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Numerous studies have revealed a signature of strong adaptive evolution in the piwi-interacting RNA (piRNA) machinery of Drosophila 
melanogaster, but the cause of this pattern is not understood. Several hypotheses have been proposed. One hypothesis is that trans-
posable element (TE) families and the piRNA machinery are co-evolving under an evolutionary arms race, perhaps due to antagonism by 
TEs against the piRNA machinery. A related, though not co-evolutionary, hypothesis is that recurrent TE invasion drives the piRNA ma-
chinery to adapt to novel TE strategies. A third hypothesis is that ongoing fluctuation in TE abundance leads to adaptation in the piRNA 
machinery that must constantly adjust between sensitivity for detecting new elements and specificity to avoid the cost of off-target gene 
silencing. Rapid evolution of the piRNA machinery may also be driven independently of TEs, and instead from other functions such as the 
role of piRNAs in suppressing sex-chromosome meiotic drive. We sought to evaluate the impact of TE abundance on adaptive evolution 
of the piRNA machinery in D. melanogaster and 2 species with higher repeat content—Drosophila ananassae and Drosophila willistoni. 
This comparison was achieved by employing a likelihood-based hypothesis testing framework based on the McDonald–Kreitman test. 
We show that we can reject a faster rate of adaptive evolution in the piRNA machinery of these 2 species. We propose that the high rate of 
adaptation in D. melanogaster is either driven by a recent influx of TEs that have occurred during range expansion or selection on other 
functions of the piRNA machinery.
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race; evolutionary trench warfare; genetic conflict; FlyBase

Introduction
Transposable elements (TE) are genetic parasites that proliferate 
in genomes despite causing damage (Hickey 1982). Because of 
this damage, mechanisms of TE suppression have evolved. A 
key mechanism of TE suppression is based on small RNAs known 
as piwi-interacting RNAs (piRNAs) (reviewed in Czech and 
Hannon 2016; Ozata et al. 2019; Kelleher et al. 2020; Onishi et al. 
2021; Loubalova et al. 2023; Wang et al. 2023). For reasons that 
are poorly understood, there is a strong signature of rapid adapta-
tion in proteins of the piRNA machinery of Drosophila (Vermaak 
et al. 2005; Heger and Ponting 2007; Obbard, Gordon, et al. 2009; 
Obbard, Welch, et al. 2009; Kolaczkowski et al. 2011; Lee and 
Langley 2012; Simkin et al. 2013; Lewis et al. 2016; Palmer et al. 
2018). Several hypotheses have been proposed to explain this ob-
servation. One hypothesis is that the piRNA machinery is involved 

in a co-evolutionary arms race with TEs, perhaps due to TEs that 
antagonize mechanisms of genome defense (Vermaak et al. 2005; 
Obbard, Gordon, et al. 2009; Lee and Langley 2012; Parhad et al. 
2017, 2020; Parhad and Theurkauf 2019). A related hypothesis, 
not invoking co-evolution, is that the piRNA machinery constantly 
adapts to strategies employed by new TEs (Clark and Kidwell 1997; 
Peccoud et al. 2017; Schwarz et al. 2021; Senti et al. 2023). The gen-
omic autoimmunity hypothesis is that adaptation is driven by a 
,uctuation in the genomic TE burden (Blumenstiel et al. 2016) 
and the cost of off-target gene silencing (Olovnikov et al. 2013; 
Shpiz et al. 2014; Lee and Karpen 2017; Choi and Lee 2020; Miller 
et al. 2023). Higher rates of adaptation in the piRNA pathway 
may also be independent of TEs. For example, adaptation may 
be driven by the role of the piRNA machinery in suppressing mei-
otic drive. For instance, core mutations in the core piRNA pathway 
factor aub enhance meiotic drive mediated by the Segregation 
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Distortion system in Drosophila melanogaster (Gell and Reenan 2013). 
Y-linked piRNAs also silence Stellate genes on the X-chromosome, 
that appear to be “ancient” meiotic drivers (Aravin et al. 2001, 2004; 
Courret et al. 2019; Chen et al. 2025).

Under a simple co-evolutionary arms race, one might predict 
that proteins of the piRNA machinery would adapt at a higher 
rate in species with greater TE content. Under the genomic auto-
immunity hypothesis, one might instead predict similar rates in 
species with high and low TE content since what matters is the 
,uctuation rather than the current TE burden. Interestingly, a 
previous study (Castillo et al. 2011) indicated that the rate of evo-
lution in the piRNA machinery (in dN/dS) is slower in species with 
higher TE content. However, a limitation of that study was that es-
timates for dN/dS were obtained from divergence times corre-
sponding to tens of millions of years, but genomic TE estimates 
corresponding to current time. A better approach to measuring re-
cent selection on the piRNA machinery is to use a McDonald– 
Kreitman (MK) test (McDonald and Kreitman 1991). Using this ap-
proach, we sought to compare evolution of the piRNA pathway in 
D. melanogaster to that of species with much greater TE content: 
Drosophila ananassae and Drosophila willistoni.

Several challenges arise from comparing patterns of adapta-
tion across species using the MK test. Demography and divergence 
times can have a complex impact on patterns of polymorphism 
and divergence (Ohta 1993; Welch 2006; Hughes 2007; Elyashiv 
et al. 2010; Akashi et al. 2012; Keightley and Eyre-Walker 2012). 
Also, comparing the distributions of summary statistics based 
on ratios can be challenging when there are low values in denomi-
nators (Stoletzki and Eyre-Walker 2011). Hence, we employed a 
simplived nested likelihood-framework to compare patterns of di-
vergence and polymorphism across species. Rather than estimate 
selection coefvcients or compute summary statistics, we devel-
oped an approach to ask a simpler question: For species with higher 
TE content, is there a signivcantly greater excess of nonsynon-
ymous divergence in the piRNA machinery (relative to polymorph-
ism) compared with all other genes? This approach enables a 
hypothesis testing framework based on the likelihood-ratio test 
(LRT) using the raw data of divergence and polymorphism.

Materials and methods
Strains and sequencing
For D. melanogaster population genomic data, we obtained 
next-generation sequencing data from NCBI (Pool et al. 2012; 
Supplementary Table S1). The Drosophila simulans near-outgroup 
used in analyses is from the w501 strain (Hu et al. 2013). The 
Drosophila yakuba far-outgroup used in our analyses is the publicly 
available genome assembly available on Flybase (Clark et al. 2007). 
D. ananassae, Drosophila bipectinata, and Drosophila atripex strains 
were kindly provided by the UCSD stock center and Artyom 
Kopp. D. willistoni, Drosophila paulistorum, and Drosophila nebulosa 
strains were kindly provided by the UCSD stock center, Jenny 
Gleason and Jeff Powell. Additional strain information is provided 
in Supplementary Table S1. DNA was extracted with the 96-well 
Qiagen DNeasy Blood and Tissue Kit. Libraries were prepared 
with the Illumina Nextera kit and 100 bp paired end sequencing 
was performed on an Illumina HiSeq2000.

Read mapping, alignments, and sequence 
analysis
Reference-based genome assemblies of 6 European and 9 
sub-Saharan African strains of D. melanogaster were generated 
using next-generation short-read data from the NCBI SRA (Pool 

et al. 2012). A list of strains and their respective SRA IDs are pro-
vided in the Supplementary Table S1. We downloaded the SRA 
vles using the fastq-dump tool and independently evaluated 
and verived the read qualities using FastQC. Paired-end reads 
were then mapped to the D. melanogaster genome assembly (ver-
sion r6.28) using the “aln/sampe” functions of the BWA aligner 
using default settings (Li and Durbin 2009). Resulting individual 
BAM vles were merged and sorted with SAMTOOLS (Li et al. 
2009). Variants were called using the POPBAM software with de-
fault settings (Garrigan 2013). Gene alignments were then con-
structed for the longest transcript per gene from the FlyBase 
mRNA annotations, using the PERL script, PBsnp2fa.pl (https:// 
github.com/skingan/PBsnp2fa.pl). For D. melanogaster, ancestral 
and derived states were then inferred by constructing a 
gene-by-gene alignment for every gene using D. simulans w501 
strain (Hu et al. 2013) as a near-outgroup and D. yakuba strain 
Tai18E2 (Clark et al. 2007) as a far-outgroup. The CDS for every 
gene was extracted from the population genomic data after the 
polymorphisms were reconstituted from the POPBAM output. 
Individual genes were then extracted into FASTA format to pro-
vide alignment-ready FASTA entries for every gene, along with a 
near and far outgroup orthologs. The alignment was performed 
using MUSCLE aligner (Edgar 2004), and the alignments were cre-
ated with respect to the D. melanogaster reference as a template. 
Thus, if there were any gaps in the D. simulans or D. yakuba out-
group, those sequences were removed in all species, ensuring 
that the alignment is in-frame after removing gaps. Likewise, if 
there were gaps in D. melanogaster reference due to insertions in 
D. simulans or D. yakuba, those nucleotides were removed in all 
species to maintain an in-frame alignment. The gaps were re-
moved using the “remove_columns” (gaps) function implemented 
in the Bio::AlignIO CPAN module. The resulting alignments were 
thoroughly inspected for all piRNA pathway genes, and the other 
alignments were manually spot-checked for quality using the 
Geneious software. These gene-by-gene alignments were then 
used to obtain variant counts using the CDS2SFS.pl PERL script 
(https://github.com/skingan/CDS2SFS), providing an unfolded 
site-frequency spectrum (SFS).

For D. ananassae and D. willistoni, we collected population gen-
omic data by performing Nextera 100 bp paired-end Illumina se-
quencing. We constructed reference-based genome assemblies by 
aligning the paired-end reads to reference genomes for D. ananassae 
(version r1.05) and D. willistoni (version r1.05) downloaded from 
FlyBase (Öztürk-Çolak et al. 2024), using methods described above 
for our D. melanogaster analyses. For D. ananassae gene-by-gene 
alignments, D. atripex was used as a near outgroup and D. bipectina-
ta was used as a far outgroup. Similarly, for D. willistoni, D. paulistor-
um was used as a near outgroup and D. nebulosa was used as a far 
outgroup. Finally, we obtained variant counts and SFS using the 
CDS2SFS.pl PERL script.

Statistical analysis
Likelihood model
Analysis was restricted to strict 1:1:1 orthologs. Unfolded SFS va-
lues were collapsed into 2 classes—nonsynonymous and syn-
onymous. The grand sum of nonsynonymous and synonymous 
variants (both polymorphic and divergent and across all 3 species) 
was used to calculate the baseline global nonsynonymous:syn-
onymous (N:S) odds. Singletons were retained since it is not clear 
how a uniform cutoff could be employed across species with dif-
ferent population histories and divergence times. Moreover, while 
low-frequency mildly deleterious variants can lead to biased 

2 | J. P. Blumenstiel et al.
D

o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
3
jo

u
rn

a
l/a

rtic
le

/1
5
/4

/jk
a
f0

1
7
/8

0
2
9
6
5
7
 b

y
 W

e
s
le

y
 B

irth
c
a
re

 C
tr u

s
e
r o

n
 0

7
 O

c
to

b
e
r 2

0
2
5

http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkaf017#supplementary-data
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkaf017#supplementary-data
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkaf017#supplementary-data
https://github.com/skingan/PBsnp2fa.pl
https://github.com/skingan/PBsnp2fa.pl
https://github.com/skingan/CDS2SFS


estimates of the fraction of nonsynonymous substitutions that 
are adaptive, the objective of this work is hypothesis testing rather 
than parameter estimation. From a set of 8,747 1:1:1 orthologs, 31 
genes from (Ozata et al. 2019) were selected to represent the piRNA 
pathway. The cytoplasmic components were aub, fs(1)Yb, shu, spn- 
E, vls, csul, Hen1, tej, krimp, BoYb, armi, SoYb, ago3, zuc, vret, qin, 
minotaur, papi, Gasz, and Nbr. The nuclear components were 
piwi, mael, del, cuff, rhino, wde, Panx, arx, moonshiner, bootlegger, 
and Nxf2. Vasa, tapas, tudor, UAP56, Hsp83, and Ci were excluded 
either due to challenges in detecting clear orthologs or concerns 
about overlapping non-piRNA function.

The likelihood model was implemented in R (Supplementary 
Material S2). Using a likelihood framework allows a ,exible ap-
proach to nested hypothesis testing because any number of 
nested models can be compared. Maximum-likelihood (ML) NS:S 
odds estimates were obtained by using the probability of success 
P, equal to odds/(1 + odds) and the likelihood of the data for a given 
gene was determined using the binomial probability. For example, 
for a gene with 4 nonsynonymous (NS) polymorphisms and 2 syn-
onymous (S) polymorphisms, conditional on 6 (N) variants, the ML 
estimate of the NS:S odds are 4:2 (2) and the ML estimate of P = 2/3. 
In turn, the likelihood under the ML estimate is obtained using the 
binomial probability, as such:

N!
NS!(N − NS)!

pNS(1 − p)(N−NS) = 6!

4!2!
2/341/32 

For the entire data set, a global NS:S odds estimate α (0.308) was ob-
tained by summing all nonsynonymous and synonymous variants, 
both for divergence and polymorphism, across all 3 species. This 
global estimate is not to be interpreted as an average value across 
all individual genes since some genes will have many more counts 
than others and contribute more to this estimate. Rather, it is to be 
considered a baseline that an odds modiver β adjusts accordingly 
for different partitions of the data. For a single gene, as above, 
the likelihood, with P being β→α/(β→α + 1) , is given as:

L(β|α, NS, N) = N!
NS!(N − NS)!

β → α
β → α + 1

􏼡 􏼢NS

1 − β → α
β → α + 1

􏼡 􏼢􏼡 􏼢(N−NS) 

where NS is the nonsynonymous variant count and (N – NS) is 
the synonymous variant count for either divergence or poly-
morphism. The ML estimate of modiver β (and model likelihood) 
was determined through numerical optimization of the 
log-likelihood function, summed in a gene-wise manner, in R 
using the optim() function. For genes where both nonsynon-
ymous and synonymous values were 0, the likelihood (condi-
tional on N = 0) was set equal to 1 (log-likelihood = 0) and the 
summed log likelihood is given by iterating over all genes, 
across divergence, polymorphism, species and class (piRNA or 
not piRNA). For a single value of β across the entire data set, 
this would be given as:

ln(L(β|α, NS, N)) =
􏼣

i

􏼣

j

􏼣

k

􏼣

l

ln(L(β|α, NSijkl, Nijkl)) 

where the summation of i, j, k, and l is over all 3 species (i), with 
respect to divergence and polymorphism ( j), with each class (k, 
piRNA or non-piRNA) across all genes within the respective 
gene class (l ).

Values of β could then be evaluated for different partitions of 
the data. For example, to consider a specivc single value of β for 
each species, ignoring the difference between polymorphism 

and divergence ( j) and gene class (k), where l iterates over all 
genes, the full log-likelihood would be equal to:

ln(L(βmel, βana, βwil|α, NS, N))

=
􏼣

j

􏼣

k

􏼣

l

ln(L(βmel|α, NSmel,jkl, Nmel,jkl))

+
􏼣

j

􏼣

k

􏼣

l

ln(L(βana|α, NSana,jkl, Nana,jkl))

+
􏼣

j

􏼣

k

􏼣

l

ln(L(βwil|α, NSwil,jkl, Nwil,jkl)) 

As expected, for the entire data set, the single ML estimate for β 
was essentially 1 (Fig. 2a). Estimates of β were further obtained 
for different partitions of the data indicated by subscript. For ex-
ample, βana.wil.div would indicate the NS:S modiver value for diver-
gence for D. ananassae and D. willistoni alone, for all genes 
irrespective of class (piRNA or non-piRNA).

Model testing was performed by comparing the likelihoods un-
der different models, with the likelihood test statistic equal to 
2(ln(Max.Like Model2) − ln(Max. Like Model1) and the P-value de-
termined using the χ2 distribution with degrees of freedom equal 
to the number of additional parameters.

Hypothesis testing by bootstrap
Bootstrap support was obtained with gene-wise sampling with re-
placement for the entire data set, permuting the counts for the 31 
piRNA genes and the rest of the genes separately. For each of these 
permutations, ML estimates of χ and ζ were obtained. A P-value for 
a difference was determined considering the proportion of gene- 
wise permutations that showed a contrast in the opposing direc-
tion of the ML estimates from the unpermuted data.

Results
Compared with D. melanogaster, D. ananassae, and D. willistoni have 
greater TE abundance (Clark et al. 2007; Kim et al. 2021). Therefore, 
we performed branch-specivc MK-like analysis from these 3 spe-
cies to compare patterns of recent divergence in the piRNA machin-
ery. For D. melanogaster, we used available sequences (Pool et al. 
2012; Supplementary Table S1). For D. ananassae and D. willistoni, 
we sequenced strains kindly provided by Artyom Kopp and Jeff 
Powell (Strain information in Supplementary Table S1). For D. mel-
anogaster, branch-specivc substitutions were estimated using D. si-
mulans as a near outgroup and D. yakuba as a far outgroup. For D. 
ananassae, D. atripex was used as a near outgroup and D. bipectinata 
was used as a far outgroup. For D. willistoni, D. paulistorum was used 
as a near outgroup and D. nebulosa was used as a far outgroup. From 
these sequences, nonsynonymous and synonymous polymorph-
ism and branch-specivc divergence was measured for each species 
for 8,747 strict 1:1:1 orthologs, including 31 genes that are compo-
nents of the piRNA machinery (Supplementary Table S3).

Hypothesis testing was performed using a likelihood-ratio 
based framework (Fig. 1) by determining the likelihood of the 
data (Fig. 1a) under different estimates of the N:S odds. 
Likelihoods were calculated using the binomial, with the esti-
mated N:S odds value being used to determine binomial

Probabilities(P = odds/(1 + odds)) 

The simplest version of the model estimated a single odds par-
ameter for all genes and species, equal to the cumulative sum 
(both polymorphic and divergent) for nonsynonymous variants 
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divided by the cumulative sum of synonymous variants. This glo-
bal odds estimate (nonsynonymous: synonymous) was equal to 
0.308 and was used as a baseline that was scaled considering add-
itional factors. We vrst tested whether this global N:S odds varied 
across species. This involved calculating the likelihood of the data 
under models in which each species had a single modiver of the 
baseline odds estimate. The likelihood of the data (Fig. 1a) was 
maximized by adjusting the species level odds modiver (Fig. 1b, 
in gray). This approach was further extended to consider addition-
al modiver parameters. The most parameter rich model was that 
which included the baseline odds estimate and nested modiver 
parameters down to the level of species (3 parameters), diver-
gence/polymorphism (2 parameters), and piRNA/other (2 para-
meters, for a total of 12 additional parameters).

Figure 2 indicates the results from the model testing performed 
to capture species-level properties. Nested LRT found strong sup-
port for a model with 6 unique values of β, for divergence and poly-
morphism N:S odds for each of 3 species (Fig. 2a, vnal selected 
model parameters in red, Fig. 2b–d, structure of nested testing). 
Interestingly, N:S odds modivers for divergence are signivcantly 
lower in D. ananassae (βana.div = 0.693) and D. willistoni (βana.div =  
0.517) compared with D. melanogaster (βmel.div = 1.22). A similar 
contrast with respect to these species has been independently 
noted with PAML (Heger and Ponting 2007; Castillo et al. 2011). 
We also found signivcant, but very minor, differences in the N:S 
odds for polymorphism, (βmel.poly = 1.105, βana.poly = 1.207, βwil.poly 

= 1.1313). Overall, this indicates that the genome-wide patterns 
of population level constraint on coding sequences are similar 
across species, despite differences in the N:S odds for divergence. 
The reason for this difference is not understood.

Next, we sought to determine how N:S divergence and poly-
morphism differs between components of the piRNA pathway 
and all other genes. Consistent with previous studies, hypothesis 
testing (Fig. 3) reveals signivcant support for a higher value of 
N:S divergence in the piRNA machinery of D. melanogaster 
(βmel.div.piRNA = 3.543) compared with all other D. melanogaster 
genes (βmel.div.other =1.209). Likewise, the selected model supports 
greater divergence odds modivers for the piRNA machinery in D. 

ananassae (βana.div.piRNA = 1.346; βana.div.other = 0.692) and D. willisto-
ni (βwil.div.piRNA = 1.026; βwil.div.other = 0.516). However, compared 
with other genes, there is a greater excess in the piRNA machinery 
of D. melanogaster compared with the other 2 species with greater 
TE load (D. melanogaster: βmel.div.piRNA/βmel.div.other = 2.94; D. ananas-
sae: βana.div.piRNA/βana.div.other = 1.945; D. willistoni: βwil.div.piRNA/ 
βwil.div.other = 1.988). After further testing, the vnal selected model 
supported a single modiver of the N:S divergence odds in D. mela-
nogaster (βmel.div.piRNA = 3.543) and a single joint value for D. ana-
nassae and D. willistoni (βana.wil.div.piRNA = 1.306). Overall, the vnal 
selected model shows a higher N:S divergence odds in the piRNA 
machinery of D. melanogaster relative to other genes in the gen-
ome, even though D. melanogaster has the lowest TE burden.

The MK test compares divergence to polymorphism. Therefore, 
we separately evaluated N:S polymorphism odds across species 
and gene class (Fig. 4). The model supported a single modiver for 
the piRNA machinery of all 3 species (βmel.ana.wil.poly.piRNA = 2.67) 
and distinct but similar ones for each species for the remaining genes 
(βmel.poly.other = 1.100; βana.poly.other = 1.201; βwil.poly.other = 1.128). In con-
trast to the divergence N:S odds, the N:S polymorphism odds for the 
piRNA machinery and other genes is similar across all 3 species.

One general concern about the approach we have taken is that 
we seek to obtain a single estimate for the N:S odds by aggregating 
data across many genes, either the piRNA machinery or all other 
genes in the genome. This can be problematic for several reasons. 
First, if there is underlying variation in the N:S odds across genes, 
then genes with more variant counts will in,uence the estimate of 
N:S more than genes with few variant counts. For example, con-
sider this possibility for divergence. Suppose 1 piRNA gene had 
100 divergent variants, 75 of which were nonsynonymous and 
25 were synonymous. If 30 remaining piRNA genes each had 2 di-
vergent variants (1 nonsynonymous and 1 synonymous), the N:S 
estimate would be overwhelmingly driven by the 1 single gene 
with 100 divergent variants. One could very reasonably argue 
that this is problematic. However, it may be noted that if one is 
less interested in estimating an average of N:S odds across each 
individual gene, and more interested in measuring the total pro-
portion of nonsynonymous divergence, relative to synonymous 

a

b

Fig. 1. Data structure and model testing approach. a) Structure of data. For each gene (piRNA and other), counts of nonsynonymous divergence (Dn), 
nonsynonymous polymorphism (Pn), synonymous divergence (Ds) and synonymous polymorphism (Ps) were determined. b) Structure of nested model 
testing. A baseline N:S odds (α) from the entire data set was established and nested modivers (β) were evaluated using the binomial. div, divergence; poly, 
polymorphism; pi, piRNA genes; o, other genes.
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divergence, across an entire pathway, then singular codons across 
the pathway, however distributed among different genes, may be 
more relevant. A related concern is Simpson’s paradox. By sum-
ming contingency tables across genes (this approach bins counts 
across genes to estimate N:S odds), even if individually each table 
has the same odds-ratio, one can obtain odds-ratios that are dif-
ferent (Shapiro et al. 2007; Stoletzki and Eyre-Walker 2011). To 
mitigate against these problems, we took several approaches. 
First, we performed gene-wise bootstrapping to ensure results 
were not driven by a few genes with many counts and sought to 
determine how the N:S divergence to N:S polymorphism odds- 
ratio varies as a function of gene class. In particular, for each spe-
cies, we sought to estimate the following parameter χ:

χ =

Odds.Divergence.piRNA
Odds.Polymorphism.piRNA

Odds.Divergence.Other
Odds.Polymorphism.Other 

We obtained ML estimates of χ for each permutation (each permu-
tation was obtained by sampling, with replacement, the 31 piRNA 

genes and, separately, the other genes) under the selected model 
(Fig. 5a). The estimate of χ is lowest in D. ananassae, intermediate in 
D. willistoni and highest in D. melanogaster. The bootstrap estimate 
for χ obtained from the selected model for D. ananassae is signiv-
cantly lower than that of D. melanogaster (χmel = 1.232; χana =  
0.874 ; P = 0.01658). Even though the estimate of χ for D. willistoni 
was also lower than that of D. melanogaster, the difference was 
not signivcant (χwil = 1.099; P = 0.2437). Under the selected model, 
these results reject a higher value of χ in D. ananassae vs D. 
melanogaster.

Excluding polymorphism, we also considered estimates of the 
odds-ratio for branch-specivc N:S divergence in the piRNA ma-
chinery relative to other genes. We designate this odds-ratio ζ:

ζ = Odds.Divergence.piRNA
Odds.Divergence.Other 

Figure 5a shows how this estimate varies across the 3 species. As 
seen for χ, estimates of ζ in D. ananassae are signivcantly lower 
than that of D. melanogaster (ζmel = 2.937; ζana = 1.915; P =  
0.00374). Again, estimates for D. willistoni are intermediate, 

a b

c

d

Fig. 2. Model testing for differences in the N:S odds across each of the 3 species with respect to divergence and polymorphism. a) Colors on the left indicate 
nested models being tested against models indicated above. Yellow indicates a single parameter model, green indicates a 2-parameter model and blue 
indicates a 3-parameter model. Three-parameter models were tested against the 2-parameter model with the highest likelihood. P-values were 
determined based on the LRT statistic, using the χ2 distribution with degrees of freedom equal to the number of additional parameters. In all cases, the 
number of additional parameters for each test was equal to 1. Red indicates the parameters of the vnal model selected. Here, a distinct value for N:S odds 
was determined for divergence and polymorphism for each species (6 parameters). b–d) Structure of LRT. Red arrows indicate a nested LRT that favors an 
additional parameter. Red text indicates the vnal selected parameters for the chosen model. b) Considering a single N:S odds across the whole data set, 
testing supports 1 parameter for D. melanogaster and 1 parameter for D. ananassae/D. willistoni. Further model testing supports 2 N:S parameters for D. 
melanogaster, 1 for divergence and 1 for polymorphism. c) Considering support for a single parameter for D. ananassae/D. willistoni, we found support for 
distinct shared parameters for divergence and polymorphism. d) Considering support for distinct parameter estimates for divergence and polymorphism 
shared between D. ananassae/D. willistoni, we vnd further support for distinct divergence and polymorphism for each species. Final model choice is shown 
with 6 parameters in red text. This justived subsequent testing in Figs. 3 and 4.
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though not signivcantly lower than that of D. melanogaster (ζwil =  
2.565; P = 0.1979).

Due to the limitations of the selected model, with a shared joint 
estimate of polymorphism odds between D. ananassae and D. will-
istoni, we also evaluated estimates of χ and ζ under a full model 
where estimates were obtained only from data from individual 
species. As expected (Fig. 5b), variances in the estimates are in-
creased due to reduced precision for estimates of polymorphism 
odds for the piRNA machinery in D. ananassae and D. willistoni. 
Thus, for the full model, no contrast in estimates of χ (χmel =  

1.143; χanal = 0.955; χwil = 1.072) across species is signivcant (χmel 

vs χana, P = 0.2257; χmel vs χwil, P = 0.363; χana vs χwil, P = 0.4506). 
However, when only ζ is evaluated, the estimate for D. ananassae 
(ζana = 1.968) is signivcantly less than that of D. melanogaster (ζmel 

= 2.937; P = 0.006). Other contrasts were not signivcant (ζmel =  
2.937 vs ζwil = 2.134, P = 0.126; ζanal = 1.968 vs ζwil = 2.134, P =  
0.468). Thus, even though the full model was not selected by 
LRTs, the estimate of ζ for D. ananassae is signivcantly lower 
than that of D. melanogaster. Thus, we can conclude that for D. ana-
nassae and D. melanogaster, increased TE content is associated with 

a b

c

d

Fig. 3. Model testing for differences in the N:S divergence odds across each of the 3 species with respect to piRNA genes and other genes. a) Colors on the 
left indicate nested models being tested against models indicated above. Yellow indicates a single parameter model, green indicates a 2-parameter model 
and blue indicates a 3-parameter model. Three-parameter models were tested against the 2-parameter model with the highest likelihood. P-values were 
determined based on the LRT statistic, using the χ2 distribution with degrees of freedom equal to the number of additional parameters. In all cases, the 
number of additional parameters for each test was equal to 1. Red indicates the parameters of the vnal model selected. Here, a distinct value for N:S odds 
was chosen for divergence in the piRNA machinery of D. melanogaster and a lower shared value was chosen for D. willistoni and D. ananassae. Unique N:S 
odds were selected for all other genes for each species. b–d) Structure of LRT. Red arrows indicate a nested LRT that favors an additional parameter. Red 
text indicates the vnal selected parameters for the chosen model. b) Considering support for a 6-parameter model of divergence and polymorphism for 
each species (Fig. 2) hypothesis testing vnds support for distinct divergence parameters for the piRNA machinery of each species, compared with other 
genes. c) To ensure robust nested testing, we explicitly tested support for a unique divergence parameter across the piRNA machinery of each species, 
and vnd support for a unique parameter estimated for D. melanogaster, but a shared estimate for D. ananassae and D. willistoni. d) Further nested 
hypothesis testing for other genes vnds support for a unique divergence parameter for each species. Final model choice is shown with 5 parameters in red 
text.
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a lower rate of nonsynonymous divergence in the piRNA machin-
ery compared with other genes.

This bootstrapping approach does not fully mitigate against 
Simpson’s paradox if, for example, a modest number of genes 
with high variant counts, as a group, are skewed toward a higher 
N:S ratio. Again, this is a concern if one is seeking to obtain an 
average of the N:S odds across a number of genes and is not direct-
ly interested in simply the bulk N:S odds across an entire pathway, 
independent of how this divergence is distributed across the genes 
in the pathway. One way to mitigate against bias in the estimate of 
the average value of the neutrality index (NI) across a group of 

genes has been proposed, so we examined this as well (Stoletzki 
and Eyre-Walker 2011). The NI is devned as (Pn/Ps)/(Dn/Ds) where 
P and D indicate polymorphism and divergence, respectively, for 
nonsynonymous (n) and synonymous (s) variants (Rand and 
Kann 1996). A version of the NI designated NITG (Stoletzki and 
Eyre-Walker 2011) provides a weighted average of the NI across 
multiple genes and has reduced bias in estimating the average 
odds-ratio. In our case, we are interested in the inverse of NI 
(Dn/Ds)/(Pn/Ps), so we determined 1/NITG using this approach. 
There is low divergence for D. willistoni, leading to an excess of 
zero values, so we focused solely on 1/NITG for D. melanogaster 

a b

c

d

Fig. 4. Model testing for differences in the N:S polymorphism odds across each of the 3 species with respect to piRNA genes and other genes. a) Colors on 
the left indicate nested models being tested against models indicated above. Yellow indicates a single parameter model, green indicates a 2-parameter 
model and blue indicates a 3-parameter model. Three-parameter models were tested against the 2-parameter model with the highest likelihood. P-values 
were determined based on the LRT statistic, using the χ2 distribution with degrees of freedom equal to the number of additional parameters. In all cases, 
the number of additional parameters for each test was equal to 1. Red indicates the parameters of the vnal model selected. Here, a single joint value for N: 
S odds was chosen for polymorphism in the piRNA machinery of all 3 species. Unique, albeit highly similar, N:S polymorphism odds were selected for all 
other genes for each species. b–d) Structure of LRT. Red arrows indicate a nested LRT that favors an additional parameter. Red text indicates the vnal 
selected parameters for the chosen model. b) Considering support for a 6-parameter model of divergence and polymorphism for each species (Fig. 2), 
hypothesis testing vnds support for distinct polymorphism parameters for the piRNA machinery of each species, compared with other genes. c) To ensure 
robust nested testing, we explicitly tested support for a unique polymorphism parameter across the piRNA machinery of each species, but only vnd 
support for a single parameter estimated for D. melanogaster, D. ananassae and D. willistoni. d) Further nested hypothesis testing for other genes vnds 
support for a unique, albeit highly similar, parameter for each species. Final model choice is shown with 4 parameters in red text.
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and D. ananassae. The estimate of 1/NITG for the piRNA machinery 
of D. melanogaster is 1.238 and, for D. ananassae, is 0.856. Since va-
lues of 1/NITG >1 indicate an excess of nonsynonymous 

divergence, and values <1 indicate a depletion, this supports the 
conclusion that despite lower repeat abundance, D. melanogaster 
has a stronger signature of positive selection in the piRNA path-
way. However, consistent with our earlier results, for all other 
genes in D. melanogaster, we also estimate a value of 1/NITG (0.88) 
that is higher than that observed for D. ananassae (0.566). If we nor-
malize to these genome wide values, (1/NITG.piRNA)/(1/NITG.other) is 
greater in D. ananassae (1.513) compared with D. melanogaster 
(1.401). Nonetheless, while the D. ananassae piRNA machinery 
shows a greater amount of nonsynonymous divergence compared 
with background, a value of 1/NITG for the piRNA machinery of D. 
melanogaster that is about 45% greater than that in D. ananassae is 
not consistent with the hypothesis that higher repeat content in D. 
ananassae drives a higher rate of positive selection compared with 
D. melanogaster.

Finally, we sought to determine if evolution might be distinct be-
tween nuclear and cytoplasmic components of the piRNA machin-
ery (see Materials and methods for designations). Focusing only on 
divergence and again excluding D. willistoni due to low divergence, 
we performed LRTs to identify the preferred model, considering 
modiver parameters for species and cellular compartments 
(Fig. 6). The selected model favored a single parameter value for 
D. ananassae piRNA machinery (1.3455) and distinct values for the 
D. melanogaster piRNA machinery in the cytoplasm (3.0792) and 
the nucleus (4.7276). By normalizing these values against the back-
ground estimates, we see that the nuclear piRNA machinery of D. 
melanogaster contributes most to the differences between D. melano-
gaster and D. ananassae ζ for the piRNA machinery (ζana.piRNA = 1.95, 
ζmel.cyt = 2.55, ζmel.nuc = 3.91).

Discussion
Multiple studies have shown that the piRNA machinery of 
Drosophila has a strong signature of positive selection, but the 
cause of this pattern is unknown. Here, we develop a hypothesis 
testing approach to test the hypothesis that the piRNA machinery 
will show a greater signature of positive selection in species with 
greater TE content. This approach is a bit different than other ex-
tensions of the MK test, which seek to measure key parameters of 
natural selection. For example, a population genetic framework 
known as the Poisson random veld can use a 2×2 table of diver-
gence and polymorphism to obtain an estimate of the selection 
parameter γ, which is the selection coefvcient multiplied by the ef-
fective population size (Sawyer and Hartl 1992; Bustamante et al. 
2002; Sawyer et al. 2007). 2×2 tables of divergence and polymorph-
ism have also been used to estimate the proportion of amino acid 
substitutions driven by positive selection (Smith and Eyre-Walker 
2002) and a metric designated the direction of selection (Stoletzki 
and Eyre-Walker 2011). The approach here is somewhat different 
because it does not estimate population genetic parameters. 
Rather, it takes a simpler approach to nested hypothesis testing 
for differences in the N:S odds. In this way, it is generalizable to 
different levels of nested hypothesis testing, as demonstrated by 
how we tested whether different components of the piRNA ma-
chinery (cytoplasmic or nuclear) contribute to the estimate of 
the N:S odds. However, one must be cautious in the interpretation. 
As discussed, a single estimate of the N:S odds for a set of genes 
will be most strongly in,uenced by genes with greater counts. A 
solution to this is to use an approach such as previously proposed 
(Stoletzki and Eyre-Walker 2011) to obtain an estimate of the aver-
age OR across multiple genes, but this approach lacks a clear 
nested likelihood-based hypothesis testing approach. Therefore, 
it is important to be aware that the estimate from the approach 

a

b

Fig. 5. Bootstrap distributions and signivcance testing of summary 
statistics. a) Bootstrap distributions of summary statistics under the 
selected model, mean indicated by black point. P-values were determined 
by determining the number of times a given permutation of piRNA genes 
and other genes provided a summary statistic difference between 2 
species in the opposing direction to what was observed in estimates 
provided by the selected model. b) Bootstrap distributions of summary 
statistics under the full 12-parameter model, mean indicated by black 
point, P-values were determined by determining the number of times a 
given permutation of piRNA genes and other genes provided a summary 
statistic difference between 2 species in the opposing direction to what 
was observed estimates provided by the full model.
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introduced here may not be an estimate from a set of genes with a 
uniform N:S parameter. Rather, the approach characterizes the 
bulk divergence and polymorphism across a set of genes as if it 
was concatenated into a single gene. This concatenated set ap-
proach is also employed for the asymptotic MK test (Messer and 
Petrov 2013; Haller and Messer 2017), which combines count 
data across many genes. In light of these approaches, it is interest-
ing to consider how combining results from 2 different functional 
domains of a single gene in a MK test may also represent some-
thing similar to summing 2 different contingency tables. For a 
worthwhile discussion of comparing odds across different data 
partitions, see: https://dynomight.net/simpsons-paradox/.

From this study, we make 2 primary conclusions. First, the 
piRNA machinery in D. melanogaster shows a signivcant excess 
of N:S divergence compared with D. ananassae and D. willistoni. 
In addition, the χ parameter that compares the evolution of the 
piRNA machinery to all other genes, normalized by polymorph-
ism, is greatest in D. melanogaster and lowest in D. ananassae, a spe-
cies with higher TE content. Ignoring underlying polymorphism, 
both the selected model and the full model have estimates of ζ 
that are higher than 1 for each of these 3 species (Fig. 5). These re-
sults are consistent with a high rate of adaptation in the piRNA 
machinery of all species, and further, they provide strong support 
for a difference in the strength of selection acting on the piRNA 
machinery of D. melanogaster compared with D. ananassae and D. 
willistoni. These results are also similar to those previously noted, 
with a lower estimate of piRNA machinery dN/dS in species with 
higher TE content (Castillo et al. 2011).

We consider several different models that may explain rapid 
adaptive evolution in the piRNA machinery, and whether these re-
sults reject any particular model or, perhaps, simply provide sup-
port for 1 model over the others. The vrst of these is the TE 
co-evolutionary arms race model. This model proposes that adap-
tation in the piRNA machinery is driven by rounds of antagonistic 
co-evolution between the piRNA machinery and 1 or multiple TE 
families. A second related model, though not co-evolutionary, is 
that the piRNA machinery must constantly adapt to novel strat-
egies employed by newly invading TEs. A third model is the gen-
omic autoimmunity hypothesis. It proposes that, as TE activity 
ebbs and ,ows, selection ,uctuates in the piRNA machinery be-
tween sensitivity to new TEs and specivcity that prevents off- 
target gene silencing. Finally, a fourth model proposes rapid adap-
tation in the piRNA machinery unrelated to TEs but is instead due 

to other functions of the piRNA machinery, such as regulating 
meiotic drive.

These results are not consistent with a simplistic model of 
TE-piRNA machinery co-evolution whereby increased total TE 
abundance (distinct from TE activity and TE diversity) is the driver 
of positive selection. However, results are consistent with other 
more complex versions of this model. In particular, there may 
be ongoing antagonistic co-evolution between, say, 2 TE families 
and the piRNA machinery of D. melanogaster, but, for whatever 
reason, such co-evolution may only occur with 1 TE family each 
in D. ananassae and D. willistoni. In this case, adaptation in the 
piRNA machinery would be driven by antagonistic co-evolution, 
but the strength of the effect on the piRNA machinery would be 
greatest in D. melanogaster, which also happens to have lower TE 
abundance.

These results are also not consistent with a simplistic genomic 
autoimmunity hypothesis. A naïve version of this hypothesis 
would suggest that adaptation in the piRNA machinery would oc-
cur as TE activity both increases and decreases and is thus uni-
form across species. A species with a high TE burden might be 
experiencing a phase of decreasing activity, and a species with a 
low TE burden might be experiencing a phase of increasing TE ac-
tivity. Under a simple model, one might predict that this mode of 
,uctuating selection might be ongoing and thus independent of to-
tal current genomic abundance. However, the results here, com-
bined with a previous study (Castillo et al. 2011), indicate that 
adaptation in the piRNA machinery may not be independent of 
TE burden. In fact, higher TE burden seems to slow down adapta-
tion. Nonetheless, as with the co-evolution model, a more realistic 
version of the genomic autoimmunity hypothesis might still be 
consistent with these results. For example, D. melanogaster may 
be experiencing a recent increase in TE activity, but D. ananassae 
and D. willistoni may be at equilibrium. In this case, higher levels 
of adaptation in the D. melanogaster piRNA machinery may be dri-
ven by a newly increased premium on sensitivity in the piRNA ma-
chinery for detecting newly invading TEs.

We also consider 2 other models to explain the high rate of 
adaptation in the piRNA machinery. The vrst is that while co- 
evolution may not be occurring, the piRNA machinery still experi-
ences antagonism on the part of a newly invading TE family and 
natural selection on the piRNA machinery acts to evade this an-
tagonism. This is similar to the co-evolutionary hypothesis but 
does not require corresponding adaptation in the TE lineage. 

Fig. 6. Model testing for differences in the N:S divergence odds between cytoplasmic and nuclear components of the piRNA machinery in D. melanogaster 
and D. ananassae. Colors on the left indicate nested models being tested against models indicated above. Yellow indicates a single parameter model and 
green indicates a 2-parameter model. Red indicates the parameters of the vnal model selected. Here, a single joint value for N:S odds was chosen for both 
nuclear and cytoplasmic piRNA machinery divergence in D. ananassae. However, unique values were selected for the nuclear and cytoplasmic 
components of the piRNA machinery in D. melanogaster. After normalizing to genome-wide divergence estimates, it is clear that the difference in 
estimates of ζ between D. melanogaster and D. ananassae is primarily driven by nuclear components of the piRNA machinery.
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The second model is that adaptation is driven in the piRNA ma-
chinery not by TEs, but by bouts of meiotic drive that come under 
the control of the piRNA machinery. The Stellate system of “an-
cient meiotic drive” may represent such a system. If similar sys-
tems are absent in D. ananassae and D. willistoni, this may 
explain increased adaptation in the piRNA machinery of D. mela-
nogaster. However, the results here do not directly speak to either 
of these models.

Overall, the results of this study highlight a challenge in using 
evolutionary approaches, rather than mechanistic ones, to dis-
tinguish between models that explain the high rate of adapta-
tion in the piRNA machinery of D. melanogaster. This may be 
because a singular global proxy for “TE challenge” might be in-
appropriate. Perhaps instead of multiple TE families jointly con-
tributing to patterns of molecular evolution, a single active 
family does. More broadly, an implicit assumption for the hy-
pothesis tests here was that the standing estimates of TE load 
and adaptation are the results of a long-term equilibrium pro-
cesses. The simplistic model of antagonistic co-evolution that 
proposed a higher rate of adaptation in D. ananassae and D. will-
istoni assumes that all 3 species are in equilibrium, with those 
carrying a higher TE load experiencing an increased equilibrium 
rate of adaptation. The simplistic model of the genomic auto-
immunity hypothesis relied on the assumption that, independ-
ent of current TE load, all species will be experiencing similar 
levels of ,uctuating selection between sensitivity and speciv-
city, resulting in some stable equilibrium of adaptation that is 
uniform across species.

Importantly, the assumption of equilibrium in evaluating these 
models may be problematic. D. melanogaster has experienced re-
cent range expansion out of Africa and results here and in previ-
ous studies (Heger and Ponting 2007; Castillo et al. 2011) indicate 
that the N:S odds for divergence is greater in D. melanogaster 
than D. ananassae and D. willistoni. Perhaps this is due to adapta-
tion during range expansion. Additionally, while little is known 
about the history of TE dynamics in D. willistoni and D. ananassae, 
non-equilibrium TE dynamics are clearly apparent in D. melanoga-
ster. This has been known since the discovery of the P-element in-
vasion in D. melanogaster that occurred during the 1950s 
(Anxolabehere et al. 1988). Multiple syndromes of hybrid dysgen-
esis reveal a non-equilibrium pattern of invasion, suppression, 
and re-invasion (Blumenstiel 2019). Studies of old strains and mu-
seum samples (Schwarz et al. 2021; Scarpa et al. 2024) have also 
shown that Tirant, Blood, Opus, and 412 elements have also invaded 
D. melanogaster within the past 200 years. Perhaps range expansion 
in D. melanogaster, coupled with new TE invasions, has led to shifts 
of selection both genome-wide and especially on the piRNA machin-
ery. Despite having a high TE burden, D. ananassae and D. willistoni 
may not have been exposed to similar recent shifts. Thus, D. mela-
nogaster might be an outlier here.

Whether this signature of increased adaptation in the piRNA 
machinery of D. melanogaster is driven by a co-evolutionary 
arms race, recent TE invasion, genomic autoimmunity or 
TE-independent mechanisms awaits joint investigation of the 
timing of adaptation and the timing of TE proliferation. This 
may be achieved by comparing patterns of TE invasion with the 
history of adaptation in the piRNA machinery. Recent advances 
in estimating the ancestral recombination graph (Deng et al. 
2024; Lewanski et al. 2024; Nielsen et al. 2025) may provide import-
ant insight into how and when new alleles in the piRNA machin-
ery were selected in the face of TE invasions. A molecular 
analysis of the function of these selected alleles is also likely to 
provide further insight.
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