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Abstract—We present a GPU solution for exact maximal
clique enumeration (MCE) that performs a search tree traversal
following the Bron-Kerbosch algorithm. Prior works on par-
allelizing MCE on GPUs perform a breadth-first traversal of
the tree, which has limited scalability because of the explosion
in the number of tree nodes at deep levels. We propose to
parallelize MCE on GPUs by performing depth-first traversal of
independent subtrees in parallel. Since MCE suffers from high
load imbalance and memory capacity requirements, we propose a
worker list for dynamic load balancing, as well as partial induced
subgraphs and a compact representation of excluded vertex sets
to regulate memory consumption. Our evaluation shows that our
GPU implementation on a single GPU outperforms the state-
of-the-art parallel CPU implementation by a geometric mean
of 4.9× (up to 16.7×), and scales efficiently to multiple GPUs.
Our code has been open-sourced to enable further research on
accelerating MCE.

I. INTRODUCTION

A clique in a graph is a complete subgraph where every

vertex in the subgraph is adjacent to every other vertex. A

maximal clique is a clique that cannot be further expanded

by including one more vertex. Maximal clique enumeration

(MCE) aims to find all the maximal cliques in a graph, which

has a wide variety of applications in numerous domains such

as community detection [1]–[4], recommender systems [5],

[6], graph compression and partitioning [7]–[10], prediction

of protein functions in protein interaction networks [11]–

[14], finding gene similarities in gene co-expression net-

works [15], [16], and identifying price fluctuations in finance

networks [17].
One of the most widely used algorithms for solving MCE

exactly is the Bron-Kerbosch algorithm [18]. The algorithm

involves traversing a search tree that branches from parent

nodes representing smaller cliques to child nodes representing

larger cliques that contain them until maximal cliques are

found. Prior works on parallelizing MCE on GPUs perform

a breadth-first traversal of the search tree [19]–[22]. However,

this approach does not scale well for large graphs because

of the explosion in the number of search tree nodes that

need to be tracked at deep levels of the tree. To overcome

this limitation, we propose to parallelize MCE on GPUs by

assigning independent subtrees to different thread blocks and

having the threads within each block collaboratively perform

a depth-first traversal of the block’s subtree.

The approach of performing per-block depth-first traversal

of independent subtrees has been applied in our prior work

on k-clique counting [23]. However, MCE presents two key

scalability challenges that are less of a concern in k-clique

counting. The first challenge is that the MCE search tree is

substantially more imbalanced, which means that assigning

independent subtrees to different thread blocks suffers from

high load imbalance. The second challenge is that MCE

requires substantially more memory capacity to track the

vertices excluded at each level of the traversal to test for

maximality of a clique. These two challenges are particularly

critical on GPUs in contrast with CPUs. GPUs are more

sensitive to load imbalance than CPUs due to their massively

parallel nature [24]. Moreover, GPUs typically have a smaller

memory capacity than CPUs while putting more pressure on

the memory capacity by traversing a larger number of subtrees

in parallel.

In this paper, we propose a novel solution for accelerating

MCE on GPUs that employs various techniques to address the

load imbalance and memory capacity challenges that MCE

imposes. We propose a worker list to enable thread blocks

with large subtrees to offload branches of their subtrees to

other thread blocks with low overhead. We propose using

partial induced subgraphs to avoid the latency and memory

capacity overhead of constructing full induced subgraphs. We

propose a compact representation of the sets of excluded

vertices that distinguishes between the part of each set that

needs to be stored separately for each level, and the part that

monotonically shrinks and can be reused across levels. We

also retain several optimizations used in our prior work on k-

clique counting [23], such as binary encoding of the induced

subgraph and partitioning work at subwarp granularity.

Our evaluation shows that our parallel GPU implementation

executing on a single server-grade GPU outperforms the state-

of-the-art parallel CPU implementation [25] executing on

a server-grade CPU by a geometric mean of 4.9× (up to

16.7×). We also show that our worker list approach is effective

at achieving load balance with low overhead, and enables

efficient scaling to multiple GPUs. Our code has been open-

sourced for reproducibility and to enable further research on

accelerating MCE.
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II. BACKGROUND

A. Maximal Clique Enumeration

Let G = (V,E) be a simple undirected graph where V
is the set of vertices in G and E is the set of edges in G.

The neighborhood of a vertex v ∈ V is the set of vertices

adjacent to v, denoted by N(v). A clique in G is a complete

subgraph of G where every vertex in the subgraph is adjacent

to every other vertex in the subgraph. A maximal clique in G
is a clique that cannot be further expanded by including one

more vertex. In other words, a maximal clique is a clique that

is not contained in a larger clique. For example, the graph

in Fig. 1(a) has two maximal cliques: ABCD and AEF. On

the other hand, ABC, ABD, ACD, and BCD are not maximal

cliques because they are all contained in ABCD.

MCE aims to find all the maximal cliques in a graph.

We tackle MCE as an exact problem, which means that we

enumerate all maximal cliques in the graph and do not apply

any approximations or graph sampling. While approximate

maximal cliques may be sufficient for some applications,

other applications require exact maximal cliques. For example,

in protein-protein interaction networks, a protein complex is

necessarily a clique [26]. In addition, even for applications

where approximate solutions can be used, there is added value

in using an exact solution if finding it can be made sufficiently

efficient.

One of the most widely used algorithms for exact MCE

is the Bron-Kerbosch algorithm [18]. We describe different

variants and optimizations of this algorithm in the rest of this

section.

B. Bron-Kerbosch

The Bron-Kerbosch algorithm [18] is a backtracking algo-

rithm that traverses a search tree to find maximal cliques. The

search tree branches from parent nodes representing smaller

cliques to child nodes representing larger cliques that contain

them until maximal cliques are found. While searching, the

algorithm maintains three disjoint sets for each tree node:

result (R), possible (P ), and exclude (X). R is the set of

vertices in the clique currently being explored. P and X
together contain the common neighbors of the vertices in R.

P is the set of common neighbors that can still be added to

the clique in R in the current branch of the tree. X is the

set of common neighbors that have already been considered

in another branch of the tree, so they are excluded from the

maximal clique being searched for in the current branch.

Algorithm 1 shows the pseudocode for the Bron-Kerbosch

algorithm, and Fig. 1(c) shows how this algorithm is applied

to the example graph in Fig. 1(a). In the initial call to

BRONKERBOSCH, R is empty, P contains all the vertices

in the graph, and X is empty. The recursive step (lines 5-

8) iterates over all the vertices v in the set P . At the recursive

call (line 6), v is added to the solution R, and P and X are

intersected with N(v) to remove non-neighbors of v. After

returning from the call, all maximal cliques containing the

vertices in R∪{v} have been found. To avoid finding the same

cliques again, v is excluded from the search in later subtrees

at the same level by removing v from P (line 7) and adding

to X (line 8) before proceeding to the next loop iteration.

Algorithm 1 Bron-Kerbosch algorithm

1: procedure BRONKERBOSCH(G, R, P , X)
2: if P and X are both empty then
3: R is a maximal clique
4: return
5: for v ∈ P do
6: BRONKERBOSCH(G, R ∪ {v}, P ∩N(v), X ∩N(v))
7: P = P − {v}
8: X = X ∪ {v}

The recursion stops when P is empty, which means that

there are no more vertices that can be added to the clique in

R. If P and X are both empty (line 2), then the vertices in R
have no common neighbors, which means that R represents a

maximal clique (line 3). If P is empty but X is not empty,

then the vertices in R do have common neighbors (those in

X) and R is not a maximal clique. However, the search stops

because the common neighbors in X are excluded from the

search on this tree branch, which means that any maximal

clique containing R has already been found in other branches.

C. Bron-Kerbosch with Pivoting

It is clear from Fig. 1(c) that there can be many branches

in the search tree that are not successful at finding a maximal

clique because the clique is found by other branches. To

avoid some of the unsuccessful branches, Bron and Kerbosch

introduce pivoting [18]. Algorithm 2 shows the pseudocode

for the Bron-Kerbosch algorithm with pivoting, and Fig. 1(d)

shows how this algorithm is applied to the example graph

in Fig. 1(a). The difference from Algorithm 1 is that in

Algorithm 2, a pivot vertex is selected prior to branching (line

5) and the neighbors of the pivot vertex are excluded from the

branching (line 6).

Algorithm 2 Bron-Kerbosch algorithm with pivoting

1: procedure BRONKERBOSCHPIVOT(G, R, P , X)
2: if P and X are both empty then
3: R is a maximal clique
4: return
5: vpivot = choose a vertex from P ∪X
6: for v ∈ (P −N(vpivot)) do
7: BRONKERBOSCHPIVOT(G, R ∪ {v}, P ∩ N(v), X ∩

N(v))
8: P = P − {v}
9: X = X ∪ {v}

The intuition behind pivoting is that any maximal clique

that includes the pivot vertex and its neighbor will be found

by the branch that adds the pivot vertex to R. On the other

hand, any maximal clique that does not include the pivot vertex

but includes its neighbor must include a non-neighbor of the

pivot vertex, and will be found by the branches that add non-

neighbors of the pivot vertex to R. Therefore, there is no need

to explore the pivot vertex’s neighbors on line 6.
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Fig. 1. Bron-Kerbosch algorithm variants applied to the example graph

The pivot vertex can be any vertex in P ∪X , but is typically

selected to have the largest number of neighbors that are

also in P in order to maximize the number of branches that

are excluded from the search. The original Bron-Kerbosch

algorithm with pivoting selects the pivot vertex from P , but

Tomita et al. [27] improve the pivot selection by considering

all vertices in P ∪X .

D. Bron-Kerbosch with Other Optimizations

Eppstien et al. [28], [29] further improve the Bron-Kerbosch

algorithm with pivoting by introducing three key optimiza-

tions: independent first-level subtrees, degeneracy ordering,

and induced subgraphs.

Independent First-level Subtrees. In Algorithms 1 and 2,

the loop that iterates over the vertices in P has a loop-

carried dependence for removing previously visited vertices

from P and adding them to X . Eppstien et al. [28], [29] break

this loop-carried dependence at the first level by having each

iteration independently remove all previous vertices from P
and add them to X . The pseudocode for doing so is shown in

Algorithm 3. In each iteration, P for vertex vi is initialized

by intersecting N(vi) with the set of vertices that come after

vi (line 3), which removes the neighbors of vi visited on prior

iterations. On the other hand, X for vertex vi is initialized by

intersecting N(vi) with the set of vertices that come before vi
(line 4), which keeps the neighbors of vi visited on prior itera-

tions. The advantage of breaking this loop-carried dependence

is that the loop iterations, which represent first-level subtrees,

can be executed in parallel. For the second level onward, the

algorithm simply calls the sequential BRONKERBOSCHPIVOT

function (line 5).

Degeneracy Ordering. In Algorithm 3, the subtree for

each vertex vi only considers the vertices in P . Moreover,

in Algorithm 2 (which is called by Algorithm 3 on line 5),

several expensive set operations are performed with P such as

P −N(vpivot) (line 6) and P ∩N(v) (line 7). Hence, the size
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Algorithm 3 Bron-Kerbosch algorithm with independent first-

level subtrees
1: procedure BRONKERBOSCHINDEPENDENTFIRSTLEVEL(G)
2: for vi ∈ V do
3: P = N(vi) ∩ {vi+1, vi+2, ..., v|V |−1}
4: X = N(vi) ∩ {v0, v1, ..., vi−1}
5: BRONKERBOSCHPIVOT(G, {vi}, P , X)

of P directly impacts the size of the subtree traversed and the

cost of the set operations performed by the traversal. Recall

that P represents the neighbors of vi that are ordered after vi,
and X represents the neighbors of vi that are ordered before

vi. For an arbitrary graph, the sizes of P and X are O(Δ)
where Δ denotes the maximum degree of the graph and can be

quite large for real graphs. To place a tighter bound on the size

of P , Eppstien et al. [28] propose to reorder vertices based on

degeneracy ordering which minimizes the maximum number

of neighbors of any vertex that are ordered after that vertex.

After degeneracy ordering, the maximum number of neighbors

of any vertex that are ordered after that vertex is known as

the degeneracy of the graph, and is denoted by d. The size of

P thus becomes O(d). For real graphs, d is typically much

smaller than Δ (see Table I).

The advantage of degeneracy ordering is that by placing a

smaller bound on the sizes of the P sets, it places a smaller

bound on the sizes of the subtrees traversed and the cost of

the set operations performed with P . However, the size of the

X sets remains O(Δ), and the practical size of the maximum

X set increases due to degeneracy ordering. Hence, the trade-

off of degeneracy ordering is that it makes the operations on

the X sets, such as X ∩N(v) (line 7 in Algorithm 2), more

expensive.

In Fig. 1(a), the first vertex A was also the vertex with the

highest degree, which resulted in large subtrees being visited

for vertex A in Fig. 1(c) and Fig. 1(d). The size of the P set

for A was five which is the maximum degree of the graph.

Fig. 1(b) shows how the graph in Fig. 1(a) can be reordered

based on degeneracy ordering. In this figure, the graph is

still intended to be undirected, but the edges are drawn with

arrows from vertices earlier in the order to vertices later in

the order. As shown in Fig. 1(b), A is now the last vertex in

the order and has no vertices ordered after it. Fig. 1(e) shows

how the example graph in Fig. 1(a) can be processed using

independent first-level subtrees and degeneracy ordering. It is

clear that compared to Fig. 1(c) and Fig. 1(d), Fig. 1(e) has

more independent subtrees that are each smaller in size, its

largest P set is smaller, and its largest X set is larger.

Induced Subgraphs. In Algorithm 3, the subtree for each

vertex vi only needs to access the neighbors of vi and their

edges. It does not need to access the entire graph. Based

on this observation, Eppstien et al. [28] propose to construct

an induced subgraph for each subtree that only includes the

information needed by that subtree. In particular, we observe

that Algorithm 2 performs three key operations that access

the graph. The first operation is P −N(vpivot) (line 6). Since

vpivot ∈ P ∪ X , this operation needs to know the neighbors

of any vertex in P ∪X that are in P . The second operation

is P ∩ N(v) (line 7). Since v ∈ P , this operation needs to

know the neighbors of any vertex in P that are also in P .

The third operation is X ∩ N(v) (line 7). Since v ∈ P , this

operation needs to know the neighbors of any vertex in P that

are in X . Overall, the algorithm needs the edges connecting

any vertex in P ∪X with any vertex in P . Eppstien et al. [28]

induce a subgraph that contains only this information, denoted

by HP,X . The key advantage of using an induced subgraph

is that it removes irrelevant edges from the adjacency lists,

making set operations on the adjacency lists smaller.

Without degeneracy ordering, the size of P ∪ X is O(Δ)
and the size of P is O(Δ). Hence, the size of HP,X is O(Δ2)
which is prohibitively expensive to store for large graphs.

However, after degeneracy ordering, the size of P is reduced

to O(d), which reduces the size of HP,X to O(Δ · d). Since

typically d � Δ, degeneracy ordering makes it more feasible

to construct and store an induced subgraph.

III. PARALLELIZING MCE ON GPUS

A. Challenges and Implementation Overview

We propose a parallel implementation of MCE on GPUs

based on the Bron-Kerbosch algorithm with pivoting, inde-

pendent first-level subtrees, degeneracy ordering, and induced

subgraphs. One of the main challenges for parallelizing the

Bron-Kerbosch algorithm on GPUs is extracting a sufficient

amount of parallelism to fully-utilize the hardware resources.

The majority of prior works [19]–[22] do so by performing a

breadth-first traversal of the search tree. Breadth-first search

is highly amenable to parallelization because tree nodes at

each level of the search tree can be processed in parallel.

However, it does not scale well for large graphs because of the

explosion in the number of search tree nodes that need to be

tracked as the level gets deeper. To avoid this explosion, one

work [30] performs depth-first search on CPU while offloading

primitive operations to GPU. However, this approach results

in high communication overhead between CPU and GPU due

to frequent kernel calls and data transfer operations.

To overcome these limitations, we propose to parallelize

MCE on GPUs by assigning independent subtrees to different

thread blocks and having each thread block perform a depth-

first traversal of its subtree. Threads within the block collab-

orate to perform primitive operations such as set operations

and finding pivots. This approach prevents the explosion in

the number of search tree nodes that need to be tracked,

and performs the entire traversal in a single kernel which

eliminates CPU-GPU communication. There is no commu-

nication between CPU and GPU throughout the execution,

except copying the graph to the GPU at the beginning and

copying the result back at the end.

The parallelization approach of performing per-block depth-

first traversals of independent subtrees has been applied in our

prior work on k-clique counting [23]. That work also applies

other optimizations such as binary encoding of the induced

subgraph and partitioning work within a block at subwarp
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granularity. In this work, we retain all these optimizations.

To the best of our knowledge, this work is the first to use

induced subgraphs, binary encoding, and subwarp partitioning

for parallelizing MCE on GPUs.

Aside from applying these techniques to MCE, our main

contribution in this work is addressing two key scalability

challenges present in MCE that are less of a concern in k-

clique counting. The first challenge is that MCE has substan-

tially higher load imbalance. In k-clique counting, search trees

have bounded depth (i.e., k). Hence, the sizes of subtrees

that are assigned to different thread blocks are reasonably

balanced. Moreover, our prior work on k-clique counting [23]

shows that extracting independent subtrees at the second

level instead of the first level is sufficient to balance the

load completely. In contrast, in MCE, the subtrees may be

arbitrarily deep depending on the size of the maximal clique

they are exploring. Hence, MCE suffers from substantially

higher load imbalance than k-clique counting and requires

more sophisticated load balancing techniques.

The second challenge is that MCE has a substantially higher

memory footprint than k-clique counting. Since MCE has

potentially deeper subtrees, it needs to pre-allocate more stack

space per thread block to support the depth-first traversal of

these subtrees. Moreover, in k-clique counting, the traversal

only needs to track the equivalent of the R and P sets at

each level of the tree, which are O(d) in size, and the induced

subgraphs only need to store the edges between vertices in

P and other vertices also in P , which requires O(d2) space.

In contrast, in MCE, to test for maximality, the traversal also

needs to track the X set for each level of the tree, which is

O(Δ) in size, and the induced subgraphs also need to store the

edges between vertices in X and vertices in P , which requires

O(Δ · d) space. Since Δ is much larger than d, MCE has a

substantially higher memory footprint than k-clique counting

and requires more sophisticated techniques for representing

induced subgraphs and the X sets.

In the rest of this section, we describe our proposed ap-

proach for parallelizing MCE on GPUs, with a particular focus

on unique aspects of our work, namely, how to mitigate load

imbalance and how to efficiently represent induced subgraphs

and the X sets at each level of the search tree.

B. Independent Second-level Subtrees

One common approach to improving load balance on GPUs

is to extract many more parallel tasks than the number of tasks

that can be executed simultaneously by the hardware. Our

prior work on k-clique counting [23] advocates for extracting

independent subtrees at the second level instead of the first,

and shows that it is sufficient to balance load completely for

that problem. We investigate the same technique in MCE.

Algorithm 4 shows the pseudocode for extracting indepen-

dent second-level subtrees. Instead of iterating over vertices

in V , we iterate over edges {vi, vj} in E (line 2). For each

edge, P is initialized to the common neighbors of vi and vj
that are ordered after both vertices (line 3). On the other hand,

X is initialized to the common neighbors of vi and vj that are

ordered before the later of the two vertices (line 4).

Algorithm 4 Bron-Kerbosch algorithm with independent

second-level subtrees
1: procedure BRONKERBOSCHINDEPENDENTSECONDLEVEL(G)
2: for {vi, vj} ∈ E do
3: P = N(vi) ∩N(vj) ∩ {vmax(i,j)+1, ..., v|V |−1}
4: X = N(vi) ∩N(vj) ∩ {v0, ..., vmax(i,j)−1}
5: BRONKERBOSCHPIVOT(G, {vi, vj}, P , X)

The advantage of extracting subtrees at the second level

instead of the first level is that it provides more parallel

tasks to assist with load balancing. It also results in smaller

induced subgraphs since the P sets at the second level are

smaller than those at the first level. The disadvantage is that

more induced subgraphs need to be constructed overall, and

their construction cost is amortized across smaller subtree

traversals.

We evaluate the trade-off between extracting subtrees at

the first or second level throughout Section IV. We observe

that although extracting second-level subtrees partially reduces

load imbalance, the imbalance remains high for many graphs

unlike in k-clique counting. This observation motivates us to

propose another optimization for mitigating load imbalance in

MCE, which is more effective and ultimately obviates the need

for extracting second-level subtrees.

C. Dynamic Load Balancing with a Worker List

One approach to alleviate load imbalance on GPUs is using

a worklist. Thread blocks with large tasks can add subtasks

to the worklist, and thread blocks that complete their tasks

can remove subtasks from the worklist. For example, Yamout

et al. [31] use such an approach to achieve load balance

while traversing the vertex cover search tree, leveraging the

broker worker distributor [32] as their worklist data structure.

However, in MCE, the data needed to represent a subtask is

large, consisting of R, P , X , the current level, and a reference

to the induced subgraph. The large size of the subtask data

makes using a worklist inefficient for MCE for two reasons.

The first reason is that a large amount of memory would be

needed to store the worklist entries, which would place high

pressure on the already constrained memory capacity. The

second reason is that adding and removing subtasks from the

worklist would incur high overhead, so there would be a high

penalty when a block adds work to a worklist and there are

no idle blocks actually needing any work.

To avoid the limitations of using a worklist, we instead

propose to use a worker list for dynamic load balancing. The

worker list holds IDs of thread blocks that are idle because

they have completed their previous tasks. A thread block that

completes its task adds its ID to the worker list to indicate that

it can receive subtasks from other blocks. We call this block a

receiver block. On the other hand, a thread block working on

a large task periodically checks the worker list to see if there

are any receiver blocks waiting. We call this block a donor
block. If a donor block finds a receiver block in the worker
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list, the donor block removes the receiver block and gives it

a subtask to work on. The computation terminates when all

blocks have added themselves to the worker list and there are

no more executing donor blocks.

We incorporate our proposed worker list technique into

our parallel MCE implementation as follows. We start by

launching as many thread blocks as the maximum number

that can run on the GPU simultaneously. These blocks execute

in two phases. In the first phase, each block atomically

increments a shared counter to reserve an independent first-

or second-level subtree, and traverses that subtree. If the

block completes the subtree, it atomically increments the

counter again to obtain another subtree. This process continues

until all the independent subtrees have been depleted, after

which the second phase begins. Note that there is no global

synchronization needed between the two phases. Donor blocks

that are still executing their subtrees from the first phase know

when the second phase has been reached by checking the

shared counter every time they branch.

In the second phase, blocks that finish traversing their

subtrees add themselves to the worker list and sleep by

spinning on a flag with exponential back-off. The worker

list is implemented as a multi-producer multi-consumer queue

using a circular buffer. The buffer cannot overflow because

the number of thread blocks is fixed. Donor blocks that have

not finished traversing their subtrees check the worker list

upon visiting a new branch. If a donor finds a receiver in the

worker list, the donor atomically removes the receiver’s ID

from the worker list, offloads the new branch to the receiver

by initializing the receiver’s data structures, and wakes the

receiver up by setting its flag. We use CUDA atomic objects

from libcu++ and the release-acquire model to guarantee that

data written by the donor is visible to the receiver.

In some cases, the benefit of a donor block offloading a

branch to a receiver block is not worth the overhead. To avoid

these unprofitable cases, we only have a donor block check

the worker list and offload a branch if two conditions hold.

The first condition is that the branch to be offloaded should

not be small, otherwise the overhead of offloading the branch

to the receiver may be higher than the cost of visiting the

branch. To ensure that the branch is not small, we require

that |P | ≥ 10 for the root node of the branch, however we

note that performance is not very sensitive to the choice of this

threshold. The second condition is that the donor block should

have a substantial amount of other work to do after offloading

the branch, because it does not make sense for the donor to

offload a branch, then finish traversing its subtree shortly after

and start seeking work from other donors. To ensure that the

donor has a substantial amount of other work, we only offload

a branch if there are other branches at the same level and other

branches in previous levels that have not yet been explored.

We evaluate the advantage of using a worker list in Sec-

tions IV-C and IV-D, including its importance when scaling

to multiple GPUs.

D. Partial Induced Subgraphs

Recall from Section II-D that one common optimization to

reduce the size of adjacency lists and intersection operations

is to construct, for each independent subtree, an induced

subgraph with vertices and edges relevant to that subtree. Prior

works that implement MCE on GPUs [19]–[22], [30] do not

apply this optimization because they do not perform depth-

first traversal of independent subtrees entirely on the GPU. To

the best of our knowledge, our work is the first to use induced

subgraphs for MCE on GPUs.

As mentioned in Section III-A, the induced subgraphs in

MCE contain the edges between the vertices in P and the

vertices in P ∪ X , which makes the size of the induced

subgraph O(Δ · d). Since Δ can be large, these induced

subgraphs are expensive to construct and store. To address this

challenge, we propose to represent the induced subgraph using

two alternatives: full or partial. For full induced subgraphs, we

construct binary-encoded induced subgraphs containing all the

edges between P and P ∪X . For partial induced subgraphs,

we construct binary-encoded induced subgraphs with only the

edges between vertices P and other vertices also in P , and

use the original graph to look up edges between vertices in

P and vertices in X . The original graph is stored using the

Compressed Sparse Row (CSR) format [24] when first-level

subtrees are used, and both the CSR and the Coordinate format

(COO) [24] when second-level subtrees are used.

The advantage of using full induced subgraphs is that it

makes set operations on X faster by using bitwise opera-

tions. The advantage of using partial induced subgraphs is

that it avoids the high latency of constructing large induced

subgraphs and the high memory capacity required for storing

them. We evaluate these trade-offs and propose a heuristic for

selecting the most suitable alternative in Section IV-E.

E. Compact Representation of the X Sets

Recall from Section III-A that MCE puts higher pressure

on the memory capacity than other related problems because

of the need to represent X at each level of a subtree to test

for maximality. A subtree can have up to d levels, and the

size of X is O(Δ). Therefore, a naive representation of the

X sets would require O(Δ · d) memory per subtree. Hence,

the memory needed to represent the X sets can easily limit

the number of subtrees that can be traversed in parallel.

To design an efficient representation of X , we first make

the following observations. In Algorithm 2, the two operations

that modify X as the tree is traversed are X ∩ N(v) (line 7)

and X ∪ {v} (line 9), where v ∈ P . The first operation,

X ∩ N(v), can only remove vertices from X . The second

operation, X ∪ {v}, adds vertices to X but these vertices can

only come from P . Based on this observation, we divide the

representation of X into two parts: XP and XX .

XP represents the vertices in X that are part of the original

P set at the root node of the subtree. These vertices may be

added by the X ∪ {v} operation or removed by the X∩N(v)
operation. Hence, XP may grow or shrink as we descend to

deeper levels of the subtree. However, XP may not exceed
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Fig. 2. Using a single array to represent XX across levels

the size of P which is O(d). For this reason, XP is binary

encoded for fast set operations on it, and a different copy of

XP is stored for each level of the tree.

On the other hand, XX represents the vertices in X that

were part of the original X set at the root node of the subtree.

XX may contain any vertex in the original X which makes

its size O(Δ). However, since the vertices in the original X
cannot be part of any P set in the subtree, the vertices in

XX may only be removed by the X ∩N(v) operation as we

descend to deeper levels of the subtree. Since XX only shrinks

as we descend down the subtree, we do not need to store a

separate copy of XX for each level. Instead, we store a single

copy of XX for all levels and an index for each level that

points to where the XX vertices end for that level.

Fig. 2 shows an example of how XX is represented and

updated as we descend down the tree. In this example, as we

descend from Level 0 to Level 1, the vertices that remain in

X in Level 1 are moved to the front of the array and the

vertices that are removed are moved to the end of the array.

To move the vertices, we implement an out-of-place partition

operation where each thread moves one value after atomically

incrementing a bin counter. We also tried the in-place partition

operation in CUB [33] but it did not yield better performance.

After moving the vertices, a level pointer array lpX is updated

such that lpX[1] points to where the vertices in Level 1

end. The same process is repeated on the shrunk array as

we descend to deeper levels. To go back to a previous level,

nothing needs to be done since all the vertices for the previous

level have stayed before the previous level’s lpX pointer and

only the order of vertices has changed.

By storing a single copy of XX for all levels and dif-

ferent copies of XP for each level, the memory needed for

representing X for all levels becomes O(Δ + d2) which is

much smaller than O(Δ · d). This compact representation

is crucial for scalable acceleration of MCE on GPUs (and

any other memory constrained system) and is used in all our

implementations.

Finally, we note that if a partial induced subgraph is used

instead of a full induced subgraph (see Section III-D), then

the pivot is only selected from XP ∪ P . The reason is that

finding a pivot vertex from XX is expensive if the adjacency

lists of the vertices in XX are not binary encoded.

IV. EVALUATION

A. Methodology

Evaluation Platforms. We evaluate our GPU implemen-

tations on two platforms. The first platform has four 32GB

NVIDIA V100 GPUs attached to an Intel Xeon Gold 6230

CPU and is used for both single- and multi-GPU evaluation.

On this platform, we compile our code with NVCC (CUDA

10.2) and GCC 8.3.1 with the -O3 flag. The CUDA driver

version is 470.74. The second platform has a 40GB NVIDIA

A100 GPU attached to an AMD EPYC 7702 CPU and is

used for the single-GPU evaluation only. On this platform, we

compile our code with NVCC (CUDA 11.4) and GCC 9.4.0

with the -O3 flag. The CUDA driver version is 470.103. We

use 128 threads per block, which results in 1,280 blocks per

GPU for V100 and 1,728 blocks per GPU for A100. We use

CUB 1.8.0 [33] for the filter and exclusive scan operations

during pre-processing. In the multi-GPU implementations, we

use OpenMP 4.5 to create one CPU thread for each GPU.

CPU Baseline. To the best of our knowledge, the work

of Blanuša et al. [25] is the state-of-the-art parallel CPU

implementation of MCE, and also outperforms all prior GPU

implementations. We compare the performance of our GPU

implementation with the best execution times reported by

Blanuša et al. which are obtained using a dual-socket Intel

Xeon Skylake platform with 48 cores (96 threads) and 360

GB of main memory. For completeness, we also execute their

publicly available code on our dual-socket Intel Xeon Gold

6230 Cascade Lake CPU with 40 cores (80 threads) and

512GB of main memory and report those results as well.

GPU Baseline. Prior GPU implementations do not have

publicly available code. For this reason, we compare the

performance of our implementation to the execution times

reported in the most recent GPU work by Wei et al. [22].

However, this comparison is not fair because Wei et al. use

an NVIDIA Titan X GPU which is weaker than the GPUs we

use. We comment on this issue in Section IV-B.

Datasets We evaluate using the same graph datasets used

by Blanuša et al. [25] which are shown in Table I.

Reporting of Measurements. The execution times reported

by Blanuša et al. [25] include the time spent on counting

maximal cliques and exclude the time spent on reading the

graph from disk. For fair comparison, we follow the same

strategy. We also include the time spent on pre-processing

the graph to apply degeneracy ordering. Unless otherwise

specified, we report the time achieved with the worker list

enabled, and with the best combination of using independent

first- or second-level subtrees and using partial or full induced

subgraphs.

B. Performance

Performance comparison with prior CPU implemen-
tation. Table I compares the execution time of our single-

GPU implementation with the state-of-the-art parallel CPU

implementation [25]. We observe that our GPU implemen-

tation consistently and significantly outperforms the parallel
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TABLE I
GRAPHS USED FOR EVALUATION AND COMPARISON OF EXECUTION TIME WITH THE STATE-OF-THE-ART PARALLEL CPU IMPLEMENTATION

Parallel CPU time (s)
GPU

time (s)
GPU speedup over

Skylake with 96 threads
Graph |V | |E| Max degree

(Δ)
Degeneracy

(d)
# of maximal

cliques
Avg maximal

clique size
Max

clique size
Cascade Lake
with 80 threads

Skylake with
96 threads [25]

V100 A100 V100 A100

wiki-talk [34] 2,394,385 4,659,565 100,029 131 86,333,306 13.37 26 4.57 4 1.39 1.38 2.89 2.91
as-skitter [34] 1,696,415 11,095,298 35,455 111 37,322,355 19.91 67 3.74 3 0.81 0.79 3.70 3.82
socfb-B-anon [35] 2,937,613 20,959,854 4,356 63 27,593,398 5.24 24 2.38 2 0.56 0.45 3.60 4.42
soc-pokec [34] 1,632,804 22,301,964 14,854 47 19,376,873 3.67 29 1.45 1 0.38 0.36 2.65 2.78
wiki-topcats [34] 1,791,489 25,444,207 238,342 99 27,229,873 4.46 39 2.09 2 0.83 0.87 2.42 2.30
soc-livejournal [35] 4,033,138 27,933,062 2,651 213 38,413,665 29.97 214 5.45 5 0.81 0.76 6.21 6.57
soc-orkut [35] 3,072,442 117,185,083 33,313 253 2,269,631,973 20.24 51 110.61 93 25.23 17.82 3.69 5.22
soc-sinaweibo [35] 58,655,850 261,321,033 278,489 193 1,117,416,174 18.43 44 67.78 54 16.40 13.60 3.29 3.97
aff-orkut [35] 8,730,858 327,036,486 318,268 471 417,032,363 2.53 6 138.89 147 14.40 8.82 10.21 16.67
clueweb09-50m [35] 428,136,613 446,766,953 308,477 192 1,001,323,679 15.21 56 99.29 90 14.90 10.03 6.04 8.97
wiki-link [35] 27,154,799 543,183,611 4,271,341 1,120 568,730,123 4.51 428 112.14 109 34.82 32.23 3.13 3.38
soc-friendster [35] 65,608,367 1,806,067,135 5,214 304 3,364,773,700 6.88 129 406.33 380 64.50 39.59 5.89 9.60

CPU implementation for all graphs. The geometric mean

speedup of our GPU implementation over the parallel CPU

implementation is 4.1× (up to 10.2×) for the V100 GPU and

4.9× (up to 16.7×) for the A100 GPU. These results show

the effectiveness of GPUs at accelerating MCE, despite the

challenges of GPUs being more sensitive to load imbalance

and having more constrained memory capacity. Note that while

some of the optimizations introduced in this paper may be

applied to CPU implementations, we do not expect them to

be as effective because CPU implementations do not suffer as

much from load imbalance and memory capacity constraint.

Performance comparison with prior GPU implemen-
tation. Table II compares the execution time of our single-

GPU implementation with the most recent GPU implementa-

tion [22] for the common graphs reported in that implementa-

tion. The geometric mean speedup of our GPU implementation

over the prior GPU implementation is 35.65× (up to 50.46×).

As mentioned in Section IV-A, this comparison is not fair

because Wei et al. use a Titan X GPU which is weaker than

our V100 GPU. However, the V100 GPU has only 1.43x more

cores and 1.88x higher memory bandwidth than the Titan

X GPU so the achieved speedup cannot be attributed to the

hardware difference alone. Unfortunately, we are unable to

make a direct comparison on the same system because we do

not have access to an NVIDIA Titan X GPU to evaluate our

implementation on, nor do we have access to Wei et al.’s code

to evaluate it on our system.

Performance relative to hardware peak capability. The

efficiency of our implementation relative to the hardware

peak capability depends on the graph being solved. For

many graphs, the computation is compute-bound (computing

set intersections) when the induced subgraph fits in the L1

cache. It shifts towards memory-bandwidth-boundedness when

the induced subgraph is large and global memory needs to

be accessed frequently. The SM utilization ranges between

25.26% and 70.71%, with a mean of 57.76%. The memory

bandwidth utilization ranges between 19.63% and 59.50%,

with a mean of 51.47%. Moreover, the SIMD utilization ranges

between 66.4% and 91.8%, with a mean of 74.5%.

C. Load Balance

Fig. 3 compares the distribution of load across SMs for the

A100 GPU when different combinations of optimizations are

TABLE II
COMPARISON WITH THE GPU BASELINE

GPU baseline on Our implementation Speedup over
Graph

Titan X (s) [22] on V100 (s) GPU baseline
wiki-talk 41.09 1.39 29.56
as-skitter 40.87 0.81 50.46
soc-pokec 12.85 0.38 33.82
wiki-topcats 26.57 0.83 32.01

applied. The load of an SM is measured as the maximum

number of tree nodes visited by any block on that SM (recall

that we launch exactly the maximum number of concurrent

blocks that can execute and reuse these blocks to process

different subtrees). Based on these results, we make three key

observations.

The first observation is that when no worker list is used (No

WL), using independent second-level subtrees (L2) instead of

independent first-level subtrees (L1) substantially reduces load

imbalance. This observation is consistent with our prior work

on k-clique counting [23]. However, unlike our prior work,

we note that in the case of MCE, even after L2 trees are

used, the imbalance is still high for some graphs. The average

across benchmarks of the maximum load across thread blocks

is 2.28× the average load when using L1 trees and 1.63× the

average load when using L2 trees, which is a 1.40× decrease

in imbalance.

The second observation is that using a worker list (WL)

substantially reduces load imbalance compared to not using a

worker list. To further study the effectiveness of the worker

list, Table III shows the number of donations performed for

each graph. It is clear that the graphs with a large number

of donations are also the ones with high imbalance in Fig. 3

that benefit from using the worker list. These results show the

effectiveness of our proposed worker list approach at reducing

the load imbalance of MCE on GPUs.

The third observation is that when a worker list is used, there

is little difference in load imbalance between using L1 trees

and L2 trees in most cases. The average across benchmarks of

the maximum load across thread blocks is 1.17× the average

load when using L1 trees and 1.11× the average load when

using L2 trees, which is only a 1.05× decrease in imbalance.

This observation shows that our proposed worker list approach

obviates the need to use L2 trees for the purpose of load
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Fig. 3. Load distribution across streaming multiprocessors (SMs) for different combinations of optimizations

TABLE III
NUMBER OF DONATIONS WITH A WORKER LIST

Graph L1 L2 Graph L1 L2
wiki-talk 1,436,113 74,268 soc-orkut 9,728,983 2,438,166
as-skitter 625,508 74,703 soc-sinaweibo 11,119,926 1,164,829
socfb-b-anon 170 0 aff-orkut 0 0
soc-pokec 0 0 clueweb09-50m 890,122 49,799
wiki-topcats 2,128 28 wiki-link 2,997 99
soc-livejournal 341,721 105,270 soc-friendster 1,615,437 358,499

balancing in most cases. Still, using L2 trees may have other

benefits such as smaller induced subgraphs and shorter set

operations. We revisit this point in Section IV-E.

D. Scalability to Multiple GPUs

Fig. 4 shows the strong scaling of our GPU implementation

across multiple V100 GPUs when different combinations of

optimizations are applied. In the multi-GPU implementation,

L1 or L2 trees are distributed across GPUs in a round-robin

scheme and each GPU maintains its own private worker list.

We also experimented with using an inter-GPU shared worker

list, however its overhead was not worth its benefit. Currently,

our implementation supports scaling to multiple GPUs within

a single node, however, scaling to multiple GPU nodes is the

subject of future work.

Based on the results in Fig. 4, we make three key observa-

tions. The first observation is that in most cases, on a single

GPU, the implementations that use a worker list substantially

outperform those that do not use a worker list. This observation

shows the effectiveness of our proposed worker list approach

at improving performance by reducing load imbalance.

The second observation is that in most cases, as we scale to

multiple GPUs, the WL implementation scales well whereas

the No WL implementation scales poorly. This observation

shows that scaling to multiple GPUs exacerbates the load im-

balance challenge of MCE, and that our proposed worker list

approach is effective at overcoming this scalability challenge.

The third observation is that in most cases, using L2 trees

instead of L1 trees has better performance and scalability when

no worker list is used, but does not significantly improve

performance and scalability when a worker list is used and

may even degrade performance. This observation reiterates

the observation in Section IV-C that our proposed worker list

approach obviates the need to use L2 trees for the purpose of

load balancing.

E. Choice of Optimizations

Fig. 5 shows the breakdown of execution time on the

A100 GPU when different combinations of optimizations are

applied. SM clocks are used to get the number of cycles spent

by each thread block on each activity.

L1 trees vs. L2 trees. When comparing the use of L1

trees with L2 trees, we make two key observations. The

first observation is that in most cases, the fraction of time

spent on constructing the induced subgraph is larger for L2

trees. The reason is that using L2 trees extracts more subtrees

that are each smaller in size, so more induced subgraphs are

generated and the cost of generating them is amortized across

fewer tree node traversals. The second observation is that in

most cases, the fraction of time spent on set operations (such

as intersections) is smaller for L2 trees. The reason is that

using L2 trees results in smaller induced subgraphs, hence

smaller sets to operate on. Nevertheless, the benefit of faster

set operations does not overcome the increased overhead of

constructing induced subgraphs, so we find that using L1

trees outperforms using L2 trees in the majority of cases.

On average, using L1 trees is 1.2× (geometric mean) faster

than using L2 trees. Note that in our prior work on k-clique

counting [23], L2 trees were more effective in most cases

because of their load balancing benefits. However, since these

benefits are obviated by the worker list (see Sections IV-C

and IV-D), the benefits of L1 trees become more pronounced.

Partial vs. full induced subgraphs. When comparing the

use of partial induced subgraphs (IP, i.e., induced on P only)

and full induced subgraphs (IPX, i.e., induced on P and X),

we make three key observations. The first observation is that in

most cases, the fraction of time spent on constructing induced

subgraphs is larger for IPX. The reason is that the induced

subgraphs in IPX are larger than the induced subgraphs in

IP, thereby taking longer to construct. The second observation

is that in most cases, the fraction of time spent on pivoting

is larger for IPX. The reason is that in IPX, we consider

pivots from X ∪ P , whereas in IP, we only consider pivots

in XP ∪ P and do not consider pivots from XX . As a result,

we spend less time on pivoting in IP, however, we may not find

the best possible pivot. The third observation is that in most

cases, the fraction of time spent on set operations is smaller

for IPX. The reason is that including the edges between P
and X vertices in the induced subgraphs makes set operations

on the X sets less costly. This trade-off between the time
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Fig. 5. Breakdown and comparison of execution time for different combinations of optimizations

spent on constructing induced subgraphs, the time spent on

pivoting, and the time spent on performing set operations

makes each approach perform better on different datasets.

Overall, IP performs better in six cases whereas IPX performs

better in six cases.

Heuristics for selecting optimizations. To select the best

combination of optimizations, we recommend the following

heuristic. First, L1 trees should always be selected instead of

L2 trees. Second, IP should be selected when Δ/d > 200,

and IPX should be selected otherwise. The intuition is that

IPX requires O(Δ · d) space for each induced subgraph and

IP requires only O(d2) space, so Δ/d represents how much

more space IPX requires compared to IP. If this value is too

high (IPX requires too much more space), it is better to select

IP, otherwise it is better to select IPX. Table IV shows that this

heuristic selects the best combination in the majority of cases,

with a geometric mean slowdown of 1.02× (up to 1.10×) from

selecting incorrectly. One possible additional optimization is to

use different strategies for storing different induced subgraphs

within the same graph based on the local ratio of degree to

out-degree. This optimization is the subject of future work.

Finally, we make one additional observation from Fig. 5 that

the fraction of time spent adding to and removing from the

worker list is small. This observation shows that the substantial

load balancing benefits that the worker list provides come with

a low performance overhead. Furthermore, the fraction of time

spent performing worker list operations in Fig. 5 tends to

be larger for graphs where a large number of donations is

performed according to Table III.

TABLE IV
COMPARING HEURISTIC (UNDERLINED) AND OPTIMAL (BOLD)

SELECTION OF OPTIMIZATION COMBINATIONS

Execution time (s) Heuristic
slowdownGraph Δ/ d L1 + IP L1 + IPX L2 + IP L2 + IPX

wiki-talk 763.58 1.14 1.74 1.10 1.48 1.03
as-skitter 319.41 0.58 0.70 0.80 0.66 1.00
socfb-B-anon 69.14 0.25 0.22 0.42 0.36 1.00
soc-pokec 316.04 0.21 0.21 0.30 0.31 1.00
wiki-topcats 2,407.49 0.60 1.85 0.74 1.99 1.00
soc-livejournal 12.45 0.52 0.44 1.10 0.65 1.00
soc-orkut 131.67 22.10 18.68 29.29 16.98 1.10
soc-sinaweibo 1,442.95 12.20 13.05 15.80 11.39 1.07
aff-orkut 675.73 8.16 11.82 9.31 12.18 1.00
clueweb09-50m 1,606.65 6.70 9.77 15.10 11.35 1.00

wiki-link 3,813.70 24.67 - 29.76 - 1.00
soc-friendster 17.15 44.64 33.41 58.16 39.17 1.00

Geomean 1.02

V. RELATED WORK

MCE has been extensively studied on CPUs [18], [27], [28],

[36], [37] and many attempts to parallelize it on the CPU

have been made [25], [38]–[42]. To the best of our knowledge,

the work of Blanuša et al. [25] is the state-of-the-art parallel

CPU implementation of MCE, and its reported performance is

the highest among all prior CPU (and GPU) implementations.

Our work targets accelerating MCE on GPUs. We compare

the performance of our work to that of Blanuša et al. [25]

in Section IV. MCE has also been parallelized on distributed

CPU systems [43]–[46]. Our work focuses on parallelizing

MCE on single-node single- and multi-GPU systems, how-

ever, parallelizing MCE on distributed GPU systems is an

interesting future work. Many works have parallelized MCE

on GPUs [19]–[22], [30]. We compare our approach to these
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works in depth in Section III-A.
k-clique enumeration has been studied on CPUs [47]–[53]

and GPUs [23]. Triangle counting, which is a special case

of k-clique counting, has also been studied on CPUs [54]–

[58] and GPUs [59]–[69]. Our MCE work uses similar tech-

niques to those used in our prior GPU work on k-clique

counting [23], namely per-block depth-first traversal, binary

encoding of induced subgraphs, and subwarp partitioning.

However, as discussed in Section III-A, MCE imposes unique

challenges that we overcome with additional techniques such

as the worker list, partial induced subgraphs, and the compact

representation of excluded vertex sets.
Generalized graph pattern matching has also been studied on

CPUs [70]–[74] and GPUs [75]–[83]. Cliques are special cases

of patterns that graph pattern matching works aim to find.

While graph pattern matching algorithms perform similar tree

traversals to those in MCE, their general nature makes them

more difficult to scale. For example, using induced subgraphs

in graph pattern matching would require O(Δ2) space, which

causes most of these works to avoid such an optimization.
k-truss decomposition has also been studied on CPUs [84]–

[87] and GPUs [88]–[93]. A truss is a relaxation of a clique,

and finding trusses uses significantly different techniques that

are not based on search trees. In our work, we aim to find

exact maximal cliques.

VI. CONCLUSION

We present a GPU solution for accelerating maximal clique

enumeration that assigns independent subtrees to different

thread blocks and has each thread block perform a depth-

first traversal of its subtree. We propose a worker list for

dynamic load balancing to mitigate the high imbalance in the

MCE search tree. We propose partial induced subgraphs and

a compact representation of excluded vertex sets to regulate

memory consumption. We also apply various optimizations

used in prior works such as binary encoding of induced

subgraph and partitioning work at subwarp granularity. Our

evaluation shows that our GPU implementation substantially

outperforms the state-of-the-art parallel CPU implementation,

which outperforms prior GPU implementations.
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APPENDIX

ARTIFACT APPENDIX

A. Abstract
The artifact contains a pre-compiled binary for our ap-

plication, a Dockerfile preparing software dependencies, and

scripts for downloading datasets, running experiments, and

reproducing figures and tables in Section IV. To reproduce

results inside the docker image built from the Dockerfile, a

CPU with 4 cores in x86 64 architecture, 128 GB of RAM,

256 GB of disk space and 4 NVIDIA GPUs of compute

capability 7.0 or higher (i.e., Volta architecture or later) with

32 GB of GPU memory each are the minimum hardware

requirements. We also require CUDA driver version of at

least 450.80.02 with built-in CUB library, or CUDA driver

version of at least 440.33 with CUB library from source in

Linux OS, and Docker version above 19.03 with NVIDIA

Container Toolkit as the run-time environment. Our source

code is also provided in case there is a version mismatch in

the environment, which may require recompilation.

B. Artifact check-list (meta-information)
• Algorithm: Bron-Kerbosch Algorithm for maximal clique enu-

meration on GPUs
• Binary: A pre-compiled binary built from the Makefile is pro-

vided, with software dependencies prepared in the Dockerfile.
• Dataset: The SNAP Datasets1 and the Network Repository2

• Run-time environment: CUDA driver version of at least
450.80.02 with built-in CUB library, or CUDA driver version of
at least 440.33 with CUB library from source3 in Linux OS, and
Docker version above 19.03 with NVIDIA Container Toolkit4

• Hardware: At least a CPU with 4 cores in x86 64 architecture,
128 GB of RAM, 256 GB of disk space and 4 NVIDIA GPUs
of compute capability 7.0 or higher (i.e., Volta architecture or
later) with 32 GB of GPU memory each

• Execution: Approximately 6 hours, might fluctuate based on
downloading datasets in the first hour due to internet bandwidth

• Output: Figures and tables in Section IV
• Experiments: Building docker image, downloading datasets,

running experiments, and visualizing results as figures and
tables

• Disk space required: 200 GB
• Publicly available: https://github.com/yen-hsiang-chang/mce-

gpu
• Code license: University of Illinois/NCSA Open Source Li-

cense
• Archived: https://zenodo.org/record/8270171

C. Description

1) How to access: The artifact can be accessed from

GitHub at https://github.com/yen-hsiang-chang/mce-gpu.

2) Hardware dependencies: Our experiments require at

least a CPU with 4 cores in x86 64 architecture to have a

unique CPU thread for each GPUs, 128 GB of RAM to load

and unzip graphs, 256 GB of disk space to store datasets,

and 4 NVIDIA GPUs of compute capability 7.0 or higher

(i.e., Volta architecture or later) with 32 GB of GPU memory

each to execute our kernels on multiple GPUs. Our multi-

GPU experiments are done on a platform with four 32GB

NVIDIA V100 GPUs attached to an Intel Xeon Gold 6230

1https://snap.stanford.edu/
2https://networkrepository.com/
3https://github.com/NVIDIA/cub
4https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/
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CPU. Other platform satisfying the requirements will achieve

similar results, while the performance might fluctuate due to

different computing power and memory bandwidth.
3) Software dependencies: We require CUDA driver ver-

sion of at least 450.80.02 with built-in CUB library, or CUDA

driver version of at least 440.33 with CUB library from source

to pre-process the graphs. We also require Docker 19.03 or

higher with NVIDIA Container Toolkit to make GPUs ready to

be used with Docker. Other software dependencies prepared in

the docker image include OpenMP 4.5 to have a unique CPU

thread for each GPUs, and Python 3.6 with numpy, matplotlib

and tabulate to run the pre-compiled binary, plotting figures

and formatting tables.
4) Datasets: We use wiki-talk, as-skitter, soc-pokec and

wiki-topcats from the SNAP datasets and socfb-B-anon, soc-

livejournal, soc-orkut, soc-sinaweibo, aff-orkut, clueweb09-

50m, wiki-link and soc-friendster from the Network Repos-

itory as our datasets for evaluation. A script is provided in the

artifact to help download and extract datasets.

D. Installation and Experiment Instructions

1) Install Docker with NVIDIA Container Toolkit and

install CUDA driver with CUB library

2) Get the artifact from GitHub

3) Build and launch the docker image:

$ ./docker.sh /path/to/data/ \
/path/to/results/
Notice that /path/to/data/ is the path on host that

will store datasets and it needs to have at least 200 GB

disk space, and /path/to/results/ is the path on

host that will store evaluation results

4) Inside the docker image, reproduce all experiments with

the script provided:

$ ./all_experiments.sh
The whole experiments take about six hours to finish,

and there might be some fluctuations since download-

ing datasets depends on the internet bandwidth. The

all_experiments.sh script includes downloading

datasets using download.py, running experiments and

evaluations in load balance, time breakdown and dona-

tion using run.py, and plotting figures and formatting

tables using plot.py
5) After the experiments are done, exit the docker image

and inspect the results in /path/to/results/ on

host

E. Evaluation and expected results
The /path/to/results/ directory on host contains

figures and tables reported in Section IV, where figures are

stored in the plot/ sub-directory and tables are stored in the

table/ sub-directory. The descriptions are as follows and

please refer to the paper for more details:

1) load-balance.png: Visualize distribution of loads

across streaming multiprocessors (SMs) for different

combinations of optimizations as in Fig. 3
2) multigpu.png: Visualize strong scaling experiments

for different combinations of optimizations as in Fig. 4

3) breakdown.png: Visualize time breakdown of exe-

cution time for different combinations of optimizations

as in Fig. 5

4) time.txt: Output the GPU time as in Table I. Note

that the time includes both the degeneracy ordering time

and the maximal clique counting time

5) donation.txt: Output the number of donations as

in Table III

6) heuristics.txt: Output the GPU time for different

combinations of optimizations as in Table IV

We expect the results to be similar as our evaluation in

Section IV. However, we do expect some minor differences

for the GPU time reported in Fig. 5 and Table IV in the

paper, as optimization combinations are sensitive to memory

bandwidth and computing power on GPUs, and different GPUs

have different characteristics.

F. Notes

Our code has been open-sourced on GitHub to enable

further research on accelerating maximal clique enumeration

on GPUs. The repository contains a README file with

instructions on running experiments without Docker and us-

ages of the pre-compiled binary and each scripts if running

individually.
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