empty, the function enters the recursive step. For each matrix O in £ (which contains all
possible matrices generated in previous recursive calls), the function ADDONEAL is called to generate
a set T of all possible matrices that can be obtained by adding a single Al to O. For each matrix, T
in 7, T is added to the set A of matrices with Al substituted nodes. The function returns the set A

of all matrices with Al substituted nodes that are generated during the execution of the algorithm.

Algorithm 2 An algorithm to generate Al substituted matrices from SRU connectivity matrix

Input: C*™, n < 2 +1 > n: number of Al substitutions
Output: {A™>X™ : A€ A where A is the set of matrices with Al substituted nodes}

1: Z+C

2: function GENMATRICES(Z,n, L = {}) > Returns set of matrices with substitutions until n
3: if £ == {} then

4 if no. of -2 in Z == n then > Check if desired number of Al subs. acheived
5 A.insert(Z)

6: else

7 SSL + ADDONEAL(Z)

8 for I € SSL do

9: GENMATRICES(I,n, SSL) > Recursive call until desired Al subs. reached
10: end for

11: end if

12: else > Condition valid when in recursion
13: for O € £ do

14: T < ADDONEAL(O)

15: for T € T do

16: A.insert(T)

17: end for

18: end for

19: end if
20: return A

21: end function

After generating the connectivity matrices we then use the structure to generate lattice coordinates.
The next step is to convert the lattice coordinates to CIF file structures for molecular simulations.
Since most molecular simulation software uses the CIF format, we expand the lattice sufficiently large
to ensure at least one unit cell is contained within and then identify the atoms within this volume
using the original parallelepiped dimensions of the unit cell. We then import these atoms as XYZ
coordinates and convert the data to the CIF format. This process is critical since we want to exploit
the periodic boundary conditions and mimic an infinitely repeating system to get accurate results.
With the CIF structures generated, we can now perform molecular simulations to obtain adsorption
isotherms for different Al substitutions. In the next section, we describe the molecular simulation
methods we use for our analysis.

As we present the different structures considered in this work, we show some examples of the unit
cells that we generated using the SRU framework and the proposed methodology. Since the SRU
of CHA has 12 T-atoms, we generated structures from 1 substitution to 6 which led to Si/Al ratios

ranging from 11.0 to 1.0, and these are shown in Figure 5. It is important to note that zeolites with

11
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Si/Al ratios of 1.0 have not been observed or synthesized, but considering these structures allows us

to study the effects of Al substitutions computationally.

———

Figure 5: Examples of the unit cells of Al substituted zeolite frameworks. Each cell has a different
Si/Al ratio. (a) has a ratio of 11.0, (b) has 5.0, (c) has 3.0, (d) has 2.0, (e) has 1.4, and (f) has 1.0.

Note the color scheme where Al is highlighted in green while Si and O are in ivory and red respectively.

2.3 Molecular Simulation

To estimate the equilibrium gas adsorption capacity of the select Al-substituted structures, we use
the Monte Carlo simulation technique for sampling. Molecular simulations were performed using
the multi-purpose software RASPA 2,41 which is developed for microporous materials, to perform
the Grand Canonical Monte Carlo (GCMC) simulations. GCMC simulations are performed for
CO4 on Al-substituted zeolite frameworks at 298K under varying pressures. The simulations follow

4243 The Lennard-Jones potential for the

the conventional techniques reported in the literature
non-bonded interactions were taken from the Garcia Sanchez force field and are provided in the
supporting information.%* Additional details of the atoms mass, charge, and radii are also provided
in the SI. The CO, molecules are based on the bond length and bond angle of 1.149A and 180°
respectively.

The simulations are initialized with 10,000 cycles and run for 25,000 production cycles. The
thermodynamic properties are calculated every 1000 cycles. The simulation is performed in a 3 x 3 x 3

unit cell. The 3 x 3 x 3 simulation cells are generated using the VESTA software package, and

12
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the GCMC simulations are performed under periodic boundary conditions“®. Na ions are added to
neutralize the system and allowed to float freely in the simulation box.4* The atom labels are retained,
and the Al atoms connected to the oxygen atoms are renamed to identify themselves as separate
atoms with interaction parameters obtained from the force field. For the ions, only translational and
insertion probabilities are used, with a value of 1 for both. For the adsorbate species, three moves are
incorporated, which include translation, reinsertion, and swap, all with a probability value of 1.0. The
cut-off radius used in GCMC simulations was 12A.

After each simulation, the adsorbate’s absolute loading on the adsorbent framework is calculated
and recorded. The simulations were conducted for a total of 150 frameworks for the range of Si/Al
ratios generated. FKach framework is simulated at 9 different pressure values: 1, 5, 10, 20, 30, 40, 50, 75,
and 100 kPa at 298K, resulting in a total of 1200 simulations. The chosen pressure values are selected
based on their relevance in practical applications46. The molecular simulations are performed at the
High-Performance Research Computing facility at Texas A&M University. The simulation time varies
depending on the applied pressure. On average, each simulation takes about 60 hours to complete on
a computer with 4 cores and 32GB RAM.

We also compare the molecular simulation results with those observed in literature. Due to
their higher adsorption properties and stability, zeolites with some amount of Aluminum have been
synthesized and studied in literature.? Impurities also skew the experimental results compared to the
simulation results as shown in the study by Ghojavand et al.%6 The closest experimental zeolite with
minor impurities that studies adsorption of CO4 has been reported by Pourmahadi et al. where they
report the adsorption of CO9 and CHy on various CHA structures under different temperatures and
pressures.” The closest to pure-silica CHA is their reported zeolite S5 and the adsorption isotherm
reported in Figure 6 of their work where we compare the adsorption at 298K. Their experimental
results on zeolite S5 are comparable to the simulation results reported in Figure 6 in this work with

some margin for error for impurities, and computational vs experimental errors.

2.4 Radial Distribution Function in Al-Subsituted Zeolites

The effect of proximity of Al atoms on the adsorption can be analyzed using the radial distribution
function (RDF). The RDF, often denoted as g(r), is a fundamental tool in the study of materials that
characterizes the distribution of particles around a tagged particle at a distance . The RDF is a key
indicator of the atomic structure of materials and varies significantly depending on the phase of the
matter. It is therefore widely used for the characterization of solids, gases, and liquids. There are
several possible RDF's, but we study only Al-Al RDF's in this work. In the case of materials with Al
substitutions, such as zeolites, we focus on the Al atoms in the lattice and compute the RDF for these
atoms. By analyzing the RDF, we can gain insights into the ordering and spatial arrangement of Al
atoms in the material. The radial distribution function is defined as the ratio of (p(r)) , the average

local number density of particles at a distance r, to the bulk density of particles, p:
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g(r) = (1)

The RDF is the computational method equivalent to the pair distribution function (PDF'), which
is obtained experimentally using X-ray or neutron scattering. The two methods are the same, in fact
RDF is also called as the pair distribution function analogously. The PDF provides information on the
positions of atoms in a crystal lattice and has soft peaks that correspond to high probabilities of atom
presence. In contrast, the RDF has sharper peaks since the positions of atoms are already known. The
significance of the RDF in material characterization lies in its ability to provide information on the
local environment of atoms and molecules in a material. This information is crucial for understanding
the physical and chemical properties of materials, such as their mechanical, electrical, and thermal
properties. The RDF is therefore a valuable tool for materials science, chemistry, and condensed matter
physics, and its continued development and application will be key in advancing our understanding of
materials at the atomic scale.

Studying the RDF is similar to studying the PDF in that the focus is on the intensity and location
of the peaks. The larger peaks in the RDF correspond to longer-range correlations in the lattice, while
the first peak, typically the largest and most well-defined, corresponds to the nearest-neighbor distance
between atoms. Subsequent peaks correspond to longer-range correlations between atoms, such as the
second-nearest-neighbor distance and so on. The smaller peaks observed in the RDF correspond to
interatomic distances between neighboring atoms in the lattice. These peaks are generally narrower
and more well-defined than the broader peaks that correspond to longer-range correlations in the
material. This is because atomic positions in a crystal lattice are highly ordered and regular, resulting
in sharper peaks in the RDF.

The algorithm for computing the RDF is described in algorithms 3 and 4. The algorithm is given
using a parallel computation process. Algorithm 3 does all the data manipulation and then splits the
data for each parallel process which calls algorithm 4. The final result is compiled and reported in

algorithm 3. In our case, the parameter dr is set to 0.25 since we have point locations of Al.
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Algorithm 3 Function to compute the radial distribution function

Input: P has dimensions of N X d > P: Array of coordinates of particles
1: function RDF(P,dr,e = 1071%)
2: Teutof f < 0.9

min < min(P)
max < max(P)

P < P —min

Tmaxz < (min(dims)/2) *Teutof f
radii < [dr,2dr, ..., "maz)
N, d < shape(P)

3
4
5
6: dims < maxr — min
7
8
9:
10: p < N/(I1dims)

11: tree < cKDTree(P) > Compute k-d tree for nearest neighbor lookup
12: Nyqdii < length(radii)

13: radii_and_indices < stack([range(N,qq:;), radit])

14: radiispirs < split(radii_and_indices, cpu cores) > Split data between number of CPU cores
15: for i <— 0 to length(radiispits) — 1 do

16: values(i] < tuple(radiispits[i], tree, P, min, max, Nyqqi, dr, eps, p)

17: end for

18: results < Pool.starmap(PARALLELHISTLOOP (values)) > Parallel process for RDF
19: gr < >_(results)

20: return g,, radii

21: end function

Algorithm 4 Parallel RDF Histogram Loop Process

Input: radii_and_indices, kdtree, P, min, maz, Nyq4ii, dr, €, p

1: function PARALLELHISTLOOP(radii-and_indices, kdtree, P, min, maz, Nyqdii, dr, €, p)
2: N, d < shape(P) > N: number of atoms, d: dimensions of problem (2D/3D)

3: 9(r)partial < 2€ros(Nrqdis)
4: for (74, 7) in radii_and_indices do
5: Pide < INt(7i4z)
6: fori+ 0tod—1do
7 for j«< 0to N—1do
8: if P[j,i] — (r +dr) > min[i] and P[j,i] + (r + dr) < maz[i] then
9: 1dxsyarialj] < True
10: end if
11: end for
12: end for
13: particlesyqriq < Plidzsyaiid)
14: for particle in particles,q;q do > Parallel process in code using k-d tree
15: n1 < Number of particles within a distance of r + dr — € from particle
16: ng < Number of particles within a distance of r from particle
17: n<—nj—ng
18: g(Tidz)part'Lal <~ g(ridz)pa'rtial +n
19: end for
20: Nyatid < len(particlesyqiiq)
21: shellyop < (4/3) x @ X ((r +dr)? —r3) if d == 3 else 7 x ((r +dr)? — r?)
22: 9(Tidz)partial < 9(Tidz)partial/(Mvalid X shellyor X p)
23: end for
24: return g(7)partial

25: end function
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3 Results

3.1 Quantifying the Variation in CO; Adsorption

We have applied the proposed method to quantify the variation in CO9 adsorption in Al-Substituted
SOD and CHA zeolites. First, we have estimated the equilibrium adsorption of CO5 on SOD zeolite
for different Al contents or Si/Al ratios. The Grand Canonical Monte Carlo (GCMC) based simulation
results, as shown in Figure 6 for Si/Al ratio of 2 and 5 as well for pure-silica zeolites for which the ratio
is very very large due to the absence of any Al atom. We see a significant increase in CO9 adsorption
with increasing Al content in the SOD lattice, confirming the past observations®!! that the presence
of Al sites enhances COq adsorption. Among the designs, we achieve the highest adsorption for Si/Al
ratio of 2. We could not decrease the ratio (or, increase the Al-content) further. For example, an Si/Al
ratio of one for SOD zeolite is infeasible according to the Lowenstein rule. The Si/Al ratio of 2 is the
lowest that can be achieved with the SRU representation for SOD. A unit cell level representation
would give us a ratio of 1.4 but will generate 792 possibilities, which can be reduced by eliminating

repeating structures, but the number will still be high.

SOD adsorption of CO, at T=298K

45
4
33.5
=
[e]
e 3
C
.92.5
S
Q 2
[} .
%1_5 —e—Pure Silica
< . Si/Al = 5.00
——Si/Al = 2.00
0.5
0
0 100 200 300 400 500 600

Pressure (kPa)

Figure 6: COy adsorption on SOD framework with varying Si/Al ratios. The results are obtained
using GCMC simulation.

We perform similar study of CO4 adsorption on CHA zeolite framework for different Al substitutions.
The variations in COy adsorption on CHA zeolite framework for all selected Si/Al ratios are shown
in Figure 7. For the same Si/Al ratio, the width of the band represents the variations in adsorption
amount due to different enumerations of Al positions in the lattice. For large Si/Al ratio (e.g., Si/Al
ratio equal to 11), we have narrow width, indicating small variations in adsorption. This is because
the distributions of Al sites are sparse and, in most cases, they are located far from each other, thereby
nullifying the effect of the geometric locations of Al sites within the zeolite framework. Most of the

T-sites are Si atoms, and there is little variations in the overall composition of the framework in terms
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of Al density. Similarly, we observe little variations in COq adsorption when the Si/Al ratio is small
(e.g., Si/Al = 1.0) due to the lack of compositional variation in terms of Si as most T-sites in this case
consist of Al atoms.

A different result is obtained for moderate Si/Al ratios. The variations in CO2 adsorption are most
prominent at moderate Si/Al ratio. For example, we observe large variations in adsorption amount
for Si/Al ratio of 2 and 5. We hypothesize that this can be due to the larger variations in Al density
within the zeolite framework. For the same Si/Al ratio, the number of Al atoms per unit cell would
be the same but the locations of the Al sites within the unit cell would be different for different Al
distributions. Due to this, denser clusters of Al sites in specific locations may considerably enhance
the adsorption of COg compared to structures with more evenly distributed Al sites. This disparity
in adsorption affinity is prominent when different clusters of T-atoms are present that give rise to
non-uniform distribution of Al sites. Therefore, we predict that the variability in CO9 adsorption
amount would be large for moderate Si/Al ratios. We also observe that the variations are large at
higher adsorption pressures. This is expected as higher system pressure allows higher adsorption for
disparately located denser clusters of Al sites, thereby increasing the differences in local adsorption

within the unit cells.
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Figure 7: Variability in CO4 adsorption on CHA framework with different Si/Al ratios.

We also observe that, the CO4 adsorption does not always increase with the number of Al sites,
and there exists an inflection point beyond which additional Al substitution leads to a decrease in
adsorption. For CHA, CO2 adsorption is maximum when Si/Al is 5.0 and drops on further Al addition.
This result is consistent with previous studies in GIS-type frameworks. 10 The adsorption capacity

for different Al substitutions per SRU cell (12-sized SRU for CHA) at 298 K, 100 kPa is shown in
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figure 8. The maximum adsorption is observed at Si/Al ration of 5.0. Note that for this fixed ratio,
there is a significant variation observed as well and we aim to quantify this variation and study the
cause for it.

To understand the physio-chemical factors behind the optimal amount of Al that results in the
highest adsorption, we need to examine the lattice structure. In a pure-silica lattice, the structure
contains crevices for adsorption formed by the tetrahedral arrangement of Si and four oxygen atoms.
When some of the Si atoms are replaced with Al, additional cations must be incorporated into the
lattice to maintain charge balance, and these cations occupy certain lattice sites. The introduction of
Al creates a charge field, enhancing adsorption. However, with further Al substitutions, the cations
begin to occupy the COs adsorption sites, leading to a decrease in adsorption. Therefore, there is
an optimal amount of Al that maximizes adsorption before the charge-balancing cations occupy the

adsorption sites.

Adsorption of different Si/Al ratio frameworks at 100 kPa, 298 K
3.5

l
3.0 A I T

q (mol/kg)
- - N N
o u o wu

b
)

e
=}

NA 11.0 5.0 3.0 2.0 1.4 1.0
Si/Al ratio

Figure 8: COy adsorption isotherm for CHA frameworks with different Si/Al ratios.

We further investigate the effect of positions of Al on adsorption for the fixed Si/Al ratio of
5.0. There are 42 Al-substituted configurations of CHA zeolite frameworks with this ratio that are
generated using the SRU approach. The variation observed in this case is significant ranging from
3.10 to 3.47 mol/kg at 100 kPa. This accounts for a 12% variation in adsorption. Figure 9 shows
the variation in more detail and we can clearly see individual isotherms, some of which have higher
adsorption than others. Few select unit cells of CHA zeolite with Si/Al ratio of 5.0 are shown in Figure
10. Each of the structures shown has exactly 6 Al atoms in the unit cell. However, due to difference
in Al locations, they lead to different amounts of adsorption of COs.

While current COo capture costs are estimated between USD 15 - 120 ton~! CO,,*® a 12%
improved adsorption capacity will have significant reduction in the costs. The implications on the
process operability are even more critical as has been shown in the literature.*? A process designed
to operate with certain expected material performance in terms of purity and recovery will need
significant modifications to operate at materials with properties differing by 12%. This is critical for

not only simulation-based study, but also for optimization with processes that have narrow operability
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1 domain. Even though a lot of hypothetical zeolites and crystalline materials have been proposed
> in literature previously, the high cost of experimental synthesis has hindered active research in this
3 domain. Though the example selected in this study has focused on COq, zeolites are highly effective
4 in selective adsorption, thus targeted adsorption of contaminants can also benefit from this approach.
5 The low-density nature of zeolites results in a lighter weight in the overall set up facilitating ease of

¢ handling and potentially allow higher additive loading.

Si/Al = 5

0 20 40 60 80 100
Pressure (kPa)

Figure 9: Variation observed in COy adsorption on CHA frameworks with Si/Al=5.0 and different Al

substitution locations.

Figure 10: Examples of different Al substituted CHA framework configurations with Si/Al ration of
5.0. The colors for Al, Si, and O are grey, ivory, and red respectively. The bonds are depicted via

dashed lines

7 We use the RDF to study how locations of Al affect adsorption. For the CHA framework with
s Si/Al=5.0, we have 42 different configurations of Al distributions, based on the SRU representation.
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Figure 11: Radial distribution function g(r) for: (a) group 1, (b) group 2, (c) group 3, (d) group 4,
(e) group 5, and (f) group 6 shown on the left side and the corresponding adsorption isotherms shown
for each group on the right side. all RDFs correspond to the same material class, CHA, with a Si/Al

ratio of 5.

Of these, some of them are repeated due to the orientation of the 3-dimensional unit cell during the
systematic enumeration. By observing the differences in RDF profiles of these structures, we classify
them into six groups. These six different groups of RDF profiles are shown in Figure 11 along with
the adsorption isotherms of the corresponding framework configurations. In all the RDF's, the highest
peak is observed at 9.25A which indicates the most frequently observed distances between two Al
atoms in the lattice. Note the dimensions of the unit cell of CHA are a = 13.675A ,b = 13.675A , ¢ =
14.767A ;o = 90°, 3 = 90°,v = 120°, so the peak signifies the Al position due to repetition of the
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SRU. The peak at 12.5A also is observed in all RDF profiles. Since the unit cell has 6 Al substitutions
(Si/Al=5.0), we are interested in the five tallest peaks since we are looking at other Al from one of
the Al. Looking at the RDF of groups 4 and 5 (Fig. 11d and Fig. 11e) we observe that all the peaks
are observed at the same values. However, due to the numerical precision floating decimals, there is
some non-zero value at 5.75A. Thus by visual inspection, we can still classify these groups together.
Looking at the rest of the groups, we see significant differences in the locations of the peaks. Groups
4, 5, and 6 (Fig. 11d, Fig. 1le, and 11f) all have a peak at 4.25A. Group 6 (11f) does not have the
peak at 5.5A. Groups 1, 2, and 3 (Fig. 11a, Fig. 11b, and 11c) all have their first peaks much further
distances than 5A.

The characterization of the positions of Al in the lattice is important to observe what factors
lead to higher adsorption and contrasting factors that lead to lower adsorption. With that goal, we
also plot adsorption isotherms from the GCMC data for each of these groups individually. These are
shown on the right column in Figure 11. There is not much variation in the adsorption isotherms for
the Al-substituted configurations with similar RDF. This justifies our classification of Al-substituted
configurations in groups based on RDF. The acceptable variation for structures from the same group
is 2% due to the stochastic nature of molecular simulations. Furthermore, groups 4 and 5 have very
similar adsorption isotherms. This is expected due to the similarity in the RDFs for these groups.
These groups (4 and 5) also show the highest saturation capacity or maximum equilibrium adsorption
(3.46 and 3.47 mol/kg at 100 kPa). Both the extreme adsorption isotherms, i.e. the least and highest,
are observed when the second peak in the RDF is at 4.25A (groups 4, 5, and 6). On further inspection,
we see that the highest adsorption is observed when a peak is present at 5.5A. For groups 1, 2, and
3, since the adsorption isotherms are not extremes, we can comment on the features that stand out
for all of them. Especially in group 2, which has the next best adsorption, shows a peak at 5.5A.
Thus we can infer that a peak at 5.5A increases adsorption and when combined with a peak at 4.25A,

adsorption observed is highest (3.47 mol/kg).

3.2 High-throughput Screening of Al-Substituted Zeolite Configurations

The immediate next question is how do we use these insights to screen and select the structures with
high adsorption from the large search space of over 2 million structures that exist for the same Si/Al
ratio of 5.00. Note that insights generated from this analysis will also help experimental synthesis
since only a few researchers are capable of synthesizing zeolites with Al located at selected sites.°
With these insights, we screen among the 2 million structures and verify the validity of the filters
that we identify, thus proposing novel material designs with desired properties. A quick preview of
the screening is shown in figure 12. The first screening criterion is the Lowenstein’s rule to the filter
structures in which the Al-O-Al bond exists. This filter reduces the solution subset space to just
259,822 structures. Next, we introduce the criteria for the presence of a peak at 4.75A and 5.5A

sequentially. Note that instead of hard constraints on the peaks, we allow for some flexibility by the
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constraints that a peak should be less than 5A and another peak between 5 - 5.75A. The first filter
reduces the search space by 13% to 226,469 and the second peak filter further reduces the subset size
by 11% to 201,622.

While the peaks at 4.75Aand 5.5Ahave been observed for the CHA framework, the values at which
peaks occur may vary for other zeolite frameworks. However, the methodology shown in this work
can be applied to the zeolite framework of interest to identify the optimal Si/Al ratio, followed by the
rest of the approach to identify the peaks. The contribution of this work highlights the specific case
of CHA but expands beyond the single example considered. Using the SRU structure, one can reduce

the potential structures and following this analysis, can identify zeolites with desired properties.

# structures = 1,947,792
Si/Al = 5.00

# structures = 259,822
Lowenstein’s rule filter

# structures = 226,469
Peak at < 5 A filter

# structures = 201,622
Peak bet. 5-5.75 A filter

Figure 12: Subsets based on filters applied to the 2 million ways of generating Al-substituted structures.

To further screen from the selected subset based on the RDF profiles, we compare similar RDF
profiles and observe the adsorption capacity of the corresponding structures. To compare RDF profiles,
we use the cosine similarity and select the top 20 structures which have RDF similar to groups 4 and 5.
The cosine similarity between two vectors, in this case, the RDF profiles, A and B can be computed

using the following equation:

A B
cosine similarity (A, B) = W i

where, A - B represents the dot product of vectors A and B, and ||A| and ||B|| represent their
respective Euclidean norms. With the top 20 structures, we run molecular simulations for all of these,
of which the minimum adsorption is 3.17 mol/kg and four of the top 20 structures have adsorption
between 3.45-3.48. Note that the cosine similarity is just one of the many metrics considered for
vector comparisons. Further investigation into the top 20 structures shows that when we have
similar RDF profiles (additional similarity check based on visual inspection for the intensity of the

peaks), the adsorption is very high. The top four structures with high adsorption and similar
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RDF profiles are shown in figure 13. The benefit of obtaining multiple structures that may lead
to higher adsorption is of significant importance for experimental synthesis which allows for some
flexibility in synthesizing amongst multiple structures. The RDF provides a unique mapping for the

structure-property relationship.

(a) CHA configuration 281759 with adsorption of (b) CHA configuration 519226 with adsorption of
3.45 mol/kg 3.46 mol/kg

(c) CHA configuration 1043684 with adsorption of (d) CHA configuration 1933297 with adsorption of
3.46 mol/kg 3.48 mol/kg

Figure 13: Top four identified configurations of Al-substituted CHA framework with high CO»
adsorption at 298 K and 1 bar discovered via the proposed RDF-based high-throughput screening
approach. all RDFs correspond to the same material class, CHA, with a Si/Al ratio of 5.

The physical inferences of the peaks at 4.75A and 5.5A are important to understand the underlying
mechanisms of adsorption. On taking a closer look at the RDF profiles for SRU groups, we observe
a high-intensity peak at 9A. The repetition distance of the SRU structure is the cause of this peak.
Specifically, the location of a specific node between two SRUs leads to the high-intensity peak. Given
the two peaks closer to 5A and another two peaks around 8.5A, the physical interpretation is that Al are
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locally close with some distance between them. This can be interpreted as some uniform distribution
of Al in the lattice. To verify how Al-density affects adsorption, we also look at two structures with
high local Al-density. The structures are shown in figure 14. The Al atoms are highlighted in green
for contrast. Molecular simulation results for these structures validate our hypothesis of uniformity of
distribution of Al. These structures show the adsorption of 3.15 and 2.7 mol/kg with lower adsorption
observed for the densely packed Al. However, no comment can be made on the quantification of the

uniformity and this requires large data of molecular simulations.

Figure 14: CHA structures with Si/Al=5.0 but local high density Al-substituted frameworks. Al

atoms are shown in green.

4 Conclusions

We provide an efficient method for quantifying the variability in equilibrium gas adsorption on
aluminosilicate zeolites due to the distribution of aluminum atoms within the framework. Such
variability introduces considerable uncertainty in gas separation and storage applications, emphasizing
the need for a systematic approach to address these challenges. We introduced a computational
framework, based on a new representation of zeolite frameworks using single repeating units (SRUs), to
perform efficient and selective enumeration of unique Al-substituted configurations. This computational
approach avoids exhaustive searches while providing insights into equilibrium gas adsorption variability.
Applying this methodology to CO2 adsorption on SOD and CHA zeolites, we observed considerable
variation in COy adsorption based on Al atom locations, with the variability being most pronounced
at moderate Si/Al ratios. At very high or low Si/Al ratios, the adsorption variability diminished. Our
findings also reveal a non-monotonic relationship between the number of Al sites and CO4 adsorption.
Beyond a certain point, additional Al substitution reduces adsorption, highlighting the existence of
an optimal Si/Al ratio for maximizing CO2 uptake. Through systematic analysis, we can identify this

optimal ratio and the corresponding Al site configurations that maximize adsorption performance.
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As with any representation, the SRU has limitations that not all Si/Al ratios can be enumerated
with a single unit. In those cases, multiple SRUs can be combined to make a bigger unit to represent
these cases. With the enumerated structures, we performed GCMC simulations to obtain the adsorption
isotherms for the same and study the variation that we initially hypothesized. Experimental data is not
yet available for these cases and thus the GCMC parameters, specifically the interaction parameters
may require further tuning to match with experimental data. However, the similar trend in variation
in adsorption is expected to be observed in experimental results.

Our investigation further used radial distribution functions (RDFs) to pinpoint specific Al site
arrangements that enhance COs adsorption. These results underscore the utility of the SRU-based
selective enumeration combined with RDF-based screening as a robust tool for rationally designing
zeolites with tailored Al distributions. This approach paves the way for developing Al-substituted
zeolite materials optimized for gas separation and storage applications. RDF's are found to be effective
in describing the structural effects on the variation in gas adsorption. For example, upon studying the
RDF of CHA zeolite we find that the distinguishing factor for high adsorption is the first two peaks
being observed closely at 4.25A and 5.5A. Due to the unique mapping of the RDF, this representation
can be used for modeling the structure-property relationship. The key contribution of this study is
the methodology that allows identifying the optimal Si/Al ratio and the Aluminum RDF distribution
which is demonstrated via the case study of CHA. Further, if zeolite synthesis can be done with targeted
Al-substitution sites, then we can extend the current approach to discover new zeolite configurations

with optimal desired properties.
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