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Abstract—Interference estimation and mitigation are of high
importance in many applications of array signal processing.
State-of-the-art angle and direction estimation techniques for
digital arrays often rely on computationally-intensive complex
algorithms. This paper introduces a novel delay measurement
based low complexity Angle-of-Arrival (AoA) estimation method
using analog True-Time-Delay (TTD) arrays for suppression
of a single strong interference. The core of our method is
the novel analog Early-Late Correlation (ELC) function that
exhibits linear and odd properties enabling efficient time delay
estimation with leading-lagging detections. Utilizing ELC time-
delay measurements across different antenna elements in a linear
TTD array, the AoA is estimated via a least-squares line-fitting
solution. Interference suppression is achieved through destructive
signal combining after applying proper delays in the analog
domain. Simulations demonstrate the method’s efficacy, achieving
an interference suppression > 40dB for an OFDM interferer
signal with Interference-to-Noise Ratio (INR) > -20dB and
100MHz BW in a 4-element linear TTD array.

Index Terms—Interference, Estimation, Suppression, Delay,
AoA, ELC, linear TTD Arrays

I. INTRODUCTION

In wideband wireless communications systems, one of the
important consideration is the ability to manage strong inter-
ferences along with weak desired signals. With the advance-
ments of antenna array technologies, interference mitigation in
wideband systems can be efficiently performed using spatial
filtering based on AoA. Extensive research has been carried
out on AoA estimation techniques and algorithms [1]–[13]
primarily targeting digital arrays [2], [3], [9], [10] among
which the most well-known and widely-used algorithms are
MUSIC [14] and ESPRIT [15]. Recent research has focused on
optimized techniques for hybrid arrays based on MUSIC and
ESPRIT [5], [7]. Analog TTD arrays have been recently con-
sidered for wideband communications systems at millimeter-
wave frequencies, where novel algorithms for beam-training
and interference nulling have been proposed in [6], [11],
[12]. However these prior works using TTD arrays have not
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Fig. 1: Proposed Architecture

addressed and achieved high accuracy requirements needed for
wideband interference suppression.

In this paper, we introduce a time-domain based AoA es-
timation implemented with analog delay measurements based
on which the analog TTD array can suppress a single-strong
interference. The approach deploys a novel ELC circuitry
in analog wideband TTD arrays that enables low-complexity
time-delay measurements. The proposed algorithm efficiently
measures inter-element spatial delay and uses least-squares al-
gorithm to estimate AoA based on the time-delay progression
exhibited in linear uniform arrays. The new analog correlation
technique, referred as ELC, computes linear odd correlation
function of the delay between two signals. After the time-delay
estimation, the array applies a proper TTD signal alignment
in the analog domain which effectively supresses a wideband
interference source.

The paper is organized as follows. Section II describes the
proposed architecture and methods. The simulation results are
presented in Section III. Section IV concludes the paper and
describes the remaining research problems.

II. PROPOSED ARCHITECTURE AND METHODS

The proposed architecture integrates Delay Estimation and
Correction Unit (DECU), shown in Fig. 1, in an N-element
uniformly spaced linear TTD array to enable autonomous
interference estimation and cancellation. DECU incorporates
an ELC that captures the elements’ pairwise analog correlation
followed by an Analog-to-Digital Converter (ADC) to digitize
the ELC output. A Digital Signal Processor (DSP) uses ADC
data to estimate the inter-element delay and feeds the Delay
Interpolator (DI) to properly control the Delay-Programmable
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Fig. 2: ELC general implementation

Samplers in the TTD array for applying the estimated delay
in the analog domain. In this approach, by sweeping a custom
TTD-applied time delay in each of the elements, the proposed
ELC captures the overall time delay ∆τ between the signals
from different pairs of antenna elements. This delay corre-
sponds to the inherent spatial delay for a given AoA under
uniform antenna elements spacing. The correlation data from
ELC results in a correlation matrix that is used to estimate
the spatial delay. The estimated spatial delay is then used
to destructively combine signals from different antennas in
analog domain for effective interference mitigation. It should
be noted that, for the remainder of this paper, the term
’signal’ refers to ’interference signal,’ unless explicitly stated
otherwise, to ensure brevity and simplicity.

A. ELC

The ELC circuit, shown in Fig. 2 in its general implementa-
tion, is used to compute ϕEL which is simply the subtraction
of two correlation functions named as Early Correlation ϕE

and Late Correlation ϕL respectively:

ϕEL = ϕL−ϕE (1)

ELC is called Early-Late Cross-Correlation (ELXC) when
applied on two different signals, while it is Early-Late
Auto-Correlation (ELAC) when applied on a single signal.
Next, we first discuss the ELXC and then ELAC emphasizing
on their symmetry property as one of the two the key features
of ELC for lead-lag detection exploited in this study.

1) ELXC: According to Fig. 2, we define ELXC, ϕELxy ,
as the ϕEL in (1) for two finite-length signals x[n] and y[n] of
same length Ns where ϕE and ϕL are two cross correlations
in which the samples of the first signal x[n] is leading in the
ϕE and lagging in the ϕL both by same amount k, while the
samples of the second signal, e.g. y[n], is lagging in both ϕE

and ϕL by same amount m:

ϕELxy [k,m] =

Ns−1∑
n=0

x [n+ k] y [n−m]−
Ns−1∑
n=0

x [n− k] y [n−m]

(2)

where k and m are, respectively, called the Early-Late Delay
(ELD) and Main Delay (MD).

Before proceeding, it is worth recalling from [16], [17] the
definitions of discrete-time cross-correlation ϕxy[n] and auto-
correlation ϕyy[n] functions:

ϕxy [n] =

Ns−1∑
m=0

x [m+ n] y [m]

ϕyy [n] =

Ns−1∑
m=0

y [m+ n] y [m]

(3)

where x[m+ n] is a circular shift of x[m], i.e.:

x [m+ n] = x

[
m+ n− ⌊m+ n

Ns
⌋Ns

]
(4)

where, ⌊ ⌋ is the floor function.
According to the cross-correlation definition above, ELXC

in (2) is simplified as:

ϕELxy[k,m] = ϕxy [m+ k]−ϕxy [m− k] (5)

2) ELAC: The definition of ELAC, ϕELyy , is same as
ϕELxy in (2) but for same signals i.e. x[n] = y[n]:

ϕELyy [k,m] =

Ns−1∑
n=0

y [n+ k] y [n−m]−
Ns−1∑
n=0

y [n− k] y [n−m]

(6)

Similar to ELXC, ELAC equation above can be rewritten
based on auto-correlation function ϕyy[n] (3) as below:

ϕELyy[k,m] = ϕyy [m+ k]−ϕyy [m− k] (7)

Utilizing the even property of the auto-correlation function
ϕyy[−k] = ϕyy[k] [16], most important symmetry properties
of ELAC in the above equation are obtained as follows:ϕELyy[−k,m] = −ϕELyy[k,m]

ϕELyy[k,−m] = −ϕELyy[k,m]
(8)

where it is implied that ELAC is an odd function with respect
to each of ELD and MD individually. The odd property of
ELAC is its key feature that distinguishes it from conventional
auto-correlation function, enabling the detection of leading and
lagging signals.

We are interested in viewing ELAC from the perspective
of delay as it relates to a single signal and its delayed
version which is of key interest in our problem. In the next
subsection, a special version of ELAC named Half-Sample
ELAC (HS-ELAC) is introduced and used for the rest of the
paper in which the ELD is set to 1/2 (a fractional delay) and
MD is designed as a variable fractional delay.

It is worth shortly discussing the integer and fractional
delays before proceeding. In discrete-time signal processing
[16], [17], x[n±k] is considered as the delayed x[n] by integer
number ±k. However, delay can also be a fractional delay d,
i.e. x[n ± d] where 0 < |d| < 1. To better understand and
represent the integer and fractional delays in discrete-time,
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Fig. 3: HS-ELAC implemented in the linear TTD array

we consider x[n] as the sampled value of the continuous-time
signal x(t) at time t = nTs:

x[n] = x (nTs) (9)

where Ts is the sampling period. Considering above, the
integer delay k in x[n± k] = x (nTs ± kTs) indicates a time
delay by integer numbers of Ts, i.e. ±kTs, and the fractional
delay d in x[n ± d] = x (nTs ± dTs) implies a time delay
by a fraction of Ts, i.e. ±dTs, which can be any amount of
time smaller than Ts since 0 < |d| < 1. Integer and fractional
delays can also be combined to represent any delay in general
as x[n± k ± d].

Considering discrete-time signals as sampled values of
continuous-time signals in (9), two scenarios for a real time
delay are possible in practice including signal delay and
sampling delay. Signal delay happens when y(t) is delayed
in time by ∆τ , i.e. ŷ(t) = y(t − ∆τ), then sampled at time
t = nTs; while sampling delay happens when y(t) is sampled
by a time delay of ∆τ , i.e. at time t̂ = nTs −∆τ . For both
delay scenarios above, the representation of an arbitrary real
time delay ∆τ in discrete-time signals using (9) is as follows:

ŷ[n] = y

[
n− ∆τ

Ts

]
= y [n− (k + d)] (10)

where k = ⌊∆τ/Ts⌋ is the integer delay and
d = ∆τ/Ts − ⌊∆τ/Ts⌋ is the fractional delay.

B. HS-ELAC for delay estimation

High resolution time-delay estimation requires realization of
a delay function with high gain, as higher gain enhances the
power of the function output (that carries information about
delay) against noise, allowing for improved measurement
accuracy. Another important factor, especially in case of TTD
linear arrays, is the ability to detect leading and lagging signals
which directly imposes the odd property on the function.
Taking advantage of an odd symmetry, HS-ELAC is found
as a well-fit solution in a differential system for time-delay
detection with positive and negative signs indicating leading
and lagging signals.

As briefly mentioned before, HS-ELAC, ϕHSELyy , is a
special case of ϕEL (7) that incorporates an ELD of 1/2,
i.e. k = 1/2 achieved by sampling delays of ±Ts/2, and an
MD of ∆τ/Ts, i,e. m = ∆τ/Ts realized by a sampling delay
of arbitrary real time delay ∆τ :

ϕHSELyy = ϕyy

[
1

2
+

∆τ

Ts

]
−ϕyy

[
1

2
− ∆τ

Ts

]
(11)

where, it is an odd function of ∆τ .
In HS-ELAC, ELD is constant while MD is representing

an unknown real time delay which is meant to be estimated.
The choice of k = 1/2 is mainly made to achieve a
correlation function of delay with a gain very close to its
ideal (highest possible) gain enabling time delay detection
with high accuracy. In contrast, a straight forward option
for ELD is 1, i.e. k = 1 for which the ELAC is called
One-Sample ELAC (OS-ELAC). However, as shown in the
following subsection, the OS-ELAC method provides very
low gain compared to HS-ELAC. Other options for ELD are
k < 1/2 or 1 < k that make hardware implementation of
the sampling delay more complicated and power consuming
[6], [18], [19], as fractional delay k = 1/2 can be realized
by simply inverting the sampling clock using the well-known
and straightforward inverter logic gates, whereas implementing
fractional or integer delays k < 1/2 or 1 < k require highly
complex and power-hungry Phase Interpolator (PI) circuitry
[20], [21].

Following this subsection, we focus on the derivations
of the HS-ELAC function to show its main properties
including gain and oddity. For better understanding, first
we discuss a simplified case followed by a more practical case.

1) Case I: single-tone: A normalized single-tone signal
with a frequency of f and a sampling frequency of fs, i.e.
y[n] = cos [2π (f/fs)n], is the simplest input signal wave-
form for which the HS-ELAC function will be derived. We
utilize Nyquist and Coherent sampling techniques to simplify
analysis resulting in f/fs = Nc/Ns where Ns, number of
samples, is a power-of-2 integer and Nc, number of cycles, is
the greatest prime number ≤ Ns/2.
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In this case, the HS-ELAC function, ϕHSELyy SIN , is
derived from (11) as a sine-wave with respect to ∆τ and of
same frequency as the input signal:

ϕHSELyy SIN = Ns sin

[
π

(
Nc

Ns

)]
sin [2πf∆τ ] (12)

where Ns sin [π (Nc/Ns)] is the sine-wave HS-ELAC gain
G ϕHSELyy SIN . Because, Nc/Ns ≈ (1/2) for a quite large
Ns (i.e. ≫ 1), the gain in (12) is close to Ns. The detailed
analysis of the HS-ELAC derivation for the single-tone case
has been provided in Appendix A.

It is worth mentioning here that the single-tone results in
a similar function as (12) for the OS-ELAC, i.e. k = 1, with
only a slight deference in its gain, G ϕOSELyy SIN , where
a scalar of 2 is added in the argument of the sine function
making it Ns sin [2π (Nc/Ns)]. Thus, as Nc/Ns ≈ 1/2,
G ϕOSELyy SIN ≪ Ns while G ϕHSELyy SIN ≈ Ns

resulting in higher correlation.

2) Case II: Practical Case: Small delay range in wideband
arrays: In practice, we are interested in wideband arrays for
which the delay range is very small resulting in a delay-
bandwidth product much smaller than 1, i.e. ∆τ×BW ≪ 1. In
this case, if ∆τ is small enough to satisfy ∆τ/Ts < 1/2, then
we can use the following linear interpolation for simplicity:

ϕyy

[
1

2
± ∆τ

Ts

]
=

(q − p)ϕyy

[
1
2

]
+ qϕyy

[
1
2
± 1

2

]
q

(13)

where ∆τ/Ts = p/q while p and q are mutually prime
integers. Using above linear interpolation, the HS-ELAC for
any delay ∆τ where ∆τ/Ts < 1/2 is a linear function of the
delay ϕHSELyy LIN derived as follows:

ϕHSELyy LIN =
(
ϕyy [1]−ϕyy [0]

)(
∆τ

Ts

)
(14)

where, the term
(
ϕyy[1]− ϕyy[0]

)
is the linear HS-ELAC gain

G ϕHSELyy LIN .
The ϕHSELyy LIN versus ∆τ relationship in (14) is a

straight line with zero intercept making it a simple relationship
for accurate time delay estimation which is the focus of this
paper.

C. Spatial delay and AoA estimation using HS-ELAC in linear
TTD arrays

In an N-element uniformly spaced linear array, interference
signal impinging on the array from a given AoA creates a
response such that each element experiences a signal delay
τspatial with respect to the previous element. Accurately
estimating τspatial and properly compensating for it enables
wideband interference cancellation in linear TTD arrays, as
we will discuss next. First, we propose a new approach for
estimating τspatial utilizing the ELC circuit in linear TTD
array. Then, we show how a wideband interference source
can be cancelled by using the estimated spatial delay τ̂ spatial.

1) Correlation matrix: The HS-ELAC implemented in the
linear TTD array as shown in Fig. 3 computes the inter-
element pairwise correlation (m, k) while a sampling delay
of τTTD is applied via delay-programmable-samplers on the
mth element. For N-element array we apply HS-ELAC for all
combinations of the element pairs, 1 ≤ m, k ≤ N , and create
a correlation matrix of size N ×N as below:[ (

τTTD,ϕHSELyy LIN
)
mk

]
N×N

(15)

where for each (m, k) element pair the τTTD is swept across a
defined range with a specific resolution. As the TTD delay is
later used to apply the estimated spatial delay for interference
cancellation, its range and resolution is determined based
on the following considerations: range should cover the
expected spatial delay based on the array geometry and
resolution should be set such that the range-to-resolution
ratio, determining the data points per pair measurement, is
high enough to attenuate noise level through averaging.

2) Least-squares estimation: When computing the ELC
correlation, TTD-applied sampling delay τTTD is added on
top of the signal delay τspatial. Therefore, the overall delay
between the element pair (m, k) is:

∆τ (m, k) = τTTD + (m− k) τspatial (16)

where (m− k) scales the spatial delay between the element
pair based on their location in the linear array.

Given the above delay relationship and considering the
linear HS-ELAC function (14), the data points described in
(15) should satisfy the following:

ϕHSELyy LIN =
G ϕHSELyy LIN

Ts

[
τTTD + (m − k) τspatial

]
(17)

We note that the captured correlation matrix data (15) can be
fitted to a straight line that depends on τspatial.

Using the well-known Least-Square approach, we can solve
the line-fitting equation (17) for finding the τ̂ spatial as follows:

τ̂spatial =

(∑
ϕHSELyy LIN

) [
N
∑

τ
2
TTD −

(∑
τTTD

)2]
N
[
N
∑

τTTDϕHSELyy LIN −
(∑

τTTD
) (∑

ϕHSELyy LIN
)]

(18)

Using τ̂ spatial above, AoA can be indirectly recovered as
below:

ˆAoA = arcsin

(
c τ̂spatial

d

)
(19)

where d is the linear array uniform spacing and c is the light
speed in free air.

D. Interference cancellation with TTD alignment

In order for the interference to get suppressed, the
interference signals received at the antenna elements should
be time-aligned and then destructively combined. The time
alignment is realized by inserting a TTD-applied sampling
delay of τ̂ spatial on the leading signal in a set of two
neighboring elements. We first discuss TTD alignment using
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Fig. 4: Averaged ϕOSELyy SIN (Left) and ϕHSELyy SIN (Right)
versus ∆τ for normalized single-tone signal with f = 99.414MHz,
fs = 200MHz, and INR = 10dB.

τ̂ spatial and then focus on the destructive combination for
suppression.

1) TTD alignment: In order to coherently align signals
from all elements in time, a TTD-applied sampling delay of
(N − i) τ̂ spatial is added to the ith element which in addition
to signal delay of (i−1)τspatial results in the following signal
at the antenna element ith element:

ŷi[n] = y

[
n− (i− 1)

(
τspatial

Ts

)
− (N − i)

(
τ̂spatial

Ts

)]
(20)

Considering a delay estimation error of τerr for the esti-
mated spatial delay τ̂ spatial, i.e. τ̂ spatial = τspatial + τerr,
simplifies the above equation as follows:

ŷi[n] = y

[
n− (N − 1)

(
τspatial

Ts

)
− (N − i)

(
τerr
Ts

)]
(21)

Before proceeding, it is worth translating the time-alignment
equation above written in time-domain to the frequency-
domain using Discrete Fourier Transform (DFT) to simplify
the remaining analysis. Therefore, the Ns-point DFT of the
TTD-aligned signal of ith element (21) is as follows:

Ŷi[k] = e
−j
(

2π
Ns

)
k
[
(N−1)

( τspatial
Ts

)
+(N−i)

(
τerr
Ts

)]
Y [k] (22)

where Ns is also the length of signal samples.
For the remainder of this section, we will do the analysis

in frequency-domain.

2) Destructive combination: The first solution for destruc-
tive combination after time-alignment is to simply subtract the
signal of every other element from that of the previous one.
Thus, the first destructively combined signal Ŷ(1)[k] can be
represented in the frequency-domain as follows:

Ŷ(1)[k] =
[
(−1)i−1

]
1×N

×
[
Ŷi[k]

]
N×1

(23)

Using (22) and (23) the first beam-nulling gain
∣∣GBN(1)[k]

∣∣
can be obtained as follows:

∣∣GBN(1)[k]
∣∣ = ∣∣∣∣∣ Ŷ(1)[k]

Y [k]

∣∣∣∣∣ =
∣∣∣∣∣

N∑
i=1

(−1)i−1e

[
j
(

2π
Ns

)
k
(
τerr
Ts

)]
i

∣∣∣∣∣ (24)

In general, destructive combination can happen when half
of the channels’ signals are subtracted from those of the other

Fig. 5: Averaged ϕHSELyy LIN functions for two different nor-
malized signals both with INR = 0dB. Left: two-tone signal at
frequencies f1 = 31.2MHz and f2 = 89.2MHz sampled at
fs = 500MHz. Right: OFDM signal with parameters mentioned in
TABLE II.

half. Additionally, the scalar of the error term in (24), i.e.
[j (2π/Ns) k (1/Ts)] i, is dependent on the element position in
the row i, implying different beam-nulling gains for different
destructive combinations. Therefore,

(
N − 1
N/2

)
unique destruc-

tive combinations in an N-element array, forming Truncated
Hadamard Matrix (THM) [22], result in different beam-nulling
gains. Thus, similar to (23), all possible destructively com-
bined signals using THM are expressed as below:[

Ŷ(m)[k]
]
M×1

=
[
THMmi

]
M×N

×
[
Ŷi[k]

]
N×1

(25)

where, 1 ≤ m ≤ M =
(
N − 1
N/2

)
and THMmi is the (m, i)-th

element of the THM.
Similar to (24) and using (22) and (25), different beam-

nulling gains
∣∣GBN(m)[k]

∣∣ are derived as below:

[∣∣GBN(m)[k]
∣∣]

M×1
=

[∣∣∣∣∣
N∑
i=1

THMmie

[
j
(

2π
Ns

)
k
(
τerr
Ts

)]
i

∣∣∣∣∣
]
M×1

(26)

As shown in previous studies [23], [24], Although different,
multiple beam-nulling gains lead to slightly different gains
for the target interference AoA even if ideally the array steers
toward the interference with no error. Given this fact, the
choice of THM mainly depends on the beam-nulling gain
at the desired signal AoA which is assumed different than
interference AoA. As in this paper the focus is solely on the
interference AoA, we pursue interference cancellation using
only the first beam-nulling gain

∣∣GBN(1)[k]
∣∣.

III. SIMULATION RESULTS

This section presents simulation results to illustrate the
performance of the ELC algorithm in spatial delay estimation
and interference cancellation. Unless stated otherwise, the
following parameters are used for all simulations:

BW Ns TTD Resolution TTD Range
100MHz 1024 2ps [-1ns, 1ns]

TABLE I: Simulation Parameters

Fig. 4 shows the averaged ϕOSELyy SIN and
ϕHSELyy SIN functions where f = 99.414MHz and
fs = 200MHz satisfying Nyquist and Coherent sampling
conditions for the normalized single-tone signal with a INR of
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Fig. 6: ϕHSELyy LIN in linear 4-element TTD array for an OFDM
signal with INR = 0dB and parameters mentioned in TABLE II.

10dB. As the analysis in Section II.B demonstrated, averaged
G ϕHSELyy SIN is unity while averaged G ϕOSELyy SIN

is approximately 0.02 which is much smaller than 1. As it
is obvious in Fig. 4, the higher gain of HS-ELAC compared
to OS-ELAC makes it more resilient to noise, resulting in
improved estimation accuracy when used for time delay
detection.

Shown in Fig. 5 is the averaged ϕHSELyy LIN func-
tions applied on two different normalized signals both with
INR = 0dB; for the left graph, signal is a two-tone at
frequencies f1 = 31.2MHz and f2 = 89.2MHz sampled
at fs = 500MHz while for right graph, an OFDM signal with
following parameters is used:

symbols modulation sub-carriers spacing
2 16-QAM 3276 30kHz

TABLE II: OFDM signal parameters

While the small range of ∆τ in Fig. 5 guarantees the zero-
crossing straight line behavior of HS-ELAC as a straightfor-
ward delay estimation for both two-tone and OFDM signals,
the lower correlation exhibited in OFDM implies a higher time
delay estimation error for this signal.

Fig 6 shows the performance of the proposed method for an
OFDM signal with INR = 0dB and parameters mentioned
in TABLE II in a 4-element linear array with uniform spacing
90mm leading to τspatial = 150ps at AoA = 30◦. Since the
total delay in this case is ∆τ = τTTD + (m− n) τspatial, we
can see that when m ̸= n the zero-crossing straight line is
shifted left or right as much as (m− n) τspatial implying that
horizontal spacing between two neighboring lines is equal to
τspatial. The data points of the line associated with the (m, k)
element pair in this figure form its corresponding element in
the correlation matrix described in Section II.C.

Result of Fig. 6 is used for estimating τspatial = 150ps
based on the linear least-squares technique for straight line
fitting. The Root Mean Square Error (RMSE) of τ̂ spatial
using this approach for OFDM signal with different INRs

Fig. 7: Delay estimation RMSE for τspatial = 150ps across different
INRs for OFDM signal with parameters mentioned in TABLE II.

is shown in Fig. 7. According to this result, the proposed
method estimates the τspatial = 150ps with an RMSE < 18ps
for OFDM signal with INR > −20dB which is equivalent
to a relative estimation error < 12% indicating very high
time-delay estimation accuracy. Using the τ̂ spatial obtained
from result shown in Fig. 7, the interference signal can be
suppressed in the linear array with proper time alignment
followed by destructive combination. Fig 8 shows the INR
of the suppressed interference with time-alignment using
τ̂ spatial and without time alignment (i.e. only destructive
combination) along with the INR of the interference itself
while no suppression is applied. As can be observed in
this figure, while destructive combination without time
alignment only result in an attenuated interferer, our approach
successfully mitigates the interference by lowering down its
power more than 60dB below noise level for original INR
> −20dB. This result shows a suppression > 40dB for
OFDM signal with INR > −20dB implying high interference
suppression level with the ELC technique.

IV. CONCLUSIONS AND FUTURE WORKS

In this work, we present a novel time-delay detection based
approach for AoA estimation and suppression of a single
wideband interferer in linear TTD arrays. Benefiting from
linear and odd properties of correlation, an analog correlator
ELC system architecture has been modeled that exhibits a
linear function of the time-delay between two signals, and
provides the delay polarity indicating leading and lagging
signals. The ELC computations, enabled by controlling the
TTD delays, for different antenna element pairs in a wideband
linear TTD array is derived as a correlation matrix and fitted
into a linear function. The inter-element spatial delay of the
linear array was estimated by solving the line fitting problem
with least-squares approach. The estimated spatial delay was
used for time alignment enabled by TTD circuits followed by
destructive combination to perform interference suppression.
Simulation results demonstrate the efficacy of this approach,
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Fig. 8: Suppressed INR vs. raw INR waveform for OFDM sig-
nal with parameters mentioned in TABLE II in three conditions
including: no suppression i.e. no time alignment and no destructive
combination shown in black, suppression without time alignment and
only with destructive combination shown in green and finally suppres-
sion with time alignment using τ̂spatial and destructive combination
shown in blue.

achieving a time-delay estimation accuracy with an RMSE <
18ps (equivalent to a relative error < 12%) and interference
suppression > 40dB for an OFDM signal with 100MHz band-
width and INR > -20dB. Future work will explore extending
this method to multi-source systems involving the cancellation
of multiple interference signals.
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APPENDIX A
DERIVATION OF HS-ELAC FUNCTION (12) FOR SINGLE

TONE

Using the single tone sinusoid y[n] = cos [2π (f/fs)n]
where f/fs = Nc/Ns, mentioned in Section II.B, as the
input signal, we can start deriving ϕHSELyy SIN from (11)
as below:

ϕHSELyy SIN = ϕyy

[
1

2
+

∆τ

Ts

] ∣∣∣∣∣
y=cos

−ϕyy

[
1

2
−

∆τ

Ts

] ∣∣∣∣∣
y=cos

Taking advantage of the ELAC original definition (6)
while k = 1/2 and m = ∆τ/Ts, the above equation for
ϕHSELyy SIN is rewritten as follows:

ϕHSELyy SIN =

Ns−1∑
n=0

cos
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2π
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Representing the above summand as s(n), we have:

ϕHSELyy SIN = sin

[
π

(
Nc

Ns

)]Ns sin [2πf∆τ ] +
Ns−1∑
n=0

s(n)


(27)

Using symmetry properties of sin function, it can be easily
shown for the summand s(n) that the

(
Ns

2 +m
)
−th term is

equal to the m−th term i.e. s
(
Ns

2 +m
)
= s (m). Then, using

this property of the summand s(n) we will rewrite the sum in
(27) as below:

Ns−1∑
n=0

s(n) =

Ns
2

−1∑
m=0

{
s(m) + s

(
Ns

2
+m

)}
= 2

Ns
2

−1∑
m=0

s(m)

Similarly, for the summand s(m) above we have
s
(
Ns

4 + k
)
= −s (k) that makes it equal to zero:

Ns
2

−1∑
m=0

s(m) =

Ns
4

−1∑
k=0

{
s(k) + s

(
Ns

4
+ k

)}
= 0

Finally, having the sum in (27) equal to zero yields the
following for ϕHSELyy SIN:

ϕHSELyy SIN = Ns sin

[
π

(
Nc

Ns

)]
sin [2πf∆τ ]

Thus, the derivation is now complete.
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