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Abstract
We propose leveraging strong and ultrastrong light-matter coupling to efficiently generate and
exchange nonclassical light and quantum matter states. Two initial conditions are considered: (a) a
displaced quadrature-squeezed matter state, and (b) a coherent state in a cavity. In both scenarios,
polaritons mediate the dynamical generation and transfer of nonclassical states between light and
matter. By monitoring the dynamics of both subsystems, we uncover the emergence of
cavity-induced beatings in the collective matter oscillations. The beating period depends on the
particle density through the vacuum Rabi splitting and peaks sharply under light-matter resonance
conditions. For initial condition (a), nonclassicality is efficiently transferred from matter to
photons under strong and ultrastrong coupling. However, for initial condition (b), nonclassical
photonic states are generated only in the ultrastrong coupling regime due to the counter-rotating
terms, highlighting the advantages of ultrastrong coupling. Furthermore, in the ultrastrong
coupling regime, distinctive asymmetries relative to cavity detuning emerge in dynamical
observables of both light and matter. The nonclassical photons can be extracted through a
semi-transparent cavity mirror, while nonclassical matter states can be detected via time-resolved
spectroscopy. This work highlights that polariton states may serve as a tool for dynamically
generating and transferring nonclassical states, with potential applications in quantum technology.

1. Introduction

Strong light–matter interaction is essential for nascent quantum technologies, enabling efficient and
reversible quantum state transfer, generation of correlated states, photon-mediated interactions, and
nonclassical light. Under strong light-matter coupling, hybrid light-matter quasiparticles, known as
polaritons, emerge [1]. These quasiparticles are often best manipulated in cavities [1–4], and have been
widely studied in condensed matter [5–16], cold atoms [17–20], and molecular systems [21–31].

Polaritons inherit their attributes from their light and matter constituents and thus exhibit fascinating
properties. In the strong coupling regime, photon emission statistics have been explored in ultracold atomic
gases, leveraging strong Rydberg correlations for deterministic single-photon generation [18, 19].
Second-order photon correlation measurements confirm the quantum nature of emitted light, achieving
high fidelity with high-finesse optical cavities [32]. Squeezed light [33] has been demonstrated in various
optomechanical systems [34, 35], e.g. mechanical resonators [36, 37] and ultracold atoms [38].

This work explores the dynamic generation and transfer of nonclassical states of quantum matter and
light. We leverage strong and ultrastrong light-matter coupling in single-mode cavities to achieve this [39,
40]. The dynamics of the composite system are described using the archetypical Hopfield Hamiltonian
(HH), originally developed for studying the excitonic response in dielectric crystals [41]. We show that the
HH applies to various physical systems in cavities, including cold, harmonically trapped ions [40],
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two-dimensional (2D) electron gases in a strong magnetic field (Landau levels) [5–8, 12, 15], and oriented
polar molecules [42, 43].

Trapped ions are ideal for studying quantum phenomena, and ion-cavity systems have enabled
single-photon emission, ion-photon, and ion–ion entanglement [44–47]. The position of a trapped ion can
be precisely controlled within the cavity [48] and Fock, coherent, and squeezed motional states of a
harmonically trapped ion have been generated [49]. Coherent transfer between an ion’s internal degrees of
freedom and an optical cavity mode has been demonstrated in several experiments [50, 51]. However, cavity
coupling with the motional states of trapped ions remains technically challenging due to the relatively low
characteristic motional frequencies, often in the MHz range [47, 52].

Importantly, Landau levels exhibit ultrastrong coupling to the cavity field [4, 8–10, 12, 53–55] and
Landau polaritons have been observed [7, 8, 12, 55–57]. More recently, mechanisms for cavity-induced
modification of the integer Hall effect were proposed [58, 59], and the breakdown of topological protection
has been experimentally demonstrated [5]. Furthermore, molecular polaritonic systems have garnered
attention for modifying material properties, including chemical reactivity under vibrational strong coupling
(VSC) [21, 22, 30, 60–64], and transient diffusivity and transport [28, 31, 65–72]. These findings have led to
extensive theoretical and experimental work to elucidate the mechanisms behind the observed effects [24, 70,
73–76]. Despite important advances, the quantum nature of the observed phenomena remains an active area
of research [77, 78].

This work focuses on the collective dynamics in cavity quantum electrodynamics (QED) systems by
considering two schemes for the generation and transfer of nonclassical states of light and matter in a cavity.
In Scheme I, the matter state, e.g. the center of mass (CM) state of trapped ions, is displaced and
quadrature-squeezed. The dynamics of both subsystems are monitored, and we uncover the emergence of
beatings in the collective matter oscillations and the number of generated photons. The beating period
depends on the number of particles and the detuning, and it sharply peaks around the light-matter
resonance. This phenomenon highlights that collective dynamics of matter can be significantly modified via
strong and resonant light–matter interaction in a cavity, even without an external field, i.e. in a vacuum.
Similar resonant modifications have been observed in chemical reactions in molecules under VSC [21, 22,
30, 63, 64]. From the cavity perspective, the coupling transfers the quantum state of matter (e.g.motional
state of ions) to light, resulting in sub-Poissonian photon number distribution (PND), i.e. quantum photonic
states with no classical analogue [79]. We wish to mention that generating nonclassical light via VSC with
few molecules was suggested recently [80]. In Scheme II, the cavity is initiated in a coherent state [81], which
partially moves from one subsystem to another over time. Simultaneously, the counter-rotating light–matter
interaction terms (counter-rotating terms, CRT) in the HH (see below) induce nonclassical features in light
or matter subsystems depending on the initial shift of the coherent state. In this scheme, the nonclassical
features arise entirely from the CRT, underscoring the importance of the ultrastrong coupling [3, 4].

Notably, the CRT induce asymmetries in dynamical observables associated with matter and light. These
asymmetries emerge in the ultrastrong coupling regime when the cavity frequency is scanned around the
resonance and are consequences of the asymmetry in the polaritonic branches. In contrast to linear
spectroscopy, which may be insensitive to the quantum nature of the system, time-dependent observables
involving higher-order moments of the matter or light distributions (e.g. photon number variance) serve as
quantum measures sensitive to ultrastrong coupling effects. We provide analytical expressions for the average
photon number in both schemes, allowing for a comprehensive description of photon generation over the
entire parameter space, including the system and initial state parameters.

We quantify the temporal evolution of nonclassical features of matter and light using the time-averaged
Mandel Q parameter. For Scheme I, we demonstrate that outcoupling the cavity field through a
semi-transparent cavity mirror allows for extracting the nonclassical photons [82]. In Scheme II applied to
trapped ions, for instance, sideband spectroscopy of motional state population allows for the measurement
of matter quantum state statistics [52]. Hybrid polaritonic systems efficiently mediate the transfer of
nonclassicality from matter to light, a resource crucial for quantum sensing [83–86], and quantum
information technologies [87, 88]. Our work bridges the physics of strong and ultrastrong light-matter
coupling with quantum science and suggests novel pathways for polaritonic quantum technologies.

2. HH across different cavity QED systems

In recent years, the HH has attracted significant attention due to its application in several cavity QED systems
operating in the ultrastrong light-matter coupling regime [3, 4]. This section explicitly demonstrates how the
HH emerges in three example systems in a cavity: cold trapped ions, 2D electron gas in a strong magnetic
field, and oriented molecules with harmonic internuclear potential. Thus, in principle, the nonclassical
dynamical phenomena discussed hereafter are within experimental reach across various physical systems.
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Figure 1. Schematic illustration of the collective coupling to a homogeneous quantum cavity field in different physical systems,
including (a) harmonically trapped cold ions, (b) 2D electron gas in a strong magnetic field, Bext, and (c) molecules with
harmonic internuclear potential. In all cases, the system Hamiltonian can be mapped to the HH, see equations (5), (10) and (14).
Thus, the dynamical phenomena described hereafter can be, in principle, realized in various cavity QED systems.

2.1. Cold trapped ions
We start by considering a system of N interacting ions confined in a harmonic potential, coupled to a
single-mode quantized cavity field (figure 1(a)). Recently, this system was used to study the collective
phenomena in the polaritonic ground state [40]. Here, we focus on the dynamics mediated by the coupling
between the ions’ motion and the cavity field. In the non-relativistic limit, this system is described by the
Pauli–Fierz Hamiltonian in the Coulomb gauge, also known as the minimal-coupling Hamiltonian [43, 89]

Ĥion =
1

2m

N∑

i=1

(
ih̄∇i + g0Â

)2
+

N∑

i<l

W(r̂i → r̂l)+
N∑

i=1

mΩ2

2
r̂2i +

∑

ν=x,y

h̄ω

(
â†ν âν +

1

2

)
, (1)

where g0 is the single-particle coupling parameter to the cavity field (in units of the elementary charge, e),m
is the mass of the particles, and Ω is the frequency of the harmonic trap.W(r̂i → r̂l) is the inter-particle
interaction between the ions. The quantized vector potential Â in the long-wavelength limit (homogeneous
approximation) is given by [42, 43, 89]

Â=
∑

ν=x,y

√
h̄

2ε0Vω
eν
(
âν + â†ν

)
, (2)

where ω = c|kz| is the frequency in the effective optical mode volume V , with wave vector in the z direction,
ε0 is the vacuum permittivity, and ν = x,y denote the two transversal polarization directions [43, 89]. The
operators âν and â†ν are the annihilation and creation operators of the photon field obeying [âν , âν ′†] = δνν ′ .

Expanding the covariant kinetic energy shows that the homogeneous photon field couples to the total
momentum of the particles, Â ·

∑N
i=1∇i, implying collective coupling to the cavity field through the

particles’ center of mass. Thus, we change variables to the CM position R̂= N→1/2
∑N

i=1 r̂i, and the relative

positions ˆ̃rj = N→1/2(r̂1 → r̂j) with j> 1. The prefactor N→1/2 is introduced for mathematical convenience

like in [90]. The operators R̂ and ˆ̃rj, along with their corresponding momenta commute. This confirms the
independence of CM and relative coordinates (appendix A.1).

The scalar trapping potential separates into two parts: the first depends on the CM coordinate, while the

second depends on the relative coordinates without cross-terms between the two,
∑N

i=1 r̂
2
i = R̂

2
+

N
∑N

j=2
ˆ̃r2j → (

∑N
j=2

ˆ̃rj)2. The two-body interactionW(r̂i → r̂l) depends only on the relative distances, so it

does not affect the cavity-induced CMmotion. The Hamiltonian, therefore, splits into two parts: (i) Ĥion-cm,
describing the CM coupling to the quantized field Â,

Ĥion-cm =
1

2m

(
ih̄∇R+ g0

√
NÂ
)2

+
mΩ2

2
R̂
2
+
∑

ν=x,y

h̄ω

(
â†ν âν +

1

2

)
, (3)

and (ii) Ĥion-rel (presented in appendix A.1), describing the dynamics of the relative coordinates, decoupled
from both Â and the CM. We now focus on the dynamics of the CM degree of freedom coupled to the cavity
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described by Ĥion-cm. Since the polarization vectors of the photon field lie in the (x, y) plane, the z direction is
trivial, while x and y are independent,

Ĥion-cm =
∑

ν=x,y

[
→ h̄2

2m
∂2Rν

+
ig0h̄

m

√
NÂν∂Rν +

mΩ2

2
R̂2
ν +

Ng20
2m

Â2
ν + h̄ω

(
â†ν âν +

1

2

)]
. (4)

To avoid any confusion, note that R̂= (R̂x, R̂y) = (X̂, Ŷ),∇R = (∂Rx ,∂Ry) = (∂X,∂Y) and Â= (Âx, Ây).
Without loss of generality, we focus on the X component of the Hamiltonian. We also suppress the x index in
the photon operators for simplicity, i.e. â≡ âx. Finally, to simplify the Hamiltonian, we introduce bosonic
operators for matter b̂=

√
mΩ/(2h̄)[X̂+ h̄/(mΩ)∂X]. The CM Hamiltonian turns into the well-known

HH [3, 41]

Ĥion-cm = h̄Ω

(
b̂†b̂+

1

2

)
+ ih̄

√
Ωg20N

4mε0Vω
(
â+ â†

)(
b̂→ b̂†

)
+

h̄Ng20
4mε0Vω

(
â+ â†

)2
+ h̄ω

(
â†â+

1

2

)
. (5)

2.2. 2D electron gas
Next, we consider 2D electron gas (2deg) subject to a homogeneous magnetic field perpendicular to the
plane. The electrons are also coupled to a homogeneous single-mode cavity field (figure 1(b)). Landau-level
systems in a cavity have been theoretically studied and experimentally realized [7, 8, 15]. Many interesting
phenomena have been observed, including Landau polariton quasiparticles and modifications of quantum
Hall transport [5, 6, 8, 12]. The Hamiltonian for the quantum Hall system in the cavity is given by

Ĥ2deg =
1

2m

N∑

i=1

(
π̂i + eÂ

)2
+

N∑

i<l

W(r̂i → r̂l)+ h̄ω

(
â†â+

1

2

)
, (6)

where π̂i = ih̄∇i + eAext(r̂i) are the dynamical momenta, and Aext(r̂) =→eyBx̂ describes the magnetic field

B=∇×Aext(r̂) = Bez. The cavity field Â=
√
h̄/(2ε0Vω)ey(â+ â†) is characterized by the in-plane

polarization vector ey and the photon’s bare frequency ω. Further,W(r̂i → r̂j) = (4πε0)→1 |̂ri → r̂j| is the
Coulomb interaction between the electrons. The transformations of momenta {∇i} and the two-body
interaction are described in appendix A.1.

The interaction between the cavity field and the electrons is given by Â ·
∑N

i=1 ih̄∇i + eAext(r̂i) =√
NÂ · [ih̄∇R+ eAext(R̂)], such that the cavity field couples only to the CM of the 2deg (appendix A.2). After

the transformation, the Hamiltonian is given by Ĥ2deg = Ĥ2deg-cm + Ĥ2deg-rel, where Ĥ2deg-cm includes the

coupling to the quantized field, Â, while Ĥ2deg-rel depends on the relative distances and is decoupled from Â.
The CM part, governing the light-matter dynamics, is given by

Ĥ2deg-cm =
1

2m

(
ih̄∇R+ eAext

(
R̂
)
+ e

√
NÂ
)2

+ h̄ω

(
â†â+

1

2

)
. (7)

The expression for Ĥ2deg-rel is presented in the appendix A.2. In the Landau gauge, the Hamiltonian is
translationally invariant along the y axis. Thus, the eigenfunctions related to this direction in space are plane
waves of the form exp(iKyŶ). Applying Ĥ2deg-cm to the plane wave and introducing the shifted coordinate
ˆ̄X= X̂+ h̄Ky/eB, the Hamiltonian becomes

Ĥ2deg-cm =→ h̄2

2m

∂2

∂X̄2
+

mω2
c

2
ˆ̄X2 → e2B

√
N

m
Âˆ̄X+

e2N

2m
Â2 + h̄ω

(
â†â+

1

2

)
, (8)

where, ωc = eB/m is the cyclotron frequency. To simplify the Hamiltonian further, we perform a Fourier

transformation on the electronic coordinate φ(ˆ̄X) = (2π)→1
´∞
→∞ φ̃(K̂)exp(→iK̂ˆ̄X)dK̂, such that

Ĥ2deg-cm =→mω2
c

2

∂2

∂K2
+

h̄2

2m
K̂2 + i

e2B
√
N

m
Â∂K +

e2N

2m
Â2 + h̄ω

(
â†â+

1

2

)
. (9)

Finally, to turn Ĥ2deg-cm into HH form, we introduce annihilation and creation operators {̂l, l̂†} for the
matter degrees of freedom K̂=

√
mωc/(2h̄)(̂l+ l̂†) and ∂K =

√
h̄/(2mωc)(̂l→ l̂†), such that

Ĥ2deg-cm = h̄ωc

(
l̂†̂l+

1

2

)
+ ih̄

√
e2Nωc

4mε0Vω
(
â+ â†

)(
l̂→ l̂†

)
+

h̄e2N

4mε0Vω
(
â+ â†

)2
+ h̄ω

(
â†â+

1

2

)
. (10)
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Thus, the CM Hamiltonian for Landau levels coupled to the cavity assumes the same mathematical form as
that of harmonically trapped ions, with one important difference. Since we applied a Fourier transformation
to the matter operators to arrive at equation (10), the dynamical phenomena that occur in real space for the
ions manifest in k-space for the Landau levels.

2.3. Harmonic molecules
As an additional example, we consider a system of N identical non-interacting polar molecules collectively
coupled to a single-mode cavity. The molecular vibrations are described by one-dimensional harmonic
potential. For simplicity, the molecules are assumed to be oriented along one of the cavity polarization
directions. For the molecular system, we use the length gauge form of the Pauli–Fierz Hamiltonian [42, 43],
which, given these assumptions, takes the form

Ĥmol =
N∑

i=1

[
→ h̄2

2M

∂2

∂x2i
+

MΩ2
vib

2
x̂2i

]
+ h̄ω

⎡

⎣→1

2

∂2

∂q2
+

1

2

(
q̂→ g

N∑

i=1

x̂i

)2
⎤

⎦ . (11)

Here, Ωvib is the fundamental frequency of the harmonic potential,M is the molecular mass, and ω is the
cavity frequency. g= µ0/

√
ωε0V is the light-molecule coupling constant, which depends on the effective

optical mode volume V , the vacuum permittivity ε0, and the magnitude of the molecular dipole moment, µ0.
The operators q̂ and ∂q describe the position and momentum quadratures of the bosonic cavity mode.
However, they should not be confused with the creation and annihilation photon operators â†, â in the
Coulomb gauge, as their connection is subtle [91].

The model Hamiltonian Ĥmol has been used in multiple works studying molecular systems under VSC in
cavities [24, 75, 76, 92, 93]. The perfectly oriented molecules couple to the cavity through the collective
dipole moment. Thus, we transform Ĥmol into the CM frame by introducing the CM coordinate
X̂= (N)→1/2

∑
i x̂i and the relative bond lengths ˆ̃xj = (x̂1 → x̂j)/

√
N with j> 1. We already showed how the

kinetic energy terms and the harmonic potential transform into the CM frame in appendix A.1. Thus, it is
straightforward to obtain the CM Hamiltonian, while the relative bond lengths Hamiltonian separates out
like in the previous models,

Ĥmol-cm =→ h̄2

2M

∂2

∂X2
+

MΩ2
vib

2
X̂2 + h̄ω

[
→1

2

∂2

∂q2
+

1

2

(
q̂→ g

√
NX̂
)2]

,

Ĥmol-rel =→ h̄2

2MN

N∑

j=2

∂2x̃j →
h̄2

2MN

N∑

j,k=2

∂x̃j · ∂x̃k +
MNΩ2

vib

2

N∑

j=2

ˆ̃x2j →
MΩ2

vib

2

⎡

⎣
N∑

j=2

ˆ̃xj

⎤

⎦
2

.

(12)

The cavity mode quadrature, q̂, couples only to the CM coordinate X̂ in Ĥmol-cm. We next expand
(q̂→ g

√
NX̂)2 and apply Fourier transformation to q̂, φ(q̂) = (2π)→1

´∞
→∞ φ̃(p̂)exp(ip̂q̂)dp̂. We find that the

cavity-molecules CM Hamiltonian has the same mathematical form as the previously discussed two models,

Ĥmol-cm =→ h̄2

2M

∂2

∂X2
+

MΩ2
vib

2
X̂2 +

h̄ωg2N

2
X̂2 + ih̄ωg

√
NX̂

∂

∂p
+ h̄ω

(
→1

2

∂2

∂p2
+

p̂2

2

)
. (13)

Finally, we can write the above Hamiltonian in terms of annihilation and creation operators,
m̂=

√
MΩvib/(2h̄)[X̂+ h̄/(MΩvib)∂X] for matter, and ĉ= (p̂+ ∂p)/

√
2 for light,

Ĥmol-cm = h̄Ωvib

(
m̂†m̂+

1

2

)
+ ih̄ωg

√
h̄N

4MΩvib

(
m̂† + m̂

)(
ĉ→ ĉ†

)
+

h̄2ωg2N

4MΩvib

(
m̂† + m̂

)2
+ h̄ω

(
ĉ†ĉ+

1

2

)
.

(14)

The molecule-cavity Hamiltonian above has the standard form of the HH [41]. However, the bosonic
quadratic term appears for the matter operators m̂, m̂†. Thus, the dynamics that appear for photons in the
ion-cavity system will manifest for the matter in the molecule-cavity system.

2.4. HH for the CM and polaritonmodes
In the previous subsections, we demonstrated that, across three cavity QED platforms, the collective
coupling of an ensemble of particles (ions, 2degs, molecules) is described by the HH in equation (5). In all
cases, the bosonic/harmonic matter part is given by∼h̄Ωb̂†b̂, the cavity mode is described by∼h̄ωâ†â, the
bilinear interaction is∼

√
N(â+ â†)(b̂→ b̂†). The last term is the quadratic photon self-interaction in the

Coulomb gauge,∼N(â+ â†)2, or the matter self-interaction,∼N(m̂+ m̂†)2, in the length gauge.

5
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In what follows, we examine the dynamics of the HH, focusing on trapped ions for concreteness, as this
system is more intuitive than 2D electron gas (Landau levels) or molecules. We assume a Fabry–Pérot cavity
consists of two flat parallel mirrors with areaA, separated by a distance L, giving the effective optical mode
volume V =AL/2. The effective mode volume differs from the geometric volume due to the spatial
distribution of the field in the cavity [94]. From this, the dimensionless form of equation (5) is given by

Ĥ=
1

2

(
P̂2 + X̂2

)
+
γ

2

(
p̂2 + q̂2

)
→λq̂P̂+

λ2

2
q̂2, (15)

where X̂≡ (b̂† + b̂)/
√
2 and P̂≡ i(b̂† → b̂)/

√
2 are the CM position and momentum operators (b† and b are

the corresponding creation and annihilation operators), q̂≡ (â† + â)/
√
2, p̂≡ i(â† → â)/

√
2 represent the

position and momentum field quadratures. Energy, time, length, and momentum are measured in units of
h̄Ω, 1/Ω,

√
h̄/(mΩ), and

√
h̄mΩ, respectively. The field quadratures associated with position and

momentum are measured in units of
√
h̄/(ε0VΩ) and

√
h̄ε0VΩ, respectively. The two, dimensionless control

parameters of Ĥ are the frequency ratio between the cavity and the CMmatter excitations, γ, and the
collective coupling constant, λ, defined as [40]

γ ≡ ω

Ω
, λ≡

√
2Ng20

πε0cAmΩ
, (16)

where we define the fundamental cavity frequency, ω = π c/L. The two polariton branches have energies Ω±,
given by [40]

Ω2
± =

1+ γ2 + γλ2

2
± 1

2

√
(1+ γ2 + γλ2)2 → 4γ2. (17)

The cavity resonates with the CMmatter excitations at γ= 1. Appendix B shows the λ,γ-dependence of Ω±.
We numerically solve the time-dependent Schrödinger equation with Ĥ to study the light-matter

dynamics. We also employ a semi-classical analysis to derive exact analytical expressions for the observables.
This approach relies on solving Hamilton’s equations of motion, derived from the classical equivalent of Ĥ,
for X(t), P(t), q(t), and p(t), and provides further insight into the underlying dynamics of the coupled
system (appendix C). According to the Ehrenfest theorem, in a harmonic system, the first moments (e.g.
〈X̂(t)〉, 〈q̂(t)〉, etc) match the corresponding classical solutions exactly [95, 96]. Position-momentum
uncertainty manifests in higher-order observables (e.g. 〈X̂2〉, 〈P̂2〉, 〈q̂2〉, etc). These observables are obtained
by averaging classical expressions over the initial phase space distribution, corresponding to the composite
system initial wave function. The Mandel Q functions of matter or light, which quantify deviations from
classicallity, are obtained using fully quantum simulations.

3. Scheme I. Transfer of nonclassicality frommatter to light

The transfer of nonclassical states is demonstrated by initializing the composite system with the matter CM
displaced by X0 and quadrature-squeezed in X, while the cavity is in the vacuum state. The initial wave
function of the composite system is given by ψ0(X,q)∝ exp[→(X→X0)2/(2w2)]exp(→q2/2), where w is the
width of the matter wave function. For w= 1, the matter is in its ground state, and for w< 1, it is
quadrature-squeezed. Creation of coherent and quadrature-squeezed states of trapped ions has been
demonstrated, e.g. in [49].

Generally, Scheme I relies on transferring non-classical matter states, such as the shifted and squeezed
state of the CM of trapped ions, as described above. As we show later, under ultra-strong coupling, even
shifted and unsqueezed states develop non-classicality. Shifted Landau levels can be realized using a constant
electric field modeled as the scalar electric potential of the form VE(r) = eEy. Such potential shifts the
electronic momenta in the y direction ky → ky +meE/(h̄B) and the corresponding Landau levels wave
functions [97]. Squeezing of the Landau levels can also be realized. The magnetic field B defines the
frequency of the effective harmonic potential (via ωc, see equation (10)). Thus, a squeezed state can be
prepared by a sudden quench of the magnetic field. This might be experimentally challenging due to the
magnitude of the typical magnetic fields. Alternatively, squeezing is possible in parabolic quantum wells as
the ones used in quantum wires (2D) and quantum dots (3D) [98], or in semiconductor (GaAs or AlGaAs)
quantum wells [99]. For oriented molecules, the required initial states can be prepared with coherent control
schemes using pulsed lasers [100, 101].

The wave function ψ0 corresponds to the semi-classical phase space distribution

P(0) =
1

π2
exp

[
→ (X(0)→X0)2

w2
→w2P2(0)

]
exp
[
→q2(0)→ p2(0)

]
, (18)
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Figure 2. Snapshots of time evolution of the matter (X,P, upper row) and cavity states (q,p, bottom row) in their respective phase
spaces. The initial state in Scheme I is a product of a displaced quadrature-squeezed matter CM state and cavity ground state (see
equation (18)). Arrows indicate the trajectories of the phase space distribution centers. Initially, the radius of the trajectory equals
the initial matter CM quadrature shift, X0. The dimensional units for the variables and parameters in this work are defined after
equation (15).

with X(0), P(0), q(0), and p(0) representing the initial conditions. Figure 2 presents a sequence of phase
space snapshots for the light and matter subsystems. The initial state parameters are X0 = 3 and w= 0.5, with
light and matter at resonance (γ= 1), in the ultrastrong coupling regime (λ= 0.2).

On short timescales, the squeezed matter phase space distribution rotates counterclockwise at a radial
distance of approximately X0 while maintaining its elongated shape. As time progresses, the distribution
becomes circularly symmetric and converges toward the origin. The motion of the phase space distribution
has two characteristic frequencies defined by the polariton energies in equation (17): fast angular (or
rotational) frequency, proportional to Ω+ +Ω→, and slow radial oscillation frequency, proportional to the
vacuum Rabi splitting (VRS) ∆̄≡ Ω+ →Ω→.

The matter CM dynamics, mediated by the light-matter coupling, generates photons, and the nonclassical
state of matter effectively transfers to the light. The transfer occurs on the time scale of slow radial oscillation
(∆̄→1), as illustrated in the bottom row in figure 2. The light distribution shifts away from the origin and
becomes squeezed, mirroring the initial state of the matter. At resonance, a complete transfer does not
require ultrastrong light–matter interaction, but the transfer rate is defined by the coupling strength, ∆̄= λ.

More generally, the phase space distributions here are multivariate Gaussians, appearing as rotated
ellipses centered around (〈X̂(t)〉,〈P̂(t)〉) or (〈q̂(t)〉,〈p̂(t)〉). The eigenvectors of the covariance matrix define
the orientation of the ellipses while the aspect ratio is proportional to the ratio of the eigenvalues
(appendix D).

The Mandel Q function measures the deviation of PND from the Poisson distribution and is defined
as [79, 102]

Q≡ 〈(∆n̂)2〉→ 〈n̂〉
〈n̂〉 , (19)

where n̂= â†â= (q̂2 + p̂2)/2→ 1/2, and 〈(∆n̂)2〉 ≡ 〈n̂2〉→ 〈n̂〉2. For Q= 0, photons are in a coherent state
and obey trivial Poisson statistics, while for Q> 0, they obey super-Poissonian statistics, which have a
classical analogue. When Q< 0, the photons follow sub-Poissonian statistics, a hallmark of quantum light
with no classical counterpart [79, 102, 103]. Under certain conditions–specifically, in a single-mode cavity
when the field is in a stationary state, the Mandel Q function is related to the zero-time-delay second-order
correlation function g(2)(0) by Q= 〈n̂〉[g(2)(0)→ 1] [79, 104]. The quantity g(2)(0) is frequently used to infer
photon correlations and quantifies the likelihood of simultaneous photon detection events.

Note that quadrature squeezing without displacement in the phase space does not result in
sub-Poissonian statistics [79]. Geometrically, 〈(∆n̂)2〉! 〈n̂〉 occurs when the radial variance of the phase
space distribution is lower than the average radial displacement. In figure 2, thematter is initially squeezed
with Qmat < 0. Note that Qmat is also defined by equation (19), but with n̂mat = b̂†b̂= (X̂2 + P̂2)/2→ 1/2
being the number operator for the matter CM states. While matter and light states exchange, the nonclassical
features emerge in the light degree of freedom, manifesting in Q< 0. The effective transfer of the matter
state, characterized by a negative Q parameter, into the cavity mode is one of the key findings of this work.
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Figure 3. (a) and (b) Expectation values of the matter CM quadrature at resonance, 〈X̂(t)〉 (see equation (20),
γ = 1, X0 = 3, w= 0.5) for two light-matter coupling regimes, strong (λ= 0.05) and ultrastrong (λ= 0.2). 〈X̂(t)〉 is
independent of w. The beating period is defined as T≡ 2π/(∆̄/2), while the period of the high-frequency oscillations is given by
2π/(Σ̄/2). At resonance, ∆̄= λ, and T= 4π/λ≈ 251,63 for (a) and (b), respectively, illustrating the strong dependence on the
collective coupling, λ. (c) and (d) The generated photon number expectation values at resonance for squeezed and non-squeezed
matter initial states. The inset in (c) shows the presence of high-frequency oscillations. The quantum and semiclassical results
agree in all cases.

3.1. Beating and light-matter resonance
Next, we explore the dynamics of the subsystems in more detail. Figures 3(a) and (b) shows the expectation
value of the matter CM position quadrature, 〈X̂(t)〉, at resonance with the cavity (γ= 1), in strong
(ultrastrong) light-matter coupling regime, λ= 0.05 (λ= 0.2). According to the Ehrenfest theorem [95, 96],
〈X̂(t)〉 equals the classical solution X(t) of a single particle with initial position X0, and zero momentum
(appendix C)

〈X̂(t)〉
X0

= cos

[
Σ̄t

2

]
cos

[
∆̄t

2

]
+β sin

[
Σ̄t

2

]
sin

[
∆̄t

2

]
, (20)

where Σ̄≡ Ω+ +Ω→, ∆̄≡ Ω+ →Ω→ =
√

(1→ γ)2 + γλ2 is the VRS, ∆̄! Σ̄, and β = (Ω2
+ +Ω2

→ → 2)/
(Σ̄∆̄). The higher frequency, Σ̄, defines the rotation period of the phase space distributions in figure 2. The
VRS, on the other hand, defines the long beating period T= 2π/(∆̄/2) during which 〈X̂〉 exhibits slow
beatings, and state transfer occurs. This emergent long timescale, inversely proportional to the VRS, depends
on the collective coupling and, consequently, the number of particles, λ∝

√
N (at resonance, ∆̄= λ).

In addition to the collective nature of the beating phenomenon, it is important to highlight the
dependence of T on the detuning. In figure 4(c), we observe that when light and matter excitations are in
resonance (γ= 1), the beating period reaches its maximum. This shows that the collective dynamics of an
ensemble of particles resonantly coupled to a cavity can be significantly modified even in a vacuum
i.e. without an external driving field. Similar modifications of dynamics at resonance have been observed in
chemical reactions of collectively coupled molecules under VSC [21, 22, 30, 63, 64]. As described in section 2,
the HH also applies to harmonic molecules strongly coupled to a cavity mode. Thus, our work could hint at
the observed resonant modification of reactions in polaritonic chemistry [30, 75, 76]. Notably, the beating
period exhibits a sharp resonance in the strong coupling regime (λ= 0.05), while in the ultrastrong regime
(λ= 0.3), the peak broadens as shown in figure 4(d). This is due to CRT, on which we focus next.

3.2. Effects of the counter-rotating terms on dynamical observables
The CRT make the polariton avoided crossing (figure 11) sensitive to the sign of the relative detuning,
γ→ 1= (ω→Ω)/Ω, and the difference between red- and blue-shifted cavity cases increases with λ
(appendix B). This is a characteristic of the ultrastrong coupling regime [3, 4]. Consequently, the beating
period, T is also sensitive to the detuning sign, as shown in figure 4(a). In contrast, under the rotating wave
approximation (RWA), when the terms proportional to λâ†b̂†, λâb̂ and λ2 are omitted from equation (15)],
∆̄RWA =

√
(γ→ 1)2 +λ2 is independent of the detuning sign (appendix B). Figure 4(b) shows TRWA, which

remains the same for detunings of either sign.
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Figure 4. Dependence of the beating periods, T≡ 4π/(Ω+ −Ω−) (equation (17)) and TRWA ≡ 4π/(ΩRWA,+ −ΩRWA,−)
(equation (B2)) on (a), (b) λ and (c), (d) γ. T has a distinctive asymmetry as the cavity frequency is scanned through resonance.
In contrast, TRWA is independent of the sign of the detuning, such that the γ = 0.8,1.2 curves in (b) overlap and the RWA curve
in (d) is symmetric about the point γ= 1.

Figure 4(c) demonstrates that the RWA is a good approximation for λ< 0.1, as T≈ TRWA, which is
expected. However, the asymmetry of T around γ= 1 becomes evident in panel (d). Additionally, the
prefactor β in equation (20) vanishes at resonance under the RWA (appendix C). The asymmetries in the
time-dependent matter CM quadrature are dynamic manifestations of the polariton branch asymmetry
around γ= 1. Although the asymmetries of 〈X̂(t)〉 arise from ultrastrong coupling, they are not inherently
quantum effects. As mentioned earlier, in a system of coupled harmonic oscillators, the normal-mode
frequencies, Ω± and the first moments can be also determined by the classical solution, meaning similar
features can be observed even in a pair of coupled classical oscillators. Therefore, next, we consider
time-dependent observables defined in terms of the second moments of the light probability distribution to
identify potential quantum effects. Figures 3(c) and (d) shows the evolution of the photon number
expectation value, 〈n̂(t)〉 at resonance (γ= 1). The local maxima correlate to when the phase space
distribution is farthest from the origin (see figure 2). The beating period of 〈n̂(t)〉 is given by T/2, since it
includes the second moments, 〈q̂2〉 and 〈p̂2〉. More generally, observables involving higher moments of X̂, P̂
or q̂, p̂, i.e. 〈X̂n〉, 〈P̂n〉 or 〈q̂n〉, 〈p̂n〉 beat with period T for odd n and T/2 for even n. The time-averaged
expectation value is given by (for the full expression, see appendix E)

〈n̂〉 ≡ lim
τ→∞

1

τ

ˆ τ

0
〈n̂(t)〉dt≈∆〈n̂〉= λ2f1

(
w→2 → 1

)
+λ2f2

(
2X2

0 +w2 → 1
)
, (21)

where∆〈n̂(t)〉 ≡ 〈n̂(t)〉→ 〈n̂(t;X0 = 0,w= 1)〉. To simplify the expression, we subtract the relatively small
contribution from the average photon number when the CM is in the ground state. Here, f1,2 are functions of
γ and λ. At resonance,∆〈n̂(γ = 1)〉= X2

0/4+(w→w→1)2/8. For negligible matter squeezing (w≈ 1),
∆〈n̂〉 ≈ (2λ2f2)X2

0, and the average number of generated photons is determined by the initial CM shift, X0.
Figures 5(a) and (b) shows the dependence of∆〈n̂〉 on λ and γ. The average photon number is asymmetric
relative to the resonance point and fewer photons are generated, on average, for γ> 1. This asymmetry has
important implications for the PND as well because, as we discuss next, the Q function is more negative in
the blue-shifted cavity.

Under RWA, 〈n̂〉RWA = λ2fRWA[2X2
0 +(w→w→1)2], and fRWA = 1/[8(γ→ 1)2 + 8λ2] is symmetric about

γ= 1 (appendix E). Figures 5(c) and (d) shows the dependencies of 〈n̂〉RWA. In panel (c), the γ = 0.8,1.2
and γ = 0.9,1.1 curves overlap, while panel (d) demonstrates the symmetric Lorentzian function. The blue
curves (λ= 0.05) in panels (b) and (d) are practically indistinguishable, suggesting that the RWA is a good
approximation in the weak coupling regime (λ, 1).

The asymmetries in the time-averaged photon number reflect the effects of ultrastrong light-matter
coupling. In contrast to the first moments, the photon number explicitly depends on the quantum
uncertainty in position- and momentum-related quadratures. The average photon number is an
experimentally accessible observable (for details, see section 5) and thus allows probing effects beyond RWA
in quantum systems.
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Figure 5. (a) and (b) Dependence of average photon number in equation (21) on λ and γ. (c) and (d) The same as in (a) and (b),
but under RWA. At resonance, the average number of photons becomes independent of the coupling strength, λ in both the full
system and under RWA–all graphs in panels (b) and (d) overlap at γ= 1. Note that in panel (d), the functions are symmetric
Lorentzians centered at γ= 1.

Figure 6. (a) and (b) Photon Mandel Q functions for the same parameters as in figures 3(c) and (d). Importantly, for w= 0.5, the
time-averaged Q function, Q attains negative values. (c)–(e) The dependence of Q on the initial displacement and width of the
matter CM state is shown before (c), at (d), and after (e) the resonance for strong cavity coupling. The nonclassical features of the
photon state primarily occur for w< 1. At resonance in (d), the state transfer is most efficient. The asymmetry between (c) and
(e) vanishes in the RWA (see appendix F), and Q< 0 can be achieved only for w< 1.

3.3. MandelQ function
Next, we focus on the Mandel Q function, which quantifies nonclassicality, indicated by negative values of Q.
Figures 6(a) and (b) illustrates the evolution of the photon Q function at resonance. Q attains negative values
only when CM is both shifted and quadrature-squeezed in X (i.e. when w< 1). Qualitatively, figure 2
suggests that the minimum of Q is connected to the initial value of Qmat, given by
Qmat(0) = (w2 → 1)[1+O(X→2

0 )] (appendix F). While 〈n̂〉 in equation (21) scales with X2
0, the initial Qmat

approaches a constant as X0 increases, leading to the saturation of the minimal attainable Q values.
The time-averaged photon Mandel function, Q≡ limτ→∞ τ→1

´ τ
0 Q(t)dt, is shown in figures 6(c)–(e)

for a range of X0 and w values. Q is negative on either side of the resonance for an initially shifted and
quadrature-squeezed matter state. Notably, Qmay attain negative values for an initially quadrature-squeezed
matter state even without the diamagnetic term (∝ λ2) and under the RWA. However, under the RWA, the
asymmetry between (c) and (e) disappears, and negative Q can be achieved only for w< 1 (appendix F).

It should be mentioned that internal quantum state transfer has previously been demonstrated in
trapped atoms and ions in cavities [50, 51]. In these works, the cavity field interacts with the internal degree
of freedom of a single atom or ion, such as a transition between two hyperfine or electronic states (two-level
atoms). In contrast, our work explores coupling to a collective degree of freedom of many particles, e.g. the
CM of harmonically trapped ions—a multilevel quantum system. Moreover, the coupling strength scales
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with the particle number, N. This fundamental property enables reaching the ultrastrong light-matter
coupling [3, 4], where the counter-rotating terms become important and introduce novel physical effects.

4. Scheme II. Generation of nonclassicality from a coherent cavity

An alternative approach for generating nonclassical states involves initializing the system with the matter CM
in its ground state and the cavity in a coherent state, |α〉. Figure 7 illustrates the evolution of the phase space
distributions of matter CM (top row) and light (bottom row) in Scheme II. Initially, both Q and Qmat are
zero, as the system begins in a trivial state without any correlations. In this scenario, the counter-rotating
interaction terms are crucial in generating sub-Poissonian distributions in the motional states of matter or
photon number states (appendix F).

Over time, the matter and light distributions periodically elongate (squeeze); however, during maximal
elongation, the matter phase space distribution aligns approximately along the line connecting its center to
the origin, while the light distribution is oriented perpendicularly. As previously noted, the Q function
becomes negative when the radial variance of the phase space distribution is less than the radial
displacement. In this scenario, only the photon Q function attains negative values. In contrast to the
resonance case shown in figure 2, the state transfer is only partial due to the large detuning. The matter phase
space distribution does not reach the initial radial displacement of the light distribution, and the light
distribution does not collapse to the origin.

Figure 8 shows the time averaged photon Q (top panels) and matter Qmat (bottom panels). Q is sensitive
to the phase of α, negative Q is obtained before (after) the resonance for coherent states with sufficiently
large Re[α] (Im[α]). The Q functions reach saturation along the real or imaginary axes. At resonance, both Q
and Qmat remain non-negative. Additionally, a clear asymmetry appears between the red and blue detuned
cavities in panels (a) and (c). This asymmetry increases with λ, and, in the case of photons, culminates with
the complete absence of Q< 0 in the red-shifted cavity in the ultra-strong coupling regime (λ= 0.5, see
appendix F).

Remarkably, under initial conditions where the photon Q" 0 in figures 8(a) and (c), Qmat attains
negative values. In other words, even when the sub-Poissonian PND is not achieved, the coherent state is
partially transferred to the matter subsystem, simultaneously developing the sub-Poissonian distribution of
motional states of thematter CM. The generation of nonclassical states in light and matter, starting from a
coherent state of light, represents a key finding of this work.

The average number of photons, 〈n̂〉, is also sensitive to the phase of α and shows trends similar to those
of Q. The symmetries of 〈n̂〉 can be accessed via δ〈n̂〉 ≡ 〈n̂(α= C)〉→ 〈n̂(α= iC)〉, where C> 0. δ〈n̂〉
measures the difference in average photon number between the initial coherent state with real α vs.
imaginary α, and it is given by

δ〈n̂〉= λ2C2

(
2γ+λ2

)(
Ω2

+ +Ω2
→
)
→ 4γ

4Σ̄2∆̄2
. (22)

Figure 9 shows the dependence of δ〈n̂〉/C2 on the system parameters. Here, the value of C is large enough to
saturate the Q parameter. On average, the cavity is populated with fewer photons for real α (imaginary α),
before (after) the resonance.

Moreover, the asymmetry of |δ〈n̂〉| increases with λ. In the RWA, δ〈n̂〉= 0. To our knowledge, this
asymmetry in photon generation as light-matter coupling enters the ultrastrong regime has not been
previously discussed. This phenomenon could potentially be tested in Landau polariton systems, where
ultrastrong coupling has been experimentally demonstrated [3, 4, 8, 12]. Such observation would provide
clear evidence of the dynamical manifestation of ultrastrong coupling, extending our understanding of this
regime beyond conventional spectroscopic methods.

Nonclassical states of light and matter have been extensively studied in optomechanical systems [35, 38].
However, the coupling mechanism in these systems differs from that considered here. In optomechanical
systems, the cavity field interacts with the mechanical mode via polarizability. Additionally, achieving strong
coupling requires external laser pumping near the cavity resonance. In contrast, in our case, the cavity field
couples to charges in the matter subsystem, and the collective nature of the coupling allows us to reach the
ultrastrong coupling regime and observe phenomena beyond the RWA described in this section.

5. How to access the nonclassical states

In Scheme I, the nonclassical photons generated in the cavity can be extracted by making one of the cavity
mirrors semi-transparent [82, 105]. Photon leakage can modeled as coupling of the cavity field to a photonic
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Figure 7. Snapshots of evolving phase space distribution of matter (X,P, upper row) and cavity field (q,p, bottom row). The
initial state in Scheme II is a product of matter CM ground state and cavity coherent state, |α〉. The arrows show the trajectories
of the distribution centers. The dashed lines pass through the origin and distribution centers in each panel. Note that the matter
distributions approximately align with the dashed lines, while the light distributions are perpendicular. The values of detuning
and coupling constant are exaggerated to highlight the effect.

Figure 8. The dependence of photon Q (top panels) and the matter Qmat (bottom panels) on the initial coherent state, |α〉.
Sub-Poissonian distributions of photon and motional states are achieved off-resonance in (a) and (c). With increasing Re[α] and
Im[α] components, the sub-Poissonian distributions saturate. At resonance, both photon and matter Mandel Q parameters are
positive.

Figure 9. Dependence of δ〈n̂〉/C2 in equation (22) on γ. In all cases, on average, the cavity is populated with more photons

starting from a coherent state with imaginary (real) α below (above) resonance. The asymmetry of |δ〈n̂〉| about γ= 1 increases
with λ.

bath. The output field is obtained by employing the input-output formalism, which assumes a bilinear
coupling to the bath degrees of freedom (cavity environment) through the field operators â and â†, with a
constant coupling proportional to

√
κ. In this framework, the equation of motion of the cavity field

operator, â(t) includes damping terms, and depends on the input field operator, d̂in(t), which represents the
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Figure 10. Expectation values of (a) matter CM X quadrature, (b) photon number, and (c) cavity photon Q function in the
presence of cavity loss. The results were obtained by numerically solving equation (24). Parameters: γ = 1, X0 = 3, w= 0.5.

environmental noise feeding into the cavity,

˙̂a(t) =→i
[
â(t) ,Ĥ

]
→
[
â(t) , â†

](κ
2
â+

√
κd̂in (t)

)
+
(κ
2
a† +

√
κd̂in (t)

)
[â(t) ,a] . (23)

The cavity field operator, the input operator, and the output field operator, d̂out(t) are related via the
input-output relation, d̂out(t)→ d̂in(t) =

√
κâ(t) [106].

In practice, the effect of outcoupling can be modeled by the master equation for the reduced density
matrix of the system, ρ̂. This approach is valid under the assumption of weak coupling between the system
and bath operators, as established in [106]. In the low-temperature limit (kBT, h̄ωi, where ωi is an
eigenfrequency of the system), the master equation becomes [106]

˙̂ρ=→i
[
Ĥ, ρ̂

]
+
κ

2

(
2âρ̂â† → â†âρ̂→ ρ̂â†â

)
. (24)

Figure 10 shows expectation values, including the Q function of the cavity field, obtained by numerically
solving equation (24). The observables exhibit persistent oscillations, exponentially decaying at an
approximate rate of κ/2 (for the relatively small values of κ, κ, Ω).

The expected number of photons leaking from the cavity can be roughly estimated by neglecting the
input field in the input–output relation, d̂out(t)≈

√
κâ(t), such that 〈n̂out(t)〉 ≈ κ〈n̂(t)〉, where

n̂out ≡ d̂†outd̂out. Then, the time-averaged expectation value of the photons outside the cavity is approximately
given by 〈n̂out(t)〉 ≈ κ〈n̂〉exp(→κt/2) where 〈n̂〉 is the time-averaged number of photons in the isolated
cavity in equation (21).

The Mandel Q function of the output field can be simply estimated using the following definition [102],
Qout = (〈b̂†outb̂

†
outb̂outb̂out〉→ 〈n̂out〉2)/〈n̂out〉= κ(〈â†â†ââ〉→ 〈n̂〉2)/〈n̂〉= κQ. More rigorous treatment of the

correlation functions involving b̂out is described in [106]. Constrained optimization can be employed to
simultaneously minimize Qout and maximize 〈n̂out〉, thereby optimizing detection efficiency, but this is
beyond the scope of the present study.

Alternatively, in Scheme II, the sub-Poissonian distribution of the matter CM states can be directly
observed via spectroscopic methods, such as sideband spectroscopy for trapped atomic ions [49, 52]. Light
and matter can be decoupled by introducing a large detuning to measure the properties of matter
independently. The method and the details for introducing detuning will depend on the system and
experimental setup. It is worth noting that in molecular polaritonics, the molecules are typically embedded
in a solvent/matrix, which can be effectively treated as a separate bath for the molecules. The coupling to the
solvent, however, under certain conditions, may become strong and drive non-trivial dynamics potentially
affecting chemical reactions [77, 107]. This is outside the scope of this work and requires treatments beyond
the weak system-bath interaction.
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6. Conclusions and outlook

By leveraging the formation of polaritons in strongly and ultrastrongly coupled light-matter systems, we
propose two initialization schemes to generate and effectively exchange nonclassical states of matter and
light. In Scheme I, an initially displaced and quadrature-squeezed matter CM state is dynamically transferred
to the cavity mode, producing nonclassical photons that can be extracted by making one of the cavity
mirrors semi-transparent. This scheme builds upon the ability to create coherent and quadrature-squeezed
matter states in ion traps (e.g. see [49]).

The second initialization scheme relies on ultrastrong coupling (i.e. on the presence of CRT in the
Hamiltonian), which generates sub-Poissonian distributions of photon or matter states, starting from a
coherent cavity state. This shows that an ultrastrongly coupled light-matter system acts as a generator that
converts a coherent photonic state, devoid of nonclassical characteristics, into a nonclassical state of light or
matter. This demonstrates a clear quantum advantage of the ultrastrong coupling regime [3, 4] and suggests
novel pathways for hybrid, polaritonic quantum technologies. For example, one could envision protocols
where matter is prepared in such a state that the system evolves into a macroscopic cat state [87] or a
photonic cluster state [88], which can be used for quantum information and computation.

The population distribution of the matter states can be measured spectroscopically after decoupling the
matter from the cavity. Additional manifestations of the ultrastrong coupling effects are the distinctive
asymmetries in dynamical observables, such as average photon number and Mandel Q parameter, emerging
as the cavity frequency is scanned through the resonance. These CRT-induced asymmetries provide a novel,
dynamical perspective on the ultrastrong coupling regime typically probed by transmission spectroscopy. To
our knowledge, such dynamic asymmetries have not been reported elsewhere.

The considered schemes can act as probes of quantum dynamics under strong or ultrastrong light-matter
coupling in microscopic and mesoscopic systems. The coupling to light in such systems differs from that in
typical optomechanical systems [35]. Initializing the cavity field in non-trivial states may enable new
quantum control schemes for chemical processes in molecular systems under VSC. This could lead to
applications in catalysis or the development of novel reaction pathways influenced by quantum states of light.
Similarly, for Landau levels coupled to the cavity mode, strong light-matter interactions can transfer states of
light to the electronic subsystem’s collective (CM) mode, offering new ways to control electronic properties.
Once a strong-ultrastrong coupling regime between the trapped ion’s motion and the cavity mode is
achieved, nonclassical photons could be potentially generated from squeezed motional states of ions.
Nonclassical photonic states are important for quantum sensing [83–86].

We anticipate that our analysis will inspire further experimental and theoretical investigations of the
dynamics in various strongly and ultrastrongly coupled light-matter systems, ultimately advancing the field
of quantum science and technology and bridging it with polaritonic chemistry [22, 75, 76] and cavity
quantum materials [16, 30].
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Appendix A. Mapping to the HH for different systems

In this appendix, we detail the intermediate steps involved in separating the Hamiltonians of the various
systems in section 2 into the HH and a Hamiltonian describing the dynamics of the relative degrees of
freedom.

A.1. Cold trapped ions
The collective coupling between the trapped ions and the cavity field emerges by transforming the
Hamiltonian in equation (1) to the CM frame. We use a similar transformation for the other systems, too,
later, so all the steps are detailed here. For mathematical convenience, we utilize a symmetric definition of the
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collective and relative degrees of freedom, where both are scaled by
√
N [90],

R̂=
1√
N

N∑

i=1

r̂i and ˆ̃rj =
r̂1 → r̂j√

N
with j > 1. (A1)

The momenta of the particles in the new coordinate system are given by∇1 = (∇R+
∑N

j=2 ∇̃j)/
√
N and

∇j = (∇R→∇̃j)/
√
N, with j> 1. The kinetic energy terms in the new frame are given by

N∑

i=1

∇2
i =∇2

R+
1

N

N∑

j=2

∇̃2
j +

1

N

N∑

j,k=2

∇̃j · ∇̃k. (A2)

In the new coordinates, the cavity field couples only to the CMmomentum, Â ·
∑N

i=1∇i =
√
NÂ ·∇R, while

the scalar trapping potential separates into two parts, one depending on the CM coordinate and the other
one on the relative coordinates, without cross-terms between the two

N∑

i=1

r̂2i = R̂
2
+N

N∑

j=2

r̂2j →

⎡

⎣
N∑

j=2

r̂j

⎤

⎦
2

. (A3)

The two-body interactionW(r̂i → r̂l) depends only on the relative distances and thereby does not affect the
cavity-induced CMmotion. In the CM frame, it is given by

N∑

i<l

W(r̂i → r̂l) =
N∑

1<l

W
(√

Nˆ̃rl
)
+

N∑

2!i<l

W
(√

N
(
ˆ̃ri → ˆ̃rl

))
. (A4)

The analysis above shows that the Hamiltonian separates into two parts, Ĥion = Ĥion-cm + Ĥion-rel, where (i)
Ĥion-cm, describes the CM coupling to the quantized field Â, and (ii) Ĥion-rel, describes the dynamics of the
relative coordinates, decoupled from Â and the CM. The two parts are given by

Ĥion-cm =
1

2m

(
ih̄∇R+ g0

√
NÂ
)2

+
mΩ2

2
R̂
2
+
∑

ν=x,y

h̄ω

(
â†ν âν +

1

2

)
,

Ĥion-rel =→ h̄2

2mN

N∑

j=2

∇̃2
j →

h̄2

2mN

N∑

j,k=2

∇̃j · ∇̃k +
mNΩ2

2

N∑

j=2

ˆ̃r2j

→ mΩ2

2

⎡

⎣
N∑

j=2

ˆ̃rj

⎤

⎦
2

+
N∑

1<l

W
(√

Nˆ̃rl
)
+

N∑

2!i<l

W
(√

N
(
ˆ̃ri → ˆ̃rl

))
. (A5)

In addition, it is crucial to demonstrate that the CM and relative degrees of freedom are independent by
checking the commutation relations between their coordinates and momenta. Using the chain rule, we find
the derivatives in the CM frame

∇R =
1√
N

N∑

i=1

∇i and ∇̃j =
1√
N

N∑

i=1

∇i →
√
N∇j with j > 1. (A6)

It is clear that the momenta in the new frame of reference commute, [∇R,∇̃j] = 0. It can also be shown that

the momenta and coordinates are independent since [∇R,ˆ̃rj] = 0 and [∇̃j, R̂] = 0. Thus, we focus on the CM
part to describe the cavity-matter dynamics. Since the polarization vectors of the photon field lie in the (x, y)
plane, the z direction of the system becomes trivial. The light-matter Hamiltonian then describes a system of
interacting harmonic oscillators, and importantly, the x and y directions are independent,

Ĥion-cm =
∑

ν=x,y

[
→ h̄2

2m
∂2Rν

+
ig0h̄

m

√
NÂν∂Rν +

mΩ2

2
R̂2
ν +

Ng20
2m

Â2
ν + h̄ω

(
â†ν âν +

1

2

)]
. (A7)

To avoid any confusion, note that R̂= (R̂x, R̂y) = (X̂, Ŷ),∇R = (∂Rx ,∂Ry) = (∂X,∂Y) and Â= (Âx, Ây).
Consequently, we can treat only one of the system’s equivalent directions. Thus, the Hamiltonian that
captures the ion-cavity dynamics is given by

Ĥion-cm =→ h̄2

2m
∂2X +

mΩ2

2
X̂2 +

ig0h̄

m

√
NÂx∂X +

Ng20
2m

Â2
x + h̄ω

(
â†x âx +

1

2

)
. (A8)
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Finally, in terms of the matter annihilation operators

b̂x =

√
mΩ

2h̄

(
X̂+

h̄

mΩ
∂X

)
, (A9)

the CM Hamiltonian attains the form of the well-known HH [3, 41]

Ĥion-cm = h̄Ω

(
b̂†x b̂x +

1

2

)
→ i

√
h̄Ωg20N

2m
Âx

(
b̂†x → b̂x

)
+

Ng20
2m

Â2
x + h̄ω

(
â†x âx +

1

2

)
. (A10)

A.2. Landau levels
This subsection details the transformation of the 2deg Hamiltonian, Ĥ2deg in equation (6). The interaction
term between the cavity field and the dynamical momenta of electrons is given by

Â ·
N∑

i=1

ih̄∇i + eAext (r̂i) =
√
NÂ ·

[
ih̄∇R+ eAext

(
R̂
)]
. (A11)

In terms of the new coordinates, the sum of squares of the external field is

N∑

i=1

A2
ext (r̂i) = A

2
ext

(
R̂
)
+N

N∑

j=2

A2
ext

(
ˆ̃rj
)
→

⎡

⎣
N∑

j=2

Aext

(
ˆ̃rj
)
⎤

⎦
2

. (A12)

The bilinear term involving the magnetic field and momenta is given by

N∑

i=1

Aext (r̂i) ·∇i = Aext

(
R̂
)
·∇R+

N∑

j=2

Aext

(
ˆ̃rj
)
· ∇̃j. (A13)

Collecting the terms, we find that the Hamiltonian in the new frame is a sum of two terms, Ĥ2deg = Ĥ2deg-cm+

Ĥ2deg-rel, where: (i) the CM term, Ĥ2deg-cm including the coupling to the quantized field Â, and (ii) the term

Ĥ2deg-rel depending on the relative distances, decoupled from Â. The two terms are given by

Ĥ2deg-cm =
1

2m

(
ih̄∇R+ eAext

(
R̂
)
+ e

√
NÂ
)2

+ h̄ω

(
â†â+

1

2

)
,

Ĥ2deg-rel =
1

2m

N∑

j=2

[
ih̄∇̃j√
N

+ e
√
NAext

(
ˆ̃rj
)]2

→ h̄2

2mN

N∑

j,l=2

∇̃j · ∇̃l →
e2

2m

⎡

⎣
N∑

j=2

Aext

(
ˆ̃rj
)
⎤

⎦
2

+
N∑

1<l

W
(√

Nˆ̃rl
)
+

N∑

2!i<l

W
(√

N
(
ˆ̃ri → ˆ̃rl

))
. (A14)

Appendix B. Polariton branches

This appendix presents the polariton frequencies and their dependence on the collective coupling constant, λ
and γ ≡ ω/Ω. Here, ω is the cavity mode frequency, and Ω is the harmonic matter trap frequency. The
dimensionless upper/lower polariton frequencies are defined in equation (17) [40],

Ω2
± =

1+ γ2 + γλ2

2
± 1

2

√
(1+ γ2 + γλ2)2 → 4γ2, (B1)

where the collective coupling constant depends on the number of trapped particles, N" 1 as
λ≡

√
2Ng20/(πε0cAmΩ). Here, g0 is the single particle coupling constant,A is the area of the resonator

mirror,m is the particle mass, ε0 is the vacuum permittivity, c is the speed of light.
Figure 11 shows the λ,γ-dependence of Ω± and VRS, ∆̄≡ (Ω+ →Ω→) =

√
(1→ γ)2 + γλ2. Note that

the asymmetry relative to the point γ= 1 increases with λ. Under the RWA, the terms proportional to
λâ†b̂†,λâb̂, and λ2 in the Hamiltonian (see equation (15)) are omitted, and the polariton branches become

Ω2
RWA,± =

1+ γ2 +λ2/2

2
± 1

2

√
(γ+ 1)2

[
(γ→ 1)2 +λ2

]
. (B2)
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Figure 11. Top panels—Polariton branches,Ω± and VRS, ∆̄≡ Ω+ −Ω− and ∆̄RWA ≡ ΩRWA,+ −ΩRWA,−, as a function of the
collective coupling constant, λ. At resonance (γ= 1), ∆̄= ∆̄RWA = λ. The difference between ∆̄ and ∆̄RWA grows with λ.
Bottom panels—Ω±, ∆̄, and ∆̄RWA as a function of γ. ∆̄ develops asymmetry about γ= 1 with increasing λ, while
∆̄RWA =

√
(γ− 1)2 +λ2 remains symmetric.

Under the RWA, the VRS, ∆̄RWA = ΩRWA,+ →ΩRWA,→, is symmetric relative to γ= 1 and it is given by

∆̄RWA =
√

(γ→ 1)2 +λ2. (B3)

Appendix C. Semiclassical approach

The semiclassical approach relies on solving Hamilton’s equations of motion derived from the classical
counterpart of Ĥ in equation (15)

Ẋ= P→λq, Ṗ=→X, (C1a)

q̇= γp, ṗ=→γq+λP→λ2q. (C1b)

This system of linear differential equations can be solved by the Laplace transform method. Laplace
transform, denoted by L, turns the set of differential equations into a system of algebraic equations since
L(ḟ) = f̃(s)→ f(0), where f̃(s) is the Laplace transform of f, s is the Laplace space variable, and f (0) is the
initial value of f. Solving the algebraic system yields,

X̃(s) =
X(0)

[
s3 + γ

(
γ+λ2

)
s
]
+ P(0)

[
s2 + γ2

]

h(s)
→λs

q(0) s+ γp(0)

h(s)
, (C2a)

P̃(s) =
[sP(0)→X(0)]

[
s2 + γ

(
γ+λ2

)]

h(s)
+λ

q(0) s+ γp(0)

h(s)
, (C2b)

q̃(s) = γλs
P(0)→X(0)

h(s)
+
(
s2 + 1

) q(0) s+ γp(0)

h(s)
, (C2c)

p̃(s) = λs
P(0) s→X(0)

h(s)
→

q(0)
[
γ+ s2

(
γ+λ2

)]

h(s)
+

p(0)
(
s3 + s

)

h(s)
, (C2d)

where h(s) = s4 + s2[γ(γ+λ2)+ 1] + γ2 is the characteristic polynomial of the linear system, and X(0), P(0),
q(0), and p(0) are the initial values. The roots of h(s) are given by s1,2 = iΩ± and s3,4 =→iΩ±, where Ω± are
the upper/lower polariton frequencies in equation (B1). With those roots, X(t), P(t), q(t) and p(t) can be
found by applying the inverse Laplace transform, L→1 to equations (C2a)–(C2d). The expectation values are
obtained semiclassically by averaging the classical expression for an observable Ô(t), O(t) = f[X(t),
P(t),q(t),p(t)] with respect to the initial phase space distribution P(0)

〈Ô(t)〉=
ˆ

· · ·
ˆ ∞

→∞
O(t)P (0) dV, (C3)
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Figure 12. Factors β and βRWA in equations (C5) and (C6). At resonance, βRWA vanishes, while β scales approximately linearly
with λ (for λ< 1). Moreover, |β| is sensitive to the sign of the relative detuning, γ− 1, while |βRWA| is not.

where dV≡ dX(0)dP(0)dq(0)dp(0). The phase space distribution is derived from the initial wave function
and thus accounts for the position-momentum uncertainty. For example, the wave function,
ψ0(X,q)∝ exp[→(X→X0)2/(2w2)]exp(→q2/2) corresponds to the phase space distribution

P(0) =
1

π2
exp

[
→ (X(0)→X0)2

w2
→w2P2(0)

]
exp
[
→q2(0)→ p2(0)

]
, (C4)

where X0 is the initial displacement of the matter CM quadrature and w is the initial width of the state (for
the decoupled CM ground state, w= 1).

C.1. Expectation value of the matter CM X quadrature
In the case of 〈X̂(t)〉, only the first term∝ X(0) (see equation (C2a)) contributes to X(t) after the integration
in equation (C3). Simplification yields (same as equation (20))

〈X̂(t)〉
X0

= cos

[
Σ̄t

2

]
cos

[
∆̄t

2

]
+β sin

[
Σ̄t

2

]
sin

[
∆̄t

2

]
, (C5)

where Σ̄≡ Ω+ +Ω→, ∆̄≡ Ω+ →Ω→ =
√

(1→ γ)2 + γλ2 is the VRS (Σ̄< ∆̄), and
β = (Ω2

+ +Ω2
→ → 2)/(Σ̄∆̄). Under RWA,

〈X̂(t)〉RWA

X0
= cos

[
Σ̄RWAt

2

]
cos

[
∆̄RWAt

2

]
+βRWA sin

[
Σ̄RWAt

2

]
sin

[
∆̄RWAt

2

]
, (C6)

where Σ̄RWA, ∆̄RWA, βRWA are defined in terms of ΩRWA,±, and ∆̄RWA =
√

(γ→ 1)2 +λ2.

β factor.—Figure 12 compares β and βRWA. At resonance, β scales approximately linearly with λ (for λ< 1),
while βRWA(γ = 1) vanishes. This suggests that the ultra-strong coupling effects in 〈X(t)〉, induced by CRT,
are most emphasized at resonance.

Appendix D. Probability density and phase space distribution

In this appendix, we outline the semiclassical derivation of the exact matter CM probability density, P(X, t),
and discuss its behavior in Scheme I (for shifted and squeezed matter initial state). Additionally, we present
the general form of the matter and light phase space distributions.

To derive P(X, t), we first invert X[t;X(0)] to obtain X(0) as a function of time and the rest of the initial
conditions

X(0) =
X(t)→ f2 (t)P(0)→ f3 (t)q(0)→ f4 (t)p(0)

f1 (t)
. (D1)

The functions, f1,...,4(t) are given by

f1 (t) = 〈X̂(t)〉/X0, (D2a)

f2 (t) =

(
Ω2

+ → γ2
)
sin(Ω+t)

Ω+∆̄Σ̄
→
(
Ω2

→ → γ2
)
sin(Ω→t)

Ω→∆̄Σ̄
, (D2b)

f3 (t) =→λΩ+ sin(Ω+t)→Ω→ sin(Ω→t)

∆̄Σ̄
, (D2c)

f4 (t) = λγ
cos(Ω+t)→ cos(Ω→t)

∆̄Σ̄
. (D2d)
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Figure 13. (a) and (b) Matter CM quadrature probability density, P(X, t) in equation (D5). The wave packet motion combines
oscillations and breathing about the mean value. The total probability is conversed, which causes the bright spots when the width
of the wave packet is minimized. (c) and (d) Variance of P(X, t). Local minima are attained at the turning points of the wave
packet, i.e. at the extrema of 〈X̂(t)〉). Parameters: γ = 1, X0 = 3, w= 0.5.

Substituting the expression for X(0) in equation (D1) into the initial phase space distribution in
equation (C4) and integrating out P(0), q(0), and p(0), yields

P (X, t) =
1

√
π
√
w2f 21 + f 22/w

2 + f 23 + f 24
exp

[
→ (X→ f 1X0)

2

w2f 21 + f 22/w
2 + f 23 + f 24

]
. (D3)

It can be shown that

w2f 21 (t)+ f 22 (t)/w
2 + f 23 (t)+ f 24 (t) = 2〈

[
∆X̂(t)

]2〉, (D4)

where 〈[∆X̂(t)]2〉 ≡ 〈X̂2(t)〉→ 〈X̂(t)〉2. Thus,

P (X, t) =
1√

2π〈
[
∆X̂(t)

]2〉
exp

[
→
(
X→〈X̂(t)〉

)2

2〈
[
∆X̂(t)

]2〉

]
. (D5)

Figures 13(a) and (b) shows an example of P(X, t). The CM wave packet combines oscillatory and breathing
motions about the mean. The wave packet width (variance) increases between the turning points, as seen in
figure 13(b). The bright spots in the density plots appear when the width is minimum, since the amplitude is
maximized at those moments to conserve the total probability.

Phase space distributions.—Generally, phase space distributions of both matter and light subsystems are
multivariate (2D) Gaussians. A Gaussian function in two dimensions (X and P, or q and p) is defined by five
parameters, the coordinates of the center [µX,P(t) or µq,p(t)], and the elements of the symmetric covariance
matrix

Σ(t) =

[
σ2
X (t) σXP (t)

σXP (t) σ2
P (t)

]
or Σ(t) =

[
σ2
q (t) σqp (t)

σqp (t) σ2
p (t)

]
. (D6)

For example, the photon phase space distribution is given by

P (q,p, t) =
1

2π
√
σ2
qσ

2
p →σ2

qp

exp

[
→

σ2
p

(
q→µq

)2

2
(
σ2
qσ

2
p →σ2

qp

)
]
exp

[
→

σ2
q

(
p→µp

)2

2
(
σ2
qσ

2
p →σ2

qp

) +
2σqp

(
q→µq

)(
p→µp

)

2
(
σ2
qσ

2
p →σ2

qp

)
]
,

(D7)

where σ2
ν ≡ 〈(∆ν̂)2〉= 〈ν̂2〉→µ2

ν , σqp ≡ 〈(∆q̂p̂)〉= 〈q̂p̂〉→µqµp, and µν ≡ 〈ν̂〉 (ν = q,p). Phase space
distribution such as in equation (D7) appear as rotated ellipses centered around (µq,µp). The eigenvectors of
the covariance matrix define the orientation of the ellipses, while the aspect ratio is proportional to the ratio
of the eigenvalues.
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Higher-order expectation values related to the matter or light subsystems can be conveniently obtained
by averaging the corresponding classical expressions with respect to the phase space distributions. The
higher-order averages over a 2D Gaussian distribution are entirely determined by the distribution’s first two
moments, namely the means (e.g. µX,P(t) or µq,p(t)) and the elements ofΣ.

Appendix E. Photon number expectation value

In this appendix, we explore the properties of the photon number expectation value in Scheme I. We also
consider the RWA, allowing us to isolate the ultrastrong-coupling effects arising from the counter-rotating
and diamagnetic terms of the Hamiltonian.

E.1. Scheme I
Using the phase space distribution in equation (D7) the expectation value of the photon number
n̂= â†â= (q̂2 + p̂2)/2→ 1/2 can be conveniently found by following the semiclassical approach outlined in
appendix C. To simplify the expression, we subtract the relatively small average photon number when the
CM is in the ground state. Thus, the considered quantity is∆〈n̂(t)〉 ≡ 〈n̂(t)〉→ 〈n̂(t;X0 = 0,w= 1)〉, which
is given by

∆〈n̂(t)〉

= λ2
(
w→2 → 1

)
(
γ2

sin2
(
Σ̄t/2

)
sin2

(
∆̄t/2

)

Σ̄2∆̄2
+

[
Ω+ sin

(
Σ̄t/2

)
cos
(
∆̄t/2

)
→
(
Σ̄/2

)
sin(Ω→t)

]2

Σ̄2∆̄2

)

+λ2
(
2X2

0 +w2 → 1
)
(
γ2
[
Ω→ sin

(
Σ̄t/2

)
cos
(
∆̄t/2

)
→
(
Σ̄/2

)
sin(Ω→t)

]2

Ω2
+Ω

2
→Σ̄

2∆̄2
+

sin2
(
Σ̄t/2

)
sin2

(
∆̄t/2

)

Σ̄2∆̄2

)
,

(E1)

The time-averaged value reads

∆〈n̂〉= λ2
(
w→2 → 1

)
f1 +λ2

(
2X2

0 +w2 → 1
)
f2, (E2)

where f1,2 (see equation (21)) are defined as

f1 =
Ω2

+ +Ω2
→ + 2γ2

8Σ̄2∆̄2
=

1

8

γ
(
3γ+λ2

)
+ 1

γ2
[
(γ+λ2)2 → 2

]
+ 2γλ2 + 1

, (E3a)

f2 =
2Ω2

+Ω
2
→ + γ2

(
Ω2

+ +Ω2
→
)

8Ω2
+Ω

2
→Σ̄

2∆̄2
=

1

8

γ
(
γ+λ2

)
+ 3

γ2
[
(γ+λ2)2 → 2

]
+ 2γλ2 + 1

. (E3b)

At resonance, f1,2 simplify to f1 = f2 = 1/(8λ2),and∆〈n̂〉 becomes independent of λ,

∆〈n̂(γ = 1)〉= X2
0

4
+

1

8

(
w→w→1

)2
. (E4)

When w∼ 1,∆〈n̂〉 can be roughly estimated by the single term proportional to X2
0,

∆〈n̂〉 ≈ 2λ2f2X
2
0. (E5)

Figures 5(a) and (b) shows∆〈n̂〉 as a function of λ and γ. In panel (b), the asymmetry about the point of
resonance, γ= 1 increases with λ. Next, by comparison with the RWA, we demonstrate that the asymmetry
stems from the ultrastrong coupling and CRT.

RWA.—In the RWA, the Hamiltonian takes the form

ĤRWA =

[
b̂†b̂+

1

2

]
+ γ

[
â†â+

1

2

]
→ i

λ

2
b̂†â+ i

λ

2
b̂â†. (E6)
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Expressing ĤRWA in terms of X̂, P̂, q̂, and p̂, and following the semiclassical approach, we can obtain the
photon number expectation value

〈n̂(t)〉RWA

= λ2
[
2X2

0 +
(
w→w→1

)2] (γ+ 1)2 sin2
(
Σ̄RWAt/2

)
sin2

(
∆̄RWAt/2

)

4Σ̄2
RWA∆̄

2
RWA

+λ2
[
2X2

0 +
(
w→w→1

)2]

×
[
ΩRWA,→

(
γ→λ2/4+Ω2

RWA,+

)
sin(ΩRWA,+t)→ΩRWA,+

(
γ→λ2/4+Ω2

RWA,→
)
sin(ΩRWA,→t)

]2

16Ω2
RWA,+Ω

2
RWA,→Σ̄

2
RWA∆̄

2
RWA

,

(E7)

where ΩRWA,± are defined in equation (B2). Note that in the full system, 〈n̂〉 differs from zero for the CM
ground state (X0 = 0, w= 1). That is why we defined∆〈n̂(t)〉 in equation (E1) to simplify the analysis. In
contrast, under RWA, 〈n̂(t;X0 = 0,w= 1)〉 ≡ 0 as seen from equation (E7). The time average of 〈n̂(t)〉RWA is
given by the simple expression

〈n̂〉RWA =
1

8

λ2

(γ→ 1)2 +λ2

[
2X2

0 +
(
w→w→1

)2]
. (E8)

At resonance (γ= 1), 〈n̂〉RWA reduces to equation (E4). Under RWA, the prefactor of X2
0 (in this case, it is the

overall prefactor) is a Lorentzian function of γ of width λ centered at γ= 1,

2λ2fRWA =
1

4

λ2

(γ→ 1)2 +λ2
. (E9)

Appendix F. MandelQ function

The first subsection presents the analytical expression for the initialMandel Q function in the matter
subsystem, Qmat(0) in Scheme I and II. The following subsections discuss the impact of the diamagnetic term
and the RWA on photon Q function.

F.1. InitialQmat function in scheme I
To obtain the analytical expression for the initial Mandel Q function of the matter state, Qmat(0) in Scheme I
(i.e. for a shifted by X0 and squeezed in X Gaussian), we use the formulas for 〈n̂〉 and 〈(∆n̂)2〉 in
equations (7.100) and (7.102) in [79]

〈n̂〉= |α|2 + sinh2 r, 〈(∆n̂)2〉= |α|2e2r + 2sinh2 rcosh2 r. (F1)

For the considered Gaussian initial state, |α|2 = X2
0/2 and r=→ ln(w). Substitution yields

Qmat (0)≡
〈(∆n̂)2〉→ 〈n̂〉

〈n̂〉 =

(
w2 → 1

)2
(w4 + 1)+ 4w4

(
w2 → 1

)
X2
0

4w4X2
0 + 2w2 (w2 → 1)2

. (F2)

Expanding in powers of X→2
0 , yields

Qmat (0) =
(
w2 → 1

)
→
(
w2 → 1

)2 (
w4 → 2w2 → 1

)

4w4X2
0

+O
(
X→4
0

)
. (F3)

Thus, we obtain the expression used in the main text, Qmat(0) = (w2 → 1)[1+O(X→2
0 )].

F.2. Diamagnetic term and RWA in scheme I
For an initially squeezed matter CM state, the photon Q function may attain negative values even in the
absence of the diamagnetic term proportional to λ2 i.e. with the Hamiltonian

Ĥ(1) =

[
b̂†b̂+

1

2

]
+ γ

[
â†â+

1

2

]
→ i

λ

2

(
b̂† → b̂

)(
â† + â

)
. (F4)
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Figure 14. Photon Q function in Scheme I obtained by direct numerical solution of the Schrödinger equation with the HH in
equation (15) vs Ĥ(1,2) in equations (F4) and (F5). Initial matter state parameters: X0 = 3, w= 0.5.

Figure 15. The dependence of photon Q on the initial displacement and width of the matter CM X quadrature under RWA. In
contrast to figures 6(c)–(e), the pictures on either side of the resonance are identical here.

Figure 16. The dependence of photon Q on the initial coherent state of the cavity field. Sub-Poissonian PND is achieved
off-resonance, and the effect is sensitive to the phase of α. In the ultra-strong coupling regime considered here, Q< 0 is
completely absent in the red-shifted cavity. The negativity saturates with an increasing imaginary component of α.

Under the RWA, i.e. with the Hamiltonian

Ĥ(2) =

[
b̂†b̂+

1

2

]
+ γ

[
â†â+

1

2

]
→ i

λ

2
b̂†â+ i

λ

2
b̂â†, (F5)

the effective transfer of nonclassical matter state into the cavity mode is still possible. Figure 14 compares the
photon Q functions obtained with the HH vs Ĥ(1,2). To isolate the ultrastrong coupling effect, we reproduce
figures 6(c)–(e) in figure 15 but under RWA Hamiltonian. QRWA is insensitive to the sign of the relative
detuning (γ→ 1), i.e. panels (a) and (c) are identical. In contrast, panels (c) and (e) in figure 6 exhibit
asymmetry induced by the terms omitted in the RWA.

F.3. Diamagnetic term and RWA in scheme II
Figure 16 shows additional examples of the constant component of the photon Q function, Q in Scheme II
for a range of initial coherent states of the cavity, |α〉. In this example of the ultra-strong coupling regime, the
asymmetry between the red and blue shifted cavities is so pronounced that negative Q is obtained only on
one side, for γ= 1.2.

The coherent initial state of the cavity used in Scheme II is not squeezed, i.e. Q(t= 0) = 0. Therefore, the
counter-rotating terms are essential for generating squeezing and achieving Q< 0. Figure 17 shows that
under the RWA (i.e. with Ĥ(2) in equation (F5)), Q remains zero throughout the motion. In contrast,
neglecting the diamagnetic terms (i.e. with Ĥ(1) in equation (F4)) produce qualitatively similar results to the
full Hamiltonian with negative (on average) photon Q function. Figure 18 focuses on the asymmetry of Q
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Figure 17. Photon Q function in Scheme II obtained by direct numerical solution of the Schrödinger equation with the HH in
equation (15) vs Ĥ(1,2) in equations (F4) and (F5).

Figure 18. Dependence of the constant component of the photon Q function, Q on γ for real/imaginary α, defining the initial
coherent state, |α〉. The chosen values of α are sufficiently high so that Q is saturated and no longer changes with increasing α.

about the point of resonance (γ= 1). Consistent with figure 9, the asymmetry between initial coherent states,
|α〉 with real or imaginary α increases with λ.
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