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Abstract

Augmented Reality (AR) technology opens up exciting possibilities
in various fields, such as education, work guidance, shopping, com-
munication, and gaming. However, users often encounter usability
and user experience issues in current AR apps, often due to the
imprecise placement of virtual objects. Detecting these inaccuracies
is crucial for AR app testing, but automating the process is challeng-
ing due to its reliance on human perception and validation. This
paper introduces VOPA (Virtual Object Placement Assessment),
a novel approach that automatically identifies imprecise virtual
object placements in real-world AR apps. VOPA involves instru-
menting real-world AR apps to collect screenshots representing
various object placement scenarios and their corresponding meta-
data under real-world scenes. The collected data are then labeled
through crowdsourcing and used to train a hybrid neural network
that identifies object placement errors. VOPA aims to enhance AR
app testing by automating the assessment of virtual object place-
ment quality and detecting imprecise instances.

In our evaluation of a test set of 304 screenshots, VOPA achieved
an accuracy of 99.34%, precision of 96.92% and recall of 100%. Fur-
thermore, VOPA successfully identified 38 real-world object place-
ment errors, including instances where objects were hovering be-
tween two surfaces or appearing embedded in the wall.

CCS Concepts

• Software and its engineering→ Software testing and debug-

ging.
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1 Introduction

Augmented Reality (AR) is an emerging technology that overlays
digital content onto users’ view of the real world in real time, cre-
ating an interactive and enriched experience. Its applications span
across different industrial domains, including gaming, education,
healthcare, retail, and entertainment [46, 50, 56, 57, 60, 64]. The
AR market is expected to grow rapidly in the coming years [4],
driven by the increasing accessibility of affordable AR-enabled de-
vices such as smartphones with AR platforms [9] [3] and smart
glasses such as Hololens [5] and Oculus [6]. Additionally, the in-
creasing popularity of AR applications across different industries
also contributes to this growth. Notable examples of popular AR
applications include Pokémon Go [25], Snapchat filters [27], IKEA
Place [22], and Google Translate [19]. These successful AR applica-
tions showcase the potential of AR to transform the way we interact
with the world around us.

Compared with traditional graphical user interface (GUI) apps,
AR apps have a more significant and seamless impact on users’
daily lives. Bugs in AR apps may lead to more severe consequences
as they directly affect users’ interaction with the physical world.
For instance, the misbehavior of an AR driving navigation app may
cause immediate damage to the physical environment surrounding
the users [67]. As shown in Figure 1, an AR navigation app is
displaying a virtual object of a bright green column to indicate the
direction for turning right. However, the virtual object partially
blocks the view of a moving car in front of the driver (highlight
with a red oval), which could potentially influence the driver’s
decision-making and lead to accidents.

Proper placement of virtual objects requires techniques like Si-
multaneous Localization and Mapping (SLAM) [43, 55] or object
recognition [35, 54] to analyze the user’s environment. The de-
tection of surfaces and walls, as well as the precise positioning
and rotation of virtual objects, are critical factors that significantly
impact the quality of virtual object placement.

However, bugs in AR applications and platforms, as well as
limitations in computer vision and sensing techniques, can lead to
miscalculations in the positioning of real-world objects, resulting

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
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Figure 1: An example of improper virtual object placement

Figure 2: An example of a floating and partially visible virtual

object from a real-world AR app

in imprecise placement of virtual objects. These errors may cause
virtual objects to appear misaligned, floating in the air, or even
partially visible, as illustrated in Figure 2.

Early adopters of mobile AR applications have experienced such
issues. For instance, Amazon’s ARView application encountered
problems with placing virtual objects on shiny physical surfaces
and accurately sizing models to fit the physical environment [13].
Similarly, IKEA’s AR application faced issues where virtual objects
would float or drift away from the original anchor point, particularly
in low-light conditions [15]. In this paper, we refer to these issues
as imprecise placement.

Assessing and assuring the quality of an AR application is more
complex compared to traditional software products [68]. AR de-
velopment frameworks such as Unity [8], ARKit [3], and ARCore
[9], provide testing frameworks to assist developers in testing their
AR apps using real or virtual devices and scenes. However, a major
challenge in AR testing is its heavy reliance on human intervention.
While recording and playback[10] have reduced human effort to
some extent by enabling the reuse of scene videos, allowing users to
avoid physically visiting a location for each AR feature test, testers
still need to carefully observe test execution or analyze recorded
videos and screenshots to assess object placement precision. In ad-
dition, due to the subjective nature of human perception, different
testers may have different opinions on the acceptability of impre-
cise object placement. To ensure an unbiased and comprehensive

evaluation, multiple testers are often required for each test case,
leading to a considerable amount of human effort in AR testing.

To reduce human effort and potential bias in the testing process,
an existing work PredART [65] utilize the virtual reality (VR) test
scene and an scene controller from Unity MARS Test Framework to
create virtual object placement. The screenshot taken from the test
scenes were then used to train a model to rate object placement.
While VR scenes are often used for initial testing of AR apps due to
their high flexibility, testing of AR apps in real-world scenes is still
necessary because the simulation in virtual scenes may not fully
reflect real-world scenarios. In the real world, the environment
can be much more chaotic and unpredictable and virtual reality
scenes may not capture all environmental factors such as lighting
conditions, shadows, and reflections that may significantly impact
AR app performance. In addition, PredART was designed for test-
ing AR apps in VR scenes (e.g., Unity Mars), relying on VR-scene
features that might not always be accessible in real-world scenes.
For example, PredART utilizes features such as the camera’s lo-
cation and the distance between the placed objects and surfaces.
These data can be easily accessed in a virtual scene but are often
impossible to measure in real-world scenes. As a result, PredART
cannot be directly applied to the testing of AR apps in real-world
scenes. Instead, an approach that utilizes information available in
real-world scenes is needed.

In this paper, we develop a novel framework, VOPA (Virtual
Object Placement Assessment), to explore the feasibility of auto-
matically predicting the quality of object placement in real-world
AR scenes. The prediction results can be used as automatic oracle in
AR software testing and raise warnings to human testers only when
a potential imprecise placement is found. VOPA involves four major
steps. First, we instrument AR apps to extract runtime metadata
and introduce mutations for various imprecise object placements
such as objects floating above surfaces, ensuring a balanced dataset.
Second, we run these apps in various designed test scenarios, col-
lecting metadata and screenshots for both normal and mutated
placements. Third, we use Amazon Mechanical Turk [30] to label
the realisticness of each screenshot. Finally, we train a classification
model using the labeled data to predict realism levels and identify
imprecise placements in unseen real-world AR app screenshots.

To evaluate the performance of VOPA in assessing the quality
of object placement, we applied it to unseen test screenshots under
various evaluation configurations, yielding the following results:

• In random evaluation, the dataset were randomly split into
training (90%) and test (10%) sets. VOPA achieved a precision
of 96.92% and recall of 100% on the testing set.

• In cross-object evaluation, the dataset were split into train-
ing and test sets based on object types. VOPA achieved a
precision of 95.65% and recall of 91.67% on the testing set.

• In cross-app evaluation, the dataset were split into training
and test sets based on apps. The evaluation was repeated
multiple times to make sure each app served as a test app.
VOPA achieved an average precision of 92.13% and recall of
83.86% on the test set.

• In cross-scene evaluation, the dataset were split into training
and test sets based on scenarios. The evaluation was repeated
multiple times to make sure each scenarios served as the test
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scenario. VOPA achieved an average precision of 89.38% and
recall of 65.80% on the test set.

• VOPA outperforms ResNet [49], the state-of-the-art neural
network architecture for image recognition task, by 9.87%

• In our test set, VOPA successfully identified 38 out of total
42 real-world placement errors, such as objects hovering
between two surfaces or appearing embedded in the wall.

The evaluation results demonstrate that VOPA can precisely
identify placement errors in real-world AR apps. In summary, this
paper makes the following major contributions:

• A novel approach to instrument real-world AR apps to gen-
erate a large number of screenshots that represent various
object-placement scenarios under real-wold scenes.

• A labeled public dataset [28] of object placement screen-
shots from real-world scenes, which may serve as a valuable
resource for research in the field of AR application analysis.

• A novel classifier trained on screenshots and metadata from
diverse real-world scenarios. It effectively assesses the qual-
ity of object placement and identifies imprecise instances in
real-world AR apps.

2 Background

2.1 ARCore

Google’s ARCore platform enables AR experiences on Android
devices, providing tools for developers to create apps that place vir-
tual objects in real environments. ARCore uses advanced computer
vision and motion tracking technologies to understand the physical
environment around the user and anchor virtual objects accurately
in the real world [39]. ARCore uses SLAM[72] for motion tracking,
detecting Feature Point in camera images to estimate device posi-
tion and movement. The inertial measurements are then combined
with the feature points to determine the camera’s coordinates and
orientation, which is defined as Pose (position and rotation) in AR-
Core. Pose in ARCore refers to the 6-degree-of-freedom position
and orientation of an object in 3D space.

In ARCore, a plane is a detected flat, horizontal surface in the
real world. ARCore identifies planes by tracking multiple feature
points on surfaces and their boundaries. This environmental un-
derstanding allows users to place virtual objects using anchors -
fixed reference points in the real world. The app renders 3D models
based on the anchor’s pose, maintaining a stable relationship with
the plane. This ensures virtual objects appear realistically aligned
with detected surfaces in the camera image[41].

2.2 Sceneform

ARCore is a powerful fundamental tool for creating AR experiences
on mobile devices. However, it does not provide developers with
functions for controlling the AR scene and processing the 3D mod-
els of virtual objects. Developers often need to utilize additional
OpenGL-based libraries for rendering virtual content, such as Scene-
form. Sceneform[7] is an Android app development framework that
utilizes ARCore and OpenGL to simplify the development process
of AR apps. While ARCore focuses on motion tracking and envi-
ronmental understanding, Sceneform aims to facilitate the creation
of AR scenes and the rendering of 3D models. Sceneform extends

the functionality of ARCore and abstracts away the complexities of
OpenGL programming in the context of Android development.

Unlike the Anchor setting in ARCore which attaches to the plane,
Sceneform introduces the concept of Node and its subclass, An-
chorNode. By setting the node as a child of the AR scene or another
node, Sceneform establishes a stable relationship between differ-
ent objects. Sceneform can be considered an extension of ARCore
since it is built on top of it. Sceneform inherits the Pose value di-
rectly from ARCore without conversion and allows it to track the
ARCore’s Pose starting from the AR scene.

2.3 CNN and ResNet

Convolutional Neural Network (CNN) is a type of artificial neural
network that is widely used for image recognition tasks. CNNs
consist of multiple layers that can be seen as a regularized version
of the fully connected Multi-Layer Perceptrons (MLPs). The high
number of parameters in MLPs, where each neuron in a layer is
connected to every neuron in the next layer, can lead to overfitting
due to repeated training on the noise in the training data. To address
this issue, CNNs implement regularization, such as the Dropout
Layer, which randomly drops some units to zero during training.
CNNs have been demonstrated to be effective in image classification
and regression tasks.

The Residual Network (ResNet) [49] was first presented in 2015,
offering a groundbreaking architecture designed to address the
issues of vanishing and exploding gradients in deep learningmodels.
This innovative approach incorporated a technique known as skip
connectionswithin the network. By bypassing the training of certain
layers and establishing a direct link to the output, skip connections
enable the network to focus on learning residual mappings rather
than individual layers. As a result, ResNet has become the most
popular neural network in the field of computer vision. In this work,
ResNet is employed as the baseline method.

3 Approach

Our approach has four main steps, as shown in Figure 3. First, we
instrument the AR apps to extract relevant metadata and insert
mutations in some object placements to create imprecise place-
ments. Second, we run the instrumented AR apps on our test de-
vice, performing both mutated and unmutated object placements
in real-world environments while collecting runtime metadata and
capturing screenshots. Next, we use Amazon Mechanical Turk to
label the realisticness level of each screenshot. Finally, the labeled
screenshots and their correspondingmetadata will be used to train a
model for predicting the realisticness level and identifying instances
of imprecise object placement in real-world AR apps.

3.1 Metadata List

To identify the factors that could impact the realisticness of virtual
object placement in an AR app, we examined ARCore’s documen-
tation and identified which metadata can be acquired while the AR
app runs and virtual objects are placed within real-world scenes.
Object Translation and Rotation: Object position and orientation in
ARCore’s coordinate system, determining if the object is precisely
placed. This data can be obtained by Pose.getTranslation() and
Pose.getRotationQuaternion() from ARCore [38].
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Figure 3: Approach Overview

Camera Translation and Rotation: Camera position and orientation
in ARCore’s coordinate system, determining the viewing angle,
shaping users’ perceptions of the displayed image, and influencing
the realisticness of virtual objects. This data can be acquired using
the method Frame.getCamera() from ARCore [37].
Distance: The Euclidean distance between the camera and the vir-
tual object in ARCore’s coordinate system. This distance affects
the user’s perception and can be calculated using the Euclidean
distance formula with the translation of the camera and the object.
Light Condition: Light condition is another significant factor affect-

ing the visual quality of real-world environment [18]. We measure
the illuminance using the app "Light Meter LM-3000" [24].

3.2 Object Placement Mutation

In AR apps, instances of incorrect object placements are less fre-
quent than those of correct placements. If we only capture screen-
shots during normal object placement, our dataset would become
imbalanced and lack examples of imprecise placements. To address
this, we introduce mutations that modify the position and rotation
of virtual objects, allowing us to generate a dataset that includes
various imprecise placements for training the model.

(a) Mutation on position, the ob-
ject moved in the direction of Y-
Axis by five centimeters.

(b) Mutation on rotation, the ob-
ject was rotated clockwise around
Z-Axis by 15 degrees.

Figure 4: Mutation Examples

ARCore uses a 3D coordinate system to describe the position
and rotation of a virtual object through three axes: X, Y, and Z. The
X-axis goes from left to right, the Y-axis goes from bottom to top,
and the Z-axis goes towards the viewer, perpendicular to the screen.
We introduce ’mutations’ to the object’s position and rotation, such
as sinking or floating along the Y-axis, or tilting around the X or
Z-axis. Figure 4 shows visual examples of an object floating and
rotating. We do not consider moving the object along the X and Z
axes or rotating it around the Y-axis. This is because such changes
will not affect the realisticness of the object. The object would still

be fully placed on the surface but turned to a different side. Table 1
shows the types of errors we implanted in the object placement
and the corresponding offsets.

Table 1: Errors implanted in object placement

Floating or Sinking -5cm 5cm 10cm 15cm
Rotation around X-axis -30° -15° 15° 30°
Rotation around Z-axis -30° -15° 15° 30°

3.3 App Instrumentation

The instrumentation involves decoding the app’s APK (Android
Package) files into smali code1 using APKTool[70] and then insert-
ing our code to the smali files. To collect metadata during testing,
we instrument the relevant APIs mentioned in Section 3.1 to log
the coordinates for object position and the quaternion for object
rotation. To introduce mutation on the object position and rotation,
it is important to understand how ARCore determines the accurate
coordinates to place the object into the desired location. By investi-
gating ARCore’s documentation, we identify two important APIs
related to virtual object placement. The method hitTest() [20] is
used to determine the correct placement of the object in the scene
when the user touches the screen to initiate an object placement. It
returns a HitResult[21] object containing a Pose[40]. The method
createAnchor() then [29] can place an anchor on the plane based
on this Pose. To instrument these APIs, we locate the invocation of
methods hitTest() and createAnchor() in the apps’ smali code
and insert our code for to introduce the desired offset into the ob-
ject’s coordinates. After instrumenting the apps, we rebuild the
samli code into APK files for testing.

3.4 Data Collection at Run Time

We run the modified AR apps on our test device, placing virtual
objects in various real-world scenes to collect metadata and screen-
shots. This involves three major phases:
Real-world scenes setup. The realisticness of placing a virtual
object relies heavily on the detected surface where the object is
positioned. Therefore, we consider different types of surfaces in our
test scenes. Specifically, we set up a basic living room environment
with two types of surface scenarios: single surface and multiple
surfaces. We also simulate different light conditions, represent three
common real-life illuminance levels [69]: 1) Weak (below 100 lux);
2) Intermediate (100-200 lux); 3) Strong (above 200 lux).

(a) Without carpet (b) With a carpet

Figure 5: Single-surface scenarios

Object placement on a single surface. For object placement on a
single surface, we set up two floor scenarios: one with a carpet and
the other without. (See Figure 5 for the two different floor settings.)
To place virtual objects on a single surface, we start by setting the
center spot where the object will be positioned. We then move

1Assembler for the dex format used by Dalvik
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the device to different distances and viewing angles around the
center spot to capture various visuals of the virtual object. Figure 6
illustrates the visual representation of the mobile device and virtual
object layout in the single surface scenario. We consider eight
different directions, spaced 45 degrees apart, to cover all sides of the
virtual object. Additionally, we set the mobile device’s height above
the ground at three basic levels: 50, 75, and 100 centimeters. For the
distance between the device and the object, rather than using fixed
distances, we dynamically adjust the distance based on the object’s
size and the screen display, allowing for close, medium, and distant
placements. This adaptive approach is necessary because objects
of different sizes may require varying distances to appropriately
appear on the screen. For example, small virtual objects like an
apple can be difficult to see if they are too far from the camera.
Conversely, large objects like a virtual sofa may not fit on the
screen if the camera is positioned too close.

Figure 6: Single surface scenario

Object placement involvingmultiple surfaces. For object place-
ment involving multiple surfaces, we consider three specific sce-
narios to emulate real-world user experiences with AR apps. (See
Figure 7 for a visual representation of the three different types of
surface scenarios.) The first scenario (Figure 7a) involves a wall
and a floor to assess whether the app considers both horizontal and
vertical surfaces for object placement. For instance, when placing a
sofa on the floor against the wall, it should not appear embedded
in the wall or floating above the floor. The second scenario (Figure
7b) involves a single table on the floor. We use it to test whether
the object can be placed on the table correctly. Additionally, we
examine how the app handles situations where users try to place
the object outside the table’s edge, verifying if the surface boundary
is accurately detected. The third scenario (Figure 7c) involves two
tables side by side with a gap between them. We assess the AR app’s
ability to detect both tables accurately and determine if the object is
correctly placed. Additionally, we explore if the app allows placing
the object between the two tables when the gap is smaller than
the object’s size. We also check whether the app allows placing the
object in a larger gap, causing the object to float in the air.
Screenshots andmetadata collection. We capture screenshots of
each virtual object placement in the test scenes and record the cor-
responding metadata. We use the app Screenshot Touch[26] to take
the screenshot at the moment when the virtual object is placed. Fig-
ure 8 shows four screenshots from our dataset, describing different
virtual objects placed under different scenes with or without muta-
tions. During testing, we utilize the Android Debug Bridge (ADB)

(a) Floor and wall (b) A table on the floor( )

(c) Two tables on the floor

Figure 7: Multi-surface scenarios: accurate placement (solid

object) vs. imprecise placement (dashed object)

(a) Wastebasket on single surface,
without mutation.

(b) Speaking on multi-surface of a ta-
ble without mutation.

(c) Night stand on single surface, with
mutation on rotation around z-axis by
-30 degrees.

(d) Console system on single surface,
with mutation of floating 15cm above
the floor.

Figure 8: Exemplar screenshots in dataset

[14] to store the log file, which contains the metadata discussed in
Section 3.1. An example of logged metadata is shown in Figure 9. To
match the extracted metadata with the corresponding screenshot,
we rely on the associated timestamps as a reference. The metadata
with the closest timestamp to the screenshot’s timestamp is paired
with it. An example of the matched data is illustrated in Figure
10. The first element represents the screenshot’s filename, and the
subsequent elements are the corresponding metadata values.
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Figure 9: An example of metadata in the log file

3.5 Data Labeling

Our data labeling is conducted through Amazon Mechanical Turk
[31], which is the most popular crowdsourcing platform. We submit
all screenshots as HITs (Human Intelligence Task) to request work-
ers to rate the realisticness of the virtual object in each screenshot
based on the following instructions we provide:

• Ignore any icons, frames, and pop-ups that appear on the
image. Focus on the virtual object in the AR environment.

• Rate based on position, rotation, distance, and shadow.
• Do NOT rate based on the color or texture of the model.
• The rating should be subjective, based on the first impression
of the image, without any professional knowledge.

Figure 10: A example of matched screenshot and metadata

For each HIT, workers were asked to rate the screenshots on a
scale from -2 to 2, indicating the level of realisticness from low to
high (see Figure 11). A rate of -2 indicates very imprecise placement,
-1 represents somewhat imprecise placement, 1 denotes somewhat
precise placement, and 2 indicates very precise placement. We in-
tentionally designed negative numbers for imprecise placement and
positive numbers for precise placement to make the rating more
intuitive. The option of 0 is excluded to avoid neutral ratings and
ensure meaningful assessment. We also provide example screen-
shots of the four rates for reference, with an emphasis that workers
should rate based on their on their own judgment.

Figure 11: A HIT example

The labeling process is subjective as different workers may feel
different on the same screenshot. To obtain representative labels,
each screenshot is assigned to five distinct workers through five
HITs. The ratings from these five workers are then averaged to

form a single label for each screenshot, which will be used for
model training. To calculate the average rating, the original rating
scale ranging from -2 to 2 is first converted into a scale from 1 to 4.
After computing the average of the five ratings, the final label for a
screenshot is assigned based on the closest number within the 1 to 4
scale to the average rating. To ensure the selection of qualified and
responsible workers, we applied a filter that considered workers
with an approval rate of over 90% based on existing guidelines [59].

3.6 Hybrid Image Classification

The labeled dataset will be used to build a classification model that
predicts the realisticness level of object placement. Our classifier
adopts a multimodal model, utilizing images and metadata as inputs.
Figure 12 shows the model’s architecture.

Figure 12: Structure of the Hybrid Model

The hybrid model uses two separate networks to independently
extract features from images and metadata. Numeric features are
processed by Multilayer perceptron (MLP)[66] to output four-
dimensional features. At the same time, image features go through
the Convolutional Neural Network (CNN)[62] to generate four-
dimensional features. These features are then concatenated and
used as input for the classifier. The classifier predicts category prob-
abilities based on the concatenated features, and the category with
the highest probability is the predicted result. The CNN module
has one convolution layer with a 3 × 3 convolution kernel and two
dense layers with ReLU activation. The MLP module consists of
two dense layers. The classifier includes two dense layers, with
the output of the last layer passed through a Softmax activation.
During training, the model weights in the neural network are ran-
domly initialized. The model is optimized using Categorical Cross
Entropy (CCE) and an Adam optimizer [51] with learning decay.
CCE measures the difference between the probability distributions
of one-hot encoded CNN computed class labels and ground truths.
As shown in Equation.1, 𝑛 denotes the total number of categories,
𝑦 denotes the one-hot vector representing the ground truth where
𝑦𝑖 = 1 if the item belongs to i-th category and 𝑦𝑖 = 0 if otherwise,
and 𝑝𝑖 denotes the predicted probability that this item belongs to
i-th category[47].

𝐶𝐶𝐸 = −

𝑛∑
𝑖=1

𝑦𝑖 log (𝑝𝑖 ) (1)

The model is trained with the initial learning rate, and then the
learning rate gradually decays according to the set learning decay
until a local minimum is reached. To ensure a robust model and
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prevent data splitting issues, we employ 5-fold cross-validation
during training.

4 Evaluation

Our evaluation aims to answer following research questions:

• RQ1: Can VOPA effectively predict the realisticness level of
virtual object placements and identify imprecise ones?

• RQ2: Does VOPA outperform the state-of-the-art deep image
learning technique?

• RQ3: What kind of imprecise object placement can VOPA
identify in real-world AR apps?

4.1 Dataset

We compiled our list of AR apps based on categories such as "AR
Apps" [11] and "AR Games" [12] provided by Google Play Store. Ad-
ditionally, we manually added some well-known AR apps and con-
ducted searches on Google Play Store using keywords like "AR" or
"Augmented Reality." It’s important to note that Google Play Store’s
search relies on keywords within the Title, Description, and Promo
Text, along with considerations such as compatibility[16, 17]. There-
fore, search results obtained solely using the keyword "AR" can be
ambiguous. The generated app list included numerous applications
containing the keyword "AR" that did not necessarily include AR
feature, such as the app "Indeed Job Search", "Gardenscapes" or
"Calendar". To address this, we excluded non-AR apps from our
dataset by checking if the app code contained any popular AR SDKs
listed in Table 2. We identified 227 AR apps, with ARCore being
the most prevalent at 214 apps, representing 94.25% of the total.

Table 2: The occurrence and percentage of each AR SDK for

Android in collected apps. Apps might have multiple SDKs

imported. SDKs with a count of zero have been omitted

AR SDK Occurrence Percentage

ARCore 214 94.27%
Vuforia 34 14.98%
Wikitude 7 3.08%
EasyAR 6 2.64%
Microsoft Mixed Reality 5 2.2%
OpenCV 1 0.44%
ARZone 1 0.44%
Total 227

For the 214 ARCore apps , we searched for invocations of meth-
ods hitTest() and createAnchor(), or the occurrence of the Pose
object (refer to Section 3.3). We found 83 apps that directly invoked
these APIs for object placement. We then executed each of these 83
apps on our test device and examined the decompiled smali code
to determine if they could be used for our study. We selected only
the apps that met the following criteria for our final app list.
1© Detection of Physical Environment: Apps should have features
that detect the physical environment for precise virtual object place-
ment. Apps lacking this feature, such as an app displaying a virtual
3D solar system in front of the camera without interaction with the
physical environment, were excluded (22 apps).
2© Functionality: Apps should be fully functional. Apps with crash
or freezing issues and were excluded.(12 apps).

3© Accessibility: Apps should be freely accessible without requiring
a business account or purchase of accompanying products for the
AR experience. Apps failing to meeting this criterion, such as some
interior design apps that require user’s business accounts for login,
were excluded (20 apps).
4© Compliant with experimental configuration: The app should pro-
vide an AR experience that aligns with our experimental configura-
tion. Apps designed for large outdoor objects placement, such as
cars or buildings, were excluded(12 apps).
5© Other Exclusions: A few apps were excluded for reasons such
as heavy obfuscation making the code unreadable (4 apps), APK
decoding errors (1 app), and lack of AR features (1 app).

This criteria resulted in 11 apps. Please note that due to expen-
sive 3D models and intellectual property, high-quality AR apps
involving object placement are often not free or requires business
account, which limits the number of apps can be used in our dataset.
However, this does not undermine the applicability of our approach.

Among the 214 ARcore apps, except the 83 apps that directly
invoked the related ARCore APIs for object placement, a large
portion (131 apps) used other implementations for object placement.
We examined the 131 apps and found that 109 apps were developed
using ARCore in Unity. Unity converts code to C++ using IL2CPP
framework when generating an APK, the C++ code are compiled
to be .so files and packed into the APK file[23]. Reversing binary
files and insert our code for instrumentation is challenge and our
approach doesn’t apply. To include Unity apps in our dataset, we
chose to search for open-source apps on GitHub using the keywords
’unity’ and ’ARCore.’ Each appwas tested on our device to determine
if it met our criteria mentioned above. Through this process, we
collected 10 functioning Unity apps that utilized ARCore.

In total, we collected 21 AR apps as the dataset for this study.
The full list of these AR apps can be found on our website[28].We
instrumented these 21 apps (see Section 3.3) and then executed them
on our test device to collect runtime metadata and screenshots for
each object placement (see Section 3.4). This generated a dataset of
3043 screenshots and their corresponding metadata, depicting the
placements of 104 different virtual objects.

4.2 Evaluation under Different Configurations

The goal of VOPA is to raise warning to app developers when im-
precise placement is detected. So we consider imprecise placement
as positive case in our evaluation. Note that when app developers
or testers use VOPA, they could configure different "threshold" to
determine what is considered imprecise based on their acceptable
level of imprecise object placement. For instance, they may treat
predicted labels "very imprecise," "somewhat imprecise," and "some-
what precise" as positive cases, being more stringent about object
placement quality. Alternatively, they may choose to be less strict
on the quality, considering only "very imprecise" as positive and
the rest of the labels as negative. In this study, we take a middle-
ground approach, considering predicted labels "very imprecise"
and "somewhat imprecise" as positive cases, and "very precise" and
"somewhat precise" as negative cases.

To answer RQ1, we conducted evaluations of VOPA under five
different configurations as described below, with results presented
in the first six rows of Table 3. Following the metrics for multi-class
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classification[48], we calculated the accuracy, precision, recall, and
F1 score for each configuration.

1©Random: We selected 10% of the dataset as the test set, while
the remaining 90% served as train set. The first row of Table 3 shows
the results of this evaluation, with an accuracy of 99.34%, precision
of 96.92%, recall of 100%, and F1 score of 98.44%.

2©Cross-object: Among the 104 different virtual objects in our
dataset, we randomly selected the data of 94 objects as the train
set and let VOPA test on the remaining 10 objects. We intended
to investigate whether VOPA can successfully identify imprecise
placements of unseen objects. The second row of Table 3 shows the
results of this evaluation, with an accuracy of 96.95%, precision of
95.65%, recall of 91.67%, and F1 score of 93.62%.We further inspected
the evaluation metrics of each object in the test set to see if different
objects exhibited varying performance. Table 4 presents the results
of each object. The "Mutation" column indicates whether mutations
were implanted in the object placement, while the "Size" column
denotes the object size. Our observations suggest that the model
faced challenges in predicting the imprecise placement of smaller
objects with rotation mutation.

3©Cross-app: To evaluate VOPA’s ability to identify imprecise
placement in unseen apps, we strategically divided our apps into
training and test apps. The test set comprised data from test apps,
while the training set included data from the training apps. Among
the 21 AR apps in our study, four were from the same company
and we treated them as one app to avoid potential bias due to
similarities in apps from the same company. The number of data
entries varies across different apps because of variations in the
quantity of available 3D models in different apps. Some apps have
over 400 data entries while others have less than 100. To address
potential challenges arising from imbalances or overfitting, we
divided the apps into seven groups, each containing more than 10%
of the total data volume (304 entries). The cross-app evaluation
was repeated seven times to ensure each group served as the test
set. The third row of Table 3 shows the results of this evaluation,
with an average accuracy of 95.21%, precision of 92.13%, recall of
83.86%, and F1 score of 85.44%. Since we use each group of data as a
test set separately, here we take the average of all the experiments
combined as the result to be displayed. Note that we had a limited
number of apps in our dataset (21 apps) because many apps failed to
meet our criteria: some were non-functional due to frequent crashes
or unresponsiveness; some were paid apps; some apps’ AR features
did not interact with the physical environment, such as displaying
virtual 3D solar system models. However, with a relatively small
number of training apps, the evaluation results indicate that our
tool can precisely identify bugs in object placement in unseen apps.

4©Cross-scene: As discussed in Section 3.4, we include single and
multiple surfaces in our test scenes. Specifically, we covered five
different scenes in our work: 1) A floor in room 1; 2) A carpet on the
floor in room 2; 3) One table on the floor in room 1; 4) Two tables
on the floor in room 1; 5) A wall and a floor in room 1. To avoid
potential biases in evaluation caused by the same scenes appearing
repeatedly in both the train set and the test set, we conducted
the cross-scene evaluation. During the cross-scene evaluation, we
repeated the process five times, designating one scene as the test set
each time while the remaining four scenes served as the training set.

It is important to note that due to the repetitive nature of the cross-
scene configuration, all values presented in this paragraph and in
Table 3 represent the average across the five iterations. As shown
in Table 3 (row "VOPA_Cross-Scene"), this evaluation achieved an
average accuracy of 91.17%, precision of 89.38%, recall of 65.80%,
and F1 score of 72.12%, indicating the robustness of our tool across
varied scenes.

5©Cross-mutation: As discussed in Section 3.2, we implemented
mutation in our dataset to generate imprecise placement samples.
To evaluate whether our tool can successfully identify unseen mu-
tations (imprecise placement), we conducted cross-mutation exper-
iments. For position mutation (refer to Section 3.2), we split our
dataset into five groups based on the position offset: -5cm, 5cm,
10cm, 15cm, and no-mutation. The evaluation was repeated four
times, with each group except the no-mutation serving as the test
set and the remaining 4 groups as the training set. The values pre-
sented in Table 3 on row "cross-mutation(P)" represent the mean
across these four iterations, achieving an accuracy of 99.13%, preci-
sion of 96.43%, recall of 94.88%, and F1 score of 95.63%. Similarly, for
rotation mutation, we divided our dataset into nine groups (refer to
Section 3.2), including the eight different types of rotation degrees
and no-mutation. The evaluation was carried out eight times, each
time using one group (except no-mutation) as the test set and the
remaining 8 groups as the training set. The results, as shown in
Table 3 on row "cross-mutation(R)", demonstrate an average accu-
racy of 97.29%, precision of 99.32%, recall of 90.00%, and F1 score of
94.18% across these eight iterations.

According to the result, random evaluation have the best perfor-
mance as expected because the model might have already seen the
test apps or objects during training. The cross-object outperforms
cross-app, as it tests on unseen objects, and the model might have
seen the test app during training. While in cross-app configura-
tion, the model is tested on unseen apps plus unseen objects, as
different AR apps have different virtual objects. Cross-scene has
a relatively lower accuracy, for reasons similar to the Cross-app
experiment results. During the data collection process, different ob-
jects are used in different scenes. Therefore, for the model, both the
scenes and objects in the test set data are unseen, which affects the
model’s performance. The cross-mutation demonstrates excellent
performance, with accuracy levels nearly equivalent to the results
obtained from VOPA_Random configuration. This indicates that
the model possesses a strong ability to handle unseen mutations.

4.3 Comparison between VOPA and ResNet

To answer the RQ2, we compared VOPA with ResNet, the-state-of-
art image recognition model. This comparison was conducted in
the same random configuration as VOPA was evaluated. As shown
in the fourth row of Table 3, ResNet has an accuracy of 89.47%,
precision of 100%, recall of 49.21%, F1 score of 65.96%. While ResNet
performed well, VOPA outperformed it by successfully identifying
some imprecise placements that ResNet hadmissed. The parameters
of both VOPA and ResNet can be found in our website[28].

We chose to compare with ResNet because it can be directly
applied to our problem with feature concatenation. While more
advanced image classification models like CoatNet [36] and Model
Agnostic Meta-Learning (MAML) [73] could be potential candidates

724



Towards Automatic Oracle Prediction for AR Testing: Assessing Virtual Object PlacementQuality under Real-World Scenes ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 3: Evaluation result of VOPA.

Accuracy Precision Recall F1-Score TP FP TN FN

VOPA_Random 99.34% 96.92% 100% 98.44% 63 2 239 0
VOPA_Cross-Object 96.95% 95.65% 91.67% 93.62% 66 3 220 6
VOPA_Cross-App 95.21% 92.13% 83.86% 85.44% 71 8 345 9
VOPA_Cross-Scene 91.17% 89.38% 65.80% 72.12% 73 21 473 40
VOPA_Cross-Mutation(P) 99.13% 96.43% 94.88% 95.63% 10 1 113 1
VOPA_Cross-Mutation(R) 97.29% 99.32% 90.00% 94.18% 46 1 124 4
ResNet 89.47% 100% 49.21% 65.96% 31 0 241 32
Random_Regression 52.63% 49.46% 64.08% 55.83% 91 93 69 51

Table 4: Performance of each object in the test set

Object Accuracy Precision Recall F1-Score TP FP TN FN Mutation Size

Phone 88.46% 100% 72.73% 84.21% 8 0 15 3 Rotation Small
Wooden Drawer 92.00% 75.00% 100% 85.71% 6 2 17 0 Rotation Large
Goalpost 95.31% 100% 76.92% 86.96% 10 0 51 3 Rotation Medium
Toy Castle 98.48% 93.33% 100% 96.55% 14 1 51 0 Rotation Medium
Dinnerware 100% 100% 100% 100% 1 0 2 0 None Small
Statue 100% 100% 100% 100% 2 0 25 0 Position Medium
Planter 100% 100% 100% 100% 5 0 21 0 Position Medium
Burger 100% 100% 100% 100% 1 0 6 0 None Medium
Steel drawer 100% 100% 100% 100% 18 0 29 0 Rotation Large
Sofa 100% 100% 100% 100% 1 0 3 0 None Large

for our task, they may require adaptations such as transfer learning.
These models are highly parameterized and heavily rely on large
datasets. However, the amount of data in our case (3043 samples) is
insufficient to effectively train these Transformer-based models. So
we did not include them in our evaluation.

4.4 Comparison between Classification and
Regression

Despite VOPA is designed for a classification task, we wanted to
explore whether considering it as a regression task would yield
better performance. To do this, we trained a regression model using
our dataset in the random configuration. We first calculated the
mean of the label values without rounding and then normalized
it to a value between 0 and 1. To predict the normalized score of
each screenshot, we used the sigmoid activation function. For eval-
uating the performance of this approach, we used mean absolute
error (MAE), mean squared error (MSE), and root mean squared
error (RMSE) as the evaluation metrics and loss function for the
regression model. In the following equations, 𝑁 denotes the total
number of data, 𝑥𝑖 denotes the predicted score of i-th data, and 𝑥𝑖
denotes the ground truth of i-th data.

𝑀𝐴𝐸 =

1

𝑁

𝑁∑
𝑖=1

|𝑥𝑖 − 𝑥𝑖 | (2)

𝑀𝑆𝐸 =

1

𝑁

𝑁∑
𝑖=1

(𝑥𝑖 − 𝑥𝑖 )
2 (3)

𝑅𝑀𝑆𝐸 =

√√√
1

𝑁

𝑁∑
𝑖=1

(𝑥𝑖 − 𝑥𝑖 )2 (4)

To provide a more intuitive representation of the accuracy of the
regression model, we devised a method to classify the predictions
of the regression experiment, making it easier to compare with
the results of the classification experiment. Correspondingly, we

divided the prediction results of the regression experiment into
four categories 1, 2, 3, and 4. In the equation, 𝑥 denotes both the
prediction and the ground truth of the data. The value of 𝑥 lays in
the range between 0 and 1 due to the normalization.

𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝑥) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, 0 ≤ 𝑥 ≤ 0.25

2, 0.25 < 𝑥 ≤ 0.5

3, 0.5 < 𝑥 ≤ 0.75

4, 0.75 < 𝑥 ≤ 1

(5)

As shown in the fifth row of Table 3, the regression model got
an accuracy of 52.63% , precision of 49.46%, recall of 64.08%, and
F1 score of 55.83%. VOPA significantly outperforms this regres-
sion model indicating that classification task is more suitable than
regression task for assessing object placement in real-world scenes.

4.5 Real-world Imprecise Object Placement

Recall that when creating our dataset, we intentionally implanted
mutations to some object placements to generate imprecise cases
to ensure a more balanced dataset (see Section 3.2 Object Place-
ment Mutation). Thus, our dataset contains both real and mutated
placements. In this study, we refer to real imprecise placements
as real bugs. The primary goal of VOPA is to identify real bugs.
To assess VOPA’s capability to identify real bugs and answer RQ3,
we examined the evaluation results about real bugs. Table 5 shows
the number of real bugs detected by VOPA under three different
evaluation configurations. In the random evaluation, the test set
contains seven real bugs, all of which were successfully identified
by VOPA. In the cross-object evaluation, VOPA detected all three
real bugs contained in the test set. In the cross-app evaluation, the
evaluation was repeated seven times to ensure each app (or apps
from the same company) was selected as the test set. VOPA was
able to identify 38 real bugs in all repetition (42 real bugs in total).
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Table 5: Real-world bugs identified by VOPA

#real bug

VOPA_Random 7 out of 7
VOPA_Cross-Object 3 out of 3
VOPA_Cross-App 38 out of 42

Upon further investigation of the identified real bugs, we con-
firmed the existence of various types of placement errors in real-
world AR apps. These include instances where objects appear to
hover between two surfaces or are embedded within walls. Figure
13 listed some example screenshots of these real bugs.

(a) The blender is floating between ta-
bles

(b) The basket is floating over the
front edge

(c) The toy is floating over the edge (d) The piano is hanging on the wall

Figure 13: Examples of real bugs detected by VOPA

4.6 Threats to Validity

The major internal threat to the validity of our evaluation lies in
the labeling process of our dataset, where human workers from
MTurk were involved. This introduces the possibility of errors or
biases in the labeling. To mitigate the threat, each screenshot was
independently labeled by five different workers, and their individ-
ual labels were then averaged to obtain a final representative label.
This helps to reduce the impact of any individual worker’s potential
errors. An external threat to the validity of our evaluation is the
limited number of apps included in our dataset, which is because
twomain factors. First, several apps failed to meet our requirements:
some were non-functional due to frequent crashes or unrespon-
siveness; some were not freely accessible or required a business
account for access; some apps’ AR feature did not interact with the
physical environment, such as displaying virtual 3D solar system
models.Second, due to instrumentation limitations with Unity apps
discussed in Section 4.1, we searched for open-source Unity apps on

GitHub to add to our app collection. However, most AR open-source
projects on GitHub are intended for functional testing rather than
commercial use, the number of Unity apps suitable for our study
was limited and their functionalities were basic. To mitigate this
threat, we plan to explore the usage of ARCore in a broader context
and include additional apps that utilize different frameworks.

Another external threat arises from the limited coverage of real-
world test scenes. Due to the inherent challenges in encompassing
every potential use case, it’s difficult to comprehensively cover all
possible scenarios in real-world. As a result, our work primarily
focuses on virtual object placement on surfaces, including both
single and multi-surface scenarios. Thus, our setting scenarios may
not accurately capture the complexity and nuances of real-world
situations. To mitigate this limitation and enhance the diversity of
our dataset, we included 104 distinct objects in our dataset and con-
sidered various factors that can potentially affect the realisticness
of the virtual object placement, such as different object and camera
translation and rotation, surface scenarios, and light conditions.
Despite the relatively simplified test scenes, the results demonstrate
that our tool can accurately identify real-world bugs, such as objects
floating on surfaces or embedded in walls. This indicates the poten-
tial for identifying more bugs in more complex scenes. In future, we
plan to expand our scope to include diverse and more complicated
settings. Furthermore, Google ARCore and Apple ARKit recently
introduced playback videos, enabling developers from various apps
to reuse recordings of the same scene for testing their apps. In sce-
narios where scene recordings are reused, we can train our model
on these commonly reused scenes, allowing developers to directly
utilize our model when they reuse those scenes.

5 Discussion

5.1 Limitations of VOPA

VOPA has two major limitations. First, it operates at the screenshot
level, not accounting for the dynamic nature of real user experiences.
Some anomalies may be challenging to identify in static screenshots
due to factors like distance and viewing angle, but they might
be more apparent in a dynamic video. In this study, we collect
screenshots as individual frames extracted from dynamic videos
and analyze these frames to determine the quality of virtual object
placements. Our future work will consider detecting imprecise
placement based on videos. Second, we focus on AR apps that are
developed with ARCore. While ARCore is one of the prominent
AR app development frameworks, other competitive frameworks,
such as ARKit[3], Wikitude[2], and Vuforia[1] are also widely used.
Different frameworks may lead to variations in the performance of
AR apps, as their underlying configuration of AR scenes might differ.
Therefore, to achieve more universal testing strategies, we plan to
adapt and evaluate our approach across various AR frameworks.

5.2 Differences between VOPA and PredART

In practice, AR apps are often tested in both virtual scenes and
real-world scenes because the former can provide cost-efficient
and configurable environments to exercise the AR app in a large
variety of scenarios, while the latter can provide experience closer
to the real-world usage scenario of the AR apps, so they may reveal
some bugs that are not easily revealed in the simulated scenarios.
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PredART[65], an existing approach for assessing the realisticness
of object placement within virtual scenes, relies on data accessible
through the testing framework (i.e., Unity Mars). This data includes
variables such as placement gaps and viewing angles. Despite the
flexibility, VR testing scenes can never perfectly simulate real-world
scenes because all the objects and lighting conditions in virtual
scenes are based on precise mathematical calculation, and thus
they lack the randomness and noises which are unavoidable in real
world scenes. PredART can not be applied to real-world scenes,
creating an evident need for complementary testing approach like
VOPA, specifically designed to evaluate real-world AR scenarios.
VOPA offers novel techniques that extend its usability to real-world
environments. First, it instruments object placement APIs in Google
ARCore to extract run-time meta data when executing AR apps in
real-world scenes. Second, it mutates object placement to generate
imprecise placement cases in the dataset. Additionally, this study
created a dataset of object placement screenshots from real-world
scenes, which serves as a valuable resource for future research in
the field of AR application analysis.

6 Related Work

6.1 VR and AR App Testing

VR and AR testing is an emerging research area, and we are aware
of only a few of research efforts in this area. VRTest[71] is a test
framework for VR software that extracts metadata from VR scenes
at runtime, and automatically controls the user’s camera to explore
the VR scene and interact with virtual objects. PredART[65] uses
virtual scene information to predict whether object placement are
realistic. We specifically discussed the difference between VOPA
and PredART in Section 5.2.

6.2 Automated Testing

Automated testing, crucial for software development, enhances app
stability, functionality, usability, and compatibility, ensuring opti-
mal user experience[52]. Mao et al.[58] developed a tool, Sapienz, to
effectively identify defects in Android apps, using multi-objective
search-based testing to automatically explore and optimize test
sequences, minimising length, while simultaneously maximising
coverage and fault revelation. Zhong et al.[76] proposed an iter-
ative Android automated testing approach aimed at improving
automated testing tools’ ability to understand complex interactive
app widget frameworks. Wuji[75] is a software testing technique
that leverages evolutionary algorithms and reinforcement learn-
ing to support the automatic testing of games. Compare to these
works focus on regular apps, our work focus on AR app testing,
which is an entirely different type of domain, which presents differ-
ent challenges compared with trnditional apps. Different with the
aforementioned works that primarily focus on testing transitional
apps, our research aims to enhance AR app testing. AR testing is
a new and totally different domain, presenting unique challenges
compared to traditional apps.

6.3 Test Oracle Generation

The test oracle generation is essential part in automatic testing, the
quality of test oracle directly impacts the performance of the testing
technique since it determines if the test case is passed or failed. Two

surveys[32, 63] in 2014 points out the difficulty in constructing the
test oracle and proposes the research direction to solution is oracle
reuse. Therefore, the amount of work on the oracle generation is
very limited. The classic approach to oracle generation relies on
designing a comprehensive algorithm. JSEFT[61] is a technique to
automatically generate test cases for JavaScript applications, it im-
plements a mutation-based process[45] for oracle generation that
reduces the number of assertions automatically generated and tar-
gets critical and error-prone portions of the application. Donaldson
et al. propose to use metamorphic testing[34] to identify defects in
graphic shader compilers via semantics-preserving transformations.
Zaeem et al.[74] presented a framework to automatically generate
test case and insert oracles for testing user-interaction features
including zooming, scrolling, pressing button in mobile apps.

The increasing use of machine learning in research has led to
its application in automated testing and test oracle generation,
which presenting new challenges. A survey[44] in 2021 suggested
that Machine learning-based test oracle generation confronts open
challenges including data collection, limitation of initial training
data, and complexity of machine learning technique. Some stud-
ies have been conducted to propose solutions in various fields to
address those problems. TOGA[42] is a novel framework uses uni-
fied transformer-based neural approach to infer both exception
and assertion test oracles from a given test prefix and unit context.
Langdon et al. [53] argued that deep learning can be used to predict
partial test oracles for mutation testing. Chen et al. proposed the
framework GLIB [33] that used CNN-Based deep learning model
to detect UI gliches exist in graphically-rich apps, and the model
was trained using screenshots collected from apps.

7 Conclusion

This paper presents VOPA, a novel approach for automatically iden-
tifying imprecise virtual object placements in real-world AR apps.
VOPA involves instrumenting real-world AR apps to capture screen-
shot of object placement and their corresponding metadata during
runtime. The collected screenshots are then labeled by Mechani-
cal Turk. The labeled screenshots, along with their corresponding
metadata, are used to train a machine learning model for predicting
the level of realisticness of the object placement. The evaluation
results demonstrate that VOPA achieves high precision and re-
call in predicting imprecise object placements, outperforming the
state-of-the-art image learning model ResNet. Also, VOPA success-
fully identifies real object placement errors in real-world AR apps.
In the future, we plan to 1© expand our dataset to include more
real-world scenes, 2© investigate the feasibility of universal testing
strategies that can cover more AR app development frameworks
beyond ARCore, 3© develop an approach that use video to assess
object placement and identify imprecise instances.
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